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Abstract

We present algorithms for the randomized simulation of a shared memory machine
(PRAM) on a Distributed Memory Machine (DMM). In a PRAM, memory conflicts
occur only through concurrent access to the same cell, whereas the memory of a
DMM is divided into modules, one for each processor, and concurrent accesses to
the same module create a conflict. The delay of a simulation is the time needed to
simulate a parallel memory access of the PRAM. Any general simulation of an m
processor PRAM on a n processor DMM will necessarily have delay at least m/n. A
randomized simulation is called time-processor optimal if the delay is O(m/n) with
high probability. Using a novel simulation scheme based on hashing we obtain a
time-processor optimal simulation with delay O(loglog(n)log®(n)). The best previous
simulations use a simpler scheme based on hashing and have much larger delay:
O(log(n)/loglog(n)) for the simulation of an n processor PRAM on an n processor
DMM, and ©(log(n)) in the case where the simulation is time-processor optimal.
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1 Introduction

Parallel machines that communicate via a shared memory (parallel random access machines,
PRAMs) are the most commonly used machine model for describing parallel algorithms.
The PRAM is relatively comfortable to program, because the programmer does not have
to allocate storage within a distributed memory or specify interprocessor communication.
On the other hand shared memory machines are very unrealistic from the technological
point of view, because, on large machines, a parallel shared memory access can only be
realized at the cost of a significant time delay. A more realistic model is the distributed
memory machine (DMM), in which the memory is divided into a limited number of memory
modules, one module per processor. Each module can respond to only one access request
at a time. Thus DMMs exhibit the phenomenon of memory contention, in which an access
request is delayed because of a concurrent request to the same module.

In an effort to understand the effects of memory contention on the performance of paral-
lel computers, several authors have investigated the simulation of shared-memory machines
on DMMs. In this paper we present substantial improvements over the most efficient sim-
ulations previously known.

The paper is organized as follows. In the next two subsections we summarize previ-
ous work and the new results presented in this paper. Section 2 contains more detailed
descriptions of the computation models. Section 4 describes the universal classes of hash
functions we require and discusses stochastic processes that capture the essential features
of our simulations. The remaining sections describe several variants of our shared memory
simulations. The reader wishing to gain a quick insight into our algorithms without detailed
probabilistic analysis may wish to skip sections 5 and 6 in a first pass through the paper.

1.1 Previous Work

Let p denote the size of the shared memory of a PRAM, and n, the number of processors
and memory modules of a DMM.

Each of the previous randomized algorithms for simulating a PRAM on a DMM uses a
single hash function A : [p] — [n] randomly chosen from a universal class of hash functions,
to distribute the shared memory cells (we say “keys” for short) among the memory modules
of the DMM.* Some of the simulations assume a complete interconnection network between
the processors and the memory modules; others assume a sparse interconnection network
such as a butterfly or a hypercube.

The delay of a simulation is the time needed to simulate a parallel memory access of the
PRAM. For those simulations that are based on a single hash function the delay is governed
by the following quantities:

e The hash evaluation time, i.e. the time to evaluate h.

e The memory contention, i.e. the maximum number of shared memory accesses exe-
cuted in one PRAM step which are mapped to the same module under h.

*In this paper [r] denotes {1,2,---,n}.



e In the case of a sparse interconnection network, the routing time; i.e, the time needed
to route read and write requests from processors to memory modules, and to transmit
the results of read requests back to the requesting processors.

The papers [14], [7], [11] and [12] present randomized simulations of n processor PRAMs
on n processor DMMs. In [7] and [12] it is shown that, on a butterfly network, expected
routing time O(log(n)) can be achieved, which clearly is asymptotically optimal. The
expected contention can be made as small as O(log(n)/ loglog(n)), if log(n)-universal hash-
functions as introduced in [3] are used. These hash functions have evaluation time O(log(n)).
Thus these simulations have delay O(log(n)).

If a complete interconnection network is assumed then the delay can be reduced. In [11],
log(n)/ loglog(n)-universal hash functions from [3] are used, yielding delay O(log(n)/ loglog(n)).
It is easily shown that for any scheme that uses a single hash function to distribute the keys
among n memory modules, the expected contention is necessarily Q(log(n)/loglog(n)), even
if the hash function behaves like a random function. Thus any improvement must stem from
the use of more than one hash function.

By introducing parallel slackness — i.e., simulating a PRAM on a DMM with fewer
processors — we can obtain time-processor optimal simulations, in which the expected
delay is proportional to the ratio between m, the number of processors in the PRAM, and
n, the number of processors in the DM M. Time-processor optimality can only be achieved on
completely connected DMMs, and only if the hash functions used have constant evaluation
time. In such simulations each processor of the DMM simulates m/n processors of the
PRAM. Thus each simulation step has to satisfy m/n memory access requests from each
processor. In devising time-processor optimal simulations the object is to minimize the
delay or, equivalently, to minimize m as a function of n. It is easily seen that, in any
time-processor optimal simulation that uses a single hash function to distribute the keys,
the expected memory contention, and hence the expected delay, must be Q(log(n)).

The first time-processor optimal simulation was published in [8]. It simulates an n'*®
processor PRAM on an n processor DMM with optimal expected delay O(n®). In [15] a
time-processor optimal simulation of EREW-PRAMs on DMMs is presented with expected
delay O(log(n)), using hash functions introduced in [13]. In [5] the same result is shown for
CRCW-PRAMs, using a new class of hash functions.

1.2 New Results

In the present paper we have chosen to assume a complete interconnection network in order
to avoid confounding the effects of memory contention with the effects of routing delays,
and to make possible the construction of time-processor optimal simulations. Qur main
result is a time-processor optimal randomized simulation of an EREW-PRAM with delay
O(loglog(n)log*(n)) and a simulation of a CRCW-PRAM with the same delay, where the
time-processor product is only away from optimal by a factor log*(n) . The delay bound
is very reliable; it is guaranteed with high probability, i.e. with probability exceeding
1 — O(n~") for arbitrary ¢ > 0. (Hereafter, this is what we mean whenever we use the term
“with high probability”.)

The simulation uses a novel scheme which is more involved than the simple hashing
scheme used in the previous results. We show how to speed up the simulation of a read step



of an n processor PRAM on an n processor DMM by using two or more hash functions, and
thus making the contents of each PRAM cell accessible in two or more places. We speed up
the simulation of a write step by allowing delayed executions of write instructions: whenever
memory contention prevents a write request from being executed during the present memory
cycle, the request is stored in a parallel hash table. We show that with high probability the
size of this table of deferred write requests never exceeds O(n). Thus, we can distribute the
table among the modules so that accesses to it can be performed in constant time.

The analysis of our simulation depends on the properties of a particular y/n-universal
class of hash functions which combines the constructions given in [5] and [13]. The structure
of these hash functions enables us to analyze the delay in our simulation using a powerful
martingale tail estimate that was derived independently in [1] and [10].

2 Computation Models

A PRAM consists of processors P, ..., P, and a shared memory with cells U = [p]. The
processors work synchronously and have random access to the shared memory cells, each
of which can store an integer. We consider EREW PRAMs where concurrent access to the
same shared memory cell is forbidden, as well as CRCW PRAMs where such an access is
allowed. In the latter case we assume the ARBITRARY write conflict resolution: If several
processors want to write to the same cell simultaneously, an arbitrary one of them succeeds.
The computation of the PRAM has to be correct no matter which one succeeds.

