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Abstract

The repetitive hidden-surface-removal problem can be rephrased as the problem of
finding the most compact representation of all views of a polyhedral scene that allows
efficient on-line retrieval of a single view. In this paper we present a novel approach
to this problem. We assume that a polyhedral scene in 3-space is given in advance
and is preprocessed off-line into a data structure. Afterwards, the data structure is
accessed repeatedly with view-points given on-line and the portions of the polyhedra
visible from each view-point are produced on-line. This mode of operation is close
to that of real interactive display systems. The main difficulty is to preprocess the
scene without knowing the query view-points.

Let n be the number total of edges, vertices and faces of the polyhedral objects
and let £ be the number of vertices and edges of the image. The main result of
this paper is that, using an off-line data structure of size m with n'*te < m < n?te,
it is possible to answer on-line hidden-surface-removal queries in time O(klogn +
min{n log n, kn'*</m!/?}), when the scene is composed of c-oriented polyhedra. This
data structure accommodates dynamic insertion and deletion of polyhedral objects.
The polyhedra may intersect and may have cycles in the dominance relation. We also
improve worst-case time/storage bounds for the repetitive hidden surface removal
problem when the polyhedral scene is composed of unrestricted polyhedra.

Preliminary version of this work is in the Proceedings of the 1993 Workshop on
Algorithms and Data Structures.
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1 Introduction

1.1 The problem

The Hidden Surface Removal problem (HSR for short) for polyhedral scenes in 3-space
is important for graphical applications and has attracted much interest in the research
community in recent years (e.g. [15],[7],[38],[5],[23], [32],[17] and [31]). A good survey of
old and recent results can be found in [14, 40].

Given a set P of objects bounded by polygonal faces which we assume to be opaque, a
view-point v, and a view-plane V', the problem consists in computing the visible portion of
the scene as viewed from v and projected on V. We consider the “object space” variant of
this problem where the output of the algorithm is a planar graph representing the subdi-
vision of V into maximal connected regions in each of which a single face of an object (or
the background) is seen. This subdivision is called visibility map of P from v, denoted by
M (v, P). Other solutions are classified as “image space” since the aim is to compute for
each pixel of the screen the object visible at that pixel [40].

We assume in this paper that the polyhedra are given in advance and are preprocessed
into a data structure. This step is critical since we do not know at this time which view-
points will be used. Therefore, our data structure must be independent from any fixed
viewpoint. Afterwards, the data structure is accessed repeatedly with query view-points
and the visibility map for each viewpoint is produced on-line (repetitive mode). This sce-
nario should be compared with the single-shot mode, in which both the polyhedral scene
and a view-point are processed together to produce the output visibility map. No data
structure is saved and if a new viewpoint is given the process is repeated from scratch. In
the real use of interactive display systems the repetitive mode of operation is more natural
than the single-shot one. For example in virtual reality applications the user should have
on the screen the impression of a smooth walk through an environment. In most cases it is
neither possible nor desirable to determine beforehand the positions of the view-points. On
the other hand the images should be produced at an high speed in response to interactive
changes of the view-point. These constraints lead us to design a system where we allow
massive off-line computations to take place if we can lower the time needed to produce the
image once the viewpoint is known.

Our first objective in this paper is to achieve optimal output-sensitive query time (up
to polylogarithmic factors) and minimize the worst case storage requirement. Then we
modify this initial solution by allowing to trade-off query-time and storage. We consider
first the case of c-oriented polyhedra (i.e. polyhedra whose facets have one of ¢ predefined
orientations) for which more effective time bounds can be proved. In the last part of the
paper we apply the same approach to the case of general polyhedra thereby improving
worst-case time/storage bounds.

1.2 The aspect graph approach

Traditionally, the problem of efficiently computing the visibility map of a polygonal scene
has been tackled using the aspect graph approach [25, 26, 35, 21]. For a survey of results on
aspect graphs see [21, 22]. The aspect graph of a polyhedral scene is a graph in which each
node is associated with a region of R® where visibility maps with the same combinatorial



structure are visible. Provided that we can store efficiently the visibility maps at the nodes
of the graph and that, given a view-point we can find efficiently the corresponding node
in the graph, the storage depends mainly on the number of nodes and edges in the aspect
graph.

In [21] Gigus, Canny and Seidel give an algorithm for computing the aspect graph of
orthographic views (i.e with viewpoint at infinity) of a general polyhedral scene. They use
O(n*logn+ |G|log |G|) time to produce the aspect graph . This graph is stored in a data
structure of size O(|G]) and orthographic HSR-queries can be solved in time O(log |G|+ k),
where k is the size of the output visibility map. The method in [21] does not seem to
generalize immediately to computing also the aspect graph of perspective views (i.e. with a
proper point as view-point). For perspective views a method in [36] computes the aspect
graph in time O(n® 4+ n?|G|) and O(n? G|) working storage.

In [36] it is shown that for n non-intersecting triangles the number of orthographic views
is ©(n®) in the worst case and the number of perspective views is @(n?). In [39] it is shown
that for axis oriented polyhedra with n edges the number of orthographic views can be
©(n®). In [16] it is shown that for a polyhedral terrain with n edges there can be Q(n°a(n))
orthographic views and Q(n®a(n)) perspective views.

The aspect graph approach, in a nutshell, consists in computing all possible views and
storing them compactly by exploiting coherence between neighbouring views. This ap-
proach is only partially satisfactory. On one hand it shows a degree of sensibility to the
“complexity” of the scene measured by the number of possible different combinatorial views.
The drawback is that this measure of complexity is quite rough and leads quite easily to
high storage requirements even for fairly simple scenes. No storage/query-time trade off
is possible and the method is not sensible to restrictions in the orientations of the input
polyhedra.

In this paper we prove that for c-oriented polyhedra O(n?*¢) preprocessing time and
storage are always sufficient to answer efliciently both orthographic and perspective HSR
queries (Theorem 7). In this paper we prove that for general polyhedra O(n**¢) pre-
processing time and storage are always suflicient to answer efliciently both orthographic and
perspective HSR-queries (Theorem 10). Moreover, it is possible to trade off continuously
storage and query time. The main conclusion suggested by the new results is that in
general the number of possible views of a polyhedral scene is not a lower bound on the
storage needed for a compact representation of a scene.

