Perturbation: An Efficient
Technique for the Solution of

Very Large Instances of the
Euclidean TSP*

B. Codenottif, G. Manzini*, L. Margara® and G. Restal
TR-93-035
July 1993

Abstract

In this paper we introduce a technique for building efficient iterated local search
procedures. This technique, that we call perturbation, uses global information on TSP
instances to speed-up and improve the quality of the tours found by heuristic methods.
The main idea is to escape from local optima by introducing perturbations in the
problem instance rather than in the solution. The performance of our techniques has
been tested and compared with known methods. To this end, we performed a number
of experiments both on test instances, for which the optimal tour length is known,
and on uniformly distributed instances, for which the comparison is done with the
Held-Karp lower bound. The experimental results, done on up to 100,000 cities, show
that our techniques outperform the known methods for iterating local search for very
large instances.

*This work has been partially supported by the CNR through the ”Progetto Finalizzato Sistemi
Informatici e Calcolo Parallelo. Sottoprogetto 2”. G. Manzini and G. Resta have been partially
supported by an INDAM postdoc fellowship.

TICSI, 1947 Center Street, Suite 600, Berkeley, CA 94704-1105

HEI-CNR, Via S.Maria, 46 56100-Pisa (Italy)

Dipartimento di Informatica, Universita degli studi di Pisa (Italy)

TIEI-CNR, Via S.Maria, 46 56100-Pisa (Italy)

i

1 Introduction

Given N cities ¢ = 1,..., N, separated by distances d;; the (euclidean) Traveling
Salesman Problem — TSP from now — consists of finding the shortest closed path
visiting each city exactly once. The solution of very large instances of the TSP has
challenged several authors over the last few years [1, 2, 5, 7, 10]. The results have been
quite satisfactory. In fact, by using, e.g., the Lin-Kernighan method — LK from now
— it is possible to face TSP instances with thousands of cities and obtain, within a
reasonable time, tours which are very close to the optimal one. On the other hand we
are still far from solving the general problem of evaluating the performance of local
search heuristics and capturing the mathematical properties of the correspondent
local optima. For some preliminary results, see [8].

The main contributions in the field of experimental solution of large TSP instances
come from David Johnson and several coauthors [3, 7]. To the best of our knowledge,
there are no other significant results for instances with more than 1,000 cities. This
paper provides a new framework for implementing iterated local search so that it
becomes feasible to find almost optimal solutions to TSP instances with more than
100,000 cities.

The problem of gathering some global information on an instance of the TSP
seems to be central; in fact all the methods which avoid this are characterized by
either a significant loss of precision or a running time penalty.

In this paper, we continue the work started in [4] and develop an adaptive frame-
work based on a global parameter, the problem sensitivity, whose evaluation suggests
a number of strategies to improve over existing methods. More precisely, we imple-
ment iterated local search by transforming the instance at hand into a different one.
There have been several attempts to formalize some intuitions on the structure of the
local optima found by local search procedures (see e.g. [8]). We use the notion of
problem sensitivity as the theoretical background for devising a perturbation strategy
to be used in the iteration of local search procedures.

Sensitivity has been widely recognized as one important parameter in the analysis
of computational problems. It consists of measuring how the output of the problem
changes upon slight changes in the input. For the TSP this property could be in-
terpreted as the relationship between the optimal tour of a given problem instance
and the optimal tour of a slightly different one, e.g. with a small modification in the
matrix of distances. It could also be used to analyze the modifications in the local
optima. This viewpoint leads to the idea of moving from a given instance to another
one as shown in Fig. 1.

More precisely, given a local optimum s for a problem P, we consider a “perturbed”
problem P’ and a one-to-one correspondence f between the cities in P and P’. We
then construct a solution s’ for P" as s’ = f(s). s’ needs not to be a local optimum for
P’ s0 one can apply local search — with s’ as starting point — to get a local optimum
s" for P'. This can then be mapped onto a solution ¢t = f~*(s”) for P which again is

P : P
¢

s : s
N
1 o

Figure 1: We start with a local optimum s for the original problem P. We apply a
transformation f to s obtaining a solution s’ for a perturbed problem P’. In general,
s" it is not a local optimum for P’; starting from s’ we obtain a local optimum s”.
Inverting the trasformation f we convert s” into a solution ¢ for P, which, again, is
not necessarily a local optimum, so that local search can be re-applied.

not — in general — a local optimum for P. Thus local search can start again.

