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Abstract
In this report we discuss some mathematical properties of the LRAAM model. The LRAAM
model is an extension of the RAAM model by Pollack. It allows one to obtain distributed
reduced representations of labeled graphs. In particular, we give sufficient conditions on the
asymptotical stability of the decoding process along a cycle of the encoded structure.

Data encoded in an LRAAM can also be accessed by content by transforming the LRAAM
in an analog Hopfield network with hidden units and asymmetric connection matrix (CA
network.) Different access procedures can be defined according to the access key. Each
access procedure corresponds to a particular constrained version of the CA network. We
give sufficient conditions under which the property of asymptotical stability of a fixed point
in one particular constrained version of the CA network can be extended to related fixed
points of different constrained versions of the CA network. An example of encoding of a
labeled graph on which the theoretical results are applied is given as well.



1 Introduction

The concept of distributed reduced representations was introduced by Hinton [4] in order to allow
a neural network to represent compositional structure (see also [12, 15, 17]). Concrete examples of
distributed reduced representations are given by the Recursive Auto-Associative Memory (RAAM)
by Pollack [11, 12] and by the Holographic Reduced Representations of Plate [10]. In particular,
the RAAM model is able to generate reduced representations of lists and fixed-valence trees with
information stored in the leaves. The Labeling RAAM model (LRAAM) [16] has extended the
RAAM model, allowing the synthesis of distributed reduced representations for fixed-valence labeled
graphs. Another advantage of the LRAAM model is that it allows one to retrieve information
both by using the reduced representations and by content. The last capability is obtained by
exploiting the structure of the LRAAM network which can be easily transformed in an analog
Hopfield network [5] with hidden units. Because of the structure of each pattern in the training
set, several constrained versions of the modified LRAAM network can be used, according to the
access key, in order to improve the retrieval by content. In recent years, several results related to
the analog Hopfield model have been published, both without considering hidden units [3, 8, 2, 14]
and with hidden units [9, 7, 1].

In this report, we discuss conditions for the stability of equilibria arising in the LRAAM model.
Two different kinds of stability problems are present: when considering the decoding of a pointer
along a cycle of the encoded structures and when considering the stability of the equilibria in the
original and constrained versions of the modified network used for the retrieval of data by content.
The main contribution of this report is to give sufficient conditions for the asymptotical stability of
such model. Moreover, the report shows how the confluence of distributed reduced representations
and analog Hopfield networks in the LRAAM model leads to an advance in both fields: theoretical
analysis of networks involving distributed reduced representations and a learning procedure to store
complex structures in a Hopfield network, besides to new specialized theoretical results, are now
available.

The report is organized as follows. In Section 2 we introduce informally the LRAAM model. A
formal setting for the model and the stability problems discussed above are presented in Section
3. The decoding problem and the stability problems for the retrieval of data by content are faced
respectively in Section 4 and Section 5. An example of encoding of a labeled graph is given in
Section 6, where the theorems presented in the previous sections are applied and experimentally
verified. Conclusions are drawn in Section 7.

2 The LRAAM model

The Labeling RAAM (LRAAM) is an extension of the RAAM model which allows one to encode
labeled structures. The general structure of the network for an LRAAM is shown in Figure 1.
The network is trained by backpropagation [13] to learn the identity function. The idea is
to obtain a compressed representation (hidden layer activation) of a node of a labeled graph by
allocating a part of the input (output) of the network to represent the label (/V; units) and the rest
to represent one or more pointers. The compressed representation is then used as pointer to the
node. In order to allows the recursive use of such compressed representations, the part of the input
(output) layer which represents a pointer must be of the same dimension as the hidden layer (Ny
units). Thus, a general LRAAM is implemented by a Ny — Ny — N feed-forward network, where
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Figure 1: The network for a general LRAAM. The first layer of the network implements an encoder;
the second layer, the corresponding decoder.

N;r= N;+nNg, and n is the number of pointer fields.

Labeled graphs can be easily encoded using an LRAAM. It suffices to represent each node in
the graph as a record with one field for the label and one field for each pointer to a connected
node. The pointers need to be only logical pointers, since their actual values will be the patterns
of hidden activation of the network. At the beginning of learning, their values are set at random.
A graph is represented by a list of such records, and such a list constitutes the training set for the

LRAAM.
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Figure 2: Example of labeled graph.

