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Abstract

We describe a new method for proving lower bounds for algebraic decision trees.
We prove, for the first time, that the minimum depth for arbitrary decision trees
for the problem of testing the membership to a polygon with N nodes is Q(log N).
Moreover, we prove that the corresponding lower bound for the randomized decision
trees matches the above bound. Finally, we prove that for the algebraic exp-log
decision trees (cf. [GSY 93]), the minimum depth is Q(y/log N). We generalize the
last result to the multidimensional case, showing that if an exp—log decision tree
tests a membership to a semialgebraic set with a sum of Betti numbers M, then the

depth of a tree is at least Q(+/log M).
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Introduction

A problem of testing membership to a semialgebraic set was considered by many
authors see, e.g. [B 83], [BLY 92], [BL 92], [Y 93], [MH 84], [MH 85], [YR 80] and
the references there). Here we consider a problem of testing membership to a polygon
(with N nodes). In [MH 84] it was shown, in particular, that for this problem
O(log N) upper bound is valid for linear decision trees, in [YR 80] it was shown
to be a lower bound.The similar question was open for the algebraic decision trees,
in this paper we prove a lower bound Q(log N) for algebraic computation trees
(corollary 1) and for the randomized algebraic computation trees (corollary 2).

The main tool for proving complexity lower bounds for algebraic computation
trees was the number of connected components of a tested set or of its complement,
introduced in [B 83], and this invariant was generalized first to the Euler charac-
teristic ([BLY 92]), then to the sum of Betti numbers in [Y 93]. Also in [BLY 92]
another method for linear decision trees was designed based on the minimal number
of convex sets necessary to compose a given one. All the mentioned powerful tools
unfortunately fail for algebraic trees in the simple case of a (convex) polygon. To
handle it, we introduce another method based on a number of singular points of a
boundary (being a curve) of a tested semi-algebraic set on the plane (proposition 1).
This approach hopes to be prospective, but requires to overcome several difficulties
in the multidimensional situation which seem to be tractable.

Another way to extend the class of the algebraic trees is to add other gate func-
tions in addition to the presented arithmetic ones. An interesting example (which
was already considered in [GSY 93]), is to add exp— and log-gates. In [GSY 93] it
was shown that adding exp and log does not improve the complexity of comput-
ing an algebraic function (under some natural conditions). It is an open question,
whether adding exp and log increases the power of algebraic computation trees. We
make a step towards it (proposition 3) proving a lower bound, namely the square
root of logarithm of the number of singular points. In order to improve it getting rid
of the square root, one should apparently improve an upper bound on the number
of roots in a Pfaffian chain ([K 91]) diminishing a gap with lower bounds provided
by the known examples, which seems to be unlikely at the moment. Similarly we
obtain a lower bound /Tog N for testing membership to the polygon with N nodes
by an exp—log—tree (corollary 3).

At the end we observe (proposition 3) that the known bounds (in the multidi-
mensional case) from [B 83], [Y 93] are valid for exp—log—trees again with weakening
them by taking a square root.



1 A lower bound on the depth of algebraic trees

based on the number of singular points

Let S C R? be a closed semialgebraic set on a plane and let 7' be an algebraic
computation tree (see e.g. [B 83], [Y 93], [MH 84]), which tests a membership prob-
lem for S whose boundary 95 is a semialgebraic curve. Later we call T' simply an
algebraic tree. Let 0 # f € R[Xy, X3] be a polynomial. For any point v = (v, v3) of
the semialgebraic curve Vy = {(z1,29) € R?: f(z1,22) = 0} define its multiplicity
m(v) = my(v) as the maximal m such that the partial derivates
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vanish for all 73 + 2, < m. A point v € Vj is singular if either v is a connected
component of V5 (i.e. an isolated point) or the multiplicity m(v) is larger than the
multiplicities of points of V' in a certain neighborhood of v on V; (c.f. [GKS 93]).
Observe that an isolated point could be treated as singular by the above definition
as for the points out of V; their multiplicities equal to zero. Evidently, if at least
two branches of a curve pass through a point, then this point is a singular (surely,
the inverse is not true).

Consider a branch B of the tree T' and let uy, uy be auxiliary variables along B
(c.f. [B 83]) where for each 1 < j <k, u; = w; © wy, here w;,7 = 1,2 is either Xj,
either X, either a real number, or u,, for some 1 < p < j, and © is either “4” or “x”.
Every u; could be developped (by induction on j) in a polynomial g; € R[X7, X3].

Let the conditions along the branch B be ¢1€,0, ..., grex0 where each ¢; is either
“=" or “>". Consider a set Ug = {g1610, ..., grex0} computed along B and a curve
Wy, ={g; =0,¢;, = “="}U{[lg; =0,¢; = “>"} C R Obviously 0Ug C Wp.

LEMMA 1. For any singular point v of the boundary 95 there exists a branch
B of T such that v is either a singular point of Wpg, either an isolated point of the
set {g; = 0,¢; = “="} or an isolated point of the set {[Tg; =0,e = “>"}.

PROOF.  Assume the contrary. Consider all the branches By, ..., B, of T such
that v € Ug,, ... ,v € Up, (here the bar denotes the closure in the euclidian topol-
ogy). Sincev € dUg,, ... ,v € dUp,, we conclude that v € W, N ...NWg,. There is
exactly one set among Ug,, ... Up, (let it be Up, for definiteness), for which v € Ug, .
Fix any 2 < j < s, let hy, ..., by € R[Xy, X3] be polynomials along the branch B,
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and let the conditions along B; be by = 0, ..., h, = 0,hpy1 > 0, ... oy > 0. If
p > 0, then v cannot belong to a curve {hy = ... h, = 0} (unless, v is an
isolated point either of the latter set or of the set {[],;i<;<; f; = 0}, in both cases
the statement of the lemma is valid), as otherwise v € {h,11--- by = 0} (taking
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into account that v ¢ Up;) and v appears to be a singular point of the curve Wp,
(unless, the curves {hy = ... = h, = 0} and {hy41--- by = 0} coincide in a small
enough neighborhod of the point v on R?), which contradicts to the assumption.