The key feature of this approach is the fact that we perturb problem instances
rather than solutions so that we can map local optima onto good solutions which can
be eventually improved by local search, since they are not necessarily local optima.
This approach can be a first step towards the development of novel intuitions about
how to speed-up local search and how to escape from local optima.

The rest of this paper is organized as follows. In Sect. 2 we present the perturba-
tion method. In Sect. 3 we discuss some implementation issues. In Sect. 4 we report
on the experimental results, and Sect. 5 contains some concluding remarks.

2 The Method of Perturbation

LK is the most accurate local search heuristic for the TSP and finds tours whose
lengths are, on the average, 2.1% off the optimum. The only known technique which
allows one to find tours which are significantly shorter than those found by single
applications of local search is [terated Local Search (ILS). ILS works as follows:

ILS.

1. Find an initial solution s by using local search.

2. Do the following for a given number M of iterations.
2.1.Perturb s obtaining a new solution ¢.
2.2.Run local search on ¢ obtaining u.
2.3.If length(u) < length(s), set s =u.

4. Return s.

The effectiveness of ILS mainly depends on two factors: the perturbation strategy
used in Step 2.1 and the local search procedure used in Step 2.2. In practice, ILS
finds solutions much shorter than those found by repeated local search, which consists
of running the local search procedure for a certain number of times, starting from
independently chosen initial tours.

ILS has been introduced by Martin, Otto, and Felten [11]. They initially tested
this technique on the euclidean TSP by using 3-Opt local search procedure in Step
2.2. To perturb the solution s - Step 2.1 - they remove 4 arcs from s and replace them
in order to obtain a non-sequential move. More precisely, they first replace two arcs
belonging to s by the two arcs which disconnect the tour. Then they repeat the same
operation in order to reconnect the tour (see [11]). This kind of perturbation move
is called Double Bridge. (From now on, DB-ILS will denote the ILS procedure using
the Double Bridge move.) They also introduced (see step 2.3 above) the possibility
of accepting solutions of increasing cost with a certain probability, using a technique
which is similar to simulated annealing. Johnson [7] has investigated the improvement
of ILS when 3-Opt local search is replaced by the more powerful LK heuristic in Step
2.2.

Local search heuristics take a solution s as input and yield a local optimum w
which is shorter than s. Experimental results confirm the intuitive fact that the
quality of w strongly depends on the quality of s. As an example, local search applied
to an initial solution obtained by a direct method, e.g., multiple fragment heuristic
[2], finds solutions which are better than those obtained by applying the same local
search procedure to random initial tours. ILS takes advantage of this experimental
evidence by applying local search to solutions which are obtained by perturbing a
previously found local optimum.

Intuitively, one has to look for a perturbation strategy which neither produces a
tour t which is very long, nor keeps substantially the same structure as s. In fact, in
the former case, local search applied to ¢ is not likely to find a solution shorter than
s, and, in the latter case, local search stops soon and does not lead to a significant
improvement.

Informally, a good perturbation strategy should produce a solution t such that:
(2) the length of ¢ is close to the length of s, and (u%) ¢ is quite different from any
local optimum (in particular from s). If ¢ satisfies properties (¢) and (i), then it is
conceivable that local search, applied to ¢, yields a local optimum u better than s.

Here we present a new perturbation strategy which produces perturbed solutions
satisfying (¢) and (72). Our main idea consists of working on perturbed problems
instead of perturbed solutions. More precisely, we perform Step 2.1 as follows.

Step 2.1.

a. Find a new set P’ of cities by applying a small random
perturbation to P.

b. Starting from the solution s for P, find the

correspondent solution s’ for P’

c. Find a new solution s” by applying a local search
procedure to P’ starting from s'.

d. Starting from the solution s” for P’, find the
correspondent solution ¢ for P.