A DMM has processors @1, ..., , which communicate via a distributed memory con-
sisting of » memory modules My,..., M,,. Fach module has a communication window. A
module can read from or write into its window. From the viewpoint of the processors, a
window acts like a shared memory cell of a CRCW PRAM with ARBITRARY write conflict
resolution.

It is possible to execute our simulations on DMMs with a weaker write conflict resolution
rule. For example the TOLERANT rule suffices: If several processors want to write to
the same communication window then its contents remains unchanged. This can be done
without increase in the time-processor product, and with a O(log™(n)) increase for the delay.
This is true because of a result from [16] where a randomized simulation between the above
models is shown which preserves the time-processor product, and has a delay not exceeding
O(log™(n)) with overwhelming probability.

On the other hand our simulation does not work if we assume the access conflict resolu-
tion rule considered in [15], in which, whenever several processors attempt to read or write
to the same window, the window remains unchanged and each of the processors involved in
the conflict receives a collision message.

3 Urn Models

Our PRAM simulations are based on the use of hash functions to distribute data to the
memory modules of a DMM. The properties of the hash functions are complex, as are the
analyses of the basic stochastic processes underlying the simulations. However, the design of
the simulations was guided by a clear intuition based on the idealized assumption that the



hash functions are completely independent random functions; i.e., that all hash functions
have domain U and range [n], that the value of hash function h at point z is determined by
rolling a fair n-sided die, and that the values of distinct hash functions or the values of the
same hash function at distinct points are completely independent. Under these idealized
assumptions we can describe the basic stochastic processes in terms of classical urn models,
in which tossing a ball into a (random) urn from the set [n] corresponds to storing an item
¢ € U in memory module h(z). In this section we describe the idealized random processes in
such terms and state their properties without proof. To gain an intuition for the properties
of our simulation algorithms, it may be desirable to read them first on the assumption that
the hash functions involved are random and completely independent, so that simple urn
models are applicable. The technical properties of the hash functions actually used and the
more complicated stochastic processes associated with them can then be taken into account
in a second reading.

3.1 Process_1

This process arises in connection with the simulation of the read step of a PRAM. The
process involves a positive integer parameter a. At any step, the variable C; denotes the
number of balls residing in urn ¢. Starting with a set S of n balls, the following step is
repeated [loglogn — 1] times.

e Each ball in S is tossed into a random urn from the set [n];

e For each 4, min(a, C;) balls are removed from urn 7.

Lemma 3.1 For every { > 0 there exists a choice of the parameter a such that, with
probability at least 1 — n=", |S| < n%/10 at the end of Process_1.

3.2 Process_2

This process arises in simulating a write step of a PRAM, and also in simulating a read step
when we want to come close to optimality. The following step is repeated Lnl/loj times:

e n new balls are tossed into random urns from the set [n];

e For each ¢, min(4, C;) balls are removed from urn .

Lemma 3.2 For every £ > 0 there exists a b > 0 such that, with probabilily at least 1 — n*,
there is no step after which the number of balls remaining in the urns exceeds bn.

For our time-processor optimal simulation we need an extension of Process_2 called
Extended _Process_2 in which, after each group of loglogn rounds within Process 2, a size
reduction is executed, i. e. min(aloglogn,|C;|) balls are removed from each urn 7.

Lemma 3.3 For every £ > 0 lhere exists a value for the parameter a such thal the following
holds with probability at least 1 —n’: after each size reduction, the number of balls remaining
in the urns is O(n/logn).



3.3 Process_3

This process arises in connection with simulating a read step of a PRAM in the last three
simulations. n/16 pairs of balls are given. One of the balls in each pair is red and the other
is blue. The two balls in a pair are called mates. Initially, the 2n/16 balls are thrown into
urns from the set [r]. Then the following basic step is repeated until all urns are empty.

e In each urn that contains a red ball, a random red ball is selected;
e The selected red balls and their mates are deleted;
e In each urn that contains a blue ball, a random blue ball is selected;

o The selected blue balls and their mates are deleted.

Lemma 3.4 For every £ > 0 there is a constant D such that, with probability at least
1 —n~*, the basic step of Process_3 is execuled al most Dloglogn times.

4 Perfect Hashing & Approximate Compaction

Let U = [p] be the set of addresses of the shared memory cells of the PRAM. We shall refer
to a cell z as a key. The current contents of z is denoted ¢(z). Our simulations maintain
a small set of keys z, together with their current contents ¢(z), in an intermediate data
structure which has to be built efficiently on the DMM, and in which an efficient lookup
can be performed. A lookup for a key z returns ¢(z), if (z,c(2)) is stored in the data
structure, and returns “failure” if key x is not in the data structure.

Let ¢ be a positive constant. Define a parallel hash table with degree of parallelism
n and set of addresses U as a data structure which contains a set of keys S C U, where
|5] < en, together with a value ¢(z) associated with a each key z, and supports the following
operations:

BIJILD(Sl7 52, Tty Sn) :

INPUT: a family of n not necessarily disjoint sets of key-value pairs 57,55, --,5,, where,
for all 7, |.5;] < log™(n).

RESULT: If 5,|95;| < ¢n then the operation produces a parallel hash table storing U;5;
and returns the value “success”; otherwise, it returns the value “failure”. (Note: If z is in
several sets 5;, it finally is only presented once in the hash table.)

LOOKUP(SM, X) :

INPUT: A parallel hash table SM containing the set S, and an array of keys X = (21,2, -+, 2,)
RESULT: An array Y = (y1,y2,---,¥yn) where: if z; € S then y; is the ordered pair
(c(z;), “success”); otherwise, y; is equal to “failure”.

HASH(SM, X) :

INPUT: A parallel hash table SM containing the set § and an array X of key-value pairs
(zi, c(zy)).

RESULT: If | S U X| < ¢n then this operation sets SM equal to a parallel hash table storing

S U X; otherwise, the operation returns “failure”.



The papers [1] and [9] give randomized algorithms for realizing a parallel hash table
of capacity e¢n on an n processor PRAM. The inputs and outputs of the operations, as
well as the parallel hash table itself, reside in the shared memory of the PRAM. The space
required for the parallel hash table is ¢'n, where ¢’ is a constant greater than c¢. The
LOOKUP operation runs in time O(1) and, for any £ > 1, the construction can be made to
satisfy the following claims: with probability 1 — O(*n_g) the BUILD and HASH operations
run in time O(log*(n)) and perform O(n) operations.

It is not difficult to extend the parallel hash table implementations of [1], [9] so that they
work on an n processor DMM with the same performance guarantees as for a PRAM. For
the BUILD operation it is assumed that each set S5; is presented as an array in module M;.
For the LOOKUP operation, it is assumed that each element z; resides in a designated cell
of M;, and y;, the 1th component of the result, is returned to the communication window
of M;. For the HASH operation, the key-value pair (z;,c(z;)) is stored in a designated
cell of M;. The parallel hash table SM is evenly distributed among the memory modules,
occupying ¢’ cells in each module. The execution time of the PRAM algorithm must be
multiplied by ¢’ to account for the fact that, in each module, the ¢’ cells assigned to SM
must be accessed sequentially rather than concurrently.

5 Universal Families of Hash Functions

Our simulations require us to distribute the shared memory of the PRAM among the mem-
ory modules of the DMM. We now discuss the hash functions that will be used for this
purpose.

