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Abstract

We exploit the notion of sensitivity of Boolean functions to find complexity results.
We first analyze the distribution of the average sensitivity over the set of all the
n-ary Boolean functions, and show some applications of this analysis. We then use
harmonic analysis on the cube to study how the average sensitivity of a Boolean
function propagates it the tfunction corresponds, e.g., to an oracle available to com-
pute another function. To do this, we analyze the sensitivity of the composition of
Boolean functions. We find the relation existing between a complexity measure for
symmetric functions introduced in [FKPS 85] and the average sensitivity. We use
this relation to prove that symmetric functions in AC® have exponentially decreasing
average sensitivity. This is, in the special case of symmetric functions, a substantial
improvement over the characterization given in [LMN 89].
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1 Introduction

The Fourier transform of a Boolean function is a linear mapping of the values of
the function onto a set of coefficients, known as Fourier coefficients. The nature of
this transformation makes the Fourier coefficients informative about the regqularities
of the function, and thus about its computational complexity. This fact was well
known since the early ages of switching function theory. In a review article of 1971
[Leh 71], Robert Lechner says that ”The representation of a switching functions as an
n-dimensional abstract Fourier transform over the finite two-element field (...) has
many valuable properties. These properties have inspired new algorithms for some
classical problems of combinational logic synthesis ...”

An important quantity related to the Fourier transform is the sensitivity which
measures if the value of a function is likely to change in correspondence to arguments
which are Hamming neighbors. The goal of this paper is to study Boolean functions by
using information on their (average) sensitivity. As we will see, there have been only
very preliminary results on this subject, and this is the first systematic approach to
using the notion of sensitivity as a tool for a computational complexity investigation.

1.1 Overview of known results

In this section we review some results related to our work. Fourier analysis of a
Boolean function allows one to evaluate the influence that a given subset of the
variables has in the determination of the value of the function, where the influence
of a subset of variables is the probability that the value of the function remains
undetermined as long as the variables in the subset are not assigned values. Since
the sum of the influences of all the variables defines the average sensitivity, Fourier
analysis can be used to determine how much a function is sensitive to its arguments.

Chapter 2 in [SHB 68] is dedicated to the description of some mathematical back-
ground on error detection in digital machines. In particular, the Boolean difference
function - which is the difference between the value of a function at a given argument
w and the value at an argument which is a Hamming neighbor of w - is used to
analyze error propagation. It turns out that the Boolean difference allows to define
both influence and sensitivity. Karpovsky [Kar 76] proposes to use the number of
nonvanishing Fourier coefficients of a Boolean function f as a measure of its com-
plexity. Hurst et al. [HMM 82] relate the circuit complexity of a Boolean function to
its power spectrum coefficients. Brandman et al. [BOH 90] establish a relationship
between the Fourier coefficients of a Boolean function f and (¢) the average size of
any decision tree for f; (¢¢) the minimum number of A gates in a circuit computing
f according to its disjuntive normal form. Kahan et al. [KKL 88] find connections
between influence and harmonic analysis and use theorems on influence to prove re-
sults on rapidly mixing Markov chains. In addition, they relate the average sensitivity
of functions to their Fourier coefficients. However this relation was already implicit

from the work of [HMM 82]. Ben-Or and Linial [BL 89] study collective coin flipping,



where the collective coin is viewed as a Boolean function. In this case, measuring
influence corresponds to measuring how much the collective coin is sensitive to the
presence of faults and the goal is to find Boolean functions on which the influence of
each variable is as small as possible, to prevent that a small subset of variables, e.g.
the set of faulty processors, takes control of the collective coin. Linial et al. [LMN 89]
take advantage of the relation between the average sensitivity of Boolean functions
and their Fourier transform to prove several facts, e.g., that sets in AC® have low
average sensitivity. Bruck [Bru 90] and Bruck and Smolensky [BS 92] use abstract
harmonic analysis to derive necessary and sufficient conditions for a Boolean function
to be a polynomial threshold.

