An Algorithm to Learn Read-
Once Threshold Formulas, and
some Generic Transformations

between Learning Models
(Revised Version)

Nader H. Bshouty! Thomas R. Hancock?
Lisa Hellerstein®> Marek Karpinski®

TR-93-037
July 1993

Abstract

We present a membership query (i.e. black box interpolation) algorithm
for exactly identifying the class of read-once formulas over the basis of boolean
threshold functions. We also present a catalogue of generic transformations
that can be used to convert an algorithm in one learning model into an algo-
rithm in a different model.

1Department of Computer Science, The University of Calgary, 2500 University Drive N.W., Calgary, Alberta,
Canada T2N 1N4, bshouty@cpsc.ucalgary.ca, Research supported in part by the NSERC of Canada

2Siemens Corporate Research Inc., 755 College Road East, Princeton, NJ 08540, hancock@learning.scr.
siemens.com, Research supported by ONR grant N00014-85-K-0445 and NSF grant NSF-CCR-89-02500. Research
was done while the author was at Aiken Computation Laboratory, Harvard University

3Department of EECS, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3118, hstein@
eecs.nwu.edu, Research supported in part by a grant from the Siemens Corporation and ONR grant N00014-86-K-
0454. Portions of this research were done while the author was visiting the Dept. of Computer Science, University
of Bonn, the University of California at Santa Cruz, and the Massachusetts Institute of Technology

4Dept. of Computer Science, University of Bonn, 53117 Bonn, and International Computer Science Institute,
Berkeley, California, marek@cs.bonn.edu, Research supported in part by the DFG Grant KA 673/4-1, by the
ESPRIT BR Grant 7097, and by the Volkswagenstiftung Grant 1/68055.

1 Introduction

In one of the simplest models of learning, the learner must exactly identify an
unknown target function by asking membership queries. A membership query asks
for the output of the function on an element of its domain. The query is answered
by an infallible, honest oracle. This learning model is equivalent to standard black
box interpolation where one substitutes inputs into a black box oracle computing a
function from some class, and uses the observed outputs to deduce what the hidden
function must be.

There are only a few non-trivial boolean concept classes that are known to be
learnable in polynomial time with membership queries. One example is the class of
(monotone) read-once formulas over the basis (AND, OR) [2]. A formula is read-
once if no variable appears more than once. The basis of a formula is the set of
operators allowed. In the first part of this paper we prove that a generalization of
that class, the class of monotone read-once threshold formulas, is also learnable in
polynomial time with membership queries (in this paper running time is measured
as a function of the number of inputs to the target formula, n). This larger class
consists of read-once formulas over the basis of boolean threshold functions. This

basis includes the basis (AND, OR).

In the second part of the paper, we consider other learning models. We present a
catalogue of generic transformations that can be used to convert an algorithm in one
learning model (the base model) into an algorithm in a different model (the target
model). Such transformations can be regarded as reductions, in that they reduce
the problem of designing an algorithm in one learning model into the problem of
designing an algorithm in another learning model.

Angluin, Hellerstein, and Karpinski [2] applied a generic transformation to con-
vert their algorithm for exactly identifying (i.e. interpolating) the class of mono-
tone read-once formulas over (AND,OR) into a polynomial time membership and
equivalence query algorithm for the non-monotone case (read-once formulas over
(AND,OR,NOT)). (An equivalence query allows the learner to propose a complete
hypothesis for the unknown function, at which point an oracle either tells the learner
that the hypothesis is correct, or else supplies a counterexample on which the two
functions differ.) It is easily shown that there is no polynomial time membership
query only algorithm for the non-monotone case.

In this paper we present a more extensive set of generic transformations. As in
the [2] transformation, in these transformations we typically assume the technical

condition that the classes being learned are projection closed (a class of functions is
projection closed if taking any function in the class and “hard-wiring” a subset of
input variables to specific values gives a function that is still in the class). In our
transformations, either the base or target model has the property that the learning
algorithm (in addition to being able to ask queries) is given as input a set of justifying
assignments for the relevant variables. A justifying assignment for a variable X in
a formula f is an assignment in which flipping the value of X would change the
output of f. We say that algorithms in such models “use justifying assignments”
(meaning that they receive them as input) just as we say that they use certain
types of queries. Many of the transformations convert algorithms in models that
use justifying assignments into algorithms in models that do not, and thus can be
useful in some cases for simplifying the process of algorithm design.

Our interest in these transformations arises from the connections between the
membership query algorithm presented in the first part of this paper, and a parallel
line of research studying exact identification of read-once formulas in the more pow-
erful membership and equivalence query model. The membership and equivalence
query research began with the above mentioned algorithm for read-once formulas
over the (AND,OR,NOT) basis [2] and culminated with a polynomial time algorithm
to identify read-once formulas over the more general basis of arbitrary symmetric
and constant fan-in gates [5]. Those results rely heavily on algorithms that are
initially designed in the membership and justifying assignments model, and then
converted to the membership and equivalence query model using a generic transfor-
mation (MJ—ME, described below) that is presented in this paper.

The algorithm of [5] includes as a subcase a polynomial time algorithm using
membership and equivalence queries for learning (not necessarily monotone) read-
once boolean threshold formulas, that is, read-once formulas over the basis of boolean
threshold functions and negations. It is easily shown that for this class, and any of
the non-monotone cases we discuss, there is no polynomial time learning algorithm
using membership queries alone.

In this paper we present a generic transformation (MJ(U)—M(M), described
below) that converts a membership query and justifying assignment algorithm for
learning a unate class into a membership query only algorithm for the corresponding
monotone class. A unate class is the generalization of a monotone class, where for
each variable the formula may be either monotone in that variable or its negation.
By applying this transformation to the membership and equivalence query algo-
rithm for learning read-once threshold formulas, we get an algorithm that, like the
one presented in the first part of this paper, learns monotone read-once threshold

formulas using membership queries alone. However, the algorithm obtained by the
transformation is a factor of n less efficient than the one presented in this paper,
which is the most efficient known.

The first transformation we present, M(M)—MJ(U), is a variation of a simple
transformation presented in [2]. It converts a membership query algorithm for learn-
ing a monotone class into a membership query and justifying assignments algorithm
for learning the corresponding unate class. We then present a second transforma-
tion, MJ—=ME which converts an algorithm for learning a class of formulas in the
membership and justifying assignments model, into an algorithm for learning the
same class of formulas in the membership and equivalence query model.

