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Abstract
We show some combinatorial and algorithmic results concerning sets of lines and
polyhedral objects in 3-space. Our main results include:

(1) An O(nSZC\/@) upper bound on the worst case complexity of the set of
lines missing a star-shaped compact polyhedron with n edges, where ¢ is a suitable
constant.

(2) An O(nSZC\/@) upper bound on the worst case complexity of the set of lines
that can be moved to infinity without intersecting a set of n given lines, where ¢ is a
suitable constant. This bound is almost tight.

(3) An O(nr'**%) randomized expected time algorithm that tests whether a direc-
tion v exists along which a set of n red lines can be translated away from a set of n
blue lines without collisions.

(4) Computing the intersection of two polyhedral terrains in 3-space with n total
edges in time O(n*/3+¢ 4+ E'/3p1+e 4 klog® n), where k is the size of the output, and
e > 0 an arbitrary small but fixed constant. This algorithm improves on the best
previous result of Chazelle at al. [8].

The tools used to obtain these results include Pliicker coordinates of lines, random
sampling and polarity transformations in 3-space.

A preliminary version of this work appeared in the Proceedings of the 9th ACM
Symposium on Computational Geometry [30].
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1 Introduction

It is a common pattern in computational geometry that the combinatorial structure of a
problem is the main ingredient for the design of an efficient algorithm. Thus it is important
to derive good combinatorial bounds for the quantities of interest in 3D problems. Still
results in 3-dimensional computational geometry are much fewer than those for similar
problems cast in 2-dimensional space. One of the reasons for this state of affairs is that the
combinatorial properties of of lines and other 1-dimensional objects in 3-space are not well
understood. Most combinatorial results for polyhedral sets in 3-space describe bounds on
sets of points (or planes via duality) in 3-space [14, 33]. Recently, Aronov and Sharir [5, 6]
could find non-trivial bounds on the complexity of one cell in an arrangement of triangles
in 3-space. This is equivalent to determining the worst case complexity of one isotopy class
of points induced by a set of triangles in 3-spacel.

In a seminal paper of 1989 [8] Chazelle, Edelsbrunner, Guibas and Sharir use in an
original way a range of techniques (Pliicker coordinates of lines, geometric random sampling,
segment trees) and obtain new bounds on the complexity of certain configurations of lines
in 3-space as well as efficient algorithms for solving problems on polyhedral terrains. This
first paper has been followed by others (e.g. [27] [28] [13] [3] [31] [10] [29]) in which the
original ideas have been improved or applied to a range of new problems in 3-space. This
paper is in the same line of research and it aims at improving bounds on the combinatorial
structure of sets of lines. We then use one of the bounds to design an efficient algorithm
for a translation problem in 3-space.

1.1 Complexity of sets of lines

It is well known that a set of polyhedral objects in 3-space induces a decomposition of the
set of spatial lines £ into isotopy classes. Two lines being in the same isotopy class if we
can move continuously one into the other without crossing any polyhedral object.

Let Q be a class of polyhedral objects and () an element of Q. With n = size(Q) we
denote the number of edges of the polyhedral objects in (). We investigate worst case upper
bounds on the combinatorial complexity of the following classes of lines: (i) M(Q) the set
of lines in R® missing all elements in @, (ii) /(@) a connected component of M(Q) (i.e. an
isotopy class of missing lines), and (iii) #(Q) the set of free lines in R® with respect to @
(i.e. the set of lines in M(Q) that can be translated in some direction to infinity without
collisions with elements of ¢)). These classes arise naturally in 3-dimensional visibility and
translation problems

In general, given a set of polyhedral objects () with n edges we can extend each edge
into a full line and obtain a set of n lines Lgy. The number of isotopy classes induced by
a set Lg of lines in general position is ©(n*) and the total descriptive complexity of these
classes is O(n?). Sets M(Q),1(Q) and F(Q) can be expressed as the union of some isotopy
classes (or parts thereof) induced by ) on £. We are interested classes of polyhedral objects
for which M(Q),1(Q), F(Q)) have worst case upper bounds that are substantially smaller
then O(n*). An example in this direction is the O(n®3(n)) bound on the complexity of the

!The results of Aronov and Sharir are more general and hold in d-space.



set of lines stabbing a set of convex polyhedra, where g(n) = 9ev/logn is 5 subpolynomial
function [31].

For any of the above mentioned sets of lines its complexity can be expressed as the
number of extremal lines in the set. A line is extremal when it is incident to four edges of
polyhedra in @), or to two vertices, or to one vertex and two edges and moreover it is tangent
to the polyhedra containing those edges and vertices. With an abuse of notation we will
refer to a set of lines and to its complexity using the same symbol whenever the distinction
is clear from the context. Some more care is needed in definitions when the polyhedral set
is composed of 1-dimensional objects.

For a compact star-shaped polyhedron P (note that a terrain is a particular star-shaped
polyhedron) we show in Section 2 that M(P) = I(P) = F(P) = O(n®3(n)). This result is
proved by establishing an interesting duality relation (through a polarity transformation)
between stabbing and missing lines in 3-space. A similar result is obtained in [17] using
different techniques. The technique in [17] can be extended to prove a similar bound on the
set of rays missing a terrain. An Q(n?) lower bound for M(P) is easy to construct and a
slightly more complex Q(n?a(n)) bound is mentioned in [17].

For a set of lines L: I(L) = O(n?) and M(L) = ©(n*) [8]. In [8] a cubic upper bound
is obtained for the lines wvertically above L, which matches a cubic worst case lower bound.
The set F(L) is a superset of the set of lines vertically above L, since no fixed direction
is involved in the definition of a free line. In Section 3 we prove that F(L) = O(n38(n))
which almost matches the Q(n?) lower bound in [8].