1.3 Other previous results on repetitive HSR

In [31], Mulmuley builds a spatial decomposition D(P) for a general non-intersecting poly-
hedral scene P. The size of D(P) is ©(n?) in the worst case, and ranges from linear to
quadratic depending on the input. Given a query view-point v the visibility map from v
can be computed on-line by traversing this decomposition. With V(v, P) we denote the set
of all point in R visible from v. Note that the visibility map M (v, P) is embedded in the
boundary of V(v, P). The time bound for the construction of M (v, P)is proportional to the
number of features of V(v, P) N D(P). As recognized in [31] it is not difficult to devise an
example (P, v) in which the size of M (v, P) is constant but but the size of V(v, P)N D(P)
is quadratic. In this paper we solve the problem of computing the visibility map in time



provably proportional to the size of the output map, up to polylogarithmic factors.

A variation of the HSR problem that received some attention in the research community
is obtained when we constrain the view-point to be on a given line L. This problem has
applications in flight simulation. The idea in [8] and [31] is to precompute all topologically
different visibility maps for viewpoints on L using a sweeping approach. Such results are thus
close to the aspect graph approach. Let us define by K the number of topological changes
in the visibility map M(v, P) for v moving on L. With K; we denote the transparent
topological changes, that is the number of changes in the projection of edges of P as v
moves on L. With Ky we denote the semi-opaque topological changes (i.e. changes on
the projection of edges in P, such that the segments involved can see each other locally).
In general 1 < K < K, < K; < n3/3. The algorithm in [31] computes all K changes
in time O((Ks + n?a(n))logn). The algorithm in [8] computes all K changes in time
O((n* + K;)logn). Since since we can build examples in which K is O(1) and Ky, K; =
Q(n?), these solutions do not exhibit a guaranteed output-sensitive behaviour. The methods
in [31, 8] do not seem to be able to make use of a restriction of the input to axis-oriented
polyhedra and no trade-off between storage and query time seems possible.

1.4 Previous results on one-shot HSR for c-oriented polyhedra

Solutions to the one-shot HSR problem have developed following ideas quite different from
those mentioned above. One major difficulty for some time has been the presence of cycles
in the dominance relation among objects. A polyhedron p; dominales polyhedron py if py
partially obstructs the view of py from v. We shall classify output sensitive HSR algorithms
in two categories according to their reliance on the existence of an acyclic dominance relation
for the objects as seen from the viewpoint. Preparata et al. [37] compute M (v, P) for axis-
oriented polyhedra in time O((n + k)lognloglogn) provided that the dominance relation
is acyclic. The algorithm proposed by de Berg and Overmars in [17] for HSR on c-oriented
polyhedra works in single-shot mode, with a time complexity O((n + k)logn), without
requiring acyclicity of the dominance relation. In [13] there is a method for maintaining the
view of c-oriented polyhedra from a fized point of view when we are allowed to insert and
delete polyhedra.

Since our algorithm borrows some tricks from [17] it is worth to discuss this algo-
rithm in more detail. The method in [17] is based on using some primitive operations: (i)
ray-shooting queries on “curtains” and (ii) vertex-visibility queries. Each component of
M(v, P) is “traced” using these two primitives. The O(nlogn) overhead term accounts for
the construction of the data structures supporting efficient answer to the queries, and for
performing a vertex-visibility query for each vertex in P.

If we try to use this method for the solution of repetitive HSR we run into the following
complications. The data structures for ray-shooting on curtains and for vertex-visibility
depend on the viewpoint v and cannot be updated in sublinear time for a new viewpoint
v’. Moreover, in order to obtain optimal output sensitive query time we cannot afford
to consider independently each vertex for visibility. We shall see in this paper how these

difficulties can be overcame.



1.5 Previous results on one-shot HSR for general polyhedra

When the dominance relation on general non-intersecting polyhedra is acyclic, Overmars
and Sharir [32] give two algorithms running in time O(nvklogn) and O(n*/31og?/®n +
k3/5n4/5%€). The second algorithm has been improved in [5] to run in time O(n?/3=<k?/3+c 4
nlte + E1+€). For objects with the additional property that the union of their projections
has small complexity Katz et al. [23] give an algorithm running in time O((U(n)+k)log? n),
where U(n) is the maximum size of the union of the projections of n such objects. This meth-
ods applies to disks and balls (U(n) = O(n)), fat triangles (U(n) = O(nloglogn)) and ter-
rains (U(n) = O(na(n))). For terrains Reif and Sen [38] obtain an O((n + k)log nloglog n)
algorithm. The first output-sensitive HSR algorithm that works well even in presence of
cycles is in [15] and runs in time O(n'**v/k). The method in [15] is improved in [4] to run
in time O(n2/3+5k2/3 + ntte + k).

All methods for one-shot HSR use at least time O(n) to read the input and process it.
Whenever k£ < n we cannot charge the overhead to the output size and we fall short of the
query time O(k) which is optimal for the repetitive HSR problem. In all of the methods
mentioned above a change in the view-point triggers an extensive reconstruction of the data
structures. Qur aim is to improve the time bound for small values of k.

We will borrow a few tricks from [15]. The basic idea in [15] is to use a sweeping line
approach to the construction of M (v, P). The event queue is initialized with the vertices
of P and the computation proceeds using primitives for ray-shooting on curtains and ray-
shooting from the viewpoint v. As before, the adaptation of this schema to repetitive HSR
is not trivial. We cannot afford to initialize the queue with n vertices most of which are
potentially invisible. Moreover, the data structures depend heavily on v and cannot be
updated efficiently for a new view-point.

1.6 Summary of results

For a set of c-oriented polyhedra with a total of n vertices, edges and faces we build off-
line data structures of size m, where m is a parameter to be chosen between n'*t¢ and
n?te.  Afterwards the visibility map M(v, P) from a view-point v is produced in time
O(klogn + min{nlogn, kn't*/m'/?}). If we allow the maximum storage m = n**¢ the
query time is O(klog?n), which is almost optimal for all values of k. If we allow the
minimum amount of storage m = n'*¢ the query time is O(klog n + min{n log n, kn'/?t<})
(see Figure 1).