Let © be a permutation of 1,...,n, P = {p1...,p.} be a set of cities and s =
Pr(1),- -+ Px(n) be a solution for P.

In Step a we find a perturbed problem P’. This can be done, for example, moving
P1-..,Pn by € or removing a certain number k of cities from P. In Step b we find
a solution s’ for P’ starting from s. As an example, if we perturb P by moving the
cities by €, s’ is equal to s.

Since P’ is different from P, s’ is not a local optimum for P’. In Step ¢ we apply a
local search procedure to s’ obtaining a local optimum s” for P’. In Step d, starting
from s”, we find the correspondent solution ¢ for P, where ¢ is not necessarily a local
optimum for P. Experimental results show that the solution t is quite different from
s although its cost is close to the cost of s. This perturbation strategy allows the local
search procedure to proceed even if a local optimum for P has already been found.

Local search runs temporarily on a perturbed problem P’. When no further
improvement can be done on P’, local search turns again to the original problem P.
The intuition behind this approach is visualized in Fig. 1.

We propose two different ways to introduce perturbations, which we call e-move
and k-remove.

e-move. Given a euclidean TSP P = {p;,...,p,}, this strategy produces a new
problem P' = {p},...,pl,} such that dist(p;,p.) = €, Vi, 1 <t < n, where dist(a,b)
stands for the euclidean distance between the points a and b. We choose the value
of ¢; equal to 1/5 of the sum of the distances of p; from its neightbors in the actual
tour. This allows us to perturb the problem according to the quality of the solution
found so far. Each city moves towards a randomly chosen direction. One can readily
verify that any solution s for P is also a feasible solution for P’, and viceversa.

k-remove. This strategy produces a new graph P’ simply by removing from P
a certain number k& << n of cities. Any solution s for P can be translated into a
solution s’ for P’ by disregarding the removed cities. The inverse operation is slightly
more complicated. In fact we have to take into account the requirements expressed
by properties (z) and (iz). We adopt the following strategy. Each city p,; is inserted
between two other cities pr(;), pr(j+1) belonging to s”, chosen at random among the
first m neighbors of pr).

Once a perturbed solution s’ has been found (Step 2.1), ILS runs local search on
s' in order to obtain a local optimum s” for the perturbed problem, and then a new
local optimum u for the original problem. At this point, ILS accepts or rejects u
depending on its length. If u is shorter than s, then ILS sets s = u. We perform
this step by allowing a low probability acceptance for tours u longer than s. Let
6 = (length(u) — length(s))/length(u). We accept solution u with probability p =

4

c1-e~%2% where ¢; and ¢, are suitable constants. Experimental results show that this
mechanism enables local search to find shorter tours than those found by using the
criterium described in Step 2.3.

3 Implementation Issues

We have implemented and extensively tested both the e-move and the k-remove per-
turbation methods. In this section we give some details on the implementation of
ILS, and we describe some techniques used to speed-up the code. In the next section
we discuss the experimental results.

The most successful local search procedures for the TSP are the 2-Opt, 3-Opt, and
LK algorithms (see [2][9] for a complete description of these methods). Unfortunately,
it does not exist any theoretical estimate of the quality of the solutions found by
these procedures. However, they have been extensively tested for many years and
their performance in practice is well known. As an example, for random Euclidean
instances with 10,000 cities, our implementation of 2-Opt finds solutions that are
on the average 5.17% off the Held-Karp lower bound!, and for the 3-Opt and LK
procedures this percentage reduces to 3.16% and 1.96%.

The naive implementations of 2-Opt, 3-Opt and LK algorithms take O(N?),
O(N?), and O(N?) time, respectively, where N is the number of cities. However,
by using appropriate data structures and by taking advantage of certain geometric
properties of the tours, it is possible to reduce substantially the running time of these
algorithms [2]. Further significant reductions of the time complexity are possible by
implementing “approximate” algorithms that find slightly longer tours but are much
faster than the original versions. These approximate algorithms are usually charac-
terized by the utilization of “clever” data-structures and programming “tricks” that
are necessary in order to apply, within reasonable time limits, local search proce-
dures to TSP instances with 10,000 cities and more. This is particularly true for ILS
algorithms where local search is repeated many times.