1.2 Results of this paper

We first analyze the distribution of the average sensitivity and show that almost all
n-ary Boolean functions have average sensitivity in the vicinity of % (see Lemma 1
in Section 3). This fact allows us to prove that at most a fraction of order nl? of all
the n-ary Boolean functions belongs to AC°. The symmetry of the distribution of
the sensitivity and the corresponding spectral symmetry (see Lemma 3 in Section 3)
are the basis to propose a natural extension of the class AC®. We then use harmonic
analysis of the Boolean cube to study how the sensitivity of a Boolean function propa-
gates if the function is used, e.g., as an oracle, in the computation of another function.
To do this, we analyze the composition of Boolean functions. More precisely, we find
the linear transformation relating the Fourier coefficients of a Boolean function f to
the Fourier coefficients of a Boolean function h = f(¢1,...,9gm), where the g¢;’s are
Boolean functions. We give an exact evaluation of the norm of the matrix of the
transformation (see Lemma 6 and Lemma 7 in Section 4). We also find upper bounds
on the sensitivity of h with respect to the sensitivity of f and of g; (see Theorems 8
and 9 in Section 4). This technique is particularly amenable to find lower bounds
on the size of small depth circuits as a function of the sensitivity of the functions
they compute, to analyze relativized complexity classes and to find properties of sets
that reduce to sets with given sensitivity. We find the relation existing between a
complexity measure for symmetric functions introduced by [FKPS 85] and the av-
erage sensitivity (see Lemma 11 in Section 5). We use this relation to prove that
the average sensitivity of symmetric functions in AC? decreases exponentially (see
Theorem 12 in Section 5). This is, in the special case of symmetric functions, a
substantial improvement over the characterization given in [LMN 89]. We also prove
that a family of Boolean functions has exponentially decreasing sensitivity if and only
if the associated set is almost sparse or co-sparse. This allows us to conclude that
sets in AC? whose characteristic function is symmetric are almost sparse or co-sparse.
By applying counting arguments, we then prove that there are no more than nrovs”
symmetric functions in AC?. This confirms the intuition that almost all the 2" sym-
metric functions of n variables are in NC' — AC®. The result of Theorem 12, together



with the characterization of [WWY 92], give a very clear picture of the very simple
structure of symmetric functions in AC°. We show that sets with a given sensitivity
can not be complete in NC! under certain special reductions. In particular we use
the notion of sensitivity to find another proof of the fact that MAJORITY is not
complete for NC! under projections (see Section 6). We furthermore give a technique
for evaluating the average sensitivity of functions computable by read-once formulas.
The idea is to take advantage of the independence of the variables to obtain very sim-
ple expressions for the average sensitivity. This special case is important because, e.g.,
every NC! function can be transformed, by projection, onto a read-once function.

1.3 Notations

Unless otherwise specified, the indexing of vectors and matrices starts from 0 rather
than 1. The symbol e; denotes the first column of the identity matrix. A” denotes
the transpose of a matrix A. p(B) denotes the spectral radius of a matrix B, i.e.
the largest of the absolute values of the eigenvalues of B. The notation |z| (||B])
without any subscript stands for the Ly-norm of a vector & (matrix B). The subscript
1 is used to specify the Li-norm of vectors and matrices. All the logarithms are to
the base 2. The notation polylogn stands for a function growing like a polynomial
in the logarithm of n. Given a Boolean function f on k binary variables, we will
often use its 2*-tuple vector representation f = ( fo fi ... for_1 ), where f; = f(z(7))
and x(7) is the binary expansion of ¢. If  and y are two binary strings of the same
length, then d(z,y) and x §y denote their Hamming distance and the string obtained
by computing the exclusive or of the bits of z and y, respectively. |z| denotes the
number of ones in a binary string z.