The main transformation presented in [2] is M(M)—ME(U) (Membership query
algorithm for monotone class — Membership and equivalence query algorithm for
unate class). By combining the M(M)—MJ(U) transformation with the MJ—ME
transformation, we get an M(M)—ME(U) transformation which is slightly different
from the one presented in [2]. As in [2], we also show that these transformations
can be modified to include equivalence queries in the base and target models of the
transformation (i.e. we argue that transformations of the form ME(M)—MJE(U),
MJE—ME;, and hence ME(M)—ME(U) all exist).

We then present the transformation MJ(U)—M(M), which is the reverse of the
first transformation. This is also shown to hold when equivalence queries are allowed,

so MJE(U)—ME(M) also exists.

In contrast, we show that the reverse of the MJ—ME transformation does not
exist in general. We prove that a class of formulas presented presented by Angluin [1]
can be learned in polynomial time in the model of membership and equivalence
queries but not in the model of membership queries and justifying assignments.

We note that for some classes of formulas (including the restricted classes of read-
once formulas discussed by Goldman, Kearns, and Schapire [6], and the arithmetic
read-once formulas discussed by Bshouty, Hancock, and Hellerstein [4]), justify-
ing assignments can be generated with high probability using random membership
queries. For such classes, it is trivial to transform a learning algorithm using mem-
bership queries and justifying assignments into an algorithm that interpolates (with
high probability) using deterministic and random membership queries.

The class of read-once formulas over the basis of boolean threshold and negation
was previously studied by Heiman, Newman, and Wigderson [7] . They proved that
each non-degenerate read-once formula over this basis expresses a unique function

(this result follows implicitly from our learning algorithm), and proved bounds on
the size of randomized decision trees computing such functions.

2 Basic Definitions

We view a formula as a rooted tree whose internal nodes are gates labelled by the
function computed by the gate, and whose leaves contain variables or constants.
The basis of a formula is the set of functions that appear as gates. A formula is
read-once if no variable appears on more than one leaf. If a formula f is read-once,
then for every pair of variables X and Y in f, there is a unique node farthest from
the root that is an ancestor of both X and Y called their lowest common ancestor,
which we write as lca(X,Y).

Let V,, denote the set { X7, X5, ..., X,,}. An assignment A to V,, can be denoted
by giving the vector [A(X71),..., A(X,)], where A(X;) is the value assigned to X;
by A.

We say that a formula f is defined on the variable set V, if the variables in f
are a subset of V. If A is an assignment to the variables in V,, and [is defined
on V,,, then we denote by f(A) the output of the formula f when its inputs are set
according to the assignment A.

If V' is any subset of V,,, 1y/ denotes the vector that assigns 1 to every element
of V' and 0 to every element of V,, — V',

For X € V,, let Ax_\ denote the assignment B such that B(Y) = A(Y) for
all Y € V, — {X}, and B(X) = k. Let A_x denote the assignment B such that
B(Y)=A(Y) forall Y € V, — {X}, and B(X) = -A(X).

If f is defined on V,,, A is an assignment to V,,, X € V,, and f(A) # f(A-x),
then A is justifying for X in f.

Let V! C V,,. We say that a formula f depends on the variables in V' if for every
X € V', there is a justifying assignment for X in f.

A partial assignment P to V,, can be denoted by a vector [P(X31),..., P(X,)]
where each P(X;) € {0,1,*}. We say that a variable X; in V,, is assigned by P if
P(X;) # +. If Ais an assignment to V,,, and P is a partial assignment to V,,, then
we denote by P/A the assignment C to V such that C(X;) = P(X;) for all X; such
that P(X;) # *, and C(X;) = A(X,) for all X, such that P(X;) = *.

5

If a formula f is defined on V,, then each partial assignment P to V, induces
a projection fp of f which is the formula obtained from f by replacing by the
appropriate constants those variables in f to which P assigns a value.

A set C of formulas defined over V,, is projection closed if for any partial assign-
ment P to V), and any f € C, it is true that fp € C.

Let Th}" denote the boolean function on m variables which has the value 1 if at
least k of the m variables are set to 1, and which has the value 0 otherwise. The
boolean threshold functions are functions of the form Th}*. Note that ThT* computes
the OR of m variables, and TR computes the AND of m variables. Thus the
boolean threshold basis includes the basis (AND,OR).

A boolean formula is monotone if all of its gates compute monotone functions. A
boolean formula is unate if all negations in the formula occur next to the variables,
all (other) gates in the formula compute monotone functions, and for every variable
X in the formula, either X always occurs with a negation, or it always occurs without
a negation.

If f is any monotone boolean formula over V, let U(f) denote the class of all
formulas f’ obtained from f by selecting a subset V' of V and replacing every
occurrence of X; in V' by =X;. If M is a class of monotone boolean formulas, let

U(M) denote the union of U(f) for all f € M. All elements of U(M) are unate,
and we call U(M) the unate class corresponding to M.

We define the class of read-once threshold formulas to be the class of read-once
formulas over the basis of boolean threshold functions and negation. The class of
monotone read-once threshold formulas consists of read-once formulas whose gates
all compute functions of the form Th}* (no negations).

Because ~Th7 (X1, X5, ... X)) = Th (= X1,-X2,..,7X,), it is possible to
rewrite every read-once threshold formula so that all negations occur next to the
variables. Thus every read-once threshold formula is equivalent to a unate read-once
threshold formula. We will therefore assume, without loss of generality, that all read-
once threshold formulas are unate. It follows that the unate class corresponding to
the class of monotone read-once threshold formulas is the class of (not necessarily
monotone) read-once threshold formulas.

Let f be a monotone boolean formula defined on V,,. A set of variables S C V,,
is a minterm of f if for every assignment A that assigns 1 to every variable in S we
have f(A) = 1, and this property does not hold for any proper subset S’ of 5. A
set T'C V, of variables is a mazterm of f if for any assignment B that assigns 0 to

all the variables in 7' we have f(B) = 0, and this property does not hold for any
proper subset T” of T.

2.1 Identification with queries and justifying assignments

The learning criterion we consider is ezact tdentification. There is a formula f
called the target formula, which is a member of a class of formulas C' defined over
the variable set V. The goal of the learning algorithm is to halt and output a
formula f from C' that is logically equivalent to f.

In a membership query, the learning algorithm supplies an assignment A to the
variables in V,, as input to a membership oracle, and receives in return the value of

f(A). Note that because fp(A) = f(P/A) it is possible to simulate a membership

oracle for the projection fp using a membership oracle for f.