In order to substantially reduce the running time of local search procedures we
use the don’t-look bit technique described in [2, Sec. 4]. Our LK algorithm always
uses this technique, while 2-Opt and 3-Opt algorithms use don’t-look bits only when
applied to perturbed problems.

In our first experiments we have implemented the ILS algorithms based on the
e-move strategy, and have performed local search at steps 2.1.c and 2.2 using 2-Opt,
3-Opt, and LK. One of the basic operation of all local search procedures consists of
finding all cities within a certain radius of a given city. In order to perform efficiently
this near neighbor search, our algorithms execute a preprocessing stage in which the
following data structures are created:

!Held and Karp [6] have proposed an iterative technique based on minimum spanning trees which
produces sharp lower bounds on the optimal tour length.

1. a bidimensional array near[] [] such that near[i] [-] is the list of the 20 cities
closer to city i, sorted by increasing distance;

2. a bidimensional array dist[][] such that dist[i][j] is the distance between
cities 1 and near[i] [j].

Unfortunately, this data structure can not be used in step 2.1.c¢ of ILS algorithm
with e-move strategy. In fact, during step 2.1.c local search is performed on a perturbed
problem P’ that changes at each iteration. Therefore, the distances between cities are
different from the distances contained in dist[][] (however, note that the distances
change only slightly).

For each perturbed problem P’ it would be necessary to compute a new pair of
arrays aux near[][] and aux_ dist[][]. In order to speed up the algorithm we have
used the data contained in near[][] also for the perturbed problems P’. Clearly,
for P’ the cities contained in near[i] [] are simply a set of cities close to city i, but
in general they are not the more close cities to city i. This implies that in general
the solution s” found at step 2.1.c it is not a local optimum. However, since s’ must
be transformed into a solution t for the problem P, the length of s” is not critical
and also a non-optimal solution can be accepted.

The distances between cities 1 and near[1] [j] (for the problem P’) are stored in
aux dist[i] [j]. For these values we utilize a “lazy evaluation” scheme: distances are
computed only when required by the algorithm. This guarantees that each distance
is computed only once, and that useless distances are not computed.

Moreover, in order to obtain an efficient implementation of ILS with 3-Opt and
LK, we have used a modified ILS algorithm in which the local search at step 2.1.c is
performed by using the 2-Opt procedure instead of the 3-Opt or the LK algorithm.
In fact, as we have already pointed out, the length of the solution s” found at step
2.1.c is not critical.

The implementation of the k-remove strategy is more straightforward. The data
contained in the arrays near[][] and dist[][] can be utilized also for the per-
turbed problem P’; we only need to handle properly the cities that have been removed.
We have tested the algorithm using 2-Opt, 3-Opt, and LK procedures for the local
search at steps 2.1.c and 2.2.

The experimental results reported in the following section have been obtained by
removing k cities from P, where & = [number of cities/200]. The parameter 200 has
been chosen on the basis of several tests performed with different values of k.

4 Experimental Results

We have extensively tested our pertubation methods — e-move and k-remove— both
on random uniformly-distributed and known TSP instances. We have compared the
quality of the solutions provided by our methods with those found by the DB-ILS

procedure which is the best known method for iterating local search. Each algorithm
(e-move, k-remove, and DB-ILS) has been tested with 2-Opt, 3-Opt and LK local
search procedures. All tests have been performed on a Silicon Graphics Iris Indigo
R4000 with 32 megabytes of main memory.

Table 1 gives the running time and the percentage excess over the Held-Karp lower
bound for a single application of the 2-Opt, 3-Opt and Lin-Kernighan algorithms. For
all instances the initial solution has been obtained by using the Multiple Fragment
(MF) tour construction heuristic. Tests are performed on random euclidean instances
with up to 100,000 cities.