We consider also the dynamization of our data structure under insertion and deletion of
c-oriented polyhedral objects form the scene. The main new idea is that the amortized cost
of an update (insertion or deletion) can be split between an on-line update cost and an off-
line update cost. The objective is to minimize the on-line update costs since these are more
critical for the performance of the algorithm. We suppose that we have a mixed sequence
of HSR-queries, insertion and deletions. Let n be the number of edges of polyhedra initially
present in the scene and let ny,np be the edges of the polyhedra inserted and deleted over
the whole sequence of operations. We obtain on-line amortized update time that depend
only on n; and np, not on n. This result in significant when ny,np << n, which is to
be expected in many real applications during a session of use of the system (Section 5.2).
We place no other restriction on the polygonal scene formed by c-oriented polyhedra. In



particular, we do not require disjointness of the input polyhedra. As a consequence the
polygonal scene can be specified as the union of polyhedral objects with fewer edges. We
do not require acyclicity in the dominance relation.

The same general strategy used to solve the HSR problem for c-oriented polyhedra works
for general polyhedra with somewhat degraded time/storage performance. For a general set
of (intersecting, non-convex) polyhedra with n vertices, edges and faces we can build a data
structure of size m, with n'*¢ < m < n?*¢ such that any HSR-query from a point v € R? is
answered in time O(kn't</m!/4). This result improves over the best one-shot method for
small values of k. Thus, running this algorithm and the best one-shot algorithm in parallel
we can achieve query time O(min{kn'*t¢/m!/* n?/3+<k2/3 L plte L k}) (see Figure 2).

1.7 The method

The main underlying theme of this research is to extend some methods used for one-shot
HSR in order to solve the repetitive HSR problem, thus improving on the results attained
through the aspect graph approach. In order to obtain our result on repetitive HSR we
mix and modify the approaches in [17] and [15]. We use a sweeping line approach, but we
avoid initializing the queue with all the vertices. Instead, we discover the visible vertices
on the fly. Vertices that are not visible are never put in the queue. The second challenge
is to make our data structure independent of v. We pay this freedom with an increase in
the storage requirement. Then we return to linear storage by trading off storage with query
time.

In order to achieve these two goals we must support primitive operations more powerful
than those in [17] and [15]. In particular, besides supporting ray-shooting queries we must
be able to count efficiently how many edges of the polyhedral scene meet query {riangles and
query pyramids. Moreover, we apply Megiddo’s parametric search technique [29] in order
to obtain even more powerful operations. Intuitively, we need to detect efficiently the first
moment in which a growing triangle or pyramid intersects a feature of P. We implement
all these operations for c-oriented polyhedra by a reduction to planar point location and
half-plane range queries. The algorithm in Section 3 is quite general and works also for
general polyhedral scenes when we provide an implementation for the primitive operations.
The implementation of the primitive operations for general polyhedra is based on results in
[34] on collision-free simplices.

The paper is organized as follows. In Section 2 we review some geometric tools used
to derive the results. In Section 3 we describe an high-level generic algorithm for solving
hidden-surface removal queries which we will denote as the HSRA algorithm. In Section 4 we
discuss the implementation of the primitive operations for a set of c-oriented polyhedra. In
Section 5 we discuss query-time/storage trade-offs and dynamization of the data structures
under insertions and deletions. In Section 6 we discuss the case of general polyhedral scenes.

2 Geometric and algorithmic preliminaries

In this section we survey some geometric and algorithmic results which lay the groundwork
for the main results of the subsequent sections.



1. Arrangements. A finite set H of hyperplanes in R? defines a decomposition of R?
into convex cells of various dimensions, which is called the arrangement A(H) of H
[18]. If |H| = n the maximum number of cells in A(H ) is O(n?) and the arrangement
A(H) can be computed in optimal O(n?) time [20]. One d-dimensional cell of A(H )
is bounded by O(nl?/2]) cells of any dimension [18].

2. Random sampling and cuttings. Given a random sample R of a set of hyperlanes
H, with |R| = r < n, let us consider the arrangement A(R). A triangulation AA(R)
is a subdivision of each cell of A(R) into disjoint simplices such that the vertices of
each simplex are vertices of A(R). The number of simplices in AA(R) is O(r?). The
random sampling theory of Clarkson [11] states that with probability at least 1/2 the
interior of each simplex s € AA(R) does not meet more than O(n/rlogr) hyperplanes
of H. A set as AA(R)is called a cutting for H. Given H we can build a data structure
which uses Cn?te storage, for each ¢ > 0, where the constant C' depends on ¢, such
that a query point is located in A(H ) in O(logn) time [11]. This data structure is
built in expected time O(n?t¢) [11]. For d = 2 Matousek [27] gives a deterministic
method that, for a parameter r < n, subdivides the plane into O(r?) triangles in time
O(nr) such that the interior of each triangle meets only n/r lines in H. Cuttings are
the basis of many recent divide-and-conquer algorithms in computational geometry
(see [1] for a survey).

3. Halfspace range searching.

A problem intimately connected to the point-location problem is the half-space range
searching problem. Given a set S of n points in R?, build a data structure such that,
for every query half-space AT, the number of points in S N AT is computed efficiently.
This problem is solved in [10, 28] using partition trees. In a partition tree, each node
is associated with a region in R? such that only a fraction of the children intersect
the hyperplane h supporting the query half-space. During the query we retrieve the
number of points of § within the regions completely contained in AT and we recurse
the query on the children associated with regions intersected by h. Partition trees are
quite versatile and they can be used to set up multi-level data structures.

4. Multi-level data structures. Multilevel data structures are a basic paradigm in
computational geometry [30]. They are used to search for elements satisfying a com-
plex property. Usually the complex property is split into elementary properties and
each elementary property is tested at a specific level of the data structure. For ex-
ample, in [10, 28] sets of points are organized in multilevel partition trees to answer
simplex range queries, where each level of the data structure tests the position of the
data points with respect to the hyperplane spanning a facet of the simplex. We have
this fundamental theorem in [10]:

Theorem 1 (Theorem 3.1 in [10]) Simplex range searching in n points in R® can
be performed in O(n1+5/m1/d) query lime, for every € > 0, using a data struclure of
size m (for any m between n and n®) which can be computed in O(m'*¢) randomized
expected time.