1.2 Collision free translations of polyhedral objects

Moving objects without collisions is an important problem in robotics and CAD/CAM
in relation to assembly of objects composed of polyhedral parts [23]. General versions of
the assembly problems for polyhedra in 3-space can be PSPACE-hard [23]. In this paper
we discuss some restricted types of assembly problems for which we can design efflicient
algorithms.

The problem whether for a class of polyhedral objects a separation direction always
exists is discussed in [37]. Efficient assembly algorithms have been found in the case when
the direction of movement is given for all the objects [24, 16, 11] (see [37] for a survey).
In the planar case Pollack et al. give algorithms for separating two simple polygons by a
sequence of translations [32]. If we allow more complicated types of movement the assembly
problem merges with the much studied motion planning problems (see [34] for a survey).
We consider an intermediate case where the direction of movement is part of the answer
to the problem, and it ranges over the whole sphere of directions, but we allow a single
simultaneous translation.

Let Q; and Q3 be two classes of polyhedral objects and @1 (resp. @2) an element from
Q; (resp. Q3). With n = max{size(Q)1), size(Q2)} we denote the the maximum number
of edges in either set. We define V(Q1,Q2) as the set of directions in 3-space along which
there is a collision-free translation of @)1 with respect to Q2. A point of V(Q1,Q)2) is called
a feasible direction. We are interested in worst case combinatorial bounds on the complexity
of the set V(Q1,()2) and in the time needed to find one feasible direction.

When P; and P; are two simple polyhedra, V(P;, P») = ©(n?) in the worst case [26] and



the set V(Py, P2) can be computed in time O(n*logn). When C; and Cy are two convex
polyhedra V(Cq,Cy) = O(n) and V(Cq,Cy) is computed in time O(n) [25].

In this paper we consider the case V(Lq, Ly) where Ly and Lj are sets of lines in 3-space.
We show that V(L1, L) = O(n). One feasible direction can be found easily in time O(n?)
by adapting a technique in [25]. We give in Section 4 a non-trivial algorithm that finds a
feasible direction in time O(n!->*¢), for every € > 0. The upper bound on the running time
of this algorithm depends on the combinatorial bound for F(L).

1.3 Intersection of polyhedral terrains

Computing the intersection of polyhedra in 3-space is a basic problem in computational
geometry [33, 14]. The intersection of two convex polyhedra can be compute O(n) time
which is optimal [7]. The intersection of two simple non-convex polyhedra can be computed
in time O(n®°%¢ + klogn), where k is the output size [28]. For the case of polyhedral
terrains (which are graphs of piecewise-linear continuous bivariate functions) Chazelle et al.
[8] obtain an intersection algorithm with time bound O(n3/2t¢ 4 klog? n).

Ideally, when computing the intersection of two objects the overhead term (i.e. the
term not depending on the output size) should match the time bound of the best method to
test whether two objects have empty intersection. The algorithms for convex polyhedra and
simple polyhedra satisfy this ideal condition. The result for terrains in [8] does not, since the
best known algorithm for testing the intersection of two terrains has complexity O(n4/3+¢)
[8]. In Section 5 we combine the approach of Chazelle et al. with recent results on halfspace
range queries [20] obtaining a total running time O(n/3tc 4 E'/3+enl*e 4 klog? n). This
algorithm matches the best known intersection-testing algorithm for k£ < n, and is almost
optimal for k > n3/? (within a polylogarithmic factor). We refer to the algorithm in [8]
as the CEGS-Algorithm. For the range 0 < k < n%/2 our algorithm has better asymptotic
performance than the CEGS-Algorithm and for k > n?/2 it is as fast.

As follows from the discussion in [9] and [8], the running time is dominated by the
time needed to find all intersections of an edge from one terrain with a face on the other
terrain. The main new idea is to detect efficiently those edges that do not contribute to the
intersection. Time spent on additional computation is charged partially to the output size,
thus reducing the fixed overhead term.

The paper is organized as follows: in Section 2 we discuss the relation between stabbing
lines and missing lines and we derive a bound for the set of lines missing a star-shaped
polyhedron. In Section 3 we derive a bound on the set of free lines induced by lines and in
Section 4 we discuss the translation problem for two sets of lines in 3-space. In Section 5
we present the algorithm for intersecting two polyhedral terrains.

2 Missing lines, stabbing lines and polarity

Let us consider a well-known duality transformation between points and planes in 3-space,
namely the polarity 6 [33, 7] which maps a point p = (a, b, ¢) distinct from the origin O into
the plane é(p) of equation az + by + ¢z = 1. Plane §(p) is the plane normal to the line Op
and at distance 1/|Op| from O, on the same side as p. Given a convex compact polytope P
containing O in its interior, we define the set §( P) = {6(p)|p € P} of planes dual to points



in P. Considering 6(P) as a set of points in R?, we define as the dual polytope of P the
set P? = R3/6(P). Tt is easy to show that P? is a convex compact polytope containing O
in its interior. If no two facets of P are coplanar then there is a one-to-one correspondence
between k-faces of P and (2 — k)-faces of P®. The polarity transformation is convolutory
(i.e. (P%)® = P) [33]. Given a line [ as a locus of points we obtain in the dual space a locus
of planes which is a 1-dimensional pencil of planes. The line ° dual to [ is the axis of the
pencil.

Lemma 1 Given a convexr compact polytope P containing the origin, a line | misses P if
and only if I° is a stabbing line for P°.