Let U = [p], where p > n. For a function A : U — [n]and aset S C U let Bf = =1(i)nS
be the i’th buckel of S under h. The function h splits S into buckets BY, ..., B".

Definition 5.1 (d-perfect) We call h d-perfect on S, if each Blh, t=1,...,n, has size al
most d.

Let H,, be a family of hash functions mapping U into [n]. In [3] the notion of univer-
sality for families of hash functions was introduced as a measure of the quality of the family
for classical hashing purposes.

Definition 5.2 (Universal Hashing) The family H,, ,, is (p, k)-universal, if for each z1 <
o<y e U, Ly,... 0 €n], j <k, it holds that, if the hash function h is drawn with
uniform probability from H, ,,, then

Prob[h(z1) = I, ..., h(z;) = ;] < L.

J

3

Let p be prime, p > n. As building blocks for our hash functions we apply two types of
universal classes. The first one is the class Hgm C {h:[p] — [n]} of functions h(z) mod n
where h is a polynomial of degree d — 1 over Z,. H]‘in was introduced by Carter and
Wegman in [3]. It is a (2,d)-universal class. The second class Hx, C {h : [n*] — [n]}
introduced by Siegel in [13] consists of more complicated functions. It is the first class with
high degree of universality whose functions can be generated fast using little space and have
constant evaluation time, if the universe is of size n* for constant k. The following lemma
lists important known properties of these classes.



Lemma 5.1 (Properties of H;{n and H,5,) Letd and k be constants independent of n.

(a) A random h € H?

p7n
time. A random H
’

in constant time.

can be generated by a randomized sequential computer in constant
can be generaled by a randomized DMM with \/n processors

n

(b) he HZ, or H i, can be evalualed in (sequential) constant lime.
(¢c) HE, is (2,d)-universal.
(d) Hx,, is (1,y/n)-universal for sufficiently large k.

Let £ > 1 be arbitrary, and let d and k be large enough relative to £. Let S C U, n < |5] <
pl1/10

(e) If h is randomly drawn from H;ﬁ, then Prob[h is %-perfect on §]>1—n"".

(f) If h is randomly drawn from H;’nk then Prob[h is 1-perfect on S] > 1 —n~".

(g) Let §' C U, |S'| < 2n3/4. If h is randomly drawn from HZ, or Hx, then Prob[h is
d-perfect on §'] > 1 —n~"*,

Proof : The results (a), (b) are obvious from the definition of the classes, (¢) and (d) can
be found in [3] for H]‘in and in [13] for H x , and (e) is shown in [8]. The result (g) is shown
in [4] for (u,d)-universal classes; thus it applies to both of our classes because of (¢) and

(d). ]

In [5] and [6] a new class of hash functions is introduced. We only present a special case
sufficient for our considerations.

Definition 5.3 (Rg’n) A particular function h € R;i is specified by:

o A primary hash function f € H]‘iﬁ.
o A secondary hash functlion g € H]‘in.
o A sel of offsels a = (ay,...,a ), where a; € [n].
The function h is defined in terms of (f,g,a) as
hz) = (9(2) + a5(z)) mod n.

In other words, to compute h(z) we determine a base address g(z) and add to it an offset

determined by f(z). Note that & € R, can be evaluated in time O(d), i.e. in constant

time if d is a constant. In the context of Rgm, random f means that f is chosen uniformly
at random from H? , random g means that g is chosen uniformly at random from H? .
/1 pn

random a means that, for i € [\/n], a; is chosen uniformly at random from [r], and random
h is defined by random f, random ¢ and random a. Note that a random A can be chosen
by a randomized DMM with y/n processors in constant time.



For Rgm, [6] shows that for any given S C U, |5| < n'*/1° a randomly chosen and
fixed (f,g) pair will have, with overwhelming probability, distributional properties with
respect to how 5 is mapped by random a that are very similar to the properties that hold
if completely random functions are used to map 5.

Definition 5.4 (d-goodness) Let f : U — [/n] and g : U — [n] be hash functions. Lel
d be an integer and let S C U. (f,g) is d-good for S if f is %-perf@ct on S (i.e. each

bucket of S under f has size at most twice the average bucket size), and ¢ is d-perfect on

each bucket of S under f.

The following lemma is implicitly used in [6]. It follows directly from Lemma 5.1 e) and

).

Lemma 5.2 Let § C U, n < |S| < n!''/1°. In the context of Rp n, Jor each £ > 0 there is
d > 1 such that a random pair (f,g) is d-good for S with probability 1 — nt. O

For our time-processor optimal simulations we need a class of hash functions with con-
stant evaluation time which has the same two-level structure as Rgn and, in addition, is
(i, clog(n))-universal for some constant g > 0 and a suitable constant ¢ > 0. For this
purpose we modify R .. by choosing a variant of Siegel’s functions from H , as secondary

hash functions.
.. —d.k . . —dk .
Definition 5.5 (R,,) A particular function h € R, is defined by
o A primary hash function f € Hd\/—

o A secondary hash functionros, v € H k,, s € H;,nk

777/’
o A set of offsels a = (ay,...,a ), where a; € [n].

The function h is defined in terms of (f,7 0 s,a) as
h(z) = (r(s(z)) + as(z)) mod n.

In the context of R ok

. . d
»n> Tandom f means that f is chosen uniformly at random from Hp,\/ﬁv

random 7 o s means that r is chosen uniformly at random from H, , and s is chosen
uniformly at random from Hp x, fandom a means that, for 7 € [\/n], a; is chosen uniformly
at random from [n], and random h is defined by random f, random r o s and random a.
Note that h € R ', can be evaluated in constant time if d and k are constants. Further, a
random h can be constructed by a randomized DMM with y/n processors in constant time.

These properties follow directly from Lemma 5.1 a) and b).

Lemma 5.3 Let 5 C U,n < |S| < n'Y/1°. In the context of an, for each { > 0 there are
d >0, k> 0 such that a random pair (f,r 0 s), is d-good for S with probability 1 — n="



Proof :
Let ¢/ > 0 be given. If d is sufficiently large then a random f is %—perfect on S with

probability 1 — n=* by Lemma 5.1 e). ros is d-perfect on S if s is 1-perfect on S and
r is d-perfect on s(5). Each of these events is true with probability at least 1 — nt by
Lemma 5.1 f) and g). Thus, random (f,70s) is d-good with probability (1—n=*)? > 1—n~*
if ¢/ is sufficiently large relative to £. O

The advantage of Rz:fb compared to Rgm is its high degree of universality. Whereas Rgm

can only be proven to be a (2, d)-universal class a much stronger property holds for E;l:i.

Lemma 5.4 Let Ez:fb(s) be the restriction of Rz:fb induced by fixing s € H; i Let 5 C
U,|1S| < n'Y/10 If s is 1-perfect on S, then EZ::?L(S) is (1,4/n)-universal.

Proof :
The proof is obvious from Lemma 5.1 d) and the definition of Ez:fb. O

6 The Basic Processes

The behavior of our PRAM simulations can be modeled by a few simple stochastic processes

which we now introduce and analyze. For both Process_1 and Process_2, all results hold
with respect to both Rgm and R;l:fb. Since the proofs are so similar for both classes (the
only difference is that Lemma 5.2 is used in the proof for Rgm whereas Lemma 5.3 is used
in the proof for E;l:fb), we give the proofs only for Rgm.