Matousek in [28], using a different partition scheme, is able to make the preprocessing
deterministic and to reduce the query time to O(nlog®™) n/m'/4).

5. Parametric search. Parametric search can be described informally as a meta-
algorithm which, under quite general conditions, transforms an algorithm to test some
property into an algorithm to find the minimum value of a parameter for which this
property is true.

More formally, suppose we have an algorithm P’ to compute a predicate P(%,t), which
depends on an input ¢ and a real parameter {. The algorithm P’ only uses the param-
eter ¢ to perform branching tests based on the evaluation of fixed degree polynomials
which depend on ¢ and ¢. Moreover, suppose that the predicate P(¢,t) is monotone in
t, meaning that it is false for ¢ = 0 and once it is true it remains so for larger values of
t. Megiddo’s parametric search technique [29, 12] is a method that transforms P’ into
an algorithm P” for finding the minimum value of ¢ for which the predicate P(7,t) is
true.

The simplest form of parametric search is such that, if P’ runs in time 7ps, the
modified algorithm runs in time 7°3,.

A more sophisticated type of parametric search uses as an intermediate step a parallel
version of the program P’, which we call P,,,. The parallel time is Tp,,, and the
number of processors is p. The new algorithm P” simulates sequentially P,,, without
specifying the value of t. When each of the p processors is stopped at a branching
step which requires the evaluation of a polynomial in ¢ we compute all the roots of
the polynomials at the branching steps and we sort them. Then we use the sequential
algorithm P’ to perform a binary search on the sequence of roots in order to find the
interval where the minimum value ¢* lies. Once we have this interval we can compute
the sign of the branching polynomials at ¢*. The algorithm branches accordingly to
these values. The algorithm completes the simulation and determines a final inter-
val whose left endpoint is exactly ¢*. The total time of the simulation is given by
O(pTp,,, + TpTp,, logp). Applications of Megiddo’s parametric search to geometric
problems are in [2] [4] [9].

3 The HSRA Algorithm

In this section we give a skeleton algorithm for solving HSR-queries. This algorithm uses
the off-line data structures as black boxes (i.e asking queries and receiving answers) and is
independent of any particular implementation of these data structures.

The general structure is reminiscent of Bentley and Ottman line-sweep algorithm for
reporting intersections of segments in the plane [6]. We take a fixed plane at pre-processing
time, independently of any viewpoint, as our view-plane V onto which the visibility map is
projected. We require that v does not lie on V!. We also fix a direction on V which we call
vertical.

Tt is easy to overcome this restriction by selecting four different planes in general position. Any point is
disjoint from at least one such plane.



The visibility map M (v, P) will be constructed by sweeping a vertical line {(z) on V.
As in [6] we need to keep two data structures: a dictionary Line_status(z) which stores the
intersection of M (v, P) with the current line I(z), and the priority queue Event_queue(z)
which stores the list of “events” in sorted order along the z-axis.

As a matter of convention we will denote with e an edge in 3-space and with € its
projection of V. Let €’ be an edge stored in Line_status(z) which is the projection of edge
e in 3-space. While ¢’ is traced ahead (left-to-right) we shall detect the first of the following
events.

(i) The right end-point of e. At this event the edge ¢’ should be deleted from Line_status.

(ii) Edge e; from face f; obscures e, which is therefore no longer visible. We delete ¢’
from Line_status and insert e if not already present.

(iii) Edge ey from face f; is partially obscured by e. We insert €} in Line_status if not
already present.

(iv) Edge e intersects face fi. If f is the face containing e, then the intersection of f and
/1 is a new visible edge, which is inserted in Line_status.

(v) The intersection of three facets of polyhedra in P. All new visible edges from this
intersection point are inserted in Line_status.

There is a further event that cannot be discovered by tracing a single edge present in
Line_status(z):

(vi) A visible vertex ¢ of a face in P projects on [(z) from v. In this case all the visible
edges incident to v are inserted in the data structure.

Event (vi) is quite important because it allows us to find on-line all the connected
components of the visibility map. By a discussion in [17, 14] these are all and only the
interesting events. Since each edge is traced until visible and discarded afterwards until it
might be visible again, at each instant Line_status(z) stores a faithful representation of
M(v,P)Ni(z). Since each event corresponds to a feature of the visibility map it can be
charged to the output size k. Fach event is not detected more then a constant number of
times. An edge can be inserted and deleted several times but each operation corresponds to a
distinct feature of M (v, P). The algorithm proceeds by executing the update corresponding
to the next event in Fvent_queue and by updating Fvent_queue itself with the new events
induced by the edges which have been manipulated. All the operations on Line_status and
Event_queue take O(logn) time using standard data structures. The primitive operations
needed to discover events are the following:

1. Ray-shooting queries. Given a point p and a ray p from p, determine the first face
of a polyhedron in P intersected by p, and the intersection point.

2. Triangle-not-emptiness queries: Given a triangle ¢ in 3-space determine whether
t intersects any face or edge or vertex in P.



3. Minimal-not-empty triangle queries: Given a family of triangles ¢(s) depending
on a positive real value s such that s; < s; implies ¢(s1) C {(s2), report the minimum
value of s for which #(s) intersects a feature of P and the feature of P for which this
happens.

4. Minimal-not-empty pyramid queries: Given a family I'(s) of pyramids with
quadrangular base, depending on a positive real value s such that s; < sp implies
I'(s1) C I'(s2), report the minimum value of s for which I'(s) intersects a feature
(vertex, edge, face) of P and the feature of P for which this happens.

Setting up Line_status. Initially we set up Line_status(0) in the following way. We take
a point a on [(0) and we shoot a ray from v towards a. We determine the point ¢ on the
first face f hit by the ray. By definition ¢ is visible. Then we take on the face f the line
through ¢ which projects from v onto {(0). We parametrize this line the generic point p(s)
where p(0) = ¢ and s is a positive real parameter. Let 5 > 0 be the value of s for which
p(s)is on the boundary of f. We consider the triangle {(s) of vertices v, ¢, p(s). We make a
triangle emptiness query with ¢(s), if ¢(s) is empty we have discovered the first point on a
visible edge of M (v, P). By shooting a ray from v towards p(s) we find a point on the first
visible face behind f (or the background) and we repeat the tracing procedure upwards on
this new face (or background).