Proof. If a line [ in primal space meets the convex polytope P then all planes in the
pencil of axis [ meet P. Therefore in the dual space [° does not intersect P®. Conversely, if
a line [ in primal space misses P, than there is one plane supported by [ which is disjoint
from P. Therefore the dual line [° stabs P°. | |

Theorem 1 Given a compact star-shaped polyhedron P of size n, M(P)= F(P)=I1(P) =

O(nSQC\/logn).

Proof.

1) First we prove the bound for M(P). Given a star-shaped polytope P with n edges and
center O, we triangulate its boundary. In particular we project each edge of P onto the
sphere at infinity obtaining a planar map. We triangulate this map and back project
the new edges on the boundary of P. This triangulation ¥ has O(n) triangles. We
then compute the convex hull of the origin and every triangle ¢ € 3, thus obtaining
a set of O(n) tetrahedra covering P and such that each contains the origin. We can
perturbate slightly each tetrahedron to make sure that the origin is in the interior
of each tetrahedron. Let P° be the set of dual polytopes to such tetrahedra. It is
crucial to observe that, since O is common to all tetrahedra in the decomposition of
P, then dual of O, namely the plane at infinity in the dual space, is disjoint from all
the dual tetrahedra in P°. Therefore we can apply the result on the set of stabbing
lines described in [31] to bound the number of extremal stabbing lines for P, From
Lemma 1 this bound holds also for the set of extremal lines missing P.

2) For a star-shaped polytope a missing line [ is a free line, because ! can be taken
to infinity on the plane defined by ! and O. The set of missing lines has only one
component. We can move any line [ until it is disjoint from the convex hull of P, and
then move it back to coincide with any other missing line. Thus the set of missing
lines, the set of free lines and one isotopy class of missing lines are indeed the same
set. | |

Let us consider now, over all possible coverings of a star-shaped polyhedron by convex
polyhedra all sharing a common point, one such covering with minimum number of edges.
Let 7 be such minimum number of edges. Note that by the above discussion 7 = O(n).
Theorem 1 implies the following corollary:



Corollary 1 Given a compact star-shaped polyhedron P, let i be defined as above, then
M(P) = F(P) = I(P) = O(#*B(#)).

Proof. In the proof of Theorem 1 we just need to cover P with a collection of convex
polyhedra sharing one point. Thus the real input size for the second part of the proof
involving stabbing lines in dual space is the number of edges of such covering. The best
bound is obtained using the covering with fewer edges. | |

Let Pyp...P; be a set of convex polyhedra with total n edges and sharing a point. Then
the union of these polytopes P’ = P; U Ps...U Py is a star-shaped polyhedron of size n’
which may range from constant to ©(n?). For such star-shaped polyhedron P’ Corollary 1
implies a bound on the set of missing lines O(7*3(n)), where n = min{n, n'}.

3 Free lines induced by lines

3.1 Notation and Preliminaries

Let us fix an orthogonal reference frame in 3-space with unit vectors (;, j, E) forming a
positively oriented triple according to the skew rule. A point in this real 3-dimensional
space has Cartesian coordinates (z,y, z) and homogeneous coordinates (zg, z1, &2, 23). The
relations between the two systems of coordinates are given by the following equations:
T =x1/x0,y = x2/x0 and z = z3/x9. Two points ¢ = (zg, 21,2, 23) and b = (yo, y1, Y2, Y3)
in 3-dimensional homogeneous coordinates define a line [ in 3-space. The six quantities
& = xy; — xjy; for oj = 01,02,03,12,23,31 are called Pliicker coordinates of the line [
(oriented from z to y) [35]. These coordinates are the two-by-two minors of the two-by-four
matrix formed by the coordinates of the point @ (on the first row) and b (on the second row).
The six parameters are not independent; they must satisfy the following equation (whose
solution set constitutes the Plicker hypersurface or Klein quadric or Grassman manifold

F1 136, 35]):

II = &o1éas + £02631 + 03612 = 0 (1)

The incidence relation between two lines [ and I’ can be expressed using the Pliicker
coordinates of [ and I’. Let aq,b; (resp. ag,by) be two points on [ (resp. I') oriented as [
(resp. I'). The incidence between [ and I’ is expressed as the vanishing of the determinant
of a four-by-four matrix whose rows are the coordinates of aq, b1, as, b, in this order from
top to bottom.

10 ai1 Q12 a13
bio bi1 b1z b3 -0 (2)
G20 @21 Q22 G323
bao ba1 bz b3

If we expand the determinant according to the two-by-two minors of the sub-matrix
formed by the coordinates of the points a1, b; and the minors of the sub-matrix formed by
the points ag, by, we obtain the following bi-linear equation in which only Pliicker coordinates
are involved:



01693 + E02851 + Eosbla + E01as + Eppbar + Ezéaz = 0 (3)

Let us introduce two mappings: 7 : I — 7(I) maps a line in R® to an hyperplane
in P> (5-dimensional oriented projective space) whose plane coordinates are the Pliicker
coordinates of | appropriately reordered. p : I — p(l) maps a line in R> to a point in P>
whose coordinates are the Pliicker coordinates of the line. The incidence relation between
the two lines [,1’ (expressed by Equation 3) can be reformulated as an incidence relation
between points and hyperplanes in P°. Equation 3 can be rewritten in the form m;(p;/) = 0,
which is equivalent to requiring point p(I’) to belong to hyperplane w(l). Computations
that are standard in real spaces can be done in oriented projective spaces using a method
in [36]. For any given pair of lines [ and I’ the sign of 7;(py) is called the Plicker relative
orientation of [ and !’, denoted by [ o!’. Computing [’ is equivalent to testing the relative
position of a Plicker point p({) with respect to a Plicker hyperplane 7 (I').