For example, the network for the graph shown in Figure 2 can be trained as follows:

input hidden output

(L1 Pua(t) Pra(t))  —  Pua(t) —  (Li(t) Paa(t) Pia(t))
(L2 Ppa(t) Pna(t))  —  Pna(t)  —  (Lo(t) Pra(t) Pra(t))
(La Paa(t) Pus(t))  —  Paa(t)  —  (La(t) Pra(t) Pas(t))
(L4 nt nil) — Pn4(t) — (Lfl(t) nzl'(t) nil'(t))
(Ls Pra(t) nil) —  Pus(t)  —  (Li(t) Pha(t) nill(2))

where L; and P,; are respectively the label of and the pointer to the ith node and ¢ represents the
time, or epoch, of training. If the backpropagation algorithm converges to perfect learning, i.e., the
total error goes to zero, it can be stated that:

Li=1L, Ly=1L, Lsy=1I,
L4:L‘,} L5=L£ Pn2:P7’12
Pn3:Prl13 P"4:P7’Il4 P"5:P’I‘Il5



Once the training is complete, the patterns of activation representing pointers can be used
to retrieve information. Thus, for example, if the activity of the hidden units of the network is
clamped to P,1, the output of the network becomes (Lq,P,2,P,3), permitting further retrieval of
information by decoding P,2 or P,3, and so on. Note that more labeled graphs can be encoded in
the same LRAAM.

One advantage of the LRAAM model, besides to return distributed reduced representations of
labeled graphs, is that information can be accessed by content as well. In fact, if the output of
the network is fed back to the input, the network is transformed in an analog Hopfield network
with one hidden layer and asymmetric connection matrix. Now, because the network was trained
to implement the identity function, it turns out that each pattern of the training set! is a fixed
point of the transformed network, provided that the residual error is below a training set dependent
tolerance. In general, not all the patterns are asymptotically stable fixed points. However, since we
are dealing with structured patterns, it is possible to exploit such a structure during the relaxation
of the network in order to improve the retrieval of data. In fact, a fixed point for the unconstrained
network which is not asymptotically stable may become stable in a constrained version of the
network?. In particular, because each pattern is structured in different fields, different access
procedures can be defined on the Hopfield network according to the type of access key. An access
procedure is defined by:

1. choosing one or more fields in the input layer according to the access key(s);
2. clamping the output of such units to the known information, i.e., the access key(s);
3. randomly setting the output of the remaining units in the network;
4. letting the unclamped units of the network to relax into a stable state.
A validation test of the reached stable state can be performed by:
1. unfreezing the clamped units in the input layer;

2. if the stable state is no longer stable the result of the procedure is considered wrong and
another run is performed;

3. otherwise the stable state is considered a success.

This validation test, however, can sometimes fail to detect an erroneous retrieval because of the
existence of spurious stable states of the constrained network that share the same known information
with the desired one.

In the next section we give a formal description of both the feed-forward network (Pointer
Access network) and the recurrent network (Content Access network) defined for an LRAAM.
Related asymptotical stability problems are introduced.

!To be precise, the final version of the training set, since it is dynamical.
2We will see that the converse is also true, i.e., an asymptotically stable fixed point of the unconstrained network
may became unstable for the constrained version.



3 Formal description
The Pointer Access (PA) network:
Fp(Z)= F(EZ +0y) = h, (1)

: (2)

f(z;), and f() is a sigmoid-shaped function;

Fp(h) = F(Dh +6p) =

where E, 0y ¢ RNE 5,7, fo € RNu+nNE F;(7)

Sl

The Content Access (CA) network:

PA network + 0=7. (3)

In the PA network, E € RVEXNI 5 the Encoding matrix, i.e., the weight matrix between the
input layer (N; = N; + nNy units) and the hidden layer (Ny units), and D € RVoXVNH is the
Decoding matrix, i.e., the weight matrix between the hidden layer and the output layer (No = N;
units). In order to make explicit the partition of the input and output layers, E and D can be
written as the composition of submatrices, one for each field of the LRAAM:

E=[EO EWr)  EE)] (4)
pW
D)

D = > (5)

D(pn)

where E() ¢ RNVExNig the weight matrix between the label field of the input layer and the hidden
layer, DU ¢ RNXNx 5 the weight matrix between the hidden layer and the label field of the output
layer, E() ¢ RNaxNr i the weight matrix between the first pointer field of the input layer and
the hidden layer, and so on. Following this notation, also the bias, input, and output vectors can
be partitioned in subvectors:

G = [0 8" g, (6)
o = 165,851,857, (7)
T = [_)(l)tvf(pl)tw"7f(pn)t]t7 (8)
a=[oW",al), . 5l (9)

where ¢ is the transpose operator. Moreover, due to the constraints over the PA network, the
dimension of each subvector referring to a pointer field must be equal to the dimension of k.

