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Abstract
Given a set S of n pairwise interior-disjoint (d —1)-simplices in d-space, for d > 3, a Convex
Space Partition induced by S (denoted C'SP(S)) is a partition of d-space into convex cells
such that the interior of each cell does not intersect the interior of any simplex in S. In this
paper it is shown that a C'SP(S) of size O(n?"!) can be computed deterministically in time
O(n?™1). These bounds are worst case optimal for d = 3. The results are proved using a
variation of the efficient hierarchical cuttings of Chazelle.
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1 Introduction

1.1 Convex Space Partitions

Decomposing subsets of Euclidean Real Space E? into convex parts is an ubiquitous problem
in Computational Geometry. Most of the known results are for d = 2,3 and fewer for higher
dimensional spaces (i.e. d > 4). We refer the reader to [Cha87] for a survey of results in the plane.
In this paper we deal with d > 3. The problem in its general formulation is the following. We are
given a subset § C £ and we consider the free space F's = £?/S. In how many convex sets can we
partition F¢? How fast can we compute such a partition? Here we examine the case when S is a
set of pairwise interior-disjoint (d — 1)-simplices. This class of input includes boundaries of simple
and non-simple polyhedra in E?. We can think of this class as an high-dimensional extension of
planar maps [PS85, Ede87], which are arrangements of pairwise interior-disjoint segments. In order
to solve problems on the set 5, such as locate points, plan collision free paths, etc., it is important
to chop the free space Fs into simple and manageable parts. Quite often these parts must be
convex to facilitate further computations. Thus the problem of computing efficiently Convex Space
Partitions lies at the heart of many geometric problems in 3-and higher dimensional spaces.

Aronov and Sharir in [AS90, AS92] prove that a cell C' in an arrangement of n possibly inter-
secting (d — 1)-simplices in £¢ can be partitioned in O(n?~!) convex polyhedra. Unfortunately this
combinatorial result does not immediately imply an efficient algorithm to build such a partition in
d > 4. For the special case d = 3, a convex decomposition of C of size O(n**?®) can be computed
in expected time O(nQ""S) for any given § > 0, where the constant of proportionality depends on 6.
The algorithm of Aronov and Sharir is more general (for d = 3) than the one presented in this paper
since the simplices are not required to be disjoint. On the other hand the method in [AS90, AS92],
which is based on randomized techniques in [Cla87], has expected time and size bounds O(n?*+?)
also for disjoint triangles. In this paper we improve on the algorithm of Aronov and Sharir, by
giving a deterministic algorithm and by reducing the time and size bounds by an n° factor, when
the input is composed of pairwise interior-disjoint simplices. Also, within the improved time bound
we compute a decomposition of the whole free space Fg rather than a single cell.

A concept similar to that of a CSP is that of a Binary Space Partilion. Given a set S of
n interior-disjoint triangles in 3-space, a Binary Space Partition of E® induced by S (denoted
BSP(S)) is a hierarchical partition of E? into convex cells associated with the nodes of a binary
tree. The oot is associated with the whole space E3 and the regions associated with the children
of node v form a convex partition of the region associated with v. The leaves are associated with
regions whose interior does not meet any triangle in 5. Paterson and Yao show in [PY90] how to
obtain a BSP’s of size O(n?) in time O(n?®). They restrict the construction to those BSP whose cells
are bounded by planes spanning triangles in .S (auto-partitions). For the class of auto-partition they
also show a lower bound Q(n?) on the number of cells of the BSP, in the worst case. The technique
in [PY90] constructs a BSP of optimal worst case size but the time bound for the computation is
far from optimal. In higher dimensional space the method in [PY90] builds a BSP of size O(n~1)
in time O(nd"'l). Binary Space Partitions have applications in Constructive Solid Geometry and
Hidden Surface Removal. In Constructive Solid Geometry BSP’s are used to find small formulas



for the description of non-convex polyhedral objects. In the context of Hidden Surface Removal
BSP’s are used to compute efficiently the correct visibility order of polyhedral faces with respect
to a view-point (see [PY90, Mul91] for more details on applications).

Mulmuley [Mul91] uses a cylindrical decomposition to solve visibility problems in 3-space. The
cylindrical decomposition in [Mul91], which is similar to a construction in [CEGT90], has worst
case size O(n?) and is built in worst case time O(n*logn).! The method in [Mul91] is based on
sweeping a plane in 3-space, together with the dynamic maintenance of a planar point location data
structure. This method is off the optimal worst case time by a logarithmic factor. Moreover this
sweeping approach does not give us an efficient algorithm in higher dimensional space. The main
obstacle is that it is not known how to efficiently maintain convex decompositions under dynamic
insertion and deletion of faces, when the decomposition to be maintained is in dimension three or
greater. In this paper we take a different approach that avoids any sweeping technique and dynamic
maintenance of data structures.

