Optimal Parallelization of Las
Vegas Algorithms

Michael Luby' Wolfgang Ertel*
TR-93-041

September 1993

Abstract
Let A be a Las Vegas algorithm, i.e., A is a randomized algorithm that always produces
the correct answer when it stops but whose running time is a random variable. In [1]
a method was developed for minimizing the expected time required to obtain an answer
from A using sequential strategies which simulate A as follows: run A for a fixed amount
of time t;, then run A independently for a fixed amount of time ¢3, etc. The simulation
stops if A completes its execution during any of the runs.

In this paper, we consider parallel simulation strategies for this same problem, i.e.,
strategies where many sequential strategies are executed independently in parallel using a
large number of processors. We present a close to optimal parallel strategy for the case when
the distribution of A is known. If the number of processors is below a certain threshold, we
show that this parallel strategy achieves almost linear speedup over the optimal sequential
strategy. For the more realistic case where the distribution of A is not known, we describe
a universal parallel strategy whose expected running time is only a logarithmic factor worse
than that of an optimal parallel strategy. Finally, the application of the described parallel
strategies to a randomized automated theorem prover confirms the theoretical results and
shows that in most cases good speedup can be achieved up to hundreds of processors, even
on networks of workstations.

YCurrent address: International Computer Science Institute, 1947 Center Street, Berkeley CA 94704,
luby@icsi.berkeley.edu. Research supported in part by NSF Grant CCR-9016468 and grant No. 89-00312 from
the United States-Israel Binational Science Foundation (BSF), Jerusalem, Israel. ICSI and UC Berkeley

{Current address: International Computer Science Institute, 1947 Center Street, Berkeley CA 94704, er-
tel@icsi.berkeley.edu. Research supported by an ICSI Postdoctoral Fellowship.

i

1 Introduction

Let A be a randomized algorithm of the Las Vegas type, i.e., an algorithm that uses a source of
truly random bits and has the following properties. Let A(z) denote algorithm A with respect
to fixed input z and let the random bits used by A be called the seed. For any z, and for any
setting of the seed, when (and if) A(z) halts it produces a correct answer. However, the exact
behavior of A(z), and in particular its running time, 7'4(z), depends on the setting of the seed.
For example, for some settings of the seed A(z) could halt in one step whereas for other settings
A(z) could run forever.

In [1], the following problem was studied in the sequential setting: Find a sequential simulation
strategy for A(z) that minimizes the expected time required to get an answer. In this setting,
A(z) is viewed as a black box, and the only allowable use of A(z) is the following: choose at
random a setting for the seed and run A(z) for ¢; steps. If A(z) halts within time ¢; then we are
done, otherwise randomly and independently choose another seed and run A(z) for ¢y steps, etc.
Thus, a sequential strategy S consists of a sequence of positive integers ({1,12,...), and S(A(z))
denotes the new Las Vegas algorithm that is obtained by applying S to A(z). Each element ¢; of
a strategy defines a time interval [ry, 73] of integers 7 = Ej<i t; and 7, = 71 + ;. Depending
on the context, we refer to the {; as either intervals, experiments or runs. For a given strategy S
and an interval ¢; in § we define that ¢; ends before 7, iff >, t; < 7.

Of special interest are sequential repeating strategies, i.e. strategies that consist of repetitions
of experiments of the same length. For every positive integer ¢, we let S; = (¢,¢,¢,...) denote
the repeating sequential strategy with all experiments of length ¢. For notational convenience,
we let So, be the sequential strategy which when applied to an algorithm consists of running the
algorithm as is, i.e., Soo(A(2)) is identical to A(z).

In this paper, we consider parallel simulation strategies for this problem. Throughout, we let
k denote the number of processors on which the parallel simulation is to be executed. A parallel
strategy S* is described by k sequential strategies, i.e.,

5,18, ...
ok 220,
thotk otk

where each of the k tows is a sequential strategy.! Strategy S* applied to A(z), S*(A(z)),
consists of using the k processors to execute independently and in parallel each of the k& sequential
strategies applied to A(z). The overall parallel algorithm successfully halts at the first point in
time when one of the k sequential simulations halts, i.e., this can be viewed as a competition
among the k sequential strategies.

The three subclasses of parallel strategies illustrated in Figure 1 will be of special interest for
us. A strategy S* is repeating if each of the k sequential strategies defining S* is repeating; such
a strategy can be described by a set of k positive integers.

A strategy S* is uniform if each of the k sequential strategies defining S* is identical, and
thus when S* is applied to any algorithm all k& processors restart their experiments within their
sequential simulations at exactly the same points in time. Any uniform strategy can be described
as a composition of the following strategy PARF with a sequential strategy. PARF is the simple
strategy which when applied to any algorithm consists of running the algorithm independently in

'In the following, we will use the general term strategy for parallel strategies (k > 1), but we will always use
sequential strategy if a strategy is not parallel (k = 1).

repeating strategy uniform strategy uniform repeating strategy

processor

4 t4 | T, t3 i, t t t
3 t3 & t,|t, ts t, | """ t t to| e
2 |2 2| 2 2 2] 2 12 12 = |ty 1, ts t, |[*°" t t to| e
1|t tt tto| e t,t, ts t, |[*°" t t to| e
time time time

Figure 1: Three important subclasses of strategies.

parallel on k processors and stopping when the first of the k£ independent executions halts. Thus,
PAR®(A(x)) consists of running A(z) on k processors in parallel using independently chosen
seeds. Any uniform strategy can be expressed as the composition of PAR* and some sequential
strategy S, where the composed strategy is denoted PAR* o §.2

We let Sf denote the uniform repeating strategy described by

4t ..
Lt ..