The CA network is obtained by the PA network simply by connecting the output to the
input (0 = ¥), and it actually constitutes a discrete time Hopfield network with analog output
and asymmetric connection matrix. The underlying idea is that each pattern of the training set,
assuming zero total error after learning, becames a fixed point of the CA network. Moreover, under
some conditions these fixed points are also asymptotically stable. Thus, if only partial information
is known about a pattern, the CA network can be used to reconstruct the whole pattern. Since each



pattern is structured, it turns out that it is best to take advantage of this structure by constraining
the relaxation process of the CA network. The constraints are obtained, as informally discussed
above, by considering only subsets of connections of the CA network, according to the known
information.

In this report we focus on two stability problems encountered in the LRAAM model. The first
one arises when considering the decoding of a pointer along a cycle of the encoded structures. Since
the decoding process suffers, in general, of approximation errors, it can happen that the decoding
may diverge from the correct representations of the pointers belonging to the cycle. Thus, it
is fundamental to discover under which conditions the representations obtained for the pointers
belonging to a cycle are asymptotically stable with respect to the pointer transformation. In fact,
if the representations are asymptotically stable, the errors introduced by the decoding function are
automatically corrected.

The second problem consists of discovering sufficient conditions under which the property of
asymptotical stability of a fixed point in one particular constrained version of the CA network
could be extended to related fixed points of different constrained versions of the CA network.

4 The Decoding Problem

Given a pointer to a component of the encoded structure, it is possible to access the information
contained in it by using the Decoding function F'p() (eqn. 2). It is convenient, for our purposes,
to make explicit the single decoding transformation implemented by each submatrix of D. The
pointer transformations are defined as follows:

Vi, j=1,..on, FOd) = F(D")d+ 637, (10)
and the label decoding function as:
FO(d) = F(DOd+ 6. (11)

Let J®)(d) = A(n_ét(p]))D(pJ) be the Jacobian matrix of the transformation F#:)(d ), where
@) — p)g ng) and A(n_ét(pj)) € RN#XNu s the diagonal matrix whose ith diagonal

element is f’(n_étgpj)) = f/(d). Then the following theorem holds:

k3

net

Theorem 1 A decoding sequence
d+) = ) 6)y =0, L (12)

with d (iz+1) = J(io), satisfying
Ny
bl <1,  i=1,...,Ng (13)
k=1

Jor some index p;,, ¢ = 0,...,L, is asymptotically stable, where by is the (i,k)th element of a
matrix B, given by

B = J0i)(d 60)) g Pt (o) o) (F60)) i) (F02)y .. g Piga) (),



Proof: By definition, d (o) is a fixed point of the transformation:
GPo)(d) = Fe)(FP-)( . Fro)(d) .. ), (14)

and the sequence in eqn.12 is asymptotically stable if and only if d (o) is an asymptotically stable
fixed point of eqn.14. The linearized system for eqn.14 at d () is:

7 (t+1) — B(J(iO))f(t)7 (15)

where # 1 = ¢ () — g'(0) and B(d () is the Jacobian matrix of G®i)(d (). On differentiating
a function of functions, it turns out that:

B(d"(io)) — J(pz‘L)((f(iL)) .. .J(pio)((f(io)). (16)

Let A be an eigenvalue of B(J(io)), associated with eigenvector ¥. Then it is easy to verify that A
is also an eigenvalue of B(d (1)), associated with eigenvector J(piﬂ)(J(iJ)) - JPio)(d ()7, By the
fact that d () is asymptotically stable if and only if all the eigenvalues associated to G(pio)(J(iO))
have moduli less than one, and by using the Gershgorin’s Theorem, the assertion of the theorem is
demonstrated.

Actually, this theorem is a discrete time adaptation of the Theorem 2 presented in [1] by Atiya
and Abu-Mostafa, where the pointer transformations can be assimilated to different hidden layers
of an appropriate network. Note that if at least one pointer, say J(w), belonging to a cycle has
saturated components, then the cycle is guaranteed to be stable. This is a direct consequence of

the fact that the diagonal matrix A(nZt(I)), which compounds the corresponding Jacobian matrix,
is null or very close to null.