In an equivalence query, the learning algorithm supplies a formula A from the
class C as input to an equivalence oracle, and the reply of the oracle is either “yes”,
signifying that h is equivalent to f, or a counterezample, which is an assignment B
such that h(B) # f(B). The counterexample can be any such assignment B, and
an algorithm that learns using equivalence queries is expected to perform properly
no matter which counterexamples are produced.

A set of justifying assignments for a formula f contains, for every relevant vari-
able X in f, a pair (X, A) such that A is a justifying assignment for X in f. When
we say that an algorithm uses justifying assignments, we mean that the algorithm
must be given as input a set of justifying assignments for the target function f.

3 Learning Monotone Read-Once Threshold For-
mulas

We present an algorithm that exactly learns monotone read-once threshold formulas
in polynomial time using membership queries. We first describe some basic results
about minterms and maxterms for monotone functions in general. We then sketch
the algorithm based on a key subroutine. Following a section of technical lemmas, we
described this subroutine. We conclude with a detailed description of the algorithm
and with a theorem stating its correctness and complexity.

3.1 Finding Minterms and Maxterms

Our algorithm for learning monotone read-once threshold formulas makes repeated
use of the standard greedy procedure (see e.g. [2]) for finding minterms of a monotone
function f defined on V,,, using a membership oracle for f. This procedure Findmin
takes as input a subset of variables () C V,, containing a minterm of f, and outputs
a minterm contained in (). We assume that @ = {X;, X,,,..., X, } where ; <
19 < ... < t,. It is significant for our proofs that this procedure tests the variables
in () in a fixed order.

1. Fory:=1,...,m
If X;, €@, but f(lQ_{Xi]}) = 1, then reset () to () — {XZ-J}

2. Return Q).

We also make use of the dual procedure Findmaz to find a maxterm contained

in @ CV,.

3.2 Minterm and Maxterm intersections

Any pair of a minterm S and a maxterm T must clearly intersect in some variables
(lest we get the contradiction that the formula must evaluate to both 1 and 0 on
any assignment that sets all the variables in S to 1 and all the variables in T to 0).
We now prove another simple fact about minterm and maxterm intersections.

Lemma 1 For any monotone function g, if S is a minterm of g, and X ts a variable
in S, then there exists a maxterm T of g such that TN S = {X}. Dually, if T is a
mazxterm, and X is in T, then there exists a minterm S of g such that TNS = {X}.

Proof: Consider the set (V,, —S)U{X}. This set intersects S because it contains
X. Every other minterm S’ of ¢ must contain an element not in S — { X}, because
otherwise S’ is a subset of S violating the minimality condition for S. Therefore

(V,—S)U{X} intersects every minterm, implying that (V,, —S)U{X} must contain a
maxterm (or equivalently, the assignment that sets just those variables to 0 satisfies
no minterms, and hence f is 0 on that assignment, which by definition means that
those variables include a maxterm). That maxterm 7" must intersect S, which is

possible only if 7' .S = {X}. The dual is proved analogously. O

Note that this lemma is to a certain extent constructive, since given X and the
minterm S (or maxterm 7'), we can find the maxterm 7' (or minterm S) by the
appropriate call to Findmin (Findmaz).

3.3 Outline of the Algorithm

The algorithm recursively constructs the target formula f according to a depth first
traversal of the formula tree. More precisely, suppose the root of f computes T'h}"
and that the inputs to the root are the outputs of the subformulas fi, f5, ..., f..
The algorithm first builds some f;, (recursively), then some f;,, etc. In the process,
it discovers the values of m and k.

The algorithm is based on the following observation. To learn f; (say) recursively
we need to use our membership oracle for f to simulate a membership oracle for
fi. We can do this by using a partial assignment P that assigns values to enough
of the variables appearing in fs,...,f, to project all those extraneous subformulas
to be constant (1 or 0) and that furthermore projects exactly k — 1 of them to be
1 and the remaining m — k to 0. As long as P assigns values to no variables in f;
it follows that f; = fp. As mentioned above we can simulate a membership query

for fi = fp by the rule fp(A) = f(P/A). The most difficult part of the algorithm

is constructing such a partial assignment P.

We now sketch the algorithm. Assume without loss of generality that the target
formula f contains no constants in its leaves, and that it is non-degenerate, in the
sense that there are no adjacent AND gates or adjacent OR gates along a root leaf
path. Any monotone read-once threshold formula can be rewritten to satisfy these
conditions.

To begin, the algorithm generates a minterm S (by calling Findmin with the
set of all variables). It then picks an X € S and finds a maxterm 7" by calling
Findmax((V, — S) U {X}) (as discussed in the proof of Lemma 1, this guarantees
SNT ={X}).

The algorithm checks whether S = T'= {X'}. It is easily verified that this occurs

iff f is identically equal to the variable X. In this case (the base case) the algorithm
stops and outputs X.

Suppose that we are not at the base case, and that the root of f computes Th}"
as above. Without loss of generality, assume variable X appears in f;. Because f is
read-once, S is composed of minterms of exactly k of fi, fa,..., fn (including f1).
Without loss of generality, assume S is composed of the minterms of fi, fa,..., fx.
T is composed of the maxterms of m —k+1of f1, f2,..., fin. Because SNT = {X},
T does not contain maxterms of fy, fs,..., fi (lest otherwise its intersection with S
would include some variables from these subformulas). It follows that 7' contains

maxterms of fri1, fre2,..., fm, and of fi.

Suppose we can discover the subsets of variables S C S and 7" C T that do
not appear in f;. Then by setting P to assign the variables in S’ to 1 and the
variables in 7" to 0 (while leaving V,, — (S"U7T") unassigned), we have the projection
needed to recursively learn the subformula f;. In Section 3.5 we describe subroutines
LeaRootS and LeaRootT that do exactly this. Subroutine LeaRootT takes as input
a variable X, a minterm S and a maxterm 7' such that SNT = {X}. It outputs the
set of variables Y € T'— { X'} such that lca(X,Y) is the root of f. This is precisely
the subset T" of variables in T' that do not appear in f;. Subroutine LeaRootS is
the dual that outputs the analogous subset S’ of S.