L. ..

ie., SF = PARF o S, imposes the same fixed length ¢ on all experiments executed by all pro-
cessors.

This paper proves results about parallel simulations that are analogous to the sequential
simulation results shown in [1]. If full knowledge is available about the distribution of T4(z),
then it is possible to design a uniform repeating strategy S¥ that is close to optimal, in the sense
that for any fixed k it achieves the minimum expected running time within a constant factor
amongst all strategies for A(z). In Section 2 we will show that this is true for a carefully chosen
value ¥ that depends on the entire distribution of 74(z) and the number of processors k used.
Let (%(z) be the expected running time of this strategy. Similar to the sequential setting [1],
(% () is a natural and easily characterized quantity associated with the distribution of T(z).

While the existence of an optimal strategy is an interesting theoretical observation, it is of
little value in practice because it requires for its implementation detailed information about the
distribution of T4(z). In practical applications, very little, if any, a priori information is available
about this distribution, and its shape may vary wildly with x. Furthermore, since we only want
the answer once for any z, there is no point in running experiments to gather information about
the distribution: the only information that could be gathered from such a run is that A(z) stops,
in which case we also obtain the answer. Thus, the problem we address is that of designing an
efficient uwniversal strategy, i.e., one that is to be used for all distributions on running times.

In [1], a simple universal sequential strategy Sunjy Was introduced. In Section 3 we consider
the simple universal parallel strategy PARF o Suniv, which we hereafter call S* We show

univ *

that for any A(z) and any k the expected running time of S¥ . (A(z)) is O(¢%(z)log(¢5(2))),?

univ

2The composition of two strategies S and R yields a new strategy R o S, and when this new strategy is

applied to A(z) it defines a new algorithm (R o 8)(A(z)) = R(S(A(z))).
3All logarithms in this paper are base 2.

which is only a logarithmic factor slower than an optimal strategy that assumes full information
about the distribution. For a wide variety of distributions — esp. distributions with infinite or
very long running times — even for k£ = 1 this represents a dramatic speedup over the naive
sequential strategy of running the algorithm till termination on one processor. We go on to show
that this bound is optimal, i.e., for any universal strategy there is a distribution for which the
expected running time of the strategy is slower by a logarithmic factor than that of an optimal
strategy.

An important application area for this kind of parallelization of randomized algorithms is
combinatorial search. Here, the algorithm A(z) consists of random search of a (often highly
unbalanced) tree. A straightforward way to parallelize such a randomized search algorithm is to
use PARF(A(z)). In [2] this strategy was called random competition and applied to randomized
combinatorial search algorithms with various examples from automated theorem proving, some of
which will be used here again. The distribution on the running time of the randomized theorem
prover turned out to be wildly erratic for most of the examples.

We show in Section 2 for large classes of problems that when the distribution is known almost
linear speedup can be achieved with an optimal uniform strategy. Even if the distribution is not
known, for most examples the speedup of S . is close to linear. One of the benefits of S¥

univ univ
over the straightforward parallelization described in [2]is that there is a guarantee that S¥ ; has
close to optimal speedup, whereas the speedup obtained on many examples using straightforward
parallelization was found to be erratic.

As already mentioned, due to the independence of the parallel instances of A(z), no synchro-
nization or communication overhead during the execution of S* . is required. This makes S¥ .
ideally scalable up to a very large number of processors, i.e. the speedup results computed in
Section 4 are independent of any parallel implementation details. Another important feature of
our universal strategy is its simplicity which makes it very easy to implement on almost every
parallel computer. It is particularly well suited for implementation on local area networks of high

performance workstations.

2 A close to optimal strategy when the distribution is known

In the remainder of this paper, we identify a Las Vegas algorithm A, together with an input z,
with the probability distribution p on its running time 7'4(z). Thus p is a probability distribution
over Z*t U {oo}, and p(t) denotes the probability that A(z) stops after exactly ¢ steps. We will
always assume that p is non-trivial in the sense that p(oo) < 1, so that there exists a finite
earliest time, ¢ = fmin say, for which p(¢) > 0. Our main focus of attention is the expected
running time of a strategy S* on k processors when applied to an algorithm A(z) described by
distribution p, which we denote E(S*,p). We will always be considering a fixed distribution p,
so we abbreviate E(S*,p) to E(S*).

The first question we ask is the following. Suppose that we have full knowledge of the distribu-
tion p; is there some strategy S* that is optimal for p, in the sense that E(Sk) = inf g E(Sk) ?
In contrast to the sequential case [1], where the optimal sequential strategy is the repeating se-
quence S, = (tu,tx,tx,...) for a carefully chosen value of ¢, the optimal parallel strategy is not
easy to describe. Although the best uniform strategy is within a constant factor of optimal as we
will see in Theorem 1 it turns out that this strategy is not necessarily optimal.

The uniform repeating strategy SF can be viewed as a sequential repeating strategy, where
each run consists of k parallel independent runs of A(z) with the time bound ¢. Thus, we can
apply the sequential results from [1] for computing the expected value of any uniform repeating

cumulative 06 qd(t) i

distribution i
04 .
- q(t) .