1.4 Organization of this paper

The rest of this paper is organized as follows. In section 2 we give some background
on abstract harmonic analysis and its connections to sensitivity analysis. In section 3
we give a classification of Boolean functions according to their average sensitivity and
we show that the corresponding spectral analysis suggests a natural generalization
of the class AC?. In section 4 we show how to evaluate the sensitivity of composed
Boolean functions by analyzing their Fourier coefficients. In section 5 we find the
connections between average sensitivity, sparseness and complexity, and we use these
relations to prove some complexity results. In section 6 we present some applications
of our results to complexity classes and reductions, and we study the special case
of Boolean functions computable by read-once formulas. In section 7 we provide a
framework for future research.



2 Abstract harmonic analysis and sensitivity

In this section we give some background on abstract harmonic analysis. Our main
sources are [Leh 71] and [Loo 53]. Then we show, using a simple derivation based on
[HMM 82], the relation between Fourier coefficients and sensitivity. At the end of the
section we take into account the special cases of symmetric and monotone functions.

Let us consider the space F of all the two-valued functions on {0, 1}". The
domain of F is a locally compact Abelian group and the elements of its range, i.e.
0 and 1, can be added and multiplied as complex numbers. The above properties
allow one to analyze F by using tools from harmonic analysis. This means that it
is possible to construct an orthogonal basis set of Fourier transform kernel functions
for F. The kernel functions of the Fourier transform are defined in terms of a group
homomorphism from {0, 1}" to the direct product of n copies of the multiplicative
subgroup {£1} on the unit circle of the complex plane. The functions Q,(z) =
(=1)wsr(=1)w2®2  (=1)¥ron = (—1)7“”% are known as group characters or Fourier
transform kernel functions [Lit 40]. The set of functions {Q,|w € {0, 1}"} is an
orthogonal basis for F.

We can now define the Abstract Fourier Transform of a Boolean function f as
the rational valued function f* which defines the coordinates of f with respect to
the basis {Qu(z),w € {0, 1}"}, ie., ff(w) = 273 Qu(x)f(x). Then f(z) =
Yow Qu(x) f*(w) is the Fourier expansion of f.

Using the binary 2"-tuple representation for the functions f and f*, and consider-
ing the natural ordering of the n-tuples z and w, one can derive a convenient matrix
formulation for the transform pair. Let us consider a 2" x 2™ matrix H, whose (¢, 7)-th

T
entry h;; satisfies h;; = (—1)l ) where iTi denotes the inner product of the binary
T
expansions of 7 and 7. If f=1[fo f1.. .fgn_l]T and f* = [fg i ..fgn_l] , then, from
the fact that H-!' = 27" H,, we get f = H, f* and f*=2"H, f.

Note that the matrix H,, is the Hadamard symmetric transform matrix [Leh 71]
and can be recursively defined as

. 1 1 . Hn—l Hn—l
We give now an interpretation to the Fourier coefficients. The coefficient f;
is the probability that f takes the value 1. The first order coefficients f*, with
j = 2, measure the correlation of the function f with its i-th variable, i.e. f} =
27" 3, (=1)¥ f(w). The coefficients f7, with [j| > 1, measure the correlation be-

tween the function and the parity of those bits whose position corresponds to a 1 in
the binary expansion of j. There is no correlation if f7 = 0 and maximum correlation

if |7 = 1. The sign of the coefficient indicates if the correlation is actually with the
parity (f} = —2) or with its complement (ff = 3).

We can now describe the links between harmonic analysis and the notions of
influence and sensitivity. Let A be a set of variables. The influence of A on f, denoted
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by 14(A), is the probability that f remains undetermined as long as the variables in
A are not assigned values and the other variables are assigned at random according
to the uniform distribution. The sensitivity s, (f) of a Boolean function f on a string
w € {0, 1}"is the number of Hamming neighbors @ of w such that f(w) # f(w).
The average sensitivity of f, s(f), is the average of s,,(f) over all w € {0, 1 }"*. s(f)
can also be defined as the sum of the influences of all the variables on f.

Sometimes we will use the terminology sensitivity of a set as a shortcut for sen-
sitivity of the characteristic function of the elements of length n of a set. By using
the approach of [HMM 82], we now show the connection between average sensitiv-
ity and Fourier coefficients. We take advantage of two identities, i.e. Parseval’s
identity: Y, f(v) = 2%, (f*(v))?, and autocorrelation identity: Y, f(v)f(v @ u) =
275, Qu(u) (f*(v))?, which is a consequence of the orthogonality of the functions
Qu(u).