Using these two routines, the algorithm finds f; recursively by simulating calls
to the membership oracle for f; using the oracle for f. The algorithm then finds the
subformulas fy, f3,. .., fx as follows. Until all variables in S — { X} have appeared in
some recursively generated subformula, the algorithm executes the following loop.
First it picks some arbitrary Y in S — {X}, such that ¥ has not yet appeared in
a recursively generated subformula of f. Let f' € {fs,..., fx} be the subformula
containing Y. The algorithm runs Findmax((V, — S)UY) to generate a maxterm
Ty such that SNTy = {Y}. It then uses LeaRootT and LeaRootS on S and Ty (as
it did with S and 7T') to find a projection of f that is equal to f’. As the final step
of the loop, the algorithm finds f’ recursively. By counting the number of iterations
of this loop, the algorithm learns the value of k.

In a dual way, the algorithm recursively generates fii1,..., f,, and learns the
value of m — k.

The algorithm ends by outputting the formula Th7*(f1, fa, ..., fm)-

The above description is fairly complete, except that it omits the description of
LeaRootS and LeaRootT. In the following two sections, we discuss those routines.
The correctness of the entire algorithm then follows easily.

10

3.4 A pair of technical lemmas

The routines LcaRootS and LeaRootT are based on two technical lemmas. The lem-
mas describe properties of the minterms and maxterms generated by our algorithm
using Findmin and Findmaz.

In the first lemma, we prove the following. Let V' be a subset of the variables of
f. Suppose Findmin(V') is run with an oracle for f, and produces a minterm that
includes as a subset a minterm for some subformula g of f. Then Findmin(V") would
produce exactly that subset as a minterm if it were run with a membership oracle
for ¢ rather than f. Note that the membership oracle for ¢g ignores any settings to
variables not appearing in g. The dual lemma for maxterms also holds.

The first lemma has the following immediate and important consequence. Sup-
pose we call Findmin twice with input sets (); and (), that differ, but include the
same subset of variables from some particular subformula g. Suppose further that
the output of these calls are two minterms that include variables from ¢g. Then the
two minterms will include the same set of variables from f’ — the set generated by
running Findmin on either ()7 or ()5 with the oracle for g.

We indicate a call to Findmin using a membership oracle for a formula g, by

writing Findmin?.

Lemma 2 Let f be a monotone read-once threshold formula defined on the variable
set V,,. Let g be a subformula of f, and let Z be the set of variables appearing in
g. Let V' be a subset of V,, such that Z CV'. Let S be the minterm of [output by
Findmin(V'). If SNZ # 0, then SNZ is the minterm of g output by Findmin?(Z).

Proof: Assume SN Z # ().

In order to show the lemma, it suffices to show the following two facts.

1. Fmdminf(V’) tests the variables of Z in the same order as Findmin?(Z)

2. For every X; in Z, the output of the membership query in Findmin? (V') that
tests X, is the same as the output of the membership query in Findmin9(Z)
that tests X;.

11

Fact 1 follows immediately from the definition of Findmin, which specifies that
the variables in the input set are tested in increasing order of their indices.

Fact 2 follows from an observation and a claim. The set) C V' is the set of
variables that is revised during the loop in Findmin f(V') and is eventually output
as minterm S. Let S; C V' be the set) at the beginning of the jth iteration of the
loop in Findmin/(V'), which tests whether X;, should be included in the output
minterm S. The observation is that if X; ¢ Z, then the value of S; N Z is the
same as the value of S;4; N Z after the iteration. Thus the value of) N Z remains
unchanged while Findmin tests variables not in Z.

The claim is that if X;, € Z, then f(ls]—{Xij}) (i.e. the value returned by the

membership query in the jth iteration of the loop) is equal to g(lsjnZ—{Xi]})- A
simple inductive argument combining the observation and the claim proves Fact 2.

We now prove the claim. By assumption, S N Z # (). Because g is a subformula
of f, f is read-once, and S is a minterm of f, S must contain exactly one minterm
of g. After every iteration of the loop in Findmin/(V'), S; contains a set which is a
superset of S. S contains a minterm of ¢, and therefore g(1s) = 1. By monotonicity,
g(1s,) = 1 after every iteration of the loop. If f(ls]—{Xij}) = 1, then Xj; is removed
from S; to form S;y1. Therefore, f(ls]—{Xi]}) = 1 implies that g(lgj_{Xi]}) =

9(lsnz—qx,y) = 1.

Conversely, suppose g(lanZ—{Xij}) = 1. Then g(1s,_(x, ;) = 1. The assignment
15]_{){1.]} is obtained from the assignment 15, by changing the setting of the variable
X;, from 1 to 0. Since g(1s,) = 9(15]—{X¢]}) = 1, changing the assignment of X in
s, from 1 to 0 does not affect the output of g. The formula f is read-once, and ¢

is a subformula of f, so changing the assignment of X, in ls; from 1 to 0 does not
affect the output of f either. Therefore f(lsj_{Xi]}) =1.0

The second lemma is more complicated. It states that if minterms S and Sy both
intersect maxterm 7' in only one variable (X and Y respectively), and are generated
by Findmin and Findmazx on sets with particular properties, then the only difference
between S and Sy is in variables that appear in the two subformulas of lca(X,Y)
that contain X and Y. Specifically, S will contain a minterm for X’s subformula
and no variables from Y’s, whereas the reverse will be true for Sy. Thus, given S
and Sy we can determine which variables of S appear in the subformula of lca(X,Y’)
containing X, and which don’t. Again, the dual result holds (flipping “min” and
“max”).

Lemma 3 Let f be a monotone read-once threshold formula defined on the variable

12

set V. Let T be a mazterm of f. Let S be the output of Findmin/(V') for some
V' OV, =T and suppose SNT = {X}. If Y € T —{X} and Sy is the minterm
output by Findmin/((V,, — T)U{Y}), then

1) Sy — (Sy NS) is a minterm of the subformula rooted at the child of lca(X,Y)

containing Y .

2) S — (SN Sy) is a minterm of the subformula rooted at the child of lea(X,Y)

containing X.

Proof: Consider a gate on the path from X to the root. Suppose the gate
computes Th]*. T contains maxterms of exactly m — k 4+ 1 of the m subformulas
whose outputs are inputs to this gate, including the subformula containing X. S
contains a minterm of the subformula containing X, and of the remaining k& — 1
subformulas for which 7" does not contain a maxterm.

Similarly, if we consider a gate on the path from Y to the root computing T'A7",
T will contain maxterms of exactly m — k + 1 of the m subformulas, including the
subformula containing Y. Sy will contain a minterm of the subformula containing
Y, and of the remaining k — 1 subformulas for which 7" does not contain a maxterm.