0.2 [7

0 20000 40000 60000 80000

run-timet

Figure 2: The cumulative probability ¢*(t) of the parallel version PARF(A)(z) of A(z) compared
to ¢(t) (the distribution is taken from the example “8-puzzle” in Figure 4).

strategy. However, we have to use a different probability density function pk(t), which denotes
the probability that the shortest of & runs takes ¢ steps.

The parallel density function p* depends on p and k in the following way. If we define
the cumulative distribution ¢* (we will use the abbreviations ¢ = ¢!, p = p', r = 7! for the
sequential case) as

and the tail probability as
(1) = 1 - ¢*(1)
it is easy to see that
ORI

An example of how the cumulative probability changes after parallelization is shown in Figure 2,
where ¢(¢) and ¢*(t) = 1 — (1 — ¢(t))* are plotted.
In [1] the expected value {,(¢) of a sequential strategy S; = (¢,¢,¢,...) was shown to be

60) = BS) = —(1- Y g)) = Ze=r0), (1)

dtN = q(t)

This can easily be verified as follows. Let r4(t') be the tail probability of the sequential repeating
strategy S;, which evaluates to

r(t' +m-t) = r(0)" - r(t) 0<t<t, mez"

and the expected value to

E(St):i 'rt(t’) = ij: X_: 'rt(t’ +m-t) = ij: X_: r(t)™ .'r(t’) = i r(t)™ X_: 'r(t’)
_SLe) _ i)
1—r(t) q(1)

In order to specify the optimal sequential strategy, we define
l, = tlggoﬁp(t). (2)

It is easy to see that £, is finite for any non-trivial distribution p. Let ¢, be any finite value of
t for which £,(t) = £,, if such a value exists, and ¢, = oo otherwise. From [1] we know that
for any distribution p, the sequential strategy S. = S;, = (ls, s, ts,...) is an optimal sequential
strategy for p, and E(Ss) = ¢,.

To formulate a similar theorem for the parallel case we define ¥ as that value of ¢ for which
K];(t) is minimal, in the same way as above, where we now have

oo TR ()
k(1)

€5 = inf (5(1) and (5(t) = E(S}) = (3)

t<oo

From [1], it follows that the strategy
Sk = sk
* = tlj

is the optimal uniform strategy®, which we will prove to be close to optimal.

Theorem 1 The expected running time E(Sf) = ﬁ’; of the optimal uniform strategy SF is within
a constant factor of the expected running time of an optimal strategy.

To prove this theorem we develop a simplified intuitive model of execution which is mathematically
easier to analyse.

2.1 The SIMD-model

To simplify the analysis we restrict our general model of execution for uniform repeating strategies
and define the SIMD-model as follows: a run of any uniform repeating strategy Sf in the SIMD-
model is only allowed to stop at times which are integer multiples of the time bound ¢, i.e. SF
stops at the next multiple of ¢ after the first processor stops, or more formally, Sf stops at mt
iff one of the k instances of A(z) terminates at any time ¢' where (m — 1)t < ¢’ < mt. This
makes mathematical analysis much easier since only complete runs of equal length have to be
considered. In the following we use ESIMD(S]“) to denote that the expected value is computed in
the SIMD-model. All other expected values are in the general model.

It is immediately obvious that the expected execution time of any strategy in the SIMD-model
is at least as big as its expected value in the general model. It will be helpful to introduce one
further function associated with a distribution p. For finite values of ¢ > t,in, define

where ¢ is the cumulative distribution function of p as before, and by analogy with (2) define

L, = tlgfo L(t). (4)
and
L; = inf L(1), where t(z) = inf{t : ¢(t) > z}. (5)

t<t(1/k)

*Note that optimalin this term is relative to uniform strategies.

1
cumulative : q(t)

distribution
q)

Uk+/

running timet

(LK)

Figure 3: Graphical interpretation of L,(t) and construction of ¢ .

Here {(z) denotes the smallest value of ¢ for which ¢(t) > z. Note that ¢, < L, < 4{,; the
first inequality is obvious, and the second may readily be checked. Furthermore, as can easily
be verified, there are always some finite values ¢ = {4 and ¢ = (% such that L,({y) = L, and
Ly(th) = Lk.

The quantity L,(¢) is equal to the expected value of the running time of the sequential
repeating strategy S; in the SIMD-model, since in the average # runs of A(z) with length ¢
have to be made. The optimal sequential repeating strategy in the SIMD-model is S4 = &,
since the minimum of the expected running time L,(t) is at { = {;. The motivation for the
above construction of the parallel time bound t’j_ is the following. If for any given k the value of
q(t) is less than 1/k, then the amount of redundancy of the k parallel runs of A(z) is negligible
and ¢*(t) is close to kgq(t), i.e. the sum of the cumulative probabilities of all processors. To be
a little more specific, if ¢(t) = 1/k, then kq(t) = 1 whereas we have ¢*(1) = 1 — (1 — 1/k)*
which is greater than 1 — % ~ 0.632.°

A graphical interpretation of L, and L’; is given in Figure 3 where the cumulative distribution
function ¢(t) is plotted vs. the time ¢. The point ¢} of minimal expected value of the sequential
repeating strategy in the SIMD-model is that value of ¢ for which the slope (¢(t)/t) of the straight
line from the origin to the graph of ¢(¢) is maximal. In the same way t’j_ is constructed, but
with the constraint that the point of maximal slope must be found within the shaded region
(q(t) < 1/k).