5 Retrieval of Data

The theorem stated in the previous section can be applied to guarantee the asymptotical stability
of a constrained fixed point of the LRAAM, i.e., the fixed point obtained by clamping the output of
a subset of the units to the key used to retrieve information. In order to discuss the issue formally,
we need a bit of extra notation. Let us rename the components of E and D in the following way:

[EQ, E@) )] = [E®) E®) . E®), (17)
pW D)

D) D)
=] . . (18)

Dn) DE"

Then, we can define a family of matrices given by subsets of the components of E:

E@) = [E(fo)’ B ‘7E(i'(k—1))]’ (19)



where z; = 27 and b; is the (i + 1) — th nonzero bit in the binary representation of z. Similarly, we
can define the family of complementary matrices:

- (2)

EY = [E®)  EE6-0)], (20)

where &; = 27 and b; is the (i 4+ 1) — th zero bit in the binary representation of z. Note that, in
general, E®) = E(y)

of z. In particular, B E(O) = E and E© = E
E = [E(l),E(pl),E(pQ)], we have that:

where y is the number obtained by complementing the binary representation
2ntl_g
( - (. Thus, for example, if
21

25(1) 929

23

= [E0), B0V,
E® = g,

24
25

(21)
(22)
(23)
(24)
(25)
(26)

26

and so on.
The same notation can be used to derive a family of matrices by D and to represent a family
of vectors composed of at most n + 1 subvectors:

P PO ARV LIS A C R R CR A (Gl L (27)
) — [E(fo)t7 N _7E(f(k—1))t]t’ (28)
=(x) TRy =0 ¢
Eoo= R ke (29)

where t is the transpose operator. The components of each subvector can be interpreted as associ-
ated to the units of one field of the LRAAM.

Now we are ready to define the equations driving the network used to retrieve information by
the key vector k@),

Fr (39 0) = P(EYE Y (1) 1 8y + EOF @) = ), (30)
-  (z) = =(z) (z
Fpw(h) = FDR1) +65 ) =31+ 1), (31)

Note that E@E (®) can be considered as an external input to the network, however, since it is
constant during the retrieval by key E(z), we prefer to consider it as an additional bias term.
Given a fixed point for the above equations, Theorem 1 can be applied directly to the composi-
tion of the functions F'p.)() and F 'y, (). The same theorem can also be used to demonstrate some
interesting relationships among the different networks we can derive by the CA network using our
notation. The networks we derive are generated according to two criteria. First of all, it is decided
which fields must be kept fixed, then it is decided which value for the key must be used. The first

choice corresponds to fix the structure of the network by selecting the matrices E(x) and b(x), the
second one to fix the bias of the hidden layer (A + E@E (#)). Thus we can describe a network



X by the couple (x,E (I)), where z defines the structure of the network according to the original
one, and k (#) is the actual key vector used to retrieve the information. We say that a network Y
is a subnetwork of network X (Y C X)if Y has been generated by fixing at least the same fields
fixed to generate X. Note that, we have several networks® with the same structure but different
bias values at the hidden layer.

Therefore, it is interesting to study how the asymptotically stability of a fixed point changes by
changing the structure of the network or how the stability properties of a fixed point in a network
are related to the stability properties of another fixed point in a network with the same structure
but different bias values at the hidden layer. In the following we give three theorems regarding
these aspects.

The first theorem can be considered a preservation theorem:

o 2@ -
Theorem 2 Given a fived point (dg,dy ) for the network X = (z, k (9)) satisfying the asymptoti-

- 2 (1/) s t t
cal stability condition (13), then the fized point (dy,dy ), defined for the network Y = (y, [k (@)* 7z (y=z) 1",
2 (= 2 (v)
with Y ¢ X, and Z9=%) given by the components of do notindy , is asymptotically stable if:

- ()
the stability condition (13) for (dy,do ) is salisfied at layer O;

or

(=) (=)

~ ~ (x t . ~ T
E = D( ) A", where A( ) is every diagonal matriz with components all of the same sign.
2 (=)

Proof: Suppose the stability condition for (JH,dO ) is satisfied at layer O. First of all note

: (@)
that the columns of the Jacobian matrix J(E(y)’y)(do ) for the network Y are a subset of the
2 ()

set of columns of the Jacobian matrix J(E(m)’X)(do ) for the network X, and the rows of the
Jacobian matrix J(D(y)’y)(JH) are a subset of the set of rows of the Jacobian matrix J(D(m)’X)(JH).

L z2(@)
Thus, since the stability condition (13) for (dy,do ) and network X is satisfied with B(OX) =

. N o = (z) - =2y
J@ )’X)(dH)J(E( " X)(dy, "), it follows that condition (13) is satisfied as well for (dg,d, ) and

. . . (y
network Y because the elements of a row of the matrix B{9Y) = J(D(y)’y)(d.H)J(E(y)’Y)(dO ) are

a subset of the set of elements of a row of B(?X) which by hypothesis satisfy condition (13).