We obtain, for the sensitivity s, (f) of a string w,

sull) = 3 (f(w) = flw e w)’ = 32 (f(w) + f(w & u) = 2f(w) f(w & u)),

ul=1 Ju|=1
from which

sulf) = nf(w)+ 3 Fwau) -2 Y f(w)f(we ).

|u|=1 |u|=1

For the average sensitivity, we get

s(f) =272 su(f)=27"3 (nf(‘w) + ) flweu) =23 f(w)f(we u))

w |u|=1 |u|=1

P (an(w) + Y Y fwou -2 Y Y fw)f(we u)) -

lu]=1 w luj=1 w
=27 (an(w) - > D flw)flwe U)) :

Since we have

[u[=1 w luj]=1 w
- 2@2( 1 (f (w))? = Q”Z(f*(w)fi(—l)w’ .
= 203 (0 2fuf) (F7(w))? = 02 3 (F(w))? — 2 Y ol (£(w))?,

then, by Parseval’s equality, we obtain
s(fy=27" (n Do f(w) =3 f(w) + 27wl (f*(w))"’) =43l (£ (w))*.
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Two important special cases are symmetric and monotone Boolean functions. In
these cases, Fourier coefficients and sensitivity can be evaluated in a simplified way.
Symmetric Functions. Let w be a binary string of length n.

F@) =272 o 075 o) =0 ( T ) (F51)"
k=0 z|=k =1

Monotone Functions. The n coefficients which are sufficient to determine the
sensitivity [KKL 88] can be computed as f* = 27" H,, f, where H, is an n X 2" matrix

defined as X X
ﬁ1:(1_1)7 Hk:<Hk—1 Hk—l)’

V-1 —Vk-1

where v; = (1, 1 ..., 1)T. Then s(f) = 2_”+1||ﬁnf||1.
Threshold Functions. In the case of monotone and symmetricfunctions, i.e. thresh-
olds, we get

=g () () i (3).

where h is the positlve mteger which defines the threshold.

3 Distribution of the average sensitivity

We analyze the distribution of the average sensitivity of all Boolean functions defined
on {0,1}" and we give an exact evaluation of its expected value and variance. Then
we use Chebyshev’s inequality to find an upper bound to the number of Boolean
functions in ACY.

First of all, note that, for any function f, 0 < s(f) < n and that s(f) can assume
only rational values.
Lemma 1 The expected value of the average sensitivity of all the 22" Boolean func-

tions of n variables is equal to 3.

Proof The thesis easily follows from the linearity of the expected value. In fact:

B =5 X sw<f>] = 5 Y Bl =

= LYY Bl + £ ® )~ 2f(@)f (w5 w) =
W |ul=1
= 50 X 3 (B + Bl 0 0] = 260 5 u)) =
1 1 n
“x T (2=



Lemma 2 The variance of the distribution of the average sensitivity is equal to 54 .

Proof From the definition of variance we get

VIs(f)l = E[s* (/)] — E*[s(f)].

Then, we need evaluate the expected value of s*(f). First of all, we have
1
B = B | e TS st =

1
= okl

Yosi(h)+ > sw(f)swl(f)] —

w#w!

- 2% (ZE[si(f)] + ) E[sw(f)swf(f)]) :

w#w!

Since
n

Blsi ()] = Eldi (w)] + > Eldi(w)d;(w)],
i=1 i
where d;(w) = f(w) + flw & 1) — 2f(w)f(w & ¢) and ¢ is a string with the i-th bit
equal to 1 and the others equal to 0, by multiplying d;(w) and d;(w) and evaluating
the expected values, we obtain

n2

T+

n
1 .

In the same way, we find
Blsul(f)su(£)] = ¥ Bld@)d, ()] = .