If ¢(s) is not empty, we use the minimal-not-empty triangle query on the family of
triangles ¢(s) and we find a point on a visible edge of M (v, P). This point belongs to
an edge of a face f' different from f. We repeat this tracing procedure upwards on f’.
Repeating the tracing procedure from ¢ downwards, we complete the construction of the
initial data structure Line_status(0).

Computing events. Let €’ be an edge in Line_status, e the edge in 3-space generating
€', ¢ a visible point of e projecting from v onto {(z), and f a visible face containing e (if
both faces incident to e are visible, choose one arbitrarily). We parametrize the edge e by
a generic point p(s) where p(0) = ¢ and s is a positive real value. Let 5 > 0 be the value of
s for which p(s) is the right endpoint of e.

1) If the triangle v, ¢, p(3) is empty then we have an event (i). Otherwise, by asking a a
minimum-not-empty triangle query on v, ¢, p(s) we detect the first event of type (ii),

(iv) or (v).

2) By shooting a ray from v towards ¢ we find a point ¢’ on the first visible face f
different from f. By projecting e onto f’ and repeating the steps at 1) we can detect
an event of type (iii). Note that we deal implicitly also with the case when both faces
incident to e are visible. In this case f’ is one of these faces.

3) In order to detect events of type (vi) we proceed in the following way. We consider
a pair of consecutive edges €| and €}, in Line_status. Let f be the face of P visi-
ble between e; and ez at I(z). We project both e; and e; onto this face obtaining
€/ and €. We consider a parametrization of e/ and e/ with generic points p;(s)
and py(s) such that the segment p;(s)pa(s) projects on V into a segment parallel
to I(z). We ask minimum-not-empty pyramid queries with a pyramid of vertices



v,p1(0),p2(0), p1(s), p2(s). The value of s returned corresponds to a new visible ver-
tex of P or to some other event (i)-(v) relative to the edges €| and €),. In order to
detect vertices and edges lying on the face f we must consider the query pyramid as
a closed set.

Initially we compute events for the edges and pairs of consecutive edges in Line_status(0).
On the fly, at each update of Line_status, we insert new events in Fvent_queue relative to
the edges just updated and their neighbours in the linear order stored in Line_status.

When a new visible vertex ¢ is discovered (event (vi)), we insert in Line_status the new
visible edges incident to ¢. For c-oriented polyhedra in general position the number of edges
incident to a vertex is bounded by a constant, therefore we can afford to check every edge
for its visibility. The case of general polyhedral scenes is more complex since the degree of
a vertex is not bounded.

If ¢ projects from v on the sweeping line at [(z), we consider the perturbed position
l(z + ¢) for an infinitesimal § > 0. We choose a point a to the right of ¢ that projects
on [(z 4+ ) and we use the procedure for setting up Line_status in the neighborhood of ¢
(i.e. at I(z + 0) instead of [(0)). Using a as the initial target for ray-shooting. We stop the
procedure when we find a visible edge not incident to ¢ above and below a. Any such edge
must be already present in Line_status(z), so it is easy to check this halting condition. All
the visible edges discovered during this scan are incident to ¢. Conversely, any visible edge
incident to ¢ is discovered. The number of primitive queries is proportional to the number
of visible edges incident to ¢. We summarize this discussion with the following theorem:

Theorem 2 Algorithm HSRA requires O(k) calls to off-line data structures to produce
M(v, P). All other operations require total time O(klogn).

4 Primitive operations for c-oriented polyhedra

4.1 A computational lemma

Let A and B be two classes of geometric objects, let A be a finite subset of A, and let
b be an element of B. Our objective is to compute efficiently [{a € A|F(a,b)}|, where
F(a,b) = N\jZ; Cj(a,b) is a conjunction of a constant number w of elementary conditions.
Let 57(.) be a polynomial whose structure depends on j and .4 and whose coefficients depend
only on a@ € A. Let pj is a tuple of real numbers depending only on b € B. Let 57(.) be a
polynomial whose structure depends on j and B, whose coefficients depend only on b € B.
Also, let pé be a tuple of real numbers depending only on a € A. The elementary conditions
C;(a,b) must be of the form SI(pl) > 0. Moreover, we require that we can rewrite each
polynomial in each conjunct C; in the dual form Sg (p{l) > 0.

For technical reasons we assume that Co = TRUFE. If Sg(p{)) > 0 we say that the point
pZ is on the positive side of the surface Sg() = 0. From now on we will use the terms point
and surface in this context. Note that, for a given j, an element @ € A (resp. b € B) is
mapped to a point or to a surface. We call the point and the surface dual to one another.

The problem stated above is discussed in full generality in [34]. In this paper we discuss
a restricted cases relevant for deriving the main result on the HSR problem. We use the
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additional hypothesis that all of the surfaces S7 and S g are hyperplanes in a 1-dimensional
or 2-dimensional space. We define N;(A,b) to be |[{a € A|A_,Ci(a,b)}|, where j is any
integer between 0 and w. We are interested thus in N, (A,b). Let n be the cardinality of
A.

Lemma 1 For every 0 < j < w, we can build in time and storage O(n**¢) a data structure
depending only on A such that, for every b € B, N;(A,b) is computed on-line in time
O(logn).

Proof. Let T;(n) be the time needed to build the data structure up to level j. We prove
the claim by induction on j. For j = 0, Ty(n) = O(1) therefore the time bound is satisfied.

Assume j > 0. Applying Matousek [27] partitioning technique on the set of hyperplanes
{S4(.) = Ola € A} we compute in time O(nr) decomposition of the 2-dimensional space into
O(r?) elementary cells (triangles as a matter of fact) with the property that each elementary
cell is intersected by no more than n/r surfaces in {S7(.) = 0la € A}. Also we build in
time O(r) a fast planar location data structure using the method in [19, 24], which attains
O(logr) query time.