To prove Theorem 1 we show a lower bound on the expected running time of any strategy.

LE Lk
Lemma 2 37 is a lower bound on the running time of any stralegy Sk, ie. E(Sk) > -

Proof: We define 7 = 2E(S*) and write ggx () for the cumulative distribution of the running
time of strategy S* applied to A(z) up to time . Our goal is now to compute 7" in terms of
L’;. For this purpose we will first express 7" as a sum of the individual running times ¢/. We

introduce the abbreviation u! = 22,:1 tZ, for the total amount of time spent on processor j up

to the i-th run of A(z) and define

I; = min{i : uf > T}.

Se & 2.7182818 is the Euler number.

as the index of the last run of A(z) started on processor j before time 7. Since we are only
interested in contributions of runs before time 7T, we chop off the last runs to be of length

t‘}] =T — U[J_l.
Now we get

E 1) E I]
¢s+(T) = Pr[running time of S* < 7] = 1 — ITII = a() <D0 alt). (6)

where the final inequality can easily be verified. The lower bound

(7)

N | —

gs+(T) >

can be proven as follows. If 4sk(T) would be less than 1/2, more than half of the probability
mass would be located beyond 7" and therefore the expected value E(S*) would be bigger than
k

k
T/2. Now we use this to show that 7" > Ly Which results in ESYH =T/2 > i—; and completes

2k
the proof. We have do distinguish two cases:

1. T > (1/k):
> d1yh) = L) 5 Ly

Here we used the definition L(¢) = q(t—t) to get the equality.
2. T < 1(1/k):
koL t{ L]; J Lk

R R
SRR T X o) 2 Dl 2 o

7=1:1=1

where the last two inequalities follow from the definition of L¥ (5) and from equations (6) and

(7). O
The next lemma will complete the proof of theorem 1.

Lemma 3 In the SIMD-model the expected running time of the uniform repeating strategy S_’f_ =
k k
Sfi has an upper bound of #, i.e. ESIMD(S_’“F) < #

Proof: i i i i
t t t el

ESIMD(S-]T—) = & +k = + PEYY S e]:I; = —p.
" (%) 1-(1—-q(t})))k K

Here all the equalities are just applications of definitions or easy to see. The inequality is proved

as follows:
k k)
1= (1—q(th)F > 1—e 9k > gk ypem 1B > D2
e
Here we used the fact that for any €,if 0 < ¢ < 1 then

1—e™® > ce®

and that ¢(t}) < 1/k. O

We are now able to prove Theorem 1. From Lemmas 2 and 3 we can derive the first and the
last of the following inequalities

Lk Lk
< B(SE) < BanlS) < 52 (8)

and the second inequality holds since the optimal uniform strategy is at least as good as any

uniform repeating strategy in the SIMD-model. Since % is a lower bound on the expected
running time of every strategy, we have shown that the expected running time of the optimal
uniform strategy S¥ is within a constant factor of the running time of the optimal strategy with
k processors and the proof of Theorem 1 is complete.

Remark: Theorem 1 remains true even for more general strategies, in which the run lengths ¢,
are themselves random variables and runs may be suspended and then restarted at a later time.
A proof for the sequential case can be found in [1].

2.2 The best uniform repeating strategy is not optimal

Unlike in the sequential case, the optimal uniform strategy is not optimal for all distributions
q(t). We demonstrate this with a counterexample, i.e. we show that there exists a distribution
g(t) for which there is a non-uniform strategy which has smaller expected value than the optimal
uniform strategy.

Theorem 4 The optimal uniform strateqy S¥ is not the best strateqy for all distributions q(t).

Proof: The distribution p(¢) with p(3) = p(7) = 1/2 allows the algorithm A(z) to stop only
at the times ¢ = 3 and ¢ = 7. Thus, the only useful time bounds ¢! in any strategy are 3 and
7. Any other time bound (¢ € {1,2,4,5,6}) would waste at least part of the running time of
A(z) while waiting for the impossible event. If we use two processors, the expected running time
of the uniform repeating strategy can be computed by (c.f. eq. (3))

t—1 T2 !
psh) = B

The results are shown in the following table

t‘1234567

E(S8})|oo 0042 54

The two strategies $2 and S2 have the same expected running time of 4. This is not optimal,

3, 3
s=(37):

with the expected running time E(S) = % -3+ % -6+ % -7 = % is better. O

since the strategy

Remarks: (a) S is better than S3 since the guaranteed termination after 7 time-steps reduces
the expected running time. S is better than S2 since a second parallel Tun of 7 steps can not
increase the probability to stop after 7 steps, since this is already 1 with only one processor.

Starting a new run after 3 steps on one processor creates the chance to stop after 6 steps and
therefore a shorter expected running time.

This and other similar counter-examples show that finding the optimal parallel strategy for a
given distribution ¢(¢) is a complex optimization problem which is similar to bin packing. The
task here is to assemble a set of time-bounds from the support of p into a strategy S* such that
the expected value E(Sk) is minimal. Like in other optimization problems, a close to optimal
solution can be found in time O(|p|) where |p| is the number of different running times with
nonzero probability. Since the scheduling strategies in general consist of infinite sequences, it
might even be impossible to give a finite description of the optimal strategy. It remains an open
question whether an algorithm exists for that problem which is polynomial in the size of the
distribution p for the case that full information about the distribution is available.