The first process is basic for simulating the read step of a PRAM in our first simulation.
Fix £ > 0 arbitrarily and let S C U be given, where |S| = n. For the results with respect

to Rg’n, let d be chosen large enough with respect to £ so that a random (f,¢) is d-good
for S with probability at least 1 —n~%* and for the results with respect to Rzsz, let d and k

be chosen large enough so that a random (f, 70 s) is d-good for S with probability at least
1 —n=2. Let T = loglog(n) — 1 and let hq,...,hy be functions from U to [n].
Process_1 :

Fort=1to T do
For each ¢ € [n],
remove min{4d, |h;'(i) N S|} elements x € h; ' (i) from S.

Theorem 6.1 Let hy,...,hy be randomly and independently chosen from Rgm (or from
E;l:fb). With probability at least 1 — n=*, |S| < n%/1° at the end of Process_1.

The proof of this theorem involves several subclaims, which we first develop before giving
the proof. Fix S C U, |S| =mn and 5" C 5. Let (f,g) be d-good for S with respect to Rgm.
For all 7 € [\/n], define f-bucket

By ={5'n /7 (1)},



and for all ¢ € [y/n] and j € [n] define (f, g)-bucket
A =1{B:ng™' ()}
Let h be defined by (f, g,a). The following properties hold:
e Forall ¢, |B;| < % < 2y/n.

e Forall ¢,7, [A; ;]| <d.

Independent of a, for all ¢, 7, all keys in A; ; are mapped to the same location by A.

Independent of a, for all 4, for all j # j', h(A; ;) # h(A; ), i.e., there is no possible
collision between pairs of keys in the same f-bucket but different ( f, g)-buckets.

Let a be random. For all iy,...,i. € [\/n], for all ji,...,j. € [n],

Proba[h(Ay j,) = -+ = h(A;, ;)] < 1/n°7".

Lemma 6.1 Fiz S C U with |S| = n and let §' C § be fized, n/*° < |§'| < n. Let (f,g)
be d-good for S, let a be random and let h be defined by (f,g,a). Let S” consist of those
keys left over from S' after removing min{4d, |h=(i) N S’|} elements x € h= (i) from S,
for each i € [n]. Then

_n1/10
<e 72

"2
Proba [|S"| > il
2n

Proof : Fix any key € 5', and suppose ¢ € A;;. Because no (f,g)-bucket has size
greater than d, the only way # can fail to be removed is if at least three other (f, g)-buckets
map to the same location as where A;; is mapped. The probability of this event is at
most 1/n® times the number of triples of (f, g)-buckets. But the number of such triples is
bounded above by |S’|?/6, and thus

S 19
Prob n< | <
rob[z € §"] < s = on
From this it follows that "
Expl[|5"]] < 15T,
6n

Now we have to bound the probability that |S”| is far away from its expectation. We
apply the beautiful tail estimate independently shown in [1] and [10] and stated in the
following theorem.

Theorem 6.2 Let Xq,...,X,, be independent random variables with finite ranges, and let
F(Xq,...,X.) be any function in X4, ..., X, with Exp[F] > 0. Assume that F(X1,...,X.)
only changes by at most an additive offset o in response to a change of one input variable
X;. Then,

—t2

Prob[F > Exp[F] + ] < e2a7m.

10



We apply this tail estimate to the function F which maps the independent random
variables ay, ..., a s to [S”]. By the definition of d-goodness of ([, g), at most 2/n elements
z € S change their hash value h(z) in response to a change of one a;. The worst effect on
|5”| would be that all these elements are non-colliding with respect to S’ before the change
in @; but colliding afterwards, and thus |S”| can change by at most 2/n, i.e., the offset «
is at most 2y/n. The above theorem now yields

"2
Prob |[5"| > ﬂ]
2n

< Prob

F > Ex [F]—|—w
> Exp o

_ (s’ /(3n))?
< e 202Vm)En

IEL
= € 72n7/2
nl/10
< e as |57 > n9/10,
This completes the proof of Lemma 6.1. a

Proof (of Theorem 6.1) : Let S; be the set S in Process_1 after ¢ runs of the for loop;
So is the initial set 5. By Lemma 5.2, the probability there is a ¢t € [T'] such that (f:, g¢)
is not d-good for § is at most Tn~% < n~*/2 for sufficiently large n. For the remainder of
the proof, for all ¢ € [T7], fix (fi, g;) to be d-good for S and all probabilities are with respect
to random a;.

Lemma 6.1 implies that, with probability at least

n1/10 T
<1—e_ 72 ) ,

2
St < maX{7|St2_1| 7n9/10} (1)
n

for all ¢ € [T]. The theorem follows by solving the recursion and by observing that the
probability there is some ¢ € [T7] for which (1) does not hold is at most n=*/2 for sufficiently
large n. O

We now describe the second process. It is basic for simulating a write step of a PRAM,
and also for simulating a read step when we want to come close to time-processor optimality.
Leth:U — [n]and 0 < T < n/19 be fixed. Let S; C U be a set of n elements for 1 < ¢ < T,
S = U;le St. Fix £ > 0 arbitrarily. For the results with respect to Rg,nv let d be chosen
large enough with respect to £ so that a random (f, ¢) is d-good for S with probability at
least 1 — n~*/2 and for the results with respect to E;l:fb, let d and k be chosen large enough

so that a random (f, 7 0 s) is d-good for § with probability at least 1 — n™*/2.

Process_2 :
AO = @
Fort=1toT do
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- At = At—l U St
— For ¢ € [n] let C; be the set of keys z € A; with h(z) = ¢.
Remove from A; min{4, |C;|} keys = € C;.

Remark : There is a more involved analysis that shows essentially the same result as
stated in the following theorem when only 2 elements (as opposed to 4) are removed from

each C;.

Theorem 6.3 For random h with respect to ngn (or Ezsz), with probability at least 1 —n=*,
for all t € [T, |A¢| < 2d*n with respect to Process 2.

Proof :

By Lemma 5.2 a random (f, g) fails to be d-good for $ with probability at most n=*/2.
For the remainder of the proof we fix (f,¢) to be d-good for S, and all probabilities and
expectations are with respect to random a. Let h be defined by (f,g,a).

Claim 6.1 For all t € [T], Exp[|A¢]] < d?n.

Proof : In [5] (see Definition 5.5 and Theorem 6.1) the following is shown.

Lemma 6.2 Let S C U, |S| < tn for somet > 1. Let h be as above; h splits S into buckets
Bi,...,B,. Then, for any u > 4 and for each i € [n],

ut

Prob[|B;| > ut] <27 7a

O

If, at some step ¢, |C5] > u, then there is a t' < ¢ such that 5}, = Uzlfzt—t’—l—l S contains
a set By, of at least u + 4¢' keys which are mapped to ¢ by h. From Lemma 6.2,

Prob[|C;| > u] < ZProb[Bg; > u+ 4t']

<t
< Z o—(u+4t')/d _ 9—u/d Z 9—4t'/d < do—uld |

<t <t 2

Thus
Exp[|C;|]] < ZProbHCﬂ > u] < d?,
u>0
and
Exp[|Ai]] = > Exp[|Ci]] < d*n
1€[n]

This completes the proof of Claim 6.1. ad
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We now apply the tail estimate Theorem 6.2 to the function which maps S according
to random a. By the definition of goodness, at most % < 2n3/5 keys from S are affected
by the change of one a;. The worst effect on |A;| would be that none of these keys are in
Ay before the change of a;, but all of them are afterwards. Thus a < 2n3/5. Theorem 6.2
now yields

Prob{|A{ > 2d*n] < Probf|A| > Exp[|A{] +d*n] < =,

Thus, the probability there is a ¢ € [T] such that |A;| > 2d*n is at most Te=4*n*""°/8 \Which
is at most n~*/2 for sufficiently large n. This completes the proof of Theorem 6.3. a

For our time-processor optimal simulation we need an extension of Process_2 which we
call Extended_Process 2. In the Extended_Process_2, after each group of loglog(n) rounds
of Process_2 a size-reduction is executed. In the size-reduction, min{2dloglog(n), |C;|} keys
from C; are removed from A, for ¢t = 1,...,n.