For each elementary cell 7 we select a point in its interior and we compute the set SF
of surfaces not intersecting the region 7 and in positive position with respect to 7. We
associate the cardinality of ST with the elementary cell 7 and we recurse this construction
on the surfaces intersecting 7. Also, for each region 7 and for the subset A, of A whose
corresponding surface is in S} we build the data structure to compute N;_1(A,,b), which
can be built in time 7;_4(n). The total time and space for this construction satisfies the
recurrence:

p o(1) if n=0(1)
b < { O()T,(n/r) + O(*)Ty1(n) + O(nr) + O(r) otherwise W

Assuming by induction hypothesis that 7;_; = O(nz"'ﬁ’), the solution to this recurrence
is T;(n) = O(n**¢) for an € > €¢’. Note that the result for the time and storage holds also
when we choose r to be a small power of n.

Given b we compute the query point p; and we locate the region 7 containing it using the
fast point-location data structure. Than we recurse on the the data structures associated
with 7 using pj in one and the query point pf)_l in the other. At the last level we collect the
counters of the positive regions and we sum them up to form the final result. The query
time @ ;(n) satisfies this recurrence:

Qj(n) < Qj(n/r)+ Qj-1(n) + O(logr)

If we assume that 7 = n¥ and the induction hypothesis that ¢;_; = ¢’logn, we obtain
the total query time @;(n) = clogn for a slightly larger value ¢ > ¢’. [ |

In the rest of this section we discuss the implementation of the four primitive operations
used by algorithm HSRA when the input is restricted to c-oriented polyhedra. Initially we
shall see how to answer each query in polylogarithmic time at the expenses of quadratic
storage. The general idea is to show that any of the queries used by the HSRA algorithm is
reducible to the computation of A, (A,b) for some formula F of the type described above.
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Is is sufficient to show a reduction to any boolean formula F composed of elementary
conditions. Afterwards, F’ can be put in disjunctive normal form Fpyr = V, F;, where
each Fj is a conjunct. Moreover we can transform further F' by imposing that at most one
disjunct is verified for a given pair (a,b) by setting

F=VEAN~E).

If the initial formula has a constant number of elementary conditions each conjunct in the
new formula will have constant length.

4.2 Ray shooting on c-oriented polyhedra

Theorem 3 Given a sel of c-oriented polyhedra with n edges there exists a data structure
of size O(n**¢) to answer ray shooting queries in O(log*n) time. The data structure can
be built using O(n?*¢) time and storage.

Proof. As noted in [4] we obtain a method for ray-shooting by applying the parametric
search transformation on an algorithm to test whether a segment does not meet any facet of a
c-oriented polyhedra. Thus it sufficient to give an algorithm for counting incidences between
segments and c-oriented facets in 3-space. Counting problems are easily decomposable. If
F = F1 U Fy is the set of facets bounding the c-oriented polyhedra, the answer for F; and
the answer for F; can be combined in O(1) time to give the answer for . We partition the
facets of the c-oriented polyhedra into ¢ sets of parallel facets, and we solve the counting
problem on each set separately. After applying a suitable affine transformation we can
consider one such set of parallel facets as horizontal. Any such c-oriented horizontal facet
has at most 2(¢—1) edges and moreover each such edge is orthogonal to one of ¢ fixed planes
Py, .., P. which depend only on the initial choice of the ¢ orientations. We denote with ¢*
the projection of a set ¢ upon the plane P;. Let [(s) be the line spanning the segment s and
aff (f) be the plane spanning the facet f. We have the following easy lemmas:

Lemma 2 For any segment s and facet [ in 3-space which are not not co-planar:
sNf#D < snaff(f)ZDAIs)Nf#D

Note that the first conjunct of the formula in Lemma 2 reduces to compare the end-
points of s with the plane spanning the facets f. Since these planes are all parallel the
comparison is indeed a comparison in a 1-dimensional space.

Lemma 3 Given a c-oriented horizontal polygon f, and planes Py, ..P. as above, a line l
intersects [ if and only if I meets f*, for alli=1,..,c.

Proof. Let aff (f) be the plane spanning f and let p = INaff(f). If p € f then for every
i,p' € f'. If p & f then there is an edge e of f separating p from f. If P; is the projection
plane associated with e, then p/ ¢ f7. [ |

Given a segment s on the plane, let (s) be the line supporting s, rhp(s) the right
endpoint and lhp(s) the left endpoint. Slope(l)is the slope of line .
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Lemma 4 Two segments s; and sy on the plane intersect if and only if I(s1) meels sy and
l(s2) meets sq.

Lemma 5 A line | and a segment s on the plane meet each other in either of these two
cases:

A) (Slope(l) < Slope(l(s))) A (Ihp(s) below 1) A (rhp(s) above 1)
B) (Slope(l) > Slope(l(s))) A (Ihp(s) above 1) A (rhp(s) below 1)

where the above and below relations refer to the vertical direction on the plane containing
l and s.

Proof. Follows from elementary geometry. [ |

Lemmas 2, 3, 4 and 5 imply that we can write a formula of type F to denote the fact
that a segment meets a c-oriented facet. Moreover, all of the elementary conditions involve
testing a point versus a line in some 2-dimensional space or a point versus a point in a 1-
dimensional space. Thus from Lemma 1 we can count efficiently how many c-oriented facets
meet a query segment, and thus also decide if the query segment is empty of intersections.

| |

As a matter of fact, by extending a slightly different approach to this ray-shooting
problem developed in [33] for axis-oriented polyhedra (a special case of c-oriented polyhedra)
it is possible to avoid using parametric search and to reduce the query time to O(logn).
We choose to present this weaker result since it is more similar to the solution for the other
queries used by the HSRA Algorithm.

Using this ray-shooting primitive we can also check whether the view-point v is interior
to any polyhedron in P. We consider the polyhedra as solid objects, thus being in the
interior of one object can be regarded as a non-physical situation. We send a ray from
v in an arbitrary direction. If the ray meets a face of P coming from the interior of the
polyhedron containing this face we conclude that v is an interior point of P. From now on
we consider v to be external to P.

4.3 Empty triangle queries

Given a set of c-oriented polyhedra P and a triangle { we want to check whether ¢ meets
any polyhedron in P. In our application we use triangles ¢ such that at least one vertex in
external to any polyhedron in P. The following lemmas hold easily:

Lemma 6 A triangle t with a vertex disjoint from P intersects P of and only if an edge of
P meetst or an edge of t meets a face in P.