Given a line [, a vector ¥, and a line I’ in R® we say that [ is above I’ in direction ¥
(namely above(l,l',7)) if moving ! in direction ¥ we eventually intersect !’. Note that a
above(l,l',v) is true if and only if [ is free from !’ in direction —v. Let us define oriented
lines by ordered pairs of points in 3-space: | = (a,b) and I’ = (a’,b"). The tsp-relative
orientation is the sign of the triple scalar product of (a — b,a’ — ', ¥):

ay — by ay—0by, a,—0b,

tsp(l,1',0) = sign| a,, = b, a), = b, a =0 (4)
Vg vy v,

The determinant in the definition of ¢sp(l,1’,v) can be expanded as a bilinear form in
the one-by-one minors of the first row and the two-by-two minors of the second and third
row. We can interpret this bilinear form as testing the relative position of a point p'(I’, v)
with respect to the hyperplane 7’(l) on a 2-dimensional projective plane G. Considering
the signs (41, —1) as boolean values, the following technical lemma is proved in [29]:

Lemma 2 ([29]) A line l is above a set L = {l;} of lines with respect to v if and only if
the following predicate is true:

/\[(IZ ol) zor tsp(l;,1,v)] (5)

7

Our aim is to find a bound on the descriptive complexity of the lines satisfying formula
(5) for some value of v, with respect to a given finite set of lines L. On the parametric
plane G of the tsp-test we have a set of planar lines {7'(!)|l € L} induced by L, which form
the arrangement Ag(L). For each cell ¢ in Ag(L) the corresponding set of Pliicker points
of free lines is defined by an intersection of Plicker halfspaces forming a polyhedron K.(L)
in Pliicker space. A vertex of K.(L) is called a free vertex.

The set F(L) is represented therefore as the intersection of the Pliicker hypersurface
with the collection of polyhedra in Pliicker space K(L) = {K.(L)|c € Ag(L)}. Note that
the polyhedra in K(L) are pairwise disjoint since they are different cells in the arrangement
of hyperplanes {7(l)|l € L}. Thus a bound on ) #K.(L), where the operator # counts
the faces of any dimension bounding a polytope, implies a bound on F(L).



3.2 An upper bound for F(L)

We consider now a set L of lines in general position (i.e. only two lines meet any four lines in
L) and the corresponding collection K(L). A standard perturbation argument [14, 8] shows
that the maximum complexity of (L) is attained by a set of hyperplanes in general position
(i.e. any 5 hyperplanes meet in a single point). Under this general position hypothesis we
have that any polyhedron K.(L)is simple. From Lemma 2.1 in [4] we have that the number
of vertices of a simple polyhedron is an upper bound to the number of faces of any dimension
bounding the polyhedron. We present a proof of a bound on F(L) which follows closely the
proof of an upper bound on the set of lines stabbing n triangles in 3-space [31].

Given the planar arrangement of lines Ag(L) on G we use Matousek’s technique [18, 19]
to partition the plane G into a set X (L) of O(r?) triangles so that no triangle meets more
than O(n/r) hyperplanes. Let ¢ be one of these triangles on G. We partition L into two
sets of lines in 3-space: Li(0), whose hyperplanes 7'(l) do not cut o, and Ly(c), whose
hyperplanes 7’(l) cut o. And furthermore, by the properties of the partition, |Li(o)| < n
and [Ly(0)| < O(n/7).

Definition 1 Given a set L, a region o and sets Li(c) and Ly(0) as above, A, (t,7, L) is the
set of free vertices defined by i hyperplanes in Hi(o) = {n(l)|l € L1(0)} and j hyperplanes
in Hy(o) = {n()|l € La(0)}, and are contained in the closure of K,(L1(0)).

Let F(n) be the maximum number of free vertices for a set of n lines in general position.
Let F,(n) be the number of free vertices in K,(Li(c)) for a 0 € Xg. We will show a
uniform upper bound on F(n). Suppose without loss of generality that L, of size n, attains
the maximum value F(n). We have

Fln)y< Y Fy(n) (6)

Uezg(L)

and

Fo(n) < [A,(0,5, L)+ A, (1,4, L)+ [A,(2,3, L) +
145(3,2, L) +45(4, 1, L) + |45(5,0, L)| (7)

Now we bound independently each term in (7).

1) |A;(5,0,L)| represents the number of vertices touching five hyperplanes in Hq(o)
and in K,(L1(o)). These vertices are the vertices of K,(L1(0)). The number of
such vertices is O(n?), by the Upper Bound Theorem for polytopes (see [14, Chapter
6,Theorem 6.12]).

2) |A;(4,1,L)|. These are vertices formed by intersecting an edge of K,(L1(o)) with
an hyperplane from Hy(c). Since there are at most O(n?) such edges, the number of
vertices is bounded by O(n?/r).

3) |A+(3,2, L)| represents the number of vertices incident to two hyperplanes in Hy(0o)
and a two-dimensional face of K,(L1(c)). We count these vertices by intersecting



pairs of hyperplanes in Hy(0), thus forming O((n/r)?) 3-dimensional sub-spaces, then
we intersect each such subspace with the K,(Li(c)). Each such intersection is a 3-
dimensional polytope and thus has O(n) vertices. The total number of such vertices

is thus O(n?®/r?).

4) |As(2,3, L)| represents the number of vertices incident to three hyperplanes in Hy(o),
two hyperplanes in H1(o) and on the boundary of K,(L1(0)).

Let us consider the family of 2-dimensional subspaces 51, .., 5; obtained by intersecting
every triple of hyperplanes from Hj(o). And let us consider the family of planar
polygons P, ..., Py where P, = 5; N K,(L1(0)). Each vertex v of P; can be charged to
one of its incident edges so that no edge is charged more then once. Let e be an edge
of P; and h its generating hyperplane in H;(0o). If we choose any subset B C L; which
contains h, then h will contribute an edge €’ in the planar polygon P/ = 5; N K,(B).
We can charge this edge €’ to one of its incident vertices v’ such that each vertex is
charged no more than once.