For the special case when S is the boundary of a simple polyhedron? in 3-space Chazelle [Cha84]
gives a Convex Space Partition of size O(n?) which is built in time O(n?). Both bounds are worst
case optimal. The method in [Cha84] relies on the connectivity properties of the boundary of a
simple polyhedron and therefore this method does not extend to a set of disjoint simplices or to
a non-simple polyhedron. Later, Chazelle and Palios [CP90] gave an algorithm to decompose a
simple polyhedron in 3-space which produces O(n + r?) convex pieces in time O(nr + r?logr)
where n is the number of edges of the polyhedron and r in the number of reflex edges. Again, it
is unlikely that this technique can be extended to similar problems in higher dimensional space or
to non-simple polyhedra in 3-space. Some convex space partitions for special polyhedral sets in £
are discussed in [Ber93].

In this paper we show how to construct Convex Space Partitions (which enclose both cylindrical
decompositions and BSP’s) induced by pairwise interior-disjoint (d — 1)-simplices in d-dimensional
space (d > 3). We obtain a deterministic algorithm that builds a Convex Space Partition of size
O(n?1) in time O(n?™1).

The results of this paper are obtained by modifying the the Hierarchical Cuttings Method of
Chazelle [Cha93]. The main idea is to project the set S onto a (d — 1)-subspace and construct
a cutting on the projected arrangement. This computation is intermixed with additional split
operations which are carried out in the original d-dimensional space.

To our knowledge no better algorithm is known for dimension d > 4 for the case when 5 is a
set of disjoint simplices and also for the sub-case when 5 is the boundary of a simple polyhedron.
For d = 3, our result improves of a logarithmic factor over the worst case time needed to construct
a cylindrical decomposition using the method in [Mul91]. Moreover, the size and time bounds are
worst case optimal for d = 3, as follows from an Q(n?) lower bound in [Cha84].

! Actually the time and the size of the cylindrical decomposition in [Mul91] depend on the number of “regular
crossings” of the projection of the edges of S onto the zy-plane. The number of regular crossings can range from
constant to quadratic in n.

2A simple polyhedron is a piecewise-linear 3-manifold with boundary which is homeomorphic to a closed 3-ball.



1.2 Point Location

Often in applications it is not sufficient to decompose the free space Fs in convex parts. We also
need an efficient method for locating the cell containing a query point. Point location on planar
maps is a very important problem and mentioning all the important papers on the subject is
beyond the scope of this paper. We refer the reader to [PS85, Ede87]. For the analogous problem
in dimension d > 3 fewer results are known.

If S is a set of hyperplanes then we can locate a point in time O(logn) using O(n?) storage
[Cha93]. If S forms a convex partition of £? with n edges faces and vertices, a method of Preparata
and Tamassia [PT89] locates a point in § in time O(log® n) using O(nlog® n) storage. The cylin-
drical decomposition in [Mul91] can be associated with a point location data structure of worst
case size O(n?) that answers point location queries in time O(log?n). Our result on CSP implies
immediately a data structure of size O(n?~!) answering in time O(logn) point location queries in
Fg. Moreover, given any two query points p; and py, we can determine if they are in the same
connected component of Fg and if so we give explicitly a path connecting p; and ps.

The paper is organized as follows: in Section 2 we review properties of the hierarchical cuttings.
In Section 3 we give the algorithm to construct the C'S'P.

2 Efficient Hierarchical Cuttings

In this section we give the basic definitions and lemmas used to derive the main results in the next
section.

We are given a set H of n hyperplanes in general position in Euclidean d-dimensional Space
E?. TLet R C H be a subset of p hyperplanes. For a segment e let R, (resp H.) be the number
of hyperplanes in R (resp. H) intersecting e. For a simplex s let R, (resp H,) be the number of
vertices of the arrangement created by R (resp. H) contained in s.

Definition 1 R is a (1/r)-approzimation for H if, for any e:
R. H. 1

p n T

Definition 2 R is a (1/r)-net for H if for any e, H. > n/r implies R, > 0.

Definition 3 R is a sparse (1/r)-net for (H,s) if for any e, H. > n/r implies R, > 0; and
R, < 4(p/n)iH,.

Definition 4 An (1/r)-cutting for H is a partition of R? into interior-disjoint simplices such that
any simplex meets at most n/r of the hyperplanes in H. The number of simplices in the partition
1s called the size of the cutting.