(b) For the case of more than 2 processors the following strategy is optimal:

2.3 Speedup of the optimal uniform strategy

We have shown that the uniform repeating strategy S¥ is close to optimal, i.e. no strategy can do
much better. However, we do not know whether the this strategy is efficient, i.e. if for a not too
large number of processors k the speedup is linear (i.e. equal to k) or close to linear. We define
the Speedup Sp,,(k) of the strategy S by relating its expected running time to the optimal
sequential strategy S

E(S,) b

E(SF) ok

Spopt(k) =

Since the sequential strategy S. has optimal expected running time [1], the speedup Sp,(k) can
at most be k. Unfortunately, it is not true that the speedup is almost linear for all distributions

p. If for example
)1 fort =1
p(t) = {O otherwise

then no strategy — neither parallel nor sequential — can run faster than ¢y, and in particular we
have Sp,..(k) = 1. However, the next Lemma says that for a large class of distributions, if the
number of processors used is not too large, the speedup is close to linear.

Lemma 5 If kq(t.) < 1 then Spo,(k) ~ k.

Proof: For any k and any ¢, if k¢(t) < 1, we have

1 Ny 1 /
ﬁl;(t):qk(t) t%(l —¢* (1) = T (1= q))F 7%(1 —q(t")* (9)
z%t) %(1 “ k() ~ ﬁt) ~ ﬁpét) (10)

From (9) and (10) we get £,(t) ~ k€E(t). Since this holds for all ¢ when k¢(t) < 1 it is also
true for the infima (¢, = (,(t.) and (F = ﬁ’;(tf) of the left-hand and right-hand sides. Here we

made use of the fact that t¥ < ¢, and therefore k q(1¥) < kq(1.) < 1. This leads to

b (L)

Spopt(k) = ﬁ_i = ﬁ];(tlj) ~ k. U

The intuitition behind this is as follows. If ¢(t,) is small enough such that & ¢(¢.) is well below
1 then the probability that some processor is successful is close to the sum of the individual success
probabilities of the processors and thus their efficiency (speedup) is close to optimal. However, if
k> 1/q(t.) then 1/¢(t.) processors running for ¢, have about the same probability of success
(close to probability 1) as k processors running for ¢, time, and thus the speedup is clearly
sublinear. The experimental speedup figures shown in Section 4 confirm these results and show
that for almost all our examples close to linear speedup can be achieved with the optimal uniform
strategy.

3 Unknown distributions

The optimal uniform strategy S described in the previous section clearly requires detailed knowl-
edge of the distribution p for its implementation. As we have already explained, however, in the
applications we have in mind there will be no information available about p. We are therefore
led to ask what is the best performance we can achieve in the absence of any a priori knowledge
of p. Our next theorem says that, with no knowledge whatsoever about the distribution p, we
can always come surprisingly close to the optimum value for the case of full knowledge given in
Theorem 1. Moreover, this performance is achieved by a uniform strategy of a very simple form
that is easy to implement in practice.

In [1] the universal sequential strategy Suniv = (1,1,2,1,1,2,4,1,1,2,1,1,2,4,8,1,...) was
described and proven to be within a logarithmic factor of any optimal sequential strategy. One
way to describe this sequential strategy is to say that for each processor all run lengths are powers
of two, and that each time a pair of runs of a given length has been completed, a run of twice
that length is immediately executed. For a more formal definition we give a recursive function s
that computes any finite prefix of the sequence of running times for one processor up to the first
run of length 27+!

Vo € NU{0}: s(n+ 1)=(s(n),s(n),2"th)
s(0)=(1)
where for all sequences a,b, ¢ we define ((a),(b),c) = (a,b,c). Note that the sequential strategy
is “balanced” in the sense that the total time spent on runs of each length is roughly equal.

Now, if k processors are available, we run this sequential strategy competitively on all pro-
cessors and define

1,1,2,1,1,2,4,1,1,2,1,1,2,4,8,1,. ..
Slliniv = PARk(SuniV) =
1,1,2,1,1,2,4,1,1,2,1,1,2,4,8,1,. ..
Theorem 6 For all distributions p and any strategy S*

E(SE,,) < 16 E(S%)(log(E(S%)) + 6).

univ

10

Proof: For any two strategies § and R and any two positive integers r and s we say that
the s-prefix of strategy S simulates the r-prefix of strategy R if there is an injective mapping
from intervals in R that start before time r onto intervals in § that end before time s with the
additional property that an interval of R which has run for time ¢ by time r is mapped to an
interval of 5 with length at least ¢. The fact we use below is that if an s-prefix of 5 simulates an
r-prefix of R then the probability that S stops by time s is at least as large as the probability
that R stops by time 7.