We partition L into r disjoint sets By,..., B, of size at most [n/r]. We form r sets
Q: = B;ULy(0),fori=1,...,r. From the above observations we have that each free
vertex v in A,(2,3, L) can be charged to some free vertex v’ of some @; in such way
that v’ is charged only a constant number of times. The maximum number of free
vertices for any set of 2n/r lines is F(2n/r). Therefore rF(2n/r) is an upper bound
for |A,(2,3,L)|.

5) |As(1,4, L)| represents the number of vertices touching four hyperplanes in Hy(o),
one hyperplane in H;(c) and incident on K,(Lq(o)). We partition L; into r disjoint
sets By, ..., B, of size at most [n/r]. We form r sets Q; = B;U Ly(o),fori=1,...,7.
We observe that a every vertex in A,(1,3,L) is a free vertex for exactly one of the
sets B;. The maximum number of free vertices for any set of 2n/r lines is F(2n/r).
Therefore rF(2n/r) is an upper bound for |A4,(1,3, L)|.

6) |As(0,5,L)| counts the number of extremal free lines for the set Ly(o) of size n/r

within K,(Li(0)). |4,(0,5, L)| is bounded from above by F(n/r).
We obtain the following equation

F(n) <r*n? 4+ 0r + 0 + v F(n/r) + v F(n/r) (8)

where we omit multiplicative constants. Equation 8 is solved in [31] and we obtain the main
theorem:

Theorem 2 Gliven a set L of n lines in 3-space the complexity of Y., K (L) is O(n32°V1o87)
for a suitable constant c.

and the following corollary:

Corollary 2 Given a set L of n lines in 3-space the complezity of the set of free lines F/(L)
is O(n®2¢V1°8 ™) for a suitable constant c.



Since the lines in the construction of an upper envelope of lines in [8] are particular free
lines, the lower bound Q(n?) in [8] holds for free lines. The upper bound of Theorem 2 is
almost tight. Using an idea of Agarwal [1] a slightly tighter O(n®logn) bound on F(L) can
be found.

4 Translating sets of lines

Once we know that the set of free lines with respect to L has complexity at most O(n®8(n))
the first algorithmic problem to be addressed is testing a line for membership in F(L).

Theorem 3 Membership in F(L) can be tested in time O(logn) using a data structure of
size O(n3%¢), which is buill in O(n3*¢) expected time. Moreover, the data structure returns
a constant size representation of the set of all free directions for the query line.

Proof. 1) Construction of the data structure. We select a random sample R of L, where
the size of R is r < n, and we build the planar arrangement Ag(R) on the plane G of
the tsp-test, obtaining O(r?) cells. For each such cell we build the corresponding Pliicker
polyhedron in 5-space for the lines in R. The convex polyhedra in (R) are all disjoint and
have a total of O(r33(r)) faces of any dimension. Therefore we can triangulate these Pliicker
polyhedra obtaining O(r®8(r)) disjoint simplices. From the random sampling theory [12],
each simplex is cut by no more than O(n/rlogr) of the Plicker hyperplanes corresponding
tolines in L. Let s be a simplex in Plicker space so generated and let ¢ be the corresponding
cell in Ag(R). We have to consider 3 cases:

(i) Let L1(s) C L be the set of lines such that 7(/) meets s. From the above discussion
this set has size |L1(s)| < n/rlogr. We deal with it by a recursive call to the construction
we are describing.

(ii) Let Ly(s) C L be the set of lines such that 7(/) does not meets s and 7’(/) meet c.
For these lines the sign of 7(1) with respect to s is well defined. We can invert such sign and
determine an halfplane 7/(1)* on the plane G. We take the intersection of these halfplanes
with the region ¢ and we store such polygon P;. The maximum size of this polygon is O(n).

(ili) Let Lg(s) C L be the set of lines such that 7(!) does not meet s, and 7'(l) does
not meet ¢. Region ¢ is on a definite side of each hyperplane 7'(1), therefore we can check
whether the simplex s is on the opposite side of 7(l) for each [ € L3(s). If this is the case
for all lines in L3(s) then we save s for further processing, otherwise s is marked as not-F.
The result of the construction is a search tree which we denote with D(L). It is easy to see
that the time needed to carry on the construction satisfies this recurrence:

T(n) < O(TSﬂ(T))[T(n/Tlog r)+ nlogn + n] + nro®

The solution is O(n®*t¢). A similar bound holds for the storage.

2) Query algorithm. For any line [ the set of feasible directions of [ with respect to any
set of lines is represented on the plane at infinity as a convex wedge which has the direction
of [ as apex. Therefore we can represent the feasible directions for / as an interval on a
1-dimensional space.

We keep during the query the current interval of feasible directions for [ which we denote
with if(l). At the end of the query we return i¢(/), which will be empty in case the query



line [ is not free. Given a query line [ we initialize i¢(l) to [—o00, 4+00] and we locate the
point p(l) in Plicker space in K(R) stored at the root of D(L). If p(l) falls out of any
simplex or is within a simplex marked not-F, then we set if(I) = . If p(I) is within a
simplex s we find the associate polygon P;. For a given line [ and a variable v, the locus
p'(l,v)is aline in G. Therefore in logarithmic time we can check whether this locus meets
P,. If it does not, we set iy = (). If it does, we update i7(I) by intersecting it with the
intervals of values of v for which p’({,v) falls within Ps. Then we recurse the query in the
data structure associated with s. We intersect i7(l) with the feasibility interval returned
by the recursive call. The correctness of the query algorithm derives from the fact that it
computes the value of formula (5) for the query line.