Theorem 6.4 In addition to the property from Theorem 6.3, the following holds for the
Extended_Process 2. After each size-reduction, A has size O(n/log(n)) with probability at

least 1 — n~*.

Proof : By Lemma 5.2 a random (f, ¢) fails to be d-good for S with probability at most
n~*/2. For the remainder of the proof we fix (f, g) to be d-good for S, and all probabilities
and expectations are with respect to random a. Let A; be asin the last proof. Assume that a
size-reduction is executed in the Extended_Process_2 after ¢ steps. Let C; C A; be the set of
key from A; mapped to ¢ by h. As shown in the proof of Lemma 6.2, Prob[|C;| > u] < #.
Thus, Exp[|{i,|C;| > 2dloglog(n)}|] < —%—. A further application of the tail estimate

log®(n)
Theorem 6.2 shows that

2dn

Prob | [{i,|Cil > 2dloglog(m))] 2 {7

<n~f/4

for sufficiently large n. Also,

Prob[lrggzx |C;] > 3tdlog(n)] < n=*/4

for sufficiently large n can be easily concluded. For all ¢ € [n], the reduction phase removes
min{|C;|, 2d loglog(n)}, and thus at most ﬁfg&% elements are in A; after the size reduction,

with the desired probability. |

We now describe the third process. It is basic for simulating a read step of a PRAM
in the last three simulations. For this process we need the stronger universal properties of

Ei:i for the analysis. Let S C U be a set of n/16 keys. Let hy and hy map U into [n].

Process_3 :

Repeat until § =0
For j =1,2 do
Forie{1,...,n}

13



remove one & € hj_l(i) from S

Let £ > 0. Let d and k be sufficiently large constants relative to £ so that a random s is
1-perfect for S with probability at least 1 — n=*/4.

Theorem 6.5 Letl hy and hy be randomly and independently chosen from E;l:fb. With prob-
ability at least 1 — n=", the repeat until loop of Process_3 is executed al most D loglog(n)
times before S = () for some constant D.

Proof: Fix s; and s so that they are both 1-perfect on 5. All probabilities in the following
are with respect to random hy € E;l:i(sl) and hy € E;l:i(sQ). Consider the following directed
labeled graph G = {[n], £} (with multi-edges and self-loops allowed) defined by Ay, hy and
S. There is an edge from hqi(z) to ha(z) labeled z for each € S. This graph has the
following structural properties. Similar properties are well known for random graphs, (see
[2]), the proof techniques are very similar. Note that both hy and hy are (1,4/n)-universal
on S because of Lemma 5.4.

Lemma 6.3 Lel H be the graph obtained from G by removing all labels and directions from
the edges. For each £ > 1 there are 5,s > 1 such that

a) Prob[H has a connected component of size al least 3log(n)] < n=*/4
g

(b) Prob[H has a connected component A with at least |A| + s — 1 edges | < n=*/4.

Proof : The proof of the lemma relies on the following claim.

Claim 6.2 Let k > 2, s > 0, k + s — 1 < y/n. The probability there is a subgraph G' C G
such that G' contains k vertices and at least k + s — 1 edges is al most

n—s—l—l . (k + 1)5—1 . 2—(1{7-}—25—5).

Proof : Let Gy s be the set of all directed labeled (with elements of S) graphs on node set
[n] with k& vertices and k£ + s — 1 edges. Then,

n Eik+s—1 <£>k+5_1
k k+s—1 16
< n?k—}—s—l . e?k—l—s . (k‘ + 1)3—1 . 2—4(k—l—s—1)‘

|Gk s

IN

Because k + s — 1 < \/n and hq, hy are independently chosen from a (1,+/n)-universal class
of hash functions the following is true. For a fixed G’ € Gy, 5, for randomly chosen h; and
ho, the probability that the directions and labels with respect to hy and hy coincide with
G', i.e., the probability that G’ is a subgraph of G, is at most n=2(k*s=1)  Therefore, the
probability there is some G’ € Gy s such that G’ is a subgraph of G is at most

TS (k4 1)st 27 (kH205),

This complete the proof of Claim 6.2. ad
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Now we complete the proof of Lemma 6.3. Part (a) follows from Claim 6.2 with k£ =
Blog(n) for 8 a sufficiently large constant and s = 0. Part (b) follows from Claim 6.2 and
by applying part (a) and then applying Claim 6.2 for s fixed to a sufficiently large contant
and using all values of k € [3log(n)]. 0

To finish the proof of Theorem 6.5, we translate the effect of the repeat until loop into a
game on the graph H: Each run of the loop corresponds to removing, for each non-isolated
node of H, an incident edge. The end of the loop corresponds to the situation where H has
lost all its edges.

Consider a connected component of H with vertex set A, |A| = k, and edge set F(A),
|E(A)|=k+s—1. Let E'(A) C E(A) form a spanning tree of this component, |E'(A)| =
k — 1. We consider our game on H restricted to A.

There are at most s moves in which edges from E(A)\ E'(A) are removed. The other
moves only remove edges of the spanning tree. In each of these moves at least half of the
remaining edges of the spanning tree are removed, i.e., log(k) moves suffice to remove all
these edges. Thus all edges of the component are removed after log(k) + s moves. As, by
Lemma 6.3, for each component, k& = O(log(n)) and s = O(1) holds with high probability
the theorem follows. |

All the simulations presented in the next sections are randomized. They have the prop-
erty that the time bound we claim holds with probability exceeding 1 — n~*, where £ can
be made arbitrary large at the expense of a constant factor in the time bound. For this
property we shall say that the time bound holds with high probability.

7 Two Fast Simulations

We present two simulations of an n processor PRAM on an n processor DMM. The first
simulation has delay and work (i. e. overall number of operations executed by the DMM
to simulate one PRAM step) ©(loglog(n)log™(n)) with high probability. Thus it cannot be
directly converted into a time-processor optimal simulation. It has the advantage that it
uses hash functions from Rgm rather than the more complicated class EZ:i.

The second simulation is faster; its delay is only O(loglog(n)). More importantly, it
only uses optimal work O(n) for simulating one step of the PRAM with high probability.
It is the basis for the time-processor optimal simulation. Its disadvantage is that we need

the more complicated class of hash functions R

)

»n 10 order to make our analysis work.
)

We show how to simulate a phase of up to n'/!0 steps of the PRAM. After a phase,
we perform a cleanup step which consists of dumping all the data currently stored in the
temporary shared memories into their final locations. After the cleanup step, all temporary
shared memories are empty for the start of the next phase of the simulation. The purpose
of the cleanup step is to ensure that all temporary shared memories are of size O(n) at all
points in time with high probability. It is not hard to see that the cleanup step takes time
O(log(n)) per temporary shared memory with high probability.