The outline of the proof is as follows. Let §* be any (e.g. an optimal) parallel strategy with
expected running time E(S*). Define r to be such that the probability S* has not terminated
by time 277! is at least 1/4 but the probability that S* has not terminated by time 27 is at
most 1/4. It is not hard to see that

E(S*) > 27714, (11)

Let thop be the portion of S* chopped off after 2" time steps. (The intervals of S that are
still running at time 2" are truncated so that all k& sequential schedules in the chopped portion

finish at exactly time 27.) Let Srknod be the parallel strategy that consists of repeating thop

forever. We obtain an upper bound on E(SE .) by relating the behavior of 8%, to S* ;. We
do this by determining below, for all integers j > 0, an integer t(j) such that the #(j)-prefix
of 8k .. simulates the 2/+"-prefix of S¥_,. For notational simplicity, define ¢(—1) = 0. Since

S* fails to stop with probability at most 1/4 by time 27, it follows that Sﬁmd fails to stop with
probability at most (1/4)%" < (1/4)7*! by time 27, and from this it follows that

E(Swiv) < D _(1(7) = (7 = 1)(1/4). (12)

§>0

It is not hard to see (and it follows from the proof of the analogous sequential version of
this theorem in [1]) that the 2/7"+1(j + r + 1)-prefix of Syniy simulates the 27%7 prefix of any
sequential strategy. From this it follows that the 2/+"*1(j 4 r 4 1)-prefix of S, simulates the
2117 _prefix of Sk 4, and thus we can set {(j) = 27" F1(j +r +1).

Substituting this into equation (12) and simplifying yields

E(Sgniv) £ 27 (1/2)(5 + 7 +2).
320
From this it follows that
E(Slliniv) < 2T+1(T + 3)

From this and from equation (11) the theorem easily follows. O

Remark: This proof is similar to the proof of the corresponding theorem for & = 1 given in [1],
but here we don’t need to refer to an optimal strategy. Moreover, the constant factor derived
here is slightly less than in [1].

Finally we show that the universal strategy S* . is optimal (within a constant factor) among

univ
universal strategies.

Theorem 7 Let S* be any strategy. For all positive integers j, there is a distribution p with
L’;/k = 27 such that

1
E(S*,p) > gE(Sf,p) (log E(SE,p) — 0.5).

11

Proof: From (8) we know that E(SF, p) < eLI;/k: and thus for any p with L];/k = 2/ we get

pi > P (13)

- e
From Lemma 8 below we know that there is a distribution p with L’;/k = 2/ and E(SF,p) >
(j +1)27/8. Together with (13) we get for this p

1
E(Sk,p) > gE(Sf,p) (log E(SF,p) — 0.5),

and the theorem follows immediately. O

Lemma 8 For any fized strateqgy S* and all positive inlegers j, there is a distribution p for
which Lg/k = 27 and for which
E(S*,p) > (j+1)27/8.

Proof: Fix j. We define a family of j 4 1 distributions p(®,...,pl) such that for at least one
value of i, E(S*,p)) > (j 4 1)27/8. Distribution p(®) is defined as follows.

' 20 /(k27) for t = 21;
PO) = 1-21/(k27) fort = oo; -
0 otherwise,

Note that L]; = k27 for all i. Let m; be the number of runs of length at least 2! required
to ensure that the strategy stops on p() with probability at least % It is easy to see that
m; > k27 /2"t as follows. Each run of length at least 2 terminates with probability 2¢/(k27).
Since the probability that at least one of the m; runs stops is at most the sum of the individual
probabilities, we must have m;2'/(k27) > 1/2.

Let 7 be the minimum amount of time needed to execute a family of runs where there are
m; runs of length at least 2¢ for all ¢ = 0,...,7. It is easily seen that

i
7>y m27h > (4 1)k27 /4.

1=0

Thus, if we look at the schedule S¥, it follows that for at least one value of i there are at most
m; runs of length 4 that have been executed by time 7/k. For this value of 7, S* has failed to
stop with probability at least 1/2 by time 7/k, and thus

E(8*,pW) > 7/(2k) > (j+ 1)2/8, 0

4 Experimental results

To get an impression of the relevance of the various strategies analysed, we computed the expected
value of the running time for a number of different distributions. Each of these distributions is the
result of a large number of sample runs of the randomized automated theorem prover SETHEQO
on a particular mathematical theorem. Thus, here SETHEQO acts as the black box algorithm A
and any particular theorem as its input . SETHEO [5] does randomized depth first backtracking

12

search for a first solution in an OR-search-tree. These search-trees usually are highly structured
and the solutions are distributed non-uniformly. The resulting running time distributions reflect
this complex structure and usually have high variance. As a consequence, in most cases the
shortest possible running time {,;, of SETHEQ is much shorter than the expected running time
E(Ss) when SETHEO is run until it stops. Therefore SETHEO is an ideal application of the
strategies described above. Since S., is the default sequential strategy used by SETHEO (and
most other combinatorial search algorithms) we will use its expected value as a reference point
to compare the sequential repeating strategy S, and the sequential universal strategy Suniv-

Two of the example theorems listed in Table 1 (8-puzzle, queens10) are combinatorial puzzle
problems which are easy to formalize in logic. All the other theorems have been selected randomly
from a set of several hundred mathematical theorems which SETHEOQ is able to prove.