If we choose r to be a constant then the query time is O(log?n). If we choose r = n”
and we use auxiliary fast point location data structure (e.g. see [31, 28]) we can reduce the
query time to O(logn). i

4.1 Finding a feasible direction

Given two sets of lines A and B can we separate one set from the other using one translation
v? This is equivalent to ask whether:

Jv] /\ (liol;) xor tsp(l;,1;,v)]
1€EA,JEB

In turns this is equivalent to solving | A||B| linear inequalities, which we can solve in time
time O(|A||B|) using for example Megiddo’s method for linear programming in linear time
[22]. A quadratic method is obtained also by modifying for lines a method of Nurmi and
Sack [25] for polyhedra, followed by an application of linear programming. The discussion
of the previous section gives us a first handle to produce a a subquadratic algorithm. It
is easy to see that for each line in A the set of feasible direction is a convex wedge on the
plane at infinity. Therefore the set of feasible direction for all lines in A has worst case
complexity ©(n). A trivial observation is that if set A is free form B in direction v, if and
only if B is free from A in direction —v. So, when comparing sets A and B we can switch
the roles of A and B, but we have to take care of the fact that the set of feasible direction
obtained is reflected with respect to the origin.

Theorem 4 It is possible to find a feasible direction for two sets of n and m lines in time
O(n3/4,m3/4+5 1+ ,ml—l—e n TL1+E).

Proof. Let us consider a set A of n lines and a set B of m lines. If m > n® we use
directly the algorithm of Theorem 3. We use O(n3%¢) time to preprocess A and we perform
m queries in O(mlogn) time. We obtain m linear constraints and we can find a feasible
direction in time O(m). The total cost is O(m!*e).

Let us suppose that m < n3. The aim of this part of the algorithm is to efficiently
produce for each line in [ € B the representation i¢(/) of its wedge of feasible directions. We
take a random sample R C B of constant size r. We build the set L(R) for the set R using
a brute force method and the planar arrangement Ag(R) on the plane G. We triangulate
the polytopes in K(R), obtaining u(r) = O(r35(r)) disjoint simplices in Pliicker space. For
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each simplex s; we compute the set A; of Plicker points of lines in A which are inside s;.
Let n; be the cardinality of A;. We compute the set B; C B whose Pliicker hyperplane
intersect s. Let m; = |B;|. By the random sampling theory m; < em/rlogr, with high
probability. As in the proof of Theorem 3 a simplex s is associated with a unique planar
cell ¢ of Ag(R). We define Ly C B and L, C B as in the proof of Theorem 3. As at step
(iii) of the proof of Theorem 3 we check whether the simplex s is to be marked not-F. If yes
and n; > 0, we stop the algorithm and we answer negatively to the separability problem.
As in step (ii) of the proof of Theorem 3 we construct the polygon Ps, and for each element
of I € A; we check whether the corresponding locus p(l, v) on the parametric plane G meets
P, and we extract the corresponding interval of directions. We update i¢(l) by intersecting
its old value with the new interval. If any interval ¢5() is empty we terminate the algorithm
and answer negatively.

We recurse the construction on the set A; and the set B; of lines relative to s. The
recursive call either returns a negative answer or it returns a ¢5(/) for each element of A;.
We intersect this interval with the one computed previously. If any interval is empty we
answer negatively.

If we have m; > nf’ then we use the direct method of Theorem 3. We obtain for each
element of B; a feasibility interval with respect to A;. Each pair {(I,7¢(]))|l € B;} defines
a wedge on the plane at infinity. By intersecting all the wedges we obtain a polygon. Each
point on the polygon is a direction for which B; is free from A;. By reversing the sign of
the directions we obtain the polygon of directions for which A; is free from B;. It is easy to
determine now for each line I € A; its interval ¢5(/) with respect to B;. This reflection step
is needed to compare the result with intervals at the higher levels of the algorithm. Finding
the polygon of free directions costs time O(m;log m;), determining the i(!) for each line in
A; takes time O(n;logm;).

The overall algorithm generates O(n) feasibility intervals. We find a common feasible
direction by computing a point in the intersection of wedges corresponding to the feasibility
intervals in time O(n) using Megiddo’s liner programming method. The total time 7'(n, m)
needed to compute the intervals dominates the overall running time. We have:

O(m'*e) for m > n?

T(n,m) = { wu(r)

iey T'(ni,mg) + p(r)(n+ m)logm + mr otherwise

(9)

for some constant ¢, where pu(r) = O(r?S(r)), m; = O(Zlogr) and Y ;n; = n. The
correctness of the algorithm comes from an argument similar to that of Theorem 3. The
time bound for T(n, m) is O(n®/*m3/4%¢ 4 plte L m1+e) as follows from an analysis similar
to one in [15]. If n = m, we have T'(n,n) = O(n'>%¢). i

5 Intersecting polyhedral terrains

5.1 The CEGS-Algorithm

We start recollecting the main features of the Hereditary Segment Tree (HST) introduced
in [8] [9]. Given a blue terrain B with m edges and a red terrain R with n edges, we project
these edges on the zy-plane obtaining a set B = {by, .., b,,} of pairwise interior-disjoint blue
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segments and a set B = {ry,..,7,} of pairwise interior-disjoint red segments. We assume
without loss of generality that n > m.