Let S C U, |5| < n11/10 denote the set of keys used as shared memory addresses in the
phase of the PRAM to be simulated. Both simulations use an algorithm WRITE, which in
turn uses a hash function h and a perfect hash table SM (compare section 4). The hash
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function A is randomly chosen from ngn or RZ::E for suitable d, k& > 0, During the simulation,
the name of each shared memory cell z, together with its current content ¢(z), is stored in
SM or in a module, such that the following holds:

Invariant : At each time t, for each shared memory cell x € U for which ¢(x) has been
defined at time t, (x,c(x)) is either stored in SM, or, if not, in My,.

Hereafter, for brevity we refer to names z of shared memory cells as keys, and we write
x instead of (z,¢(z)). Recall that we use SM to refer to both the name of the perfect hash
table and its contents.

Let X = {z1,...,2,} denote the keys to be written during a PRAM write step. In case
of an EREW PRAM z;,- - -, z, are distinct, in case of a CRCW PRAM this is not necessary,
i. e. X may be a multiset. For: = 1,...,n let z; be associated with processor P;. The first
step is to add X to SM using the algorithm HASH described in Section 4. The second step
attempts to simultaneously move the keys in SM into the memory modules.

Let D be an integer. Recall that a temporary perfect hash table SM is distributed
among the memory modules, with at most ¢ entries of SM stored in each module for some
constant ¢. The algorithm WRITE_M(SM, A, D) moves

min{|SM N 2~1(i)|, D}

keys z € SM N A71(7) from SM to memory module Mp(gy, for all @ = 1,...,n. This is
implemented as follows. Simultaneously, for all ¢ € [r], processor P; reads in sequence the
at most ¢ entries of SM stored in memory module M;. Then, simultaneously, for all i € [n],
P; tries to write in sequence, for j = 1,..., ¢, the jth key  to memory module M}, up to
D times. Each memory module can accept up to one write request per time step. It is not
hard to verify that the algorithm has the properties claimed and that the number of steps
is at most ¢(D + 1) and each step takes constant time.

WRITE(h, SM, X) :

HASH(SM, X)
If “failure” returned then call EMERGENCY_WRITE(A,SM, X)
WRITE_M(SM, &, 4)

EMERGENCY _WRITE(h,SM, X) :
WRITEM(SM U X, h, )
Lemma 7.1 WRITE salisfies the following.
(a) WRITE fulfills the invariant.

(b) WRITE runs within time O(log*(n)) with high probability.

Proof :
(a) is immediate from the description.

(b)is immediate from the description and the analysis of HASH, if EMERGENCY _WRITE
is not invoked. EMERGENCY _WRITE takes time O(n) in the worst case. Therefore, (b)
is implied by the following claim.
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Claim 7.1 Let Ay C U be the contents of SM after t simulated steps. There is ¢ > 0 such
that for each t, 1 <t < n'/10 |A,| < en with high probability.

Proof : Observe that the additions and deletions from SM during the algorithm are
captured by Process_ 2. The claim now follows from Theorem 6.3. a

The following two PRAM simulations use WRITE as a subroutine. The first simulation

uses loglog(n) hash functions hq, ha, .. -» Moglog(n) chosen randomly and independently from
Rgm, to store loglog(n) copies of each PRAM cell. The j** copy of cell z is to be found

either in SM; or in module M}, ;). A read step consists of loglog(n) iterations. At the gtk

iteration, each processor that has not yet succeeded in reading looks for its key z first in
SM; and then, if it has still not succeeded, in My (;). The second simulation is similar,
but uses only two hash functions, hy and hy, and hence only two copies of each cell. The
read step again consists of loglog(n) iterations. At each iteration, each processor that has
not yet succeeded tries to access both copies of the cell it is seeking. Our analysis of this
second algorithm requires that the hash functions be drawn from the more complicated

family Rz:fb.

7.1 A Simulation with Non-Optimal Work

This simulation stores each shared memory cell in [ = loglog(n) modules, specified by [
hash functions from Rg’n, for suitable d. We use [ shared memories SMy,...,SM; of size
c'n, each.

Let S C U, |5| < n'1/10 be the set of keys used in a phase of n'/1® PRAM steps. Each
PRAM step consists of two substeps: a write step followed by a read step. We let X =
{z1,...,2,} denote the multiset of n keys that are to be written or read during a particular
PRAM step. We use the algorithm LOOKUP described in Section 4. Let READ(z, M, ans)
indicate a read request to module M for key x. If M has many simultaneous read requests
to different keys, it can only successfully complete one of them. It returns ans = ok
for the successful read request and ans = fael for all the unsuccessful read requests. If
Read(z, M, ans) is called by several processors (as is allowed in the CRCW PRAM), then
either all of them or none of them are successful.

SIMULATION 1 :
PREPROCESSING 1 :
Choose hq, ..., h; randomly and independently from Rgm.
WRITE_1(X) :
For j =1,...,1, WRITE(h;,S5M;, X)
READ_1(X):

(i) For all 7 € [n], status(z) := “failure”.
For j =1,...,1, LOOKUP(SM;, X).
Simultaneously, for all ¢ € [n],
If contents of z; found in SM;
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then status(z) := “success”
(ii) Forj=1,...,01-1
Repeat D times
Simultaneously, for all ¢ € [n]
If status(z) = “failure” then READ(x;, M}, (), ans)
If ans = ok then status(?) := “success”

(ili) Repeat until, for all ¢ € [n], status(i) = “success”
Simultaneously, for allz = 1,...,n
READ(z;, My, (5,), ans)
If ans = ok then status(¢) := “success”

Theorem 7.1 SIMULATION_1 simulates an n processor CRCW-PRAM on an n processor
DMM using delay O(loglog(n)log™(n)) with high probability.

Proof : It is clear that the above algorithm correctly simulates a PRAM. PREPROCESS-
ING_1 runs within time O(loglog(n)) in the worst case. From Lemma 7.1, it follows that
WRITE_1 runs within time O(loglog(n)log*(n)) with high probability.

Each run of each of the above three loops within READ_1 take constant time. Thus (i)
and (ii) take time O(l) = O(loglog(n)). Loop (ii), which tries to find keys in the modules
according to the hash functions hq,...,h;_1, follows the rules of Process_1. Thus, at the
end of loop (ii), at most a set X', |X’| < n%/1°, have not gotten an answer, i.e., their
corresponding read requests are not yet satisfied, with high probability. This is shown in
Theorem 6.1.

In [5], it is shown that a random h; € Rgm is d-perfect (for a sufficiently large constant
D) on a set X' of size at most 7%/, with high probability. Thus loop (iii) is finished after
D rounds, with high probability. |

It is easily verified that SIMULATION_1 can’t be converted into a time-processor opti-
mal simulation, because it needs work (n loglog(n)) for simulating one step of the PRAM.
The reason for this is that we use a non-constant number of hash functions.

7.2 A Simulation with Optimal Work

We now present a simulation that uses only two hash functions, but we have to choose

them from the more complicated class Ez:fb for suitably chosen constants d and k. We use
two shared memories SM; and SM;. Again let X = {z,...,2,} be the multiset of keys
requested by the PRAM step. The new Read algorithm now proceeds like Read_1, except
that it does not need loop (iii). Instead, it alternates between the two hash functions in
loop (ii). For technical reasons, we satisfy the read requests to the modules in 16 batches
of n/16 keys, each.