Lemma 7 For any segment s and triangle t in 3-space which are not co-planar:
sNt#£0 <= snaff(t) ZOANI(s)Nt#0D

Now we are set to prove the following theorem.
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Theorem 4 Given a set of c-parallel polyhedra P of complexity n, we can answer emply
triangle queries of algorithm HSRA in time O(logn) using data structures of total size
O(n*te).

Proof. We can easily check whether an edge of ¢ meets a face of P using three ray-
shooting queries. In order to check an edges of P against ¢ we partion those edges into (3)
sets of parallel edges and we test each set independently.

Let S be a set of parallel segments in 3-space and ¢ our query triangle. It is crucial for
the analysis of the storage required by this data structure to recall that the planes aff ()
used in by the HSRA algorithm in Section 3 are of a special kind. Every such plane must
contain an edge of P, or or must be parallel to the sweeping line. We have thus (;) + 1 sub-
families of planes, where planes in each sub-family must all meet a fixed point at infinity.
We project the segments in 5 from such point at infinity onto the auxiliary plane obtaining
a planar set of segments S’. We project the plane aff(¢) from such point at infinity onto
the auxiliary plane obtaining a line I;.

The first test in the formula of Lemma 7 is thus reduced to detecting the segments in
S’ intersected by the line /; for which we can invoke the formula of Lemma 5.

The second test in the formula of Lemma 7 is reduced to the following computation We
project the segments onto a plane orthogonal to the common direction of segments in 5,
obtaining a set of points 5”. Also we project triangle ¢ onto this plane obtaining a triangle
t'. We now require that a point of S” is in the intersection of three half-planes defined
by the lines spanning edges of /. All of these conditions are elementary conditions. We
can thus write a formula of type F for counting the number of edges intersecting a query
triangle ¢ and thus also determine if the triangle is empty. The time and storage bounds
derive directly from Lemma 1. [ |

4.4 Minimum empty triangle queries

Let us consider a family of planar triangles in 3-space {(s) indexed by a positive real pa-
rameter s, forming an inclusion chain (i.e. 51 < sy = t(s1) C t(s2)). It is easy to see that
the property of intersecting P is monotone for such set of triangles. There is a value s* such
that, for all s < s*, #(s) does not meet P and, for all s > s*, ¢t meets P. Therefore we can
use Megiddo’s parametric search technique to transform the algorithm of Theorem 4 into
an algorithm for finding s* [29]. The query time of the transformed algorithm is the square
of the time of the original one.

Theorem 5 Given a set of c-parallel polyhedra P of complexity n, we can answer minimum-
not-emply triangle queries of algorithm HSRA in lime O(log2 n) using data structures of
total size O(n**c).

4.5 Minimal-not-empty pyramid queries

Let us consider a family of pyramids in 3-space I'(s) indexed by a positive real parameter
s, forming an inclusion chain (i.e. s1 < sy = I'(s1) C I'(s2)). Again, the property of I'(s)
to intersect P is monotone in s: there is a value s* such that, for all s < s*, I'(s) does
not meet P and, for all s > s*, I'(s) meets P. Therefore we can use Megiddo’s parametric
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search technique to transform an algorithm for detecting empty pyramids into an algorithm
for finding s*.

Lemma 8 A pyramid I' with a vertex disjoint from P intersects P of and only if an edge
of P meets a face of I' or an edge of I' meets a face in P or a vertex of P is contained in I.

Theorem 6 Given a set of c-parallel polyhedra P of complezity n, we can answer minimum-
not-empty pyramid queries of algorithm HSRA in lime O(log2 n) using data structures of
total size O(n**¢).

Proof. From the above discussion is is sufficient to set up a test for pyramid emptiness
and apply the parametric search transformation. From Lemma 8 we have three cases to
check. We can check whether an edge of I' meets a face in P using the ray-shooting data
structure. We can test whether a face of I' (triangle or quadrangle) meets an edge of P using
the result of Theorem 4 (though we need a slight modification to deal with the quadrangular
face of I' within the stated storage bound). The last case we need to test is an instance
of simplex range searching on the set of vertices of P. The pyramid has faces belonging
to (;) + 1 subfamilies of planes. Each subfamily is constrained to contain a fixed point at
infinity. We can thus write down a formula for testing whether a point is within a pyramid.
We just have to check the position of the vertices of P with respect to each plane spanning
a facet of the query pyramid.

One such test is solved by projecting both the plane and the points from the point at
infinity constraining the plane. Thus the problem reduces to an half-plane range searching
problem in 2-space. Since there is a constant number of different classes of pyramids ac-
cording to the possible combinations of orientations of the facets we can write a formula
F to denote the fact that a point is within the query pyramid. Time and storage bounds
follow from Lemma, 1. | |

4.6 Putting the pieces together

Theorem 2 and the implementation of the primitive operations in Section 4 prove the
following theorem:

Theorem 7 Given a scene P composed of c-oriented polyhedra with n vertices, edges and
faces, we can build a data structure Dy(P) of size O(n**¢) such that for a query point v the
visibility map M (v, P) can be computed in time O(klog®n), where k is the output size.

5 Trade offs and dynamization

5.1 Storage-query time trade offs

The primitive operations of algorithm HSRA are implemented in Section 4 by a reduction
to (several) point location queries on arrangements of lines in 2-spaces. As a matter of fact
we are interested only in the sign of some bilinear forms depending on P and v. The same
result can be obtained by dualizing point and surfaces of Lemma 1, in this case the problem
is transformed in a series of halfplane range searching on sets of points in 2-spaces.
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Such queries can be solved using the techniques in [10, 28] in n!*® < m < n?*¢ storage
and T = O(n1+5/ml/2) query time. When we apply the parametric search technique to
superlogarithmic algorithms (as it is the case for the query time in the trade-off case)
we use the more sophisticated form of parametric search that needs a parallel version of
the halfplane range searching algorithm [29]. The data structures in [10, 28] are based on a
partition-tree approach and the query time depends on the number of nodes in the partition
tree visited during the query. We can allocate dynamically processors to the nodes visited
during the search, thus we need p = O('nl"'ﬁ/ml/Q) processors. The parallel query time 7" is
given by the depth of the tree which in O(logn). After the parametric-search transformation
we have a total query time O(T'p+ TT'logn) = O(n1+6/m1/2), for a slightly greater value
of . Also, we can run in parallel the algorithm in [17], which has better performances when
k is large. The above discussion leads to the following theorem:

Theorem 8 Given set P of c-parallel polyhedra with n vertices, edges and faces, we can
build a data structure Do(P,m) of size n't® < m < n?*¢ such that for a query point v
the visibility map M (v, P) can be computed in time O(klogn + min{nlogn, knl"'ﬁ/mlp}),
where k is the output size.