The HST of B and R is a balanced tree 7 where we associate to each node v a pair of
subsets of B, C B and R, C R with the following properties: (i) the sum of the size of all
lists B, and R, for all v in 7 is O(nlog®n); (ii) each intersection of a blue segment with
a red segment is reported at one and only one node v of 7; and (iii) every red segment in
R, meets every blue segment in B,. Moreover, the segments in B, have end-points outside
a vertical strip I, on the zy-plane parallel to the y-axis. Thus, segments in B, have a
well defined vertical order within the strip I,. On each set B, at node v of 7 we build an
auxiliary balanced tree T, of degree 8, based on the vertical order of segments in B,. Thus
each node 7 of T), is associated with a connected part of I,,. All the intersections among an
edge of R and a face of B, except possibly a linear number of them, can be charged to the
fact that a red segment r € R, meets two blue segments by,b; € B, and the corresponding
red edge in 3-space is above one and below the other of the two corresponding blue edges
in 3-space. Over the whole data structure each actual intersection can be charged to this
event, which is called a witness intersection, at most O(logsn) times. Those intersections
not found using witness intersections can be found using easier planar techniques [8].

During the preprocessing we build 7(B, R) with the auxiliary trees T,. Moreover at
each node 7 of a tree T}, with associated list B; of length less than y/n we build a data
structure described in [8] of size quadratic in the number of blue edges, such that any witness
intersection is detected in time O(logn). The overall time to construct such data structures
is O(n3/*¢) and this cost contributes to the final overhead term of the CEGS-Algorithm.

Next, the red segments at R, are moved down the tree T,,. At each node 7 of T, for
which no query data structure has been built, the list of R, is duplicated and sent to both
children of 7. This phase produces a total of O(n®/?+¢) red segments in the algorithm. When
these red segments are pushed further down the tree we can detect witness intersections
at logarithmic cost. Red segments failing the test are not passed down the tree. Thus
the cost of detecting witness intersection from now on is charged to the number of witness
intersections kloggn. Choosing 6§ = n¢ for a positive € < ¢ we obtain the overall time
bound.

To summarize, in the CEGS-algorithm [8, 9] we can distinguish four main cost factors.
During preprocessing;:

(i) cost for setting up the HST data structure.

(ii) cost for setting up the data structure to check witness intersections.
During queries:

(iii) cost for duplicating red edges.

(iv) cost for tracing witness intersections up to the leaves of the tree.

5.2 The Relevance Test for Red Edges

The relevance test for a red edge in a set R, for a node 7 in 7, is failed only if this red edge
is above all (or below all) the blue edges in B,. Since we have red edges whose projection

12



meet all blue edges involved in a single test we can extend the red and blue edges into full
lines without changing the outcome of the test. Since the set has two symmetric parts we
discuss only the first part. A red line is vertically above a set of blue lines if and only if
formula (5) is satisfied for v, = (0,0, —1). Thus for a query line [ we have to test p/(l,v,)
against hyperplanes in a 1-dimensional projective space and then check p(!) for inclusion in
a 5-dimensional polytope in Pliicker space. If we interpret p/(I,v) and p(l) as hyperplanes
we can answer equivalent problems which are an half-space range problem in 1-space and a
half-space emptiness problem in 5-space.

Using a multi-level data structure approach in [2] and [20] (see also [21] for an abstract
treatment of multi-level data structures) we obtain that such test can be computed in time
O(n'*¢/s'/?) using a data structure of size s with |B,| < s < |B,|%. The time used to build
the data structure is O(s***).

5.3 The overall algorithm

In this section we prove the following main result:

Theorem 5 Given a polyhedral terrains B with m edges and a polyhedral terrain R with
n > m edges, all intersections between edges of R and faces of B can be found in time
0(714/3"'E + K1/3p1+e + K log2 n) where I is the number of such intersections.

As in the CEGS-Algorithm we build the tree 7 and we discover witness intersections at
each node v of 7. The total cost of the algorithm after the construction of 7 is the sum of
the cost at each node v of 7. Since the total duplication of segments over 7 is quite small
the time bound for a node v hold essentially for the all tree, modulo some polylogarithmic
factors which will be covered in the final bound by O(n®) factors. To simplify the notation
we denote the size of B, with m and of R, with n. Moreover, we assume without loss of
generality that m < n.

We set the threshold for tracing intersections, at logarithmic cost for intersection, at
nodes 7 in T, whose associated blue list has size less than '/ (in the CEGS-Algorithm
the threshold is at n'/2 !). Below the level of nodes for which we have sets of size n'/3
the tracing of the intersections is made as in the CEGS-Algorithm with on-line queries of
logarithmic cost. Setting up these data structures has a total cost O(n?/3*¢).

The main new idea is to avoid duplicating red edges that do not contribute some witness
intersection. We consider the nodes of T, for which an data structure has not been built
yvet. Let 7 be one such node. At such node we have an input sets B, which is used in the
preprocessing phase. On-line we obtain a red set R, of red edges that reach 7. During the
query we use the data structure for the relevance test stored at 7 to detect the red edges
that do not contribute any intersection. These edges are not passed to the children of 7.
Red edges passing the test are replicated and sent to all the children of 7. Note that in the
structure of T, the blue lists at each node 7 are split between the two children of 7, in such
way that each children covers a connected portion of I,,. In the CEGS-Algorithm the red
edges were passed down the tree and replicated at every level without any test.

Let ¢ = 0,..,logs n be the levels of the tree T),, where 7 = 0 represents the root. At level
i we have to build §* data structures for the relevance tests, where each such data structure
has m;; = m/6* blue edges as input. The node ij at level ¢ receives, during the query phase,
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ki_1 ; red edges where k;_; ; is the number of red edges at the father of node ¢j passing the
relevance test. Since an edge is passed only if contributes a (witness) intersection we have
> kij < Klogsn.