Table 2, 3,and 4 report on the percentage excess over the optimal tour length
(extimated by using the Held-Karp lower bound) of the solutions found by ILS pro-
cedures DB-ILS, e-move, and k-remove, based on 2-Opt, 3-Opt, and LK, respectively.
Tests are performed on random euclidean instances. Table 5 reports on the running
time of a single iteration of the above described techniques.

The running times we report do not include the time spent for the preprocessing,
which is shared by all the methods we test. During the preprocessing we find the 20
nearest neightbors of each city. This takes a time that is roughly linear in the number
of the cities, ranging from 0.3 seconds for 1,000 cities to 56 seconds for 100,000 cities.

Note that the running time of the first iteration (Table 1) is much bigger than
the average running time of the subsequent iterations (Table 5). This is due to the
fact that the first iteration takes as input a very long solution (the one produced
by MF heuristic whose length is about 16% over the Held-Karp lower bound) and
yields a quite good solution. While all the other iterations only slightly improve the
current solution by producing small changes. This makes iterated local search —
which already is more accurate — also much faster than repeated local search.

Table 6 gives the results — for DB-ILS, e-move, k-remove — on some instances
(taken from TSPLIB [12]) for which the optimal tour length is known. The local
search procedure used is LK.

Fig. 2 gives the performance of these algorithms as a function of the actual running
time for a 100,000 city instance. Also in this case we only report on the experimental
results obtained by using LK heuristic.

A general result is that the effectiveness of ILS decreases as the number of cities
increases. The main issue to this regard is to compare the different strategies. The one
suffering more from the above inconvenience is DB-ILS. In fact, it does not give any
improvement after 100 iterations with the 2-Opt strategy, for more than 1,000 cities
(table 2), after 100 iterations with the 3-Opt strategy (table 3) for more than 5,000
cities and after 500 iterations with LK (table 4) for 10,000 cities. The performance of
our methods is much better. In particular, e-move is able to improve the solution even
after 500 iterations, and is the only method that allows one to improve local search
performed by 2-Opt. This is a quite surprising result because it makes feasible to run
several times the 2-Opt strategy and achieve tours less than 3% off the optimum.

Although our methods are slightly slower than DB-ILS, note that 100 iterations

Cities Running time in seconds Percentage excess
MF | 2-Opt | 3-Opt LK MF | 2-Opt | 3-Opt | LK
1,000 0.10 0.10 0.44 2.83 1741 | 6.46 | 3.26 | 2.16
5,000 1.09 1.05 6.42 26.38 || 16.37 | 5.82 | 3.36 |2.14
10,000 | 2.65 4.75 23.55 68.29 || 15.61 | 5.17 | 3.16 | 1.96
50,000 | 34.61 | 45.79 | 486.89 | 1364.36 || 15.02 | 5.59 | 3.34 | 2.32
100,000 | 120.15 | 203.31 | 2139.67 | 5566.53 || 14.86 | 5.31 3.21 | 2.16

Table 1: Running time in seconds and percentage excess over the Held-Karp lower
bound for the 2-Opt, 3-Opt and Lin-Kernighan algorithms. For all instances the initial
solution has been obtained by using the Multiple Fragment (MF) tour construction
heuristic.

of our methods almost always yield better tours than 1,000 iterations of DB-ILS, for
more than 5,000 cities, and thus they are superior also for what concerns the overall
running time of the ILS procedure.

For instances with 100,000 cities the gap between the performance of our methods
and DB-ILS becomes more evident. In fact, Fig. 2 shows that DB-ILS, after ten hours,
improves the solution provided by LK only by 0.02% (note that the last improvement
is obtained after about 1.9 hours). Our perturbation techniques allow to progressively
and continuously improve the solution at hand (improvements are obtained also after
9.8 hours).

A direct consequence of this fact, is that our perturbation techniques can take
advantage of larger amounts of time or, equivalently, of faster machines and code
optimization. DB-ILS seems not to enjoy this property.