- z2(@)
If the stability condition for (dp,d, ) is satisfied at layer H, then there is no guarantee that

. : 2 - -
the modulus of an element of the matrix BHY) = J(E(y)’y)(do )J(D(y)’y)(dg) will be less or equal

=2 (=

than the modulus of the corresponding element of BHX) = J(ﬁ(x)’X)(JH)J(E(z)’X)(do ), unless

~ (2 ~ a:t ~ T S\ T
E( ) is equal to D( ) A( ), where A( )
sign. In this case, it is guaranteed that each element of B

is every diagonal matrix with components all of the same
(H,X) ig given by the sum of quantities
with the same sign and thus removing some of them will lead to a reduction of the modulus of the

corresponding element of BWHY),

3One for each defined combination of values of the fixed fields.



In order to show that in general the satisfaction of condition (13) at layer H can lead to
unstable fixed points when considering the constrained networks, in Figure 3 we have reported a
simple network with this very unpleasant property. The value of the bias for each unit is shown on
its side and f(z) = H-% — 1. The network is constructed in such a way that (f(0.95),[0.5,0.5])
is an asymptotically stable fixed point, as can be verified by computing the condition (13) at layer
H. However, when constraining the network on  (s; = =7+ Z2) oron y (s; = =7+ %), the

corresponding fixed point (f(0.95),0.5) turns unstable.

X y

$2=1(0.95) + f1(0.5) Qg é 3=-15f(0.95) + (0.5

X y

Figure 3: Example of network with an asymptotically stable fixed point but unstable related fixed
points for the constrained networks.

The proof of the previous theorem gives also an idea of how an unstable fixed point of a network
may be a stable fixed point of a subnetwork. In fact, it may happen that the elements of B are
reduced in modulus or became null, allowing the stability condition to be satisfied. A particular
case in which such event happens is captured in the following corollary.

>l

- - - =2
Corollary 1 Given a fized point (dH O )for the network X = (z,k (*)), the fized point (dg,dp ),
k(@) -

defined for the network Y = (y, [k ,Z “”)t]t), withY C X, and Z¥=%) given by the components
2 (z) 2 (v) L 2=
of dp notindy , is asymptotically stable if the stability condition (13) for (dm,do ) is satisfied
2 ()
at layer O for all the indexes © which correspond to the components of d, ;

Proof: By the first part of the proof of Theorem 2 all the rows of the matrix BOY) —
R - (v)
J(D(y)vy)(dH)J(E(y) )(do ) satisfy condition (13) by hypothesis.

The next two theorems regard the relationship between two fixed points of networks with the
same structure but different bias vector at the hidden layer.

- z(=) -
Theorem 3 Given a fized point (dy,dy ) for the network X = (z,k (x)) salisfying the asymptoti-

L =22 - (z
cal stability condition (13), then the fized point (d'f,dy ), defined for the network X' = (z, k' ( )),

1s asymptotically stable if:



- 2@
the stability condition (13) for (duy,do ) is satisfied at layer H,
and
Vi, i=1,....,Ng, fi(dg) < fl(dy).

Proof: The assertion is a direct consequence of the fact that only the diagonal matrix referring
to the first derivatives of the outputs of the hidden layer changes, and the change is such to reduce

. - (@)
the moduli of the elements of BUX) when considering the fixed point (d'yy,dp ) since f'() is
positive definite.

R NG
k¥ dg
P N N
=00
dy
\ [ T ]
\ [ [ ]
=
dy ——
Y
- x) ~
K do

Figure 4: Example of application of Theorem 3.

The previous theorem is useful, for example, when we have more nodes with the same pointers
but different labels (see Figure 4). In this case, if one among these nodes exists which is asymp-
totically stable and whose pointer is less saturated in each component than the others, then also
the others are asymptotically stable provided that it satisfied condition (13) at layer H. Actually,
since condition (13) is compounded of mutually independent conditions over the rows of B, Theo-

- 2 (=)
rem 3 can be extended to a set of fixed points (d(j)u,dp ), 7 =1,...,5, for the set of networks
X(j)=(z, k() (x)), satisfying the asymptotical stability condition (13). In this case, the fixed point
- 2 (z -
(d(S+1)m,dy ), defined for the network X (S+1) = (z, k(S +1) (#)), is asymptotically stable if the

=

first condition of Theorem 3 is satisfied for each j and Vi, i = 1,..., Ny, 37, s.t. fl(d(S+1)g) <