A minterm for a read-once formula contains for any particular subformula either
a minterm of that subformula or no variables from the subformula. Since S contains
a minterm for the subformula of lca(X,Y") containing X, and Sy does not, it follows
that S — (S N Sy) will indeed contain a minterm for the subformula of lca(X,Y)
containing X (and analogously for Sy — (Sy N S)). To prove the lemma we now
show that every other variable in S is also in Sy, and vice versa.

Let GG be a gate which is on the path from lca(X,Y') to the root such that G is
not equal to lea(X,Y). S and Sy contain minterms of the same set of subformulas
(rooted at children of (7). Since T' contains no variables from the subformulas in this
set that do not contain X and Y, V' and (V,,—T)U{Y} include all the variables from
such subformulas. Since S and Sy were created by calling Findmin with these two
sets of variables respectively, By Lemma 2, S and Sy will contain exactly the same
minterms of these subformulas (for each such subformula g, both S and Sy include
the minterm one would obtain by calling Findmin?(V,)) Similarly, S and Sy will
contain exactly the same minterms of the subformulas rooted at children of lca(X,Y)
that do not contain X or Y, and for which T" does not contain a maxterm.[]

13

3.5 Main lemma for the subroutines

The routine LeaRootT is based on the following lemma. The lemma describes a
criterion for determining, given a minterm and maxterm intersecting in a single
variable X (and generated in the manner described in the two technical lemmas),
which variables in the maxterm appear in the same subformula of the root as does

X. A dual lemma (on which LeaRootS is based) also holds.

Lemma 4 Let f be a monotone read-once threshold formula defined on the variable
set V.. Let T be a maxterm of f. Let S be the output of Findmin (V') for some
V' OV, =T and suppose SNT = {X}. For all Y in T — {X}, let Sy be the
minterm output by Findmin’ ((V,, — T)U{Y}). If there exists a Y in T — { X} such
that S N Sy is empty, then

{YeT —{X}lca(X,Y)=root of f} ={Y € T —{X}| Sy nS =0}
If there is no Y in T — { X} such that S N Sy is empty, then

{YeT —{X}lea(X,Y) = root of f} =
{YeT —{X}IVZ e S—(SynS), SUSy —{Z}contains a minterm}.

Proof: There are two cases.

e Case 1: The root of f is an OR.

In this case there is at least one variable Y in T'— { X'} such that leca(X,Y) is
the root. Sy 1s a minterm of the subformula that contains Y and is rooted at

a child of the root of f. It follows that S N Sy = 0.

Now let Y be a member of T'— { X'} such that lca(X,Y') is not the root. Let G
be the gate which is the child of the root, on the path from X to the root. The
gate (G is also on the path from Y to the root. Since f is a (non-degenerate)
monotone read-once threshold formula, G is not an OR gate. Therefore, there
exists a subformula & rooted at a child of G such that 7" does not contain a
maxterm of k. Clearly V" and (V,, —T)U{Y } both contain all the variables of
h. Since SNT = {X}, S must contain minterms of all the subformulas of GG
for which 7" does not contain a maxterm, and hence S contains a minterm of
h. Similarly, Sy contains a minterm of A. By Lemma 2, S and Sy will contain
the same minterm of h, and therefore S N Sy is not empty.

14

e (Case 2: Root of f is not an OR.

Suppose the root is Th}* (k # 1). By the same reasoning as in the second part
of Case 1, for all Y in T'— {X}, SN Sy is not empty.

If lea(X,Y) = root, then for all Z in SN Sy, SUSy —{Z} contains a minterm,
because setting S U Sy to 1 forces k + 1 of the subformulas rooted at children
of the root of f to 1.

If lea(X,Y") is not the root, then setting S U Sy to 1 forces exactly k of the
subformulas rooted at children of the root to be 1. By Lemmas 2 and 3, SN Sy
must contain a minterm of some subformula & rooted at a child of the root of
f, such that h does not contain X (or Y'). Let Z be a variable in the minterm
of h contained in S N Sy. Setting S U Sy — {Z} to 1 will force only k — 1 of
the wires into the root to 1, because SUSy — {Z} does not contain a minterm
of h. Therefore S U Sy — {Z} does not contain a minterm of f. O

We present the basic subroutines LcaRootS and LeaRootT', and then we present
the complete algorithm.

3.6 LcaRootT and LcaRootS

LeaRootT takes as input a minterm S, a maxterm 7', and a variable X, such that
SNT = {X}, and S is the output of Findmin/(V'), where V' 2 V,, — T. Using
the criterion of Lemma 4, it computes and then outputs the set of variables Y in

T — {X} such that lca(X,Y) is the root of f.
LeaRootT! (S, T, X)

I. forall YV in T — {X} Sy = Findmin!((V,, — T)U{Y}).

2. if there exists a Y in T'— { X } such that SN Sy is empty then return({Y €
T—{X} SynS=0}).

3. Q:=1

forall Y in T'— {X} do
for all Z in SN Sy do
if f(lsLJSy—{Z}) =0 then
Q:=QU{Y}.

15

4. return(T — {X} — Q)

The dual subroutine, LeaRootS, finds the set of Y in S—{X} such that lca(X,Y)
is the root of f.

3.7 The algorithm

MROT Learn’

1. S := Findmin?(V,)

2. Pick an X in S.
T := Findmaz’((V, — S)U{X})

3. if S =T = {X}, then return(X) (the formula f is equal to X)
4. T':= LeaRootT!(S, T, X)
5. S":= LeaRootS!(S, T, X)

6. (a) k:=1 (counts number of inputs to root of f set to 1 by a minterm of f)
(b) 7 :=1 (counts number of inputs to root of f set to 0 by a maxterm of f)
(©) Q=5
(d) R:=T"
(e) Let fi be the projection of f induced by setting the variables in S’

to 1, and the variables in T" to 0. Recursively learn f; by running
M ROT Learn’t, simulating calls to the membership oracle of f; with
calls to the membership oracle of f.

7. while @ # 0 do

(a) Pick an X' in Q.

(b) Tx: := Findmaz?((V,, — S)U{X'})
(c) S":= LeaRootS’ (S, Tx:, X')

(d) k:=k+1.

() @:=QNY

16

(f) Let fr be the projection of f induced by setting the variables in S’
to 1, and the variables in 7" to 0. Recursively learn f; by running
M ROT Learn’* simulating calls to the membership oracle of f;, with
calls to the membership oracle of f.