5 Conclusions and Further Work

In this paper we have proposed some alternatives to existing techniques for iterat-
ing local search procedures for the TSP. The behaviour of our approach has been
experimentally evaluated both on random instances and on test problems. To our
knowledge, the results of this paper are the best in the field of ILS.

Further work to be done includes the implementation of the different methods on
parallel machines. In addition, we are currently exploring the features of different
perturbation techniques. We hope that the idea of working on perturbed instances
could lead to new clues on the structure of local optima.

Acknowledgement. We would like to thank David Johnson for some suggestions
and for providing some benchmarks.

Percentage excess after 100, 500, and 1000 iterations
Cities | 2-Opt DB-ILS k-remove €-move

100 | 500 | 1000 || 100 | 500 | 1000 || 100 | 500 | 1000
1000 6.46 | 4.96 | 4.40 | 4.24 || 5.19 | 4.95 | 4.82 | 3.62 | 2.93 | 2.68
5,000 5.82 | 540 | 5.40 | 5.40 || 5.52 | 5.52 | 5.52 || 3.62 | 3.14 | 2.94
10,000 | 5.17 | 4.93 493 | 4.93 | 5.08 | 5.08 | 5.08 || 3.20 | 2.89 | 2.89
50,000 | 5.59 | 5.39 | 5.39 - 5.59 | 5.59 - 3.66 | 3.04 -

Table 2: Average percentage excess over the Held-Karp lower bound for iterated local
search methods after 100, 500 and 1,000 iterations, respectively. Column 2-Opt gives
the average percentage excess over the Held-Karp lower bound for the initial solution
found by using 2-Opt local search.

Percentage excess after 100, 500, and 1000 iterations
Cities | 3-Opt DB-ILS k-remove €-move

100 | 500 | 1000 || 100 | 500 | 1000 || 100 | 500 | 1000
1000 3.26 2401 1.90 | 1.80 || 2.53 | 2.11 | 1.89 || 2.24 | 1.88 | 1.78
5,000 3.36 | 3.14 | 2.85 | 2.81 || 2.81 | 2.54 | 2.41 || 2.35 | 2.03 | 1.93
10,000 | 3.16 | 2.94 | 2.94 | 2.94 || 2.70 | 2.44 | 2.24 || 2.32 | 2.00 | 1.78
50,000 | 3.34 | 3.34 | 3.34 - 3.05 | 2.80 - 242 1 2.10 -

Table 3: Average percentage excess over the Held-Karp lower bound for iterated local
search methods after 100, 500 and 1,000 iterations, respectively. Column 3-Opt gives
the average percentage excess over the Held-Karp lower bound for the initial solution
found by using 3-Opt local search.

Percentage excess after 100, 500, and 1000 iterations
Cities | LK DB-ILS k-remove €-move

100 | 500 | 1000 || 100 | 500 | 1000 || 100 | 500 | 1000
1000 | 2.16 | 1.42 | 1.27 | 1.25 || 1.35 | 1.08 | 1.02 || 1.34 | 1.08 | 1.02
5,000 | 2.14 | 1.86 | 1.67 | 1.59 || 1.45 | 1.21 | 1.15 || 1.43 | 1.19 | 1.13
10,000 | 1.96 | 1.89 | 1.82 | 1.82 || 1.51 | 1.18 | 1.18 || 1.40 | 1.24 | 1.15
50,000 | 2.32 | 2.17 | 2.11 - 1.59 | 1.38 - 1.46 | - -

Table 4: Average percentage excess over the Held-Karp lower bound for iterated local
search methods after 100, 500 and 1,000 iterations, respectively. Column LK gives
the average percentage excess over the Held-Karp lower bound for the initial solution
found by using Lin-Kernighan local search.