FUdG)m)-
If the stability condition is not satisfied at layer H, then the best we can state, without involving
conditions more complex than the stability one, is the following theorem:

o 2@ o
Theorem 4 Given a fized point (dy,dy ) for the network X = (z,k (x)) salisfying the asymptoti-

. oz () - (z
cal stability condition (13), then the fized point (d'g,d'o ), defined for the network X' = (z, k' ( )),

1s asymptotically stable if:

E(I) _ D(I) A(w)

, where A(I) s every diagonal matriz with components all of the same sign,

10



and

- - \ (x z (z) 2 (z)
Vi7 7::17"'71VH7 fz’l(d‘/H) < fi/(dH); V.]7 .j:lv"'v*wé)v f]/(d/O ) < f]/(dO )

Proof: The proof of this theorem can be obtained combining the observations made in the proofs

~ T ~ \T LN T
of Theorems 3 and 4. The condition E( ) = D( ) A( ) guarantees that a decrease in the moduli of
the diagonal matrices leads to a decrease in the moduli of the elements of the B matrix satisfying

the stability condition.

Actually, this theorem is more general than the previous one, since in this case we are considering
every couple of fixed points of networks with the same structure but eventually different bias term
at the hidden layer. Because of this generality, the conditions which must be satisfied tend to be
more tight. An extended version of Theorem 4, considering a set of fixed points, can be easily
proved as well.

6 Simulation

In this section, we give an example of graph encoding using the LRAAM model. When possible
the theorems given in the previous sections are applied, under the hypothesis that each pattern in
the final training set is very close to a fixed point of the system. Consequently, all the quantities
involved by the conditions of the theorems are computed using this approximation. Therefore, the
obtained results should be considered keeping in mind this aspect. In general, however, we found
the obtained results to be more strict than the experimental ones. This is due to the over estimation
introduced by the Gershgorin theorem of the modulus of the eigenvalues of B.

The example involves the encoding of the labeled graph shown in Figure 5 using a 11 — 3 — 11
PA network. The representations used for the labels are reported in Table I. The last two bits

db——=[ Lo [@]@] d3

 laTels

dg
Figure 5: Labeled graph used for an experimental verification of the theoretical results.

of each label are used to represent the void condition for the pointer fields (-1 represents the void
pointer condition).

It must be pointed out that the use of a part of the label to represent the void condition for the
pointer fields is particularly efficient since the pointer fields are free to assume every configuration

11



Label Code
Lo -1-1-11 1
Ly -1-11 11
L, -11-111
Ls -111-11
Ly 1-1-11-1
Ls 1-111-1
Lg 11-111

Table I: Representations for the labels of the graph shown in Figure 5.

when they are void, and this adds more degrees of freedom to the system. In order to avoid
instabilities for the void pointers, their output activation at one epoch is used as input activation
at the next epoch?.

A standard backpropagation algorithm with momentum term and symmetrical sigmoidal units
was used. In particular, the gains of the hidden units were set to 0.5, the gains for the output units
representing the label were set to 2, and the gains for the remaining output units to 1. A discussion
about this kind of distribution for the gains of the units can be found in [16]. The initial weights for
the PA network were initialized with real numbers uniformly distributed in the interval [-0.6,0.6].
The learning parameter 7 for the weights was set to 0.07, the momentum g to 0.5, and the learning
was stopped after 4097 epochs®, when the error for each output unit and for each pattern in the
training set was below 0.05.

do D O D 1.0 . -1.0 D

¢ O LI
& o = L
e ][]
¢ [ JHNE
& LI
e ]

Figure 6: Distributed representations for the pointers of the labeled graph shown in Figure 5.

The distributed representations obtained for the pointers are graphically shown in Figure 6.
These were obtained by presenting the corresponding input patterns to the input of the PA net-
work and looking at the activation of the hidden units. The result of a cluster analysis over the

*Experimentation performed on this aspect showed fast convergence to different fixed points for different void
pointers.
®The batch mode was used.
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Cycle (dQ, d3, d5)
Start Result

dy 111
ds 110
ds 111

Cycle (dg, d4, d5)
Start Result

dy 111
dy 111
ds 111

Table II: Results obtained by computing the asymptotical stability condition for the cycles of the
graph shown in Figure 5.

representations is presented in Figure 7. It can be noted that the metric over the pointers reflects
sufficiently well the relationships among the components of the graph.

d3

Figure 7: Cluster analysis of the distributed representations developed by the LRAAM for the
pointers of the labeled graph shown in Figure 5.