8. while R # () do

(a) Pick an X' in R.
(b) Sx: := Findmin/((V,, — T)U {X'})
(c) T':= LcaRootTf(SS(,T X).
(d) Jj

)

)

d

(e
(f) Let fkﬂ 1 be the projection of f induced by setting the variables in
S% NS to 1, and the variables in 77 to 0. Recursively learn fiy;_1 by
running 1WROTLearnfk+J—1, simulating calls to the membership oracle

of frt;j—1 with calls to the membership oracle of f.

9. Output the formula Thiﬂ_l(fl, fa, fay oy fotjo1)

3.8 Correctness and complexity

Theorem 1 There is a learning algorithm that exactly identifies any monotone
read-once threshold formula in time O(n®) using O(n®) membership queries.

Proof: The correctness of our algorithm follows from the discussion in the pre-
vious sections.

The routines Findmin and Findmaxz each take time O(n) and make O(n) queries.
The routine LeaRootT makes O(n?) queries and can be implemented to run in time

O(n?) (this includes the calls to Findmin).

The complexity of the main algorithm can be calculated by “charging” the costs
of the steps to the edges and nodes of the target formula f. In each execution of
M ROT Learn’, we charge some of the steps to f, and some of the steps to the
edges joining the root to its children. Recursive calls to M ROT Learn’* are charged
recursively to the subformula f;.

More specifically, we charge steps 1 - 6(d), step 9, and the checking of the
loop conditions in steps 7 and 8, to the root of f. We recursively charge calls

17

to M ROT Learn’* in steps 6(e), 7(f), and 8(f) to the subformulas f;. For each iter-
ation of step 7, we charge steps 7(a) through 7(e) to the edge leading from the root
of f to the root of the subformula f; defined in step 7(f). Similarly, for each iteration
of step 8, we charge steps 8(a) through 8(e) to the edge leading from the root of f
to the root of the subformula fr4;_1 defined in step 8(f). Thus at each execution
of MROT Learn?, we charge time O(n?) to the root of f and O(n?) membership
queries to the root of f. We also charge time O(r?) and O(n?) membership queries
to each of the edges joining the root of f to its children.

The total number of nodes in f is O(n), and the total number of edges is O(n).
Therefore the algorithm takes time O(n®) and makes O(n®) queries. [J

Corollary 1.1 There is a learning algorithm that exactly identifies any read-once
threshold formula in time O(n*) using O(n*) membership queries and O(n) equiva-
lence queries.

Proof: The class of read-once threshold formulas is the unate extension of the
class of monotone read-once threshold formulas. The theorem follows directly from
the results of Angluin, Hellerstein and Karpinski [2], who showed that if a class M
can be learned in time O(n®) with O(n”) membership queries, then the correspond-
ing unate class can be learned in time O(n®*!) with O(n®*1) membership queries,
and O(n) equivalence queries. O

4 Transformations

41 M(M)—MJ(U)

In this section we describe a simple method for converting an algorithm that identi-
fies a monotone class using membership (and possibly equivalence) queries into an
algorithm that learns the corresponding unate class using membership (and possibly
equivalence) queries and justifying assignments.

Let f be a unate formula. Since f is unate, all negations in f appear at the
leaves. If X is a variable in f and X is negated in f (i.e. there is a negation
appearing next to all occurrences of X in f) then we say the sign of X is negative
in f. Otherwise, we say the sign of X is positive. If the sign of X is negative, then

18

(because f is unate) for all assignments A, f(Ax—o) > f(Ax—1). If the sign of X
is positive, then for all assignments A, f(Ax—o) < f(Ax—1).

Given a unate formula f, and a set of justifying assignments for the variables
in f, we can determine the signs of the variables in f using membership queries
as follows. Let A be a justifying assignment for a variable X in f. Because A is
justifying for X, the values of f on Ax. g and Ax.; are distinct. Therefore, if
Ax.o = 1 then the sign of X is negative, and if Ax. o = 0 then the sign of X is
positive. To determine the sign of X, it therefore suffices to ask the membership
query Ax_g.

In [2], a simple transformation is presented. It converts an algorithm for learn-
ing a monotone class with membership queries into an algorithm for learning the
corresponding unate class with membership queries, given the signs of the vari-
ables in the target formula as input. The transformation works by “replacing” the
negated variables in the target formula with new, non-negated variables, and using
the membership query algorithm to learn the resulting monotone formula. A simple
variation, handling equivalence queries, is also described.

By combining the procedure described above for finding the signs of the vari-
ables, with the simple transformation from [2] which takes the signs as input, we
get a method for transforming an algorithm that identifies a monotone class using
membership (and equivalence) queries, into one that identifies the corresponding
unate class using membership (and equivalence) queries and justifying assignments.

We thus have the following theorem. (Unlike our other transformations, the
projection closed condition is not required here.)

Theorem 2 Let M be a monotone class of formulas. If M can be exactly identified
in polynomial time by an algorithm using membership queries then U(M) can be
exactly identified in polynomial time by an algorithm using membership queries and
justifying assignments. Furthermore, if M can be exactly identified in polynomial
time by an algorithm using membership and equivalence queries, then U(M) can
be exactly identified in polynomial time by an algorithm using membership queries,
equivalence queries, and justifying assignments.

The overhead of this transformation is an additional O(n) in running time and
queries, plus an additional constant amount of time whenever a bit is set for a
membership query.

19

4.2 MJ—-ME

In this section we describe how to convert an algorithm that identifies a projection
closed class using membership queries and justifying assignments into an algorithm
that learns the class using membership and equivalence queries.

Let AlgMJ be an algorithm using membership queries and justifying assignments.
The transformation algorithm, ToME(AlgMJ), which uses membership and equiv-
alence queries, is based on the following loop. At the start of the loop we have a
subset V' C V,,, and we have a partial assignment P assigning values to the variables
in V,, — V' and leaving the variables in V'’ unassigned. For every X € V', we know
a justifying assignment for X in fp. For the first iteration of the loop, we set V' to
empty, and we set P to an arbitrary assignment to V,, (so fp is constant).

We run AlgMJ to learn fp (simulating a membership oracle for fp with the
membership oracle for f). The output of AlgMJ is a formula ¢ = fp. We ask the
equivalence query “g = f?7 (i.e. fp = f7). If the answer is “yes” (which it will be
when V' contains all the relevant variables of f), we are done. If the answer is “no”
the equivalence oracle returns a counterexample A. We call a routine ProjBitFlip
(described below) that returns a new, larger subset V' of V,,, a new associated partial
assignment P, and justifying assignments (with respect to fp) for the variables in
the new V'. We then repeat the loop. Termination of ToOME(AlgMJ) is guaranteed
by the fact that at each iteration we increase the size of V.