We observe that the higher the level of the node, the smaller the set of blue edges becomes
and we can spend less time in preprocessing. So, while keeping the total preprocessing time
of each level the same function of m, we can reduce the query time for levels with higher
number. This effect tending to the reduction of the total time is balanced by the fact that
if we discover many intersections (K is large) we have to perform many queries.

It is enough to consider form now on only levels with input blue size m;; > nl/3. At a
generic level i we have blue input size m;; = m® and N (i) = m' ™ nodes, with 1/3 < @ < 1.
We use (m®)" storage for the data structure at node 77, for 1 < < 2. At level ¢ the total
cost for preprocessing and queries is

N(i)
2 [m) + kioa,i(m*)' 72, (10)

The summation on the first term gives m®Ym?!

~% which we set to be equal to m™, where
T is a parameter to be tuned later. We obtain: 7 = ay+1—a from which v = 1+ (7 —-1)/a.

The exponent of the cost function for each query is Q@ = a(1 —v/2)= (e — 7+ 1)/2.

Lemma 3 An upper bound on the running time of the algorithm is obtained when the inter-
sections are detected at nodes with lower possible level number, and when the intersections
are spread evenly on the tree.

Proof. For any given problem instance with » and m edges, the number of intersections
is a given number K. The bound on the preprocessing time of the algorithm and on the
time of a single query depends on the total number of intersections to discover and not
on their distribution over the tree. On the other hand any intersection that is discovered
(witness intersection [8]) must be traced down to the leaves of the tree. As we observed
the query time decreases with the level, therefore we obtain the maximum cost under the
assumption that all intersections are discovered at the highest level possible, which amounts
to saturating the high levels of the tree. Moreover, if no red segment reaches some node we
can avoid the preprocessing step for that node thus reducing the total time. [ |

Using the above lemma we can distinguish levels of the tree with low number which are
saturated (i.e. all red edges contribute an intersection) and those with high number that
are not saturated (i.e. no new intersections are discovered).

We assume for the time being that we know that the total output size K = n® for
1 < § < 3/2. On the saturated levels k;_y; = n. Since we cannot obtain more than
n? intersections we have that the last saturated level must satisfy: »'~%n = n®. So, for
a > 2 — 3 we have saturation, for & < 2 — 3 we do not have saturation and we assume we
do not find new intersections either.

Saturation case. We have 2 — § < o < 1. The summation on the second term of (10) is:

Z an < Z an — nl—ae—l—l—l—(oz—?r—}—l)/? _ n(5—7r—ae)/2.
J=1N() J=1N()
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The total cost is given by summing this cost over all the saturation levels. The level with
the highest cost is the last saturated level, which is attained at the lower end of the a range,
for a« = 2 — 3. There are at most O(logs n) levels. We obtain a bound n(F+3=m)/210gs n on
the cost of the queries on saturated levels.

Non-saturation case. When we reach the last saturated level there are no new intersec-
tions discovered. The cost of each query decreases when the level number increases. The
preprocessing cost is m™ < n”™ at each level. Therefore the total cost of each non-saturated
level is bounded by the cost of the last saturated level.

The total cost we obtain is n”™ logs n 4+ n(#+3-™/21og, n. Now we choose 7 so to balance
the two terms. Setting @ = (# + 3 — 7)/2 we obtain 7 = (/3 + 1. Summarizing the
above discussion, we have obtained that the cost of tracing intersection while descending
the tree from the root up to the threshold level is O(n?/3*¢ 4 K'1/3n'*¢). From the threshold
level to the leaves each query has logarithmic cost and can be charged directly to witness
intersections.

When we run the algorithm we do not know the value of K and as a consequence we
do not know how much time to allocate for the prepocessing of the data structures for the
relevance test. To overcome this situation we guess a value for K and we run the algorithm.
The initial guess is Kg = n, then guess K, is obtained by doubling the preceding one:
K, = 2K, 1. We have only a logarithmic number of guesses to do at most. If we exceed the
time allowed by the bound we stop and start again doubling our estimate. For the first and
the second term of the bound this logarithmic extra factor is swallowed by the n¢ factor.
For the third term we note that the guessed values for K form a geometric progression.
Therefore the sum of the terms is proportional to the last term in the summation, which
in turns is no more than twice the actual number of intersections. Also, we choose § = n¢'.
This completes the proof of Theorem 5.

Theorem 5 and the reduction in [8, 9] lead to the following corollary:

Corollary 3 The intersection of two terrains of total size n can be found in time O(n4/3+€—|—
K1/3plte 4 K log? n), where K is the size of the intersection.

6 Conclusions

We have shown some combinatorial bounds on the complexity of sets of lines missing poly-
hedral sets in 3-space. We have applied these bounds to the design of an algorithm for
solving a translation problem for lines in 3-space. We have also discussed an improved
algorithm for computing the intersection of polyhedral terrains.

Still, many natural questions on lines in 3-space are left unanswered. For example,
which is the complexity of F(Q) and I(Q) for @ a simple polyhedron or a set of rods in
R3? We conjecture that a complexity close to cubic is the right answer.

A related challenge is to use effectively these combinatorial bounds for solving algorith-
mic visibility problems in 3-space. In a preliminary version of this paper [30] the repeated
computation of the shadow of a star-shaped polyhedron from view-points given on-line is
considered. Unfortunately the solution sketched in [30] has a flaw. The difficulty is that
the set of missing lines is described in Pliicker space as a collection of interior-disjoint con-
vex polyhedra at the cost of using additional hyperplanes not related to the initial edges.
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These additional constraints do not influence the bound on F(P) but introduce spurious
break-points in the on-line computation of the shadow. At the moment it is not clear thus
whether the time and storage complexity claimed in [30] on this problem can be achieved.
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