Corollary 1 Given a set P of c-parallel polyhedra with n vertices, edges and faces, we can
build a data structure Ds(P) of size O(n) such that for a query point v the visibility map
M(v, P) can be computed in time O(klogn + min{nlogn, kn'/?t<}), where k is the oulput
size.

If we allow only linear storage we obtain a query time roughly order of ky/n which
is asymptotically better than the one-shot algorithm of [17] for & < y/n. The result of
Corollary 1 is significant for those scenes in which only a small part of the total number of
polyhedra is visible at any given time. A graph of the running time 7'(n, k) as a function
of k in logarithmic scale is in Figure 1, for the case of linear storage.

5.2 Dynamization

Since all data structures are multilayer data structures based on the CSW scheme [10, 5]
or on Matousek ’s scheme [28] we can use a dynamization result in [5]:

Theorem 9 (Theorem 3.1 in [5]) Given a set of n points in R? and a parameter n' ¢ <
m < n%c one can maintain the CSW-partitioning structure in O(m/n'~¢) amortized
lime as we insert or delete a point, and can answer half-space range queries in time

O(n1+6/m1/d).

Thus the off-line amortized update time for Dy( P, m) is O(m/n'~¢). On-line we can do
better under a reasonable assumption. Notice that all of the data structures for answering
primitive queries of the HSRA algorithm count the number of features (vertices, edges,
faces) intersecting the query objects. Let us suppose that we have a mixed sequence of
update operations and queries. Let P be the initial set of c-oriented polyhedra, P; the set
of c-oriented polyhedra inserted up to the present moment and Pp the set of ¢ oriented
polyhedra deleted form P and Pr up to the present moment. Let Ny(5, ¢) be the number of
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features of type ¢ (vertex, edge, face) of a set of polyhedra S intersecting the query object
q (ray, triangle, pyramid). Clearly:

Ny((P U Pr)/Pp,q) = No(P,q) + Ny(Pr,q) = No(Fp, q) (2)

Thus we need to modify the Dy(.,m) only to accommodate insertion. We build three
separate data structures for P, Py and Pp. The three data structures storing the sets P,
Py and Pp will use three parameters of storage m,m; and mp with n'te < m < n2te,
n}"’ﬁ < my < n%‘“ and nlD‘i'E < mp < *n%"'e. Parameters m, my and mp can be chosen so
to tune the performance of the system. The on-line amortized time for an insertion is now
only O(m[/n}_e). Since in real applications we expect that over a session of use of the
system ny; << n, we obtain a very small slowdown of the system due to reconstructions.
A similar argument holds for Pp. The query time is changed only by a constant factor.
Extensive reconstruction of the data structure in order to maintain the overall performance
can be done off-line between sessions using the method of Theorem 9.

6 Primitive operations for general polyhedra

In this section we discuss the implementation for the several primitive operations used in
the HSRA algorithm in the case of general polyhedral scenes.

1. Ray-shooting queries. From results in [33, Theorem 8] we can answer ray-shooting
queries in time O(logn) using O(n**¢) storage.

2. Empty triangle queries. From results in [34, Theorem 3] we can answer triangle
emptiness queries in time O(logn) using O(n**¢) storage.

3. Minimal-empty triangle queries. We use the data structure in [34, Theorem
3] to answer triangle emptiness queries. We modify the query method by applying
Megiddo’s parametric search [29], thus obtaining a method to determine the smallest
empty triangle in a family of triangles forming a chain of inclusions. The query time
becomes O(log? n).

4. Minimal-empty pyramid queries. A data structure described in [34, Theorem
4] answers simplex emptiness queries in time O(logn) using O(n**¢) storage. This
method can be easily adapted to answer emptiness queries with any convex polyhedron
with a constant number of facets (e.g. a pyramid with quadrangular base). Similarly
to the previous case we modify the query algorithm by applying Megiddo’s parametric
search [29]. Minimal-empty pyramid queries can be solved in time O(log®n) using
O(n**e) storage.

The HSRA Algorithm together with the above primitives leads to the following result:
Theorem 10 Given a set P of polyhedra with n vertices, edges and faces, we can build

a data structure Dy(P) of size O(n*T¢) such thal for a query point v the visibilily map
M(v, P) can be computed in time O(klog? n), where k is the outpul size.
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Using results in [3], as mentioned in [34], it is possible to trade off storage and query
time.

Corollary 2 Given a set P of polyhedra with n vertices, edges and faces, we can build a
data structure Ds(P,m) of size n'*t¢ < m < n*¢ such that for a query point v the visibility
map M (v, P) can be computed in time O(kn1+5/m1/4), where k is the oulput size.

The method of Corollary 2 compares favourably with the one-shot methods only for
quite small values of k, unless a large amount of storage is allowed. Thus the best bound on
the time needed to produce a view is given by combining Corollary 2 with the best one-shot

method. We obtain a bound O(min{kn'*/m!/*, n?/3+<k2/3 4 plte 4 k}). In Figure 2 it is

shown a graph of the bound in logarithmic scale for m = n?.

7 Conclusions

In this paper we have shown several results on the repetitive hidden-surface removal problem
for polyhedral scenes. We considered both c-oriented polyhedra, for which better bounds
are attained, and general polyhedral scenes. We reduce the HSR problem to combinations
of point-location and half-plane range searching, in conjunction with a general sweeping line
algorithmic skeleton. For several visibility problems in 3-space we improve on the previously
known best bounds.
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Figure 1: Time in logarithmic scale as function of k for c-oriented polyhedra and linear
storage.
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Figure 2: Time in logarithmic scale as function of £ for general polyhedra and quadratic
storage.
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