Routine ProjBitFlip takes as input V', the partial assignment P, the counterex-
ample A (an assignment on which fp differs from f), and a set S of justifying
assignments for the variables in V' (the assignments in S are justifying with respect
to f and fp). The key processing in ProjBitFlip is a loop to greedily reduce the
number of variables on which A and P differ.

ProjBitFlip(V',P,A, S)

1. Set Bto A. Set W to{X € V, = V'| B(X) # P(X)}.

2. While there exists an X € W such that f(B-.x) = f(B), set B to B.x and
delete X from W.

3. Let P’ be the partial assignment such that P'(X) = P(X) forall X € V,, — W,
and P'(X) ==« forall X € W.

4. Let §' = SU{(X, B)|X € W}.

20

5. Output V'UW, P’ and S’.

The processing in ProjBitFlip does not change either f(B) or fp(B), so for the
final B those two values still differ. This means B # P/B and therefore W is not
empty. Our new variable set is V' JW, and P’ assigns * to all variables in W.
Assignment B is justifying for those new variables in fp; and in f.

For completeness, we present the transformation algorithm ToME(AlgM.J).
ToME(AlgMJ)

1. Let V! = (). Let S = (). Initialize P to an arbitrary assignment defined on V,,
(giving values to all variables).

2. Do forever:

(a) Call the procedure AlgMJ using the justifying assignments S, and sim-
ulating membership queries to the function fp. Let g be the formula
returned.

(b) Make an equivalence query with ¢. If the reply is “yes” then output ¢
and halt, otherwise, let B be the counterexample.

(c¢) In this case, g(B) = fp(B) # f(B), that is, f(P/B) # f(B). Call
ProjBitFlip(V', P, B, S). Set V', P and S to the values W, P" and S5’
returned by ProjBitFlip.

Applying techniques from [2], we show that a modified version of ToME works
if the input algorithm uses equivalence queries as well as membership queries and
justifying assignments. The modification is mainly to step 2a, where we are simu-
lating AlgMJ to learn fp, even though we only have oracles for f. If AlgMJ asks an
equivalence query “Does g = fp?”, we can do the following:

e Ask the equivalence oracle for f, “Does ¢ = f7”7 If the reply is “yes”, then
halt and output g. Otherwise, the reply is no and a counterexample B. Ask
the membership oracle for f for the value of f(P/B) (which equals fp(B)).
Evaluate ¢(B). If ¢(B) # fp(B), then B is a counterexample to the query
asked by AlgMJ “Does g = fp?”, so continue the simulation by returning
the counterexample B. If ¢(B) = fp(B), then fp(B) # f(B). Halt the
simulation, and jump to step 2c (because we already have an assignment B
such that fp(B) # f(B), which is what we need in step 2c to call ProjBitFlip
and expand the set V).

21

This discussion proves the following theorem.

Theorem 3 [f C is a projection closed class of formulas such that C can be exactly
tdentified in polynomial time by an algorithm using membership queries, equivalence
queries, and justifying assignments, then C can be exactly identified in polynomial
time by an algorithm using membership and equivalence queries.

This transformation adds O(n) equivalence queries, and produces a member-
ship and equivalence algorithm whose running time and number of membership and
equivalence queries are each a factor of O(n) greater than for the original (trans-
formed) algorithm.

4.3 ME—MJ does not exist

We describe a class of monotone DNF formulas (used originally by Angluin [1])
for which there exists a polynomial time membership and equivalence query learn-
ing algorithm, but for which no polynomial time membership query and justifying
assignment algorithm exists.

The class consists of monotone DNF formulas defined over the variable set V,, =
{X1,..., X} and consisting of m + 1 terms for m = n/2. The first m terms of
each formula are X1 A X3, X3 A Xy, ..., X,,_1 AX,. The last term is made up
of exactly one variable from each of the first m terms. Angluin showed that this
class is learnable (by the membership and equivalence query algorithm for learning
monotone DNF), but it is not learnable with membership queries. The following
simple argument shows that it is also not learnable with membership queries and
justifying assignments.

Consider the following set of assignments — the assignment setting X;andX, to
1 and the other variables to 0, the assignment setting X3 and X4 to 1 and the
other variables to 0, the assignment setting X4 and X5 to 1 and the other variables
to 0, and so forth. For every function in the above class, this is a set of justifying
assignments (e.g. the first assignment in the set is justifying for the variables X; and
X3). If a learner was attempting to identify a target formula from the above class,
an adversary could provide this same set of justifying assignments. The set would
give no information about the target formula (the learner could even generate it
independently). Therefore, because the class cannot be learned in polynomial time

22

with membership queries, it cannot be learned in polynomial time with membership
queries and justifying assignment.

We note that although the above class is not projection closed, it is easy to show
that the same result holds for its closure under projections.

4.4 MI(U)=M(M)

In this section we describe how to convert an algorithm that identifies a projec-
tion closed unate class using membership queries and justifying assignments into
an algorithm that learns the corresponding monotone class using just membership
queries.

To perform this transformation, we need to show how we can generate justifying
assignments for the variables in a monotone class using membership queries.

The transformation is based on the following observation. Suppose f is a mono-
tone formula defined on the variable set V,,. Let V' be a subset of the variables in V,,.
Let Py be the partial assignment setting the variables in V,, — V' to 0 and leaving the
variables in V' unassigned. Let P; be the partial assignment setting the variables
in V, — V' to 1 and leaving the other variables in V' unassigned. Suppose there is
a relevant variable X in V,, — V'. Let A be a justifying assignment for that variable
such that f(A) = 0. Then, because f is monotone, A(X) = 0 and f(Ax—1) = L.
It also follows from the monotonicity of f that fp(A) = f(Fo/A) < f(A) and
fP1(A) = f(Pl/A) > f(A) Thereforea fPo(A) = 0 and fP1(A) =1 and fPO 7£ fPJ'
Thus if V,, — V contains a relevant variable of f, then fp # fp,. In contrast, it is
clear that if V,, — V' contains no relevant variables of f, then fp = fp,.

Let AlgMJU be an algorithm for learning a unate class C” of formulas using mem-
bership queries and justifying assignments. We present a transformation algorithm
ToMM(AlgMJU) which learns the corresponding monotone class C' of formulas using
only membership queries.