Running time per iteration

Cities DB-ILS k-remove €-move

2-Opt | 3-Opt | LK || 2-Opt | 3-Opt | LK 2-Opt | 3-Opt LK
1000 0.07 0.18 | 0.52 0.03 0.10 0.58 0.06 0.12 1.05
5,000 | 0.91 1.94 | 3.48 0.28 1.05 4.75 0.35 1.40 12.97

10,000 | 2.63 5.61 | 8.05 0.74 3.49 | 10.38 0.87 4.91 40.75

50,000 | 41.20 | 86.79 | 77.87 || 10.13 | 68.46 | 249.92 || 7.24 | 104.56 | 771.59

Table 5: Average running time (in seconds) for a single iteration of different iterative
methods.

Percentage excess after 100, 500, and 1000 iterations

Cities LK DB-ILS k-remove €-move

100 | 500 | 1000 || 100 | 500 | 1000 || 100 | 500 | 1000
ATT 532 | 1.82]0.16 | 0.13 | 0.13 || 0.44 | 0.26 | 0.26 || 1.30 | 1.30 | 1.30
PR 1173 | 1.60 | 0.72 | 0.43 | 0.31 || 0.52 | 0.26 | 0.22 || 0.85 | 0.74 | 0.51
U 1432 229 [0.78 | 0.62 | 0.62 || 1.12 | 0.30 | 0.27 || 0.55 | 0.27 | 0.25
PR 2392 | 1.32]0.72 | 0.51 | 0.51 || 0.83 | 0.55 | 0.46 || 0.78 | 0.74 | 0.74

PCB 3038* | 2.33 | 1.82 | 1.82 | 1.52 || 1.51 | 1.10 | 1.01 || 1.47 | 1.26 | 1.11

Table 6: Percentage excess over the optimal tour length for known problems after 100,
500 and 1,000 iterations, respectively. *For the problem PCB 3038 the percentages
refer to the lower bound 136,522 computed using the Held-Karp algorithm.

10

2.6 __ (149
2.1+

,,,,,

(1.74%

(1.66%

2 4 6 8 10

Figure 2: Average percentage excess over the Held-Karp lower bound versus running
time, in hours, for a 100,000 cities instance. Dashed, dotted, and solid lines repre-

sent the behaviour of DB-ILS, e-move, and k-remove, respectively. The percentages

obtained after ten hours are displayed above each line.

References

[1]

2]

J. L. Bentley. Experiments on traveling salesman heuristics. Proc. 1st Symp. on

Discrete Algorithms, 91-99, 1990.

J. L. Bentley. Fast algorithms for geometric traveling salesman problems. ORSA.
J. Comput., (4):387-411, 1992.

J. L. Bentley, D. 5. Johnson, L. A. McGeoch, E. E. Rothberg. Near-optimal

solutions to very large traveling salesman problems. In preparation.

B. Codenotti, G. Manzini, L. Margara, and G.Resta. Global strategies for aug-
menting the efficiency of TSP heuristics Proc. of the 3rd Workshop on Algorithms
and Data Structures, August 1993.

B. L. Golden, L. D. Doyle, W. Stewart JR. Approximate traveling salesman
algorithm. Oper. Res., (28):694-711, 1980.

M. Held and R. Karp. The traveling salesman problem and minimum spanning

trees. Oper. Res. 18:1138-1162, 1970.

D. S. Johnson. Local optimization and the traveling salesman problem. Proc. 17th
Collog. on Automata, Languages, and Programming, Lecture Notes in Computer

Science 443. , 446461, 1990.

11

[8] D.S. Johnson, C. H. Papadimitriou, and M. Yannakakis. How easy is local search
7 J. Comput. System Seci. 37(1):79-100, 1988.

[9] S. Lin and W. Kernighan. An effective heuristic algorithm for traveling salesman

problem. Oper. Res., (21):493-515, 1973.

[10] E. Lawler, J. Lenstra, A. Rinnoy Kan, and D. Shmoys. The traveling salesman
problem. John Wiley and Sons, 1985.

[11] O. Martin, S. W. Otto, and W. Felten. Large-step markov chains for the TSP
incorporating local search heuristics. Oper. Res. Lett., (11):219-224, 1992.

[12] G. Reinelt. TSPLIB — A traveling salesman problem library. ORSA. J. Comput.,
(3):376-384, 1991.

12