The first test we performed on these representations was the application of Theorem 1 in order
to ascertain the stability of the decoding process along the cycles (dg,ds, ds) and (dg,ds, ds). If
these two cycles are asymptotically stable ones, the others given by a combination of them will
also be. Observing that the pointers ds and d4 have components almost saturated, a first positive
guess on the asymptotical stability of the cycles can be made. The results of the computation of
condition (13) for all possible starting points of each cycle are represented in an encoded form in
Table II. The result is represented by three bits, one for each index of condition (13). If the value
of the ¢th bit of the result is 1 it means that the condition is satisfied for the corresponding index,
otherwise it is equal to 0. The starting pointer represents the first pointer decoded in the cycle.
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From Table II it is clear that (d3, ds, ds) and (d3, ds, d5) are asymptotically stable cycles, since
it suffices at least one starting pointer for which condition (13) is satisfied. Thus the first guess,
given only on the basis of the degree of saturation of the pointers, was confirmed. The stability of
the cycles was confirmed as well by direct inspection of the system behaviour during the decoding
process.

In the second test we verified condition (13) over the functions Fr(Fp()) (test over layer H)
and Fp(Fg()) (test over layer O). The results are reported in Table III, where we used the same
convention of the previous table. In particular, the first column of the table reports the input
pattern for the considered function, i.e., hidden activations for Fg(Fp()) and input activations (as
represented in the final version of the training set) for Fp(Fg()).

FULL NETWORK (z = 0)

Test over H
Pattern Result
dy 111
dy 111
do 111
ds 111
dy 111
ds 110
dg 111

Test over O
Pattern Result

(Lh,dy,d)) 11111111111
(Lh,dy,d)) 11111111111
(Lh,dy,dy) 11111111111
(Lhymil',dl) 11111101101
(Ly,di,nil”y |11111100010
(L4, dy,nil”) 11111001010
(Lh,dy,dy) 11111111111

Table III: Results obtained by computing the asymptotical stability condition for the CA network.

From Table III we can state asymptotically stable all the fixed points defined on the CA network
by the final version of the training set® but the fixed point (ds, [L%, dj, nil""]) for which condition (13)
was satisfied neither at layer H nor at layer O. Actually, condition (13) was not satisfied at layer
H because the sum of the modulus of the elements of the last row of the corresponding B matrix
was 1.28. However, a direct inspection of the stability of the fixed point (ds, [L%, d), nil"']) showed
it was asymptotically stable as well as the others. Table III can also be used to apply Theorem

2. In particular, since the learned matrices E and D are such that Yz € {0,1,2,3,4,5,6}, 2 A(gc)

~ ~ t ~ ~
s.t. E(z) = D(z) A(m), where A(x) is every diagonal matrix with components all of the same sign,
we can use only the first condition of Theorem 2, i.e., that the stability condition is satisfied at

5Defined by (di, ci), where ¢; is the ith pattern in the final training set
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layer O. In Figure 8 we have reported the inclusion graph regarding the structure of the networks
derivable by the CA network. In the inclusion graph there is a node for each type of network
structure derivable by the CA network, and an arrow from X to Y if Y C X. The CA network is
represented by (z, E(“”)), where z = 0 and £(©) = (). Networks with the same structure but different
access key are identified by setting E@®) =« According to Figure 8, Theorem 2 can be applied only

(0, 9)

(1,0 (2,0 (4,0

(3.0) (5.,0) (6,0)
Figure 8: The inclusion graph for the networks derivable by the CA network.

to couples of networks for which there exists an arrow between them.

On the basis of Table III, it can be seen that the conditions of Theorem 2 are true for the
first three fixed points and the last one. The consequence is that each subcomponent of the fixed
points is asymptotically stable for each corresponding subnetwork, i.e., access procedure. Corollary
1 is instead useful if applied to the remaining fixed points, since it states that the fixed points
(ds, L), (d4, L}), and (ds, L) are asymptotically stable fixed points of the corresponding networks
(6, [nil’, dL]), (6,[dS, nel"]), and (6, [d), nel™]).

Let us now consider the results obtained for the networks (1, ) (Table IV). From Table IV we
can state that all the fixed points are asymptotically stable. Theorem 2 allows us also to state that
(dy, d%) is an asymptotically stable fixed point for the network (5, [L}, nil"]), and Corollary 1 that
(ds, d%) is an asymptotically stable fixed point for the network (3, [L}, nil']).

The asymptotical stability of the others fixed points was verified by computing condition (13) at
the layer H of the corresponding networks, and a direct inspection of the asymptotically stability
of the fixed points confirmed the theoretical results. Thus, using Theorem 1, Theorem 2, and
Corollary 1 we were able to foresee the stability properties of the fixed points. Only the fixed point
(L%, d,, nil") for the CA network escaped from the theoretical analysis.