Chazelle [Cha93] builds a sequence of (1/7})-cuttings for H for i = 1,..,k, which are denoted
by Ci...,Cy, where k = log,, 7, ro is a constant, and r a parameter r < n. Some properties of the
hierarchical cuttings are the following;:



1. Bach C; is a convex partition of R?, where each cell of C; is a d-dimensional simplex. By |C}]
we denote the number of simplices of Cj.

2. C; is a refinement of C;_y. That is, every cell of C; is a subset of a single cell of C;_;.
3. Bach cell in C; is intersected by at most O(n/ry) hyperplanes in H.
4. |cy) < oD,

5. The time to construct the hierarchical cutting is:

> (ﬁ) |Ci| < rg I = O(nrt )
T

1<i<log, v 0

Let s be a simplex in R? and H a set of n hyperplanes in R?. We denote with H{(s) the subset
of hyperplanes of H intersecting s, and with H, the number of vertices of the arrangement A(H )
within s. Let n/rf=1 > |H(s)| > n/rk, and po = r&|H(s)|/n and p = polog po. We use the following
lemmas from [Cha93]:

Lemma 1 Let A be an (1/2dpy)-approzimation of H(s) and R a sparse (1/2dpg)-net for (A,s),
then we have Ry < 4(p/|H (s)|)¢H, + 4p?/ po.

Lemma 2 A triangulation of R built as in Lemma 1 has size O(p®~* + R,) and it is a 1/rq-cutting
for H(s) in s.

Lemma 3 The sparse nel R of Lemma 1 is computed in time O(|H(s)]).

3 Constructing Convex Space Partitions

We fix once and for all a vertical direction in E.

Definition 5 A simplex t partially covers a simplex s if t intersects s and the vertical projection
of t does not completely contain the vertical projection of s.

If ¢ partially covers s then the vertical projection of a (d — 2)-face of ¢ will intersect the vertical
projection of s.

Definition 6 A simplex t completely covers a simplex s if t intersects s and the projection of t
includes the projection of s.



We are given a set S of n simplices in £¢. The construction of C'SP(S) proceeds in stages. We
build a sequence of sets C'y,..,C; where | = log, n/2 and 1o is a suitable constant. The set C; is
a collection of triples (s, P(s),Q(s)) where s is an convex cell of constant size (an elementary cell)
in in d-space, P(s) is the subset of simplices in S partially covering s, and Q(s) is the subset of
simplices in S fully covering s. If s € C; and we will have associated sets P(s) and )(s) with the

invariant properties that |P(s)| < n/ro’ (first invariant) and |Q(s)| < nro/ro’ (second invariant).

2

From the construction strategy we will have that C; is a refinement of C;_; and moreover the
simplices in C; partition E¢. Easily C; contains only simplices intersecting a constant number of
original simplices in 5, thus we obtain a C'SP(5) of size O(|C)|). We assume that the two invariants

hold for C;_; and we show how to construct Cy.

1. Let s be an elementary cell in Cy_;. Since the first and second invariant hold by inductive
hypothesis, s is partially covered by n/rg"~! simplices and is fully covered by nry/ro"~!
simplices.

2. The covering simplices @(s) are disjoint and therefore they are linearly ordered in the vertical
direction. We split Q(s) into rg groups of Q(s)/rg simplices each by selecting every Q(s)/ro-
th simplex in the vertical ordering. The selected covering simplices slice s into convex cells
numbered 7 = 1, .., 79, which we denote o(s,) (or o; whenever s is clear from the context.
We also denote with 0*(s,¢) the vertical projection of o(s,1).

3. From the above construction each o; is covered by |Q(o;)| < nro/ro® simplices. Each o;
is partially intersected by |P(0;)| = ¢; hyperplanes where 3, ¢; = |P(s)| = n/ro*~!. This
property is easily proved since a partially covering simplex of P(s) can belong to only one
cell o;.

4. The average o; has a partial cover of size | P(s)|/ro which is exactly what is needed to become
a valid element of the set C;. To make this averaging argument work in the worst case we
proceed as follows. We project, independently for each cell o;, all the (d —2)-boundaries of the
partially covering simplices of P(o;) onto a (d — 1)-subspace. We extend these sets into full
hyperplanes, obtaining a set H(s,%) of ¢; hyperplanes in (d — 1)-space. We build the sparse
net of Lemmas 1, 2 and 3 in (d — 1)-space. So we generate elementary (d — 1)-dimensional
cells. Then each such cell is extended in the vertical direction within o; into a d-dimensional
elementary cell.

5. We choose as parameter of the sparse net construction a number pg; such that : ¢;/po; =
| P(s)|/ro thus po; = ¢;ro/|P(s)|. The interesting property is that:

me = Z%‘"O/|P(5)| = ro/|P(s)] Zqz' < 1ol P(s)l/1P(s)| = ro

This sum of the pg;’s is less than rq. Let p; = po; log po;.