The offset time o for SE . used for computing the figures in Table 1 is 100 inferences, since
the shortest running time of SETHEQ varies between 10 and 100 inferences in most examples.
Since the performance of the sequential universal strategy shows only little dependence on o,
we did no further tuning of this parameter for the sequential measurements. With this setting
we computed the expected values of the default sequential strategy S, the optimal sequential
repeating strategy S, and the sequential universal strategy Syniv for a number of theorem proving
problems which are shown in Table 1. Hereby we used (3) for E(S¥) and to compute E(S¥)
we used the generic formula

t3
unlv th —|—7't1 (tl‘I'Etp —|—T‘t2 (t:)-l-ztp(t)—l—))
t=0

=3t + gtpu)) 1)

with ¢ = 0. This formula can be applied to any sequential strategy S = (¢1,1z,...). For parallel
strategies p(t) has to be replaced by pF(t).

Of special interest are the fourth and the last numeric columns in Table 1, where the time
ratios are given. As expected, S, is always at least as good as S, and often much better.
The sequential universal strategy however is for two examples significantly worse than S.,. The
reason is that here S, is already optimal and therefore the logarithmic overhead is reflected in
an almost three times longer running time.

However, it must be noted that the distributions of the above examples are only partial.
The real distributions for all these examples are infinite, i.e. due to infinite loops in certain
branches of the computation’ the running time can be infinite with finite probability. This
means that the expected value of the default sequential strategy S, for all real distributions
would be infinite, whereas Sunjv and S, still have finite expected value for all these examples.®
A detailed comparison of the sequential universal strategy with other sequential search strategies
(e.g. iterative deepening search) that guarantee finite expected values is part of ongoing research
and will be published separately.

Here we are mainly interested in speedup results of S¥ and Sﬁmv which are shown for four
of the above examples in Figure 4. The uppermost diagram for each example shows n(t), the
frequency of the observed running times which is approximately proportional to p(¢)? together

5The time required for SETHEO to perform one inference step was used as time unit for our measurements.
"The infinite loops are essentially due to the undecidability of first order predicate logic.

8Note that for all nontrivial distributions P, Suniv as well as §x and S; have finite expected running time.

)
n(t)

9The normalized frequency gives an approximation of p(t).

t

13

SETHEO- E(Sw) | E(S) | 55 | B(Sum) | Sizes!
example tof = 100

times4 1640888 160 | 95672 | 0.06 327462 | 0.20
mult3 1104297 88 | 151617 | 0.137 227442 | 0.206
s6-114 4147714 125 | 591450 | 0.143 1870577 | 0.451
8-puzzle-d15 43533 95 | 12006 | 0.276 22071 | 0.507
il-d7 4376 104 1992 | 0.455 3656 | 0.836
$5-110 6184 | 2162 4524 | 0.732 5725 | 0.926
non-obvious 34567 | 1457 14742 | 0.426 36242 | 1.05
ipl-i19 1532500 | 12118 | 758128 | 0.495 1656073 | 1.08
queensl0 732790 oo | 732790 | 1.0 2092472 | 2.86
s8t1-110 4998 00 4998 | 1.0 14043 | 2.81

Table 1: Empirical performance comparison of the two sequential strategies S¥ and S% . with

univ
the default sequential strategy S, on a set of theorem proving examples. The table is ordered

by the last column, i.e. by the relative expected time of the sequential universal strategy.

with the mean running times of the different sequential strategies. The two lower graphs which
have the same abscissae show the speedup curves Sp,,; and Sp,,;, and the ratio of these two,

which gives an estimate of how far S*

iy 15 from optimal.

4.1 Speedup of the optimal uniform strategy

For all examples except the last one in Figure 4 the speedup of the optimal uniform strategy is
close to linear if the number of processors is not too large. This is the region where k ¢(t.) < 1
and therefore Theorem 5 applies. We also see that at least in this region of few processors S¥ is
very close to optimal. For the example “mult3”, even with 1000 processors a speedup of 870 can
be achieved. Close to linear speedup has also been observed in all the other examples listed in
Table 1. For the last example “s8t1-i10” the speedup Sp,; of Sk is clearly sublinear, even for a
small number of processors. The reason for this is that ¢(¢.) = 1 and therefore k¢(¢.) > 1, so
the requirement for close to linear speedup is not fulfilled.

4.2 Speedup of the universal strategy

A drawback of the universal strategy is that all runs which are shorter than the shortest possible
running time fmin, of A(z) are superfluous. An obvious way to improve Slliniv is therefore to
multiply all the time bounds ¢; by an offset value t,g. The best value for t,g is close to t’j,
but ¢* is not known in practice. However, it is also helpful to have some knowledge about the
shortest possible running time and use this to get a better offset value.

In all the parallel experiments we used o, = 10000. For any fixed input z and fixed number
of processors there is a value of Z,g that minimizes the expected running time E(S¥). Never-
theless, we always used to,g = 10000, since we are interested in a universal strategy, that works
well for all examples without any knowledge of the distribution. Note that for {,g = oo the uni-
versal strategy is equal to the strategy PARF = Sk which does nothing else than competition

of k independent runs of A(z).

14

k., is close to that of SF. As we observed, for a
fixed probability distribution, if & is fixed large enough, then as t.g is getting bigger, the speedup
of Slliniv is increasing, asymptotically approaching the optimal possible speedup. In other words,
for large (but fixed) number of processors the highest speedup can be achieved with tog = o0,
i.e. if on all processors A(z) is being executed without interrupt. If for example k& > 1/¢(tmin)
and fog > lmin no processor is interrupted before iy, and with high probability one of the
processors stops within the first ¢,;, steps and thus the expected running time is close to {yip, -
On the other hand no strategy can stop before t,;, steps. Thus it makes no big difference if all
processors run with the optimal time bound or without any time bound. If however the offset of

Sk .. is too small, the logarithmic overhead decreases performance drastically.