The extended version of Theorem 3 was applied to the CA network considering the set of
pointers {dp, dy,d2}. In fact, the corresponding fixed points (do, [Ly, d5, d}]), (dq, LY, d5, d}]), and
(dg, [LY, d5, d}y]) satisfied condition (13) at layer H, dy had the less saturated first component,
do the second one, and d; the third one. Consequently (dg, [L§, d%, d}]) was confirmed to be an
asymptotically stable fixed point. As previously mentioned, £ and D were such that it was not
possible to apply Theorem 4.

7 Conclusions

In this report we have discussed some stability problems encountered in the LRAAM model. In par-
ticular, we have given sufficient conditions for the asymptotical stability of cycles in the structures
encoded in the LRAAM, i.e., when the decoding of pointers belonging to a cycle can be performed
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NETWORKS (1, %)

Test over H

Key | Pattern Result
L dy 111
L] dq 111
L do 111
L ds 111
L dy 111
L ds 111
L dg 111
Test over O

Key | Pattern Result

L, (dy,dy) 111111
L] (dh,dy) 111111
L (dy,dy) 111111
Lt | (nil'ydy) |101111
Ly | (ds,nil”)y 111111
Ly | (dyynil”)| 001111
L (dh,dy) 111111

Table IV: Results obtained by computing the asymptotical stability condition for the networks

(1,%).

without danger of loosing information. The same result can be applied with a few modifications
to the asymptotical stability of fixed points of the CA network defined for the LRAAM. We have
given as well suflicient conditions under which the property of asymptotical stability of a fixed point
in one particular constrained version of the CA network can be extended to related fixed points
of different constrained versions of the CA network. Experimental results have shown that the
obtained theoretical results can be successfully applied to the trained network in order to foresee
the reliability of the access procedure by content.

Several issues remain to be explored. First of all, the definition of a training procedure able
to guarantee the asymptotical stability of the equilibria for every constrained version of the CA
network and the asymptotical stability of the decoding process. Unfortunately, the procedure
proposed by Atiya and Abu-Mostafa [1], in order to guarantee at least the asymptotical stability of
fixed points for the unconstrained CA network, cannot be applied since it requires the saturation
of the hidden units. Even if this requirement can be fulfilled in same cases by perturbing the
solution obtained by the standard procedure, in general, the hidden representations need to be
analog. Analog hidden representations are also preferable in view of the reduced representation
framework, where the main goal is to obtain a continuos metric over the representations. Regarding
this aspect, we believe there is a good possibility that the stability of the decoding procedure is
obtained automatically by the standard procedure. This conjecture is partially supported by the
fact that, under the hypotheses of perfect learning, linear output units, and representation of a
cycle of length k£ in the same pointer field p, the eigenvalues of the matrix (D(p))k, corresponding
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to the pointers of the cycle, must be equal to 1 (see [16]). If it is observed that, because of the
linear units, (D(p))]C corresponds to the Jacobian matrix of the decoding function along the cycle,
and that in the nonlinear case there is a strong decay component in the Jacobian matrix given by
the first derivative of the sigmoidal units, then the conjecture seems to be reasonable. Till now, we
have never encountered an unstable cycle in our simulations.

Another research issue is the definition of the shape of the basin of attraction of the equilibria of
the CA network. The next step will be the attempt to perform an analysis of a basin of attraction
by the technique used by Michel and Farrell in [8]. Moreover, in order to improve the shape of the
domain of attraction, an adaptation of the unlearning method exploited by Keeler [6] for binary
Hopfield networks will be tested.

Spurious equilibria are not frequent in the unconstrained CA network. This can be a conse-
quence of the fact that the fixed points are not completely defined by the user, since the actual
value for the pointers is generated by the network. This claim needs to be formally demonstrated
as well. Related to this aspect is also the observation that the capacity of the LRAAM model seems
superior with respect to the results obtained by Atiya and Abu-Mostafa. In fact, in our example,
a network with 3 hidden units was able to store 7 asymptotically stable fixed points. In any case,
spurious attractors can be eliminated by introducing terminal attractors [18].

In conclusion, complex structures are encoded by an LRAAM in such a way that both distributed
reduced representations and access by content can be exploited. Moreover, theoretical analysis on
the asymptotical stability of equilibria can be performed in order to decide which component of
the structure can be safely accessed by content. More work needs to be done in order to assess the
potentialities of the model.
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