6. Let A;(s) be the number of d-dimensional cells generated at the previous step. Using the
bound of Lemma 2 and 1, the number of cells obtained is:

Ai(8) < pf7% 4 (pif 4i) T H o500 (5,7) + 077/ poi

Let 1 be a cell so obtained. We have that the number of simplices partially covering 7 is
|P(m)| < ¢;/poi = P(s)/r0 = n/ro* (Lemma 2), thus 5 satisfies the first invariant of Cj. The

number of simplices in Q(n) is at most |Q(s)|/ro+ | P(s)| thus is at most n/re* 1 +n/reF 1 =

QnTo/rok.

We take 7 and use the median simplex in the vertical ordering of Q(7) to split 7 into two
cells 71 and 7y which satisfy both invariants for C%. Collecting all of these cells we have a
partition of £¢ which forms Cy.

This is the end of the algorithm that builds C'; starting from Cj_;.

3.1 Analysis of the algorithm
We now derive a recursive equation linking the size of C; with the size of Ck_;.

Cel <2 >0 ST Ais)=2 >0 S+ (pif @) T Honis,iy(5:1) + pF  poil

s€CK_1 0(s,1) s€Cr_1 o(s,7)

Bounding terms of the summation separately we have: 3, pgl_Q < (32 poilog ,002')‘1_2 < 1o 2log?2 ro;

and 3 ™t /pio < ((X0; por)*=*)(log™ 1 (3, poi)) < ro*log? ro.
Since p;/q; < 10" (logr0)/n we obtain a term ", 37, (r0 (4~ (log To)d_l/nd_l)HU*(m)(s, i). Clearly

de > HU*(M-)(S, i) < n?=1. So the recursive equation becomes:

|Cr| < 2¢(log To)d_lrok(d_l) + 2¢(log To)d_lrod_2|Ck_1|,
for a constant ¢ which is independent of rg.
Lemma 4 |C}| < Dro*?=Y for a constant D, independent of k.

Proof. We use an induction on k. For k = 1 we start with an 1/rg-cutting of the projections of
the initial set of simplices S. Easily C; satisfies both invariants and |C| < Dry?=1 for a sufficiently
large constant D independent of rg. Inductively we assume the bound on |Cj_1].

2¢(log o) ' ro" ™) 4 2eD(log rg) g~ r TN <
2¢(log 1)~ 1ro =Y 4 (2eD(log 10)4 1 /g ) ro*d—1)

|Cx| <
<

Choosing g and D large enough we can make sure that 2¢(logro)? ™ + 2¢D(logrg)*~!/ro < D
and thus the bound is proved. [ |



The total number of cells in the sequence of sets (' is a summation of a geometric sequence of

ratio 'rg_l > 1 so its value is proportional to the last term, which is O(nd_l).

{ {
SoCk < Drg Y <2Dr! D = o(nt ),
k=1 k=1

What is the time to compute all of the C;’s? The sparse nets are computed in time linear in the
number of simplices partially covering the elementary cells. The slicing hyperplanes are found by
repeated applications of a selection algorithm in time O(r|Q(s)|) for the elementary cell s. Thus
we have running time:

l
S ((nfre¥) + (nre? /r0"))|Ckl < 2(1 + 70%) D=2 = O(nn?=2) = O(n? )
k=1

The above discussion proves the following theorem:

Theorem 1 Give a set S of n pairwise interior-disjoint (d — 1)-simplices in d-space with d > 3 we
can build deterministically a Convez Space Partition CSP(S) of size O(n?™1) in time O(n?™1).

Following the tree structure of the convex space decomposition we can locate the cells in C'\S P(.5)
containing a query point p in time O(logn).

Corollary 1 We can locate in time O(logn) the cells of CSP(S) containing a query point p.
Within the same query time we can determine if p is incident to any simplex in S and we can find
the stmplex tmmediately below p.

Within the time bounds for constructing C'SP(.S) we can build a graph representing the adja-
cency relation among cells in C'SP(5), by visiting this graph we can determine the adjacent cells
therefore we can mark each cell of the last level of C'SP(.5) with a label that indicates the unique
cell in £4/S containing that cell.

Corollary 2 Given a sel S of n interior-disjoint simplices we build a data structure of size O(nd_l)
in time O(n®"1) such that, given a query point p, we can locate the cell in E%/S containing p in
time O(logn).

4 Conclusions

We have shown an algorithm to build convex space partitions induced by pairwise interior disjoint
simplices. The algorithm works in any fixed dimension and is optimal for d = 3. We apply
these partitions to solve point location and path planning problems. In a companion paper [Pel93]
we use similar techniques to solve point location and path planning problems in arrangements of
intersecting simplices.
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