SIMULATION_2 :
PREPROCESSING.2 :

Choose hi, hy randomly and independently from Ri:fb.
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WRITE_2(X) :
For j = 1,2, WRITE(hj, SM;, X)
READ _2(X) :

(i) For all 7 € [n], status(z) := “failure”.
For j = 1,2 do LOOKUP(SM;, X)
Simultaneously, for all ¢ € [n],
If contents of z; found in SM;
then status(z) := “success”
(ii) For ¢t =0,...,15 do
s:=1+1in/16,e=(t+ 1)n/16

Repeat until, for all ¢ € {s,..., e}, status(i) = “success”
forj=1,2
Simultaneously, for all ¢ € {s,... e}

If status(z) = “failure” then READ(z;, M}, (,,), ans)
If ans = ok then status(?) := “success”

Theorem 7.2 SIMULATION _2 simulates an n processor CRCW-PRAM on an n processor
DMM using delay O(loglog(n)) with high probability.

Proof : Clearly the above algorithm correctly simulates a PRAM. PREPROCESSING_2
runs in constant time. From Lemma 7.1, WRITE_2 runs in time O(log*(n)) with high
probability. The LOOKUPs in SM; and SMy within READ_2 each take constant time.
Because the loop within READ 2 follows the rules of Process_3, it follows from Theorem 6.5
that, when D is chosen to be a sufficiently large constant, for each value of { = 0,...,15,
the number of iterations of this loop is D loglog(n) with high probability. O

It can easily be checked that this simulation uses optimal work O(n) to simulate a step

of the PRAM, with high probability.

8 Fast and Almost Optimal Simulation

In this section, we present a simulation of an nloglog(n) processor CRCW PRAM on an n-
processor DMM. The simulation achieves almost optimal delay O((loglog(n)log*(n)), with
high probability. Let [ = loglog(n). Assume that the PRAM-processors are grouped into n
blocks of | processors each. The DMM has processors @1,...,Q,, where, for i = 1,...,n,
Q; simulates the 7 block. For k = 1,...,1, we let X denote the multiset of n keys, the kP
key from each block, to be written or read during a particular PRAM step . We use three
hash functions hg, k1, ho, three intermediate hash tables SMg, SMy, SMy, and one additional
temporary hash table SM for each execution of the read algorithm. All of the hash tables
are maintained using the algorithm HASH described in Section 4.

The interesting aspect of this algorithm is how the read requests are processed by
READ_3. Step (i) processes the read requests associated with keys currently stored in
SMg, SM; or SM;. All the read requests successfully processed in (i) require no further
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processing in (ii). In step (ii), most of the remaining read requests are successfully satisfied
within the loop using hash function hg. SM is used to store the unsatisfied read requests
during the execution of this loop. In step (iii), the remaining O(n) unsatisfied read requests
in SM are then satisfied using h; and h,.

The algorithm D_READ _M(SM, hg) removes, for all i € [n],

min{|SM N k5t ()], 4}

keys from SM, and sends these read requests to the appropriate module, i.e., the request
for key @ is sent to module My (). We say that these read requests have been satisfied.
M}, (z) doesn’t immediately send back the value of the key ¢(z) associated with z (The “D”
in “D_READ” stands for “delayed read”); instead it maintains a list of read requests it has
promised to process, and delays sending back the values until RESPOND_REQUESTS is
executed in step (iv). Clearly, this algorithm runs in constant time if [SM| = O(n).

The loop within step (ii) is similar to WRITE: At the beginning of iteration &, the read
requests that haven’t been satisfied among X;U...X_; are currently residing in SM. First,
X}, is added to SM using HASH, and then D_READ_M(SM, hg) is executed to ensure that
|SM| = O(n) at all times within the loop. The fact that SM stays small follows from how
Process_2 works.

At the termination of step (ii), SM still stores up to O(n) read requests that have not
been satisfied. In step (iii), D_-READ_2 is used to process these remaining read requests
using hash functions Ay and hy exactly how READ_2 works, except that once again the
only immediate action of the modules is to acknowledge which of the read requests they will
process, and they delay sending back the values until RESPOND_REQUESTS is executed in
step (iv). EMERGENCY _READ is analogous to EMERGENCY_WRITE described above.

SIMULATION_3 :
PREPROCESSING.3 :

Choose hg, h1, hy randomly and independently from Eizi

WRITE_3(Xy,..., X)) :

For 7=0,1,2
For k =1,...,1, WRITE(h;,SM;, Xy)

READ_3(X;,..., X)) :

(i) For j =0,1,2
For k=1,...,1, LOOKUP(SM;, X})
(ii) SM := 0
Fork=1,...,1
HASH(SM, X)
If “failure” then call EMERGENCY _READ(hg, SM, X})
D_READ_M(SM, ho)
(iii) D_.READ_2(SM) (Using hy and hy)
(iv) RESPOND_REQUESTS
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In the algorithm RESPOND_REQUESTS, the modules finally send back the values
for the read requests to the issuing processors they have promised to answer during the
execution of D_ READ_M and D_READ_2. This is done as follows: When READ_3 is
executed, a key may move from one memory module to another, i.e. when HASH is
executed and SM is reformed. During this time, each module that receives a key saves
a pointer indicating where the key came from. When RESPOND_REQUESTS is finally
executed, this trail of pointers indicating the path of key z is followed in a pipeline fashion
back to the version of SM to which z was added by an execution of HASH. At this point,
all processors that have requested = at this time execute LOOKUP(x,SM) for this version
of SM. Since each key moves O(loglog(n)log*(n)) times, the total time for pipelining back
all of the values to the originating processors takes time O(loglog(n)log*(n)).

Theorem 8.1 SIMULATION_3 simulates an nloglog(n) processor CRCW PRAM on an
n processor DMM using delay O(loglog(n)log*(n)) with high probability.

Proof : The above algorithm clearly simulates a CRCW-PRAM correctly. PREPRO-
CESSING_3 runs in constant time. WRITE_3 runs in time
O(loglog(n)log™(n)) with high probability.

In READ_3, step (i) runs in time O(loglog(n)) in the worst case. There are O(loglog(n))
iterations of the loop in step (ii), and each iteration runs in time O(log*(n)) with high
probability, if EMERGENCY _READ is not invoked. (This time is governed by the time
for reforming SM using HASH, and this time is O(log*(n)) with high probability.) As the
manipulation of SM during the loop follows the rules of Process_2, Theorem 6.3 guarantees
that EMERGENCY _READ is not invoked with high probability. In step (iii), the execution
of D.READ_2 runs in time O(loglog(n)) with high probability as shown in the analysis of
SIMULATION_2. The time for step (iv) is dominated by the time for steps (ii) and (iii). O

9 A Fast, Optimal Simulation

To describe the fast and optimal simulation, we first introduce one more hashing technique.

9.1 Simultaneous Hashing

For the time-processor optimal simulation we need a highly efficient implementation of a
data structure called an approzimate compaction table which is less powerful than a parallel
hash table. An approximate compaction table stores a set of up to ¢n key-value pairs in a
table with ¢/n cells, each of which is capable of storing a key-value pair. Unlike a parallel
hash table, an approximate compaction table is not required to support the LOOKUP
operation.

The basic operation that we require is called SIMULTANEOUS-HASH. To describe this
operation we require some preliminary definitions. Let the set of n processor-module pairs
(P;, M;) be partitioned into log™(n) sets of cardinality n/log*(n). Let the rth of these sets
be denoted DMM". For each 7, let Y” be a set of key-value pairs stored in the memory
modules of DMM”, such that at most log*(n) keys of Y reside in any memory module. The
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elements of Y” that a module contains are stored in an array within the module. For each
r, let SM” be a parallel hash table of size ¢’n distributed among the n memory modules,
occupying ¢’ cells in each module. The constant ¢’ will be specified below.