In all the examples the speedup Sp, of SE

These results show that the simplest parallel strategy PARF = Sk performs very well if the
number of processors is really large. For small k& however, in most cases S¥ . is better than
running A(z) without interrupt. Therefore, at least for small k& the universal strategy with a
smaller offset value is extremely useful. We found that the performance of the sequential strategy
Suniv does not depend strongly on {,g and that as a reasonable heuristic value {,g should be

somewhat bigger than the shortest possible running time.

5 Implementation

An implementation of PARF, which is identical to the parallel default strategy Sk for SETHEO
has been performed on a network of 110 HP 9000/720 workstations with a total raw performance
of more than 6000 MIPS. The only overhead due to parallel implementation is caused by the
broadcast used to start and stop the whole system and takes a total time between some millisec-
onds and 12 seconds, depending on the safety requirements on the communication protocol used.
Therefore, for the hard theorem proving problems which require use of a parallel machine these
times are negligible.

Since these values do not change if the universal strategy S& . is used, the speedup figures
computed in the previous section will with almost no change transfer to the 110 processor imple-
mentation. If a pure broadcast on the Ethernet is used, the communication time for starting and
stopping is constant (i.e. it does not depend on the number of workstations used) and therefore,
as many workstations as available can be used. For more details on the implementation see [2]
and [3].

With this implementation of S¥ it was possible to prove new theorems which could not be
solved by SETHEOQO. Another significant step forward is expected with a parallel implementation

of Sﬁniv, since this solves the problem of possible infinite loops as already mentioned.

References

[1] M. LuBy, A. SINCLAIR, AND D. ZUCKERMAN. Optimal speedup of las vegas algorithms.
to appear in: Proceedings of the Second Israeli Symposium on Theory of Compuling and Sys-
tems, 1993 Technical report TR-93-010, International Computer Science Institute, Berkeley,
March 1993.

[2] W. ErRTEL. OR-Parallel theorem proving with random competition. Proceedings of Logic
Programming and Automated Reasoning, St. Petersburg, July 1992, Springer Lecture Notes
in AT Vol. 624, pp. 226-237.

15

SETHEOQO-Example: mult3 SETHEO-Example: 8-puzzle-d15
500 100
400 804
. 300 y 607
"M 900 M0 407
100 207
0 S I B R p— 04
0 2e+06 4e406 6e406 0 20000 40000 60000 80000
Running time ¢ [total # inferences] Running time t [total # inferences]
1 — —
0.8 - -]
Wk _ ik _
E(S:niv) 0.6 n (\)jniv) B
0.4 = .
3000 200
—— 160 e
2000 R 190 X —
Speedup ~ ? Speedup ~ a Pl
P V¥
L 40
0 0
0 1000 2000 3000 4000 5000 0 100 200 300 400 500
Number of processors k Number of processors k
Sample size = 10339, t,g = 10000 Sample size = 10001, ¢, = 10000
SETHEO-Example: ipl-i19-all SETHEO-Example: s8t1-i10
80
60 60
n@ 40 ny 40
20 20
0 0
0 le+06 2e4+06 3e+06 4e406 0 4000 8000 12000 16000
Running time ¢ [total # inferences] Running time t [total # inferences]
= 096 —T—T—T T T T T T T
. 0.92 -
1k — 1k . —
G] m(sk, 0.8]
] 0.84]
0.6 0.8
600 200 —
. d/"ﬁ R g
200 R = 120 —F =1
Speedup 300 = = Speedup 80 - ~
200 = Ty
100 40 |7~
0 0 “
0 200 400 600 800 1000 0 200 400 600 800 1000
Number of processors k Number of processors k
Sample size = 4280, t,g = 10000 Sample size = 10000, ¢, = 10000
i i i ——— : relative Speedu Sp““i"(k.) = k
é E)};};ﬁgﬁdﬂrﬁznﬁgﬁi&nﬁ of sequential strategy Soo : lat Speedup Spopt(.k.) }‘?(Slsniv))
@] exp. value £, of optimal sequential uniform strategy ——— : speedup Spopt(k) of optimal uniform strategy &,
[} exp. value E(Syupiy) of sequential universal strategy _— : speedup Sp,niy (k) of universal strategy Ssniv‘

Figure 4: Empirical running time distribution and speedup of optimal repeating strategy and
universal strategy computed for four examples.

16

[3] W. ERTEL. Parallele Suche mit randomisiertem Weltbewerb in Inferenzsystemen. Infix-

Verlag, St. Augustin, Germany, DISKI-series, vol. 25, 1993 PhD-Thesis, Technische Univer-
sitdt Miinchen.

[4] V. KumAR, V. N. Rao. Scalable parallel formulations of depth-first search. in Vipin Ku-
mar, P.S. Gopalakrishnan and Laveen N. Kanal (Hrsg.), Parallel algorithmus for maschine
intelligence and vision Springer Verlag, New York 1990, p. 1-41.

[5] R. LTz, J. ScCHUMANN, S. BAaYERL AND W. BiBEL. SETHEO, a high—performance
theorem prover. Journal of Automated Reasoning 8(2), 1992, p. 183-212.

17