Let the conditions along B; be hﬁo) = ... = hgo) = O,hg(j-)l > 0,... h;o) >
0. Observe that the boundary 0S5 is contained in the union of the curves of the
form {hy = ... = h, = 0} for different branches, therefore the proved above

implies that in a small enough neighborhood of v the boundary 95 coincides with
the intersection of the curve C' = {hﬁo) = ... h{" = 0} with this neighborhood.

Evidently v ¢ {hfﬁgl e h;o) = 0}. Hence v should be a singular point of the curve
C', which contradicts to the assumption and proves the lemma.

Now we proceed to estimating the number of singular points of a curve Wg as
well as the numbers of isolated points of the sets {g; = 0,e = ‘="} and {[Ig; =
0,¢; = >’} (see lemma 1).

Denote G = (ZEJ:‘:’QJQ')HEJ:‘ »g;. For any m > 0 consider a system S,, of
equations to zero of all the partial derivates of G up to the order m. Denote by s,,
the number of connected components of a semialgebraic set determined by &,,. As
deg g; < 2', the number of singular points of Wg does not exceed Y gc,,cortt Sm <
20() (see [M 64]). The similar bounds are valid also for the mentioned above

numbers of isolated points.

Therefore, it all the branches in 7" have a length at most ¢, then by lemma 1 and
just obtained bounds we conclude that the number of singular points of 9.5 does not
exceed 2909 Thus, we get the following proposition.

PrOPOSITION 1. The depth of an algebraic tree testing the membership
problem to a closed semialgebraic set S € R? can be bounded from below by the
logarithm of the number of singular points of S (up to a constant factor).

Remark that it is not necessary to require closedness of S.

COROLLARY 1.  The depth of an algebraic tree testing membership problem
to a polygon with N nodes, is at least Q(log V).



2 Randomized algebraic trees

Consider now a randomized algebraic tree 7 (for the definitions see [MH 85]) testing
membership problem to S € R? say, with a probability %/3. Take any singular point
v of JS. Assume first that v is not isolated. Let Cy, ... ,C, be all the curves of
dS in a small enough neighborhood of v, passing through v and being algebraically
irreducible over R. It is not difficult to see that each of C;, 1 < 1 < ¢ should be
contained in the boundary of a tested set with a probability at least /3. So, if ¢ =1
then v is a singular point of C'1, and v appears as a singular point of a boundary of a
tested set with a probability at least ?/3. If ¢ > 2 then v appears as an intersection
of at least two curves among C;, 1 < i < ¢ with a probability at least !/3, again in
this case v is a singular point of a boundary of a tested set.

If v is an isolated point of 05 then it appears as an isolated point of a tested set
with a probability at least %/3.

Hence there exists a value of a random parameter for which at least /5 of all
the singular points of 05 (including isolated points) would appear as singular points
of a boundary of a set tested by the tree corresponded to the mentioned value of
the random parameter. Now we apply the proposition 1 to this tree and get the
following proposition.

PROPOSITION 2. The depth of a randomized algebraic tree testing the mem-
bership problem to a closed semialgebraic set S € R? can be bounded from below
by the logarithm of the number of singular points of 95 (up to a constant factor).

COROLLARY 2. The depth of a randomized algebraic tree testing membership
problem to a polygon with N nodes, is at least Q(log N).

3 Trees with exp and log

Now we consider an extension of the class of algebraic trees, allowing also in the
definition of the tree two extra operations (c.f. above): u; = expw or u; = logw,
where w is either Xj, either X; or w = u, for some 1 < p < j. Let us call them
exp—log—trees.



The proof of lemma 1 goes through literally for exp—log—trees. To estimate the
number of singular points of Wy apply [K 91] using that a chain of the functions
g1, --- ,gr computed along B, is a particular case of a Pfaffian chain introduced in
[K 91], and thereby the number of singular points of Wg does not exceed 200+,
Finally, from the mentioned modification of lemma 1 we get the following proposi-
tion.

PROPOSITION 3. The depth of an exp-log-tree testing the membership prob-
lem to a closed semialgebraic set S € R? can be bounded from below by the square
root of the logarithm of the number of singular points of 95 (up to a constant
factor).

COROLLARY 3. The depth of an exp-log-tree testing membership problem to
a polygon with N nodes, is at least Q(y/log N).

Notice that the proposition 3 is valid as well for the randomized exp-log—trees,
the proof goes as in the section 2 with the only diference that one should consider
analytical irreducible components rather than algebraic ones. Observe also that the
bounds from [B 83], [Y 93] could be extended (with weakening by taking a square
root as in the proposition 3) to exp—log—trees, following the proofs in [B 83], [Y 93]
and using for bounding the sum of Betti numbers [K 91] instead of [M 64] (which is
usually being invoked in the algebraic case). We would like to stress that in the next
proposition we deal with a multidimensional case unlike all the previous contents of
the paper.

PROPOSITION 4. If an exp-log-tree tests a membership to a semialgebraic set
with a sum of Betti numbers M, then the depth of the tree is at least Q(/log M).

Let us notice that an example with the presentation of n—degree Chebyshev
polynomial (having n real roots) cos(narccos z) shows that one should be careful
in extending the set of allowed gate functions for the trees (thus, if we would add
cos and arccos as the gate functions, the obtained above bounds would not be valid
anymore).
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