The transformation algorithm is based on the following loop. At the start of the
loop, we have a subset V' of V,, and a set S of justifying assignments for the variables
in V' (the assignments are justifying with respect to f). With V' we associate the
projections fp, and fp, as above, where Fy and P; are partial assignments obtained
by setting the variables in V,, — V' all to 0 and all to 1, respectively. We check to
see whether for all (X, A) in S, A is also justifying for X in fp, and fp. If this

is not the case, then we will expand V' and S as follows. Note that because A is

23

justifying for X in f, f(Ax—o) =0 and f(Ax—1) = 1, and hence by monotonicity
fr(Ax—o) = 0 and fp (Ax—1) = 1. It follows that if A is not justifying for X
in fp,, then fp (Pi/Ax—1) = fr(Ax—1) = fp(Ax—o) = 0, whereas we know
that f(P1/Ax—1) = fp,(Ax—1) = 1. Hence we can run ProjBitFlip with partial
assignment Py and assignment Py /Ax.; to find a justifying assignment for a variable
inY in V,, —V’'. We then add Y to V', add Y and its justifying assignment to S, and
go back to the start of the loop. Similarly, if A is not justifying for X in fp,, then
f(Po/Ax—o) =0 and fp (FPo/Ax—o) = 1, and we can run ProjBitFlip with partial

assignment P; and assignment Py/Ax . _o.

When we reach the point where all the assignments in S are justifying for both
fr, and fp,, we run two parallel simulations of AlgMJU with the set S of justi-
fying assignments as input. In one simulation we answer a membership queries
by simulating a membership oracle for fp, and in the other simulation we answer
membership queries by simulating a membership oracle for fp,. If the simulations
terminate without ever diverging (doing anything different) then the two simulations
will output the same formula ¢, meaning that ¢ = fp, = fp, = f. In this case we
halt and output g. If the two simulations diverge, then they do so because at some
point the answer to a membership query on an assignment B is answered differently
in the two simulations, and thus fp, (B) # fp,(B), and so fp,(Py/B) # f(Fo/B). In
this case we exploit the assignment Fy/B (calling ProjBitFlip) to find a justifying
assignment for a variable Y in V —V’. We then add Y to V', add Y and its justifying
assignment to S, and go back to the start of the loop.

We present the transformed algorithm below.
ToMM(AlgMJU)

1. Let V! =0. Let S = (.

2. Do forever:

(a) Let Py be the partial assignment setting the variables in V,, — V' to 0 and
leaving the variables V' unassigned. Let P; be the partial assignment
setting the variables in V,, — V' to 1 and leaving the variables in V'
unassigned.

(b) If there is a pair (X, A) € S such that A is not a justifying assignment
for X in fp,, then call ProjBitFlip(V' Py,Pi/Ax 1, S) and set V' and S

respectively to the values W, and S’ returned.

24

(c) Elseif there is a pair (X, A) € S such that A is not a justifying assignment
for X in fp,, then call ProjBitFlip(V' ,P1,Py/Ax —o, S) and set V' and S

respectively to the values W and S’ returned.

(d) Else run two parallel simulations of AlgMJU on input S to learn fp,
and fp,. If the two simulations diverge on some membership query B
then call ProjBitFlip(V',P1,Py/B, S) and set V' and S respectively to
the values W and S’. Else if the two simulations do not diverge and they
both output the same formula ¢, halt and output g.

We can also modify this MJ(U)—=M(M) transformation to include equiva-
lence queries in the base and target models, i.e. to produce the transformation

MJE(U)—ME(M). The modification is basically the same as that described at the

end of Section 4.2. Thus we have the following theorem.

Theorem 4 Let U(M) be a unate, projection closed class of formulas corresponding
to a monotone class M. If U(M) can be exactly identified in polynomial time by
an algorithm using membership queries and justifying assignments, then M can be
exactly identified in polynomial time by an algorithm using only membership queries.
Furthermore, if U(M) can be exactly identified in polynomial time by an algorithm
using membership queries, equivalence queries, and justifying assignments, then M
can be identified in polynomial time using only membership and equivalence queries.

This transformation increases the algorithm’s running time and number of mem-
bership queries by a factor of O(n).

5 Conclusions

We have presented an exact identification algorithm that uses membership queries
(i.e. black box interpolation) to identify monotone read-once threshold formulas. We
have developed a list of generic transformations useful in understanding how this and
other identification results in various different models can be related. In presenting
these transformations our main interest was in polynomial time learnability rather
than in tight bounds. We do not know whether these transformations are optimal
in the sense that alternate reductions may be discoverable that use fewer queries
and less time. Recently an alternate version of the MJ—ME transformation has

25

been developed that uses a factor of logn fewer equivalence queries [3], but that
uses more membership queries and running time. Even assuming we have optimal
transformations, for the more difficult transformations we do not know whether
optimal algorithms in the base model can yield optimal algorithms in the target
model.

Besides the issue of efficiency it would be desirable to extend this work to develop
a better understanding of the relation between results obtainable in the query models
discussed here and results obtainable in more powerful or incomparable models that
have been considered, such as subset /superset queries, constrained instance queries,
and projective equivalence queries.

26

References

[1]

2]

D. Angluin. Queries and concept learning. In Machine Learning, 2:319-342,
1987.

D. Angluin, L. Hellerstein, and M. Karpinski. Learning read-once formulas with
queries. In Journal of the Association for Computing Machinery, 40:185-210,
1993.

Nader H. Bshouty, Sally A. Goldman, Thomas R. Hancock, and Sleiman Matar.
Asking questions to minimize errors. In The 1993 Workshop on Computational
Learning Theory.

Nader H. Bshouty, Thomas R. Hancock, and Lisa Hellerstein. Learning arith-
metic read-once formulas. In Proceedings of the 24th Annual ACM Symposium
on the Theory of Computing, 1992.

Nader H. Bshouty, Thomas R. Hancock, and Lisa Hellerstein. Learning boolean
read-once formulas with arbitrary symmetric and constant fan-in gates. In The
1992 Workshop on Computational Learning Theory, 1992. To appear in JCSS.

Sally A. Goldman, Michael J. Kearns, and Robert E. Schapire. Exact identifi-
cation of circuits using fixed points of amplification functions. In Proceedings
of the 31st Symposium on Foundations of Computer Science, 1990.

R. Heiman, I. Newman, A. Wigderson, On Read Once Threshold Formulas and
their Randomized Decision Tree Complexity. In IEEFE Symp. on Structures in
Complexity 1990, pp. 758-87.

27