SIMULTANEOUS-HASH(SM,Y) :

INPUT: A collection SM = {SM"} of approximate compaction tables and a collection
Y ={Y"} of sets of key-value pairs, where r ranges over [log*(n)].

RESULT: For each r, the following holds: if [SM” U Y| exceeds ¢n, then the value ‘full’ is
returned; otherwise, SM” is augmented by the insertion of the set Y.

We now give an algorithm to perform SIMULTANEOUS-HASH(SM,Y'). The set of
processors of the DMM is partitioned into log*(n) subsets, each of size n/log*(n); the rth
subset is denoted DMM". Forr =1,2,---,log*(n), a log:‘% x log*(n) array SM’ is set up in
the memory modules of DMM", where the constant ¢’ is large enough so that 2e¢n/log™(n)
keys can be stored in a parallel hash table of size ¢'n/log*(n) in time O(log™(n)) with failure
probability at most n~*. Each of these n/log*(n) memory modules holds ¢/ rows of the array.

For all r = 1,...,log"(n), the contents of SM” is copied into SM". The elements of Y7
are then inserted into SM'; this process will fail if [SM” U Y”| > ¢n. Finally, if the process
succeeds, the new contents of the array SM’ is copied into SM”.

In order to perform the first step, an arbitrary but fixed one-to-one correspondence is
established between the cells of SM” and the cells of SM'. The copying operation can then
be scheduled to execute in time O(log*(n)),since each module sends only O(log*(n)) key-
value pairs (at most ¢’ keys from each parallel hash table SM") and receives only O(log*(n))
key-value pairs. The third step is performed similarly.

We now describe the second step, in which, simultaneously for all r, the set Y” of key-
value pairs is inserted into SM’, using the processors and modules in DMM”. For each r
this is done as follows.

e In each row of SM’ the processor associated with that row moves its keys to the
rightmost positions in the row;

e For each ¢, let the key (if any) in the first cell of the ith row of SM” be a;, and let the
key (if any) in the second cell of the ith row of SM" be b;. Let

S ={a;,b;: i €[c'n/log*(n)]}.

Using the O(log™(n))-time parallel hash table algorithm, store S in a parallel hash
table T of size ¢'n/log*(n). It can be verified that if [SM'| < cn then |S| < 2¢n/log*(n),
and thus by the choice of ¢ this step fails with probability at most n=*.

e For all ¢ if a; is stored in T'[j] then the processor associated with row i copies the
first cell of row 7 into the second cell of row j; For all i: if b; is stored in T[j] then the
processor associated with row ¢ copies the second cell of row ¢ into the second cell of
TOW 7;

e The set Y7 is copied to the first column of SM.

Theorem 9.1 For every { > 1 and ¢ > 1, SIMULTANEOUS-HASH(SM,Y') can be per-
Jormed within time O(log*(n)) with probability 1 — O(n™").
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Proof : The first and third steps run in worst-case time O(log*(n)). We now show that
the second step operates within the required time bound with sufficiently high probability,
provided that ¢’ is chosen large enough. The step consists of four substeps. The first, third
and fourth substeps terminate within worst-case time O(log*(n)). By the choice of ¢/, the
second step fails with probability at most n=*. |

9.2 The Simulation

In this subsection we present a simulation of an nloglog(n)log™(n) processor EREW-PRAM
on an n processor DMM which achieves optimal delay

O(loglog(n)log™(n))

with high probability.
Assume that the PRAM processors are P; i, ¢ € [n], k € [loglog(n)log™(n)]. The proces-
sors of the DMM are @1, ...,Q,, where (J; simulates

Pi,lv SRR Pi,loglog(n)log* (n)>

for e = 1,...,n. We again use three hash functions hg, hy,hy. @Q1,...,Q, are partitioned
into log™(n) groups G, ..., Gleg*(n), each of size n/log*(n). In the same way, My, ..., M,
are partitioned into groups Hi, ..., Hiog(n)-

Let I = loglog(n). Let X = (Usep)refiog*(n)] Xrs) € Us X = Usepy Xrs 18 stored in
Gy, each processors of GG, has stored log*(n) keys from each X, 5, s = 1,...,loglog(n). Let
X° = Ure[log*(n)] Xpg,fors=1,...,1

The idea of the simulation is as follows: Let SIMULATION_3 run separately for each
group G,. In the s’th round, the n keys from X, ; are accessed. A naive implementation
would need time O(loglog(n)(log*(n))?)) altogether, with high probability. We shall see that
the algorithm SIMULTANEOUS-HASH can be used to reduce this runtime by a log™(n)
factor.

For each hj,j = 0,1,2, we shall use a ¢'nlog*(n)-array SM; with columns SM"; r =
1,...,log*(n). As SIMULTANEOUS-HASH is not able to eliminate duplicates of keys, we
have to assume that all keys used in a PRAM-step are different, i.e. that we simulate an
EREW-PRAM. At the end of the write phase the (at most ¢n) keys from SM; are stored
in a parallel hash table GM; of size ¢'n. For reading, we use the ¢'n x log*(n) array SM
with columns SM”, r = 1,...,log*(n), and a further hash table GM of size 'n.

SIMULATION 4 :
PREPROCESSING 4 :
Choose hg, hq, hy uniformly and independently from Ri:i for suitable d, k& > 0.

WRITE_4(X, ..., X)) :
For 7=0,1,2
(i) Fors=1,...,1
SIMULTANEOUS-HASH(SM,, X,)
If “failure” then EMERGENCY_WRITE(h;, SM;, Xj)
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Forr=1,...,log"(n), WRITE_M(SM";,h;, D)
Comment: At the end of loop (i), each SM";,r = 1,...,log*(n), has size O(n) with
high probability. The next loop reduces each SM”; to size O(n/log(n)), with high
probability.
(ii) Forr =1,...,log"(n), WRITE_M(SM";, h;,loglog(n))
HASH(SM;, GM;, full)
If full = true, then EMERGENCY_WRITE(h;, SM;, D)

READ 4(X;,..., X)) :

For 7=0,1,2
(i) LOOKUP(Xq U---UX;,GM;)
(ii) execute (i) and (i) of WRITE 4(X4,...,X;) for I =0
where EMERGENCY _WRITE is replaced by EMERGENCY _READ,
WRITE_M by D_READ_M, and GM; by GM.
(iii) D_.READ_2(SM) (using hy and hy)
(iv) RESPOND REQUESTS

Theorem 9.2 SIMULATION_4 simulates an nloglog(n)log™(n) processor EREW-PRAM
on an n processor DMM using optimal delay O(loglog(n)log*(n)) with high probability.

Proof : It is easy to see that the above algorithm is correct. For fixed j, loops (i) and
(ii)) of WRITE_4 run in time O(loglog(n)log™(n)). For fixed j and r, loops (i) and (ii)
follow the rules of the Extended _Process 2. Therefore, by Theorem 6.4 EMERGENCY is
only invoked with inverse polynomial probability. Thus WRITE_4 (i) and (ii) a) run in
time O(loglog(n)log™(n)) with high probability. The analysis for READ_4 is analogous and
yields the same performance as for WRITE 4. ad
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