Note that E[d;(w)d;(w")] turns out to be equal to 1/4 even if w and ' share a
Hamming neighbor, i.e. w @1 = w' @ j for some 7 and j, and even if w is a Hamming
neighbor of &' , i.e. w = w' & j for some j (and viceversa).

Finally, we get

1 n? n n? n n?
2 r an a2n on

and the thesis follows from E[s(f)] = 2.

2

Lemma 3 The distribution of the average sensitivity of all the 2*" Boolean functions

of n variables s symmetric with respect to the expected value 2, i.e.

#{f:{0,1}" = {0,1} s.t. s(f) =a} =4{f : {0,1}" — {0,1} s.t. s(f) =n —a}.



Proof We show that for any Boolean function f, with average sensitivity s(f), there
exists a function ¢ s.t. s(g) = n — s(f). We define g in the following way. For all
w e {0,1}"

—if |w]| is odd, then g(w) =1 — f(w);

—if |w]| is even, then ¢g(w) = f(w).
The function g is such that, for all w, s,(g) = n — s,(f). In fact for all the strigs u,
lu| = 1, w and w @ u have opposite parities, thus we obtain

=Y Jg(w) —glw B u)| =

ul=1

= > (1-|f(w) = flwodu)]) =n - su(f).

ul=1

Hence

1
_Z_nZSW =n —s(f).

w

Note that from the two constant functions f(w) =0 and f'(w) =1— f(w) =1 for
all w, which are the only two functions with average sensitivity equal to 0, we can use
the proof of Lemma 3 to get the two functions with the maximum average sensitivity,

e., the parity and its complement. The following two Theorems are applications
of Chebyshev’s inequality, Pr {|s(f) — E[s(f)]| > ¢} < m;m, to the distribution of

average sensitivity.

Theorem 4 For "almost all” Boolean functions on n variables, we have 5 —¢ <
s(f) £ 5 +¢, where ¢ is a constant.

Proof Follows from the Chebyshev’s inequality for a constant €. We get
n n
Pr {fstn - 3|24} < g

Thus the number of Boolean function with average sensitivity ranging from 7 —¢

to 2+eis Q(27(1 — 5br)) -

Theorem 5 The number of Boolean functions on n wvariables with s(f) < k, for

k<_,180(m).

Proof Follows from the Chebyshev’s inequality, with e = 2 — k.

Since Boolean functions in AC? have average sensitivity s(f) < log °Wq [LMN
89], we can use Theorem 5 to prove that (1 + W) is an upper bound to the

number of functions in ACP.



The proof of Lemma 3 suggests to define the complexity classes pAC® (parity
AC?) and sAC° (symmetric AC?), where

pAC® = {glg = f ® PARITY , f € AC°}, sAC® = AC°U pAC®.

These classes have the following properties. For any Boolean function g € pAC®
we have s(g) = Q(n — logFn), for a constant k, i.e. functions in pAC® behave
similarly to PARITY or its complement (like functions in AC? behave similarly to
the two constant functions). sAC? is a class which lies slightly above AC°. In fact
sAC® ¢ ACC. In addition, we can use Theorems 2.2 and 2.8 in [Leh 71], to prove
that, if ¢ = f & PARITY, then ¢*(w) = 6u,0 — $6uwauo0 + f*(w @& u), where u is
the vector whose entries are all equal to 1, and ¢;; is the Kronecker delta function.
Thus the Fourier coefficients of order |¢] of g, 1 < |i| < n, coincide with the Fourier
coefficients of order n — [i| of f, while g5 = + f3._y, and g3._; = =2 + f5.

This last symmetric property of the Fourier coefficients allows us to adapt results
on the Fourier coefficients of AC? functions to pAC? functions. As an example, we
have that functions in pAC® have almost all their power spectrum on the high order
coefficients.

More in general, it is interesting to compare the spectrum of a function f with
that of a function ¢ defined as g(w) = f(w) & pm(w), where p,, is the parity of
m bits, e.g. the first m bits. From the fact that p,,(w) = wla(mod 2), where
al =[1,1,...,1,0,...,0], some algebra and the application of Theorem 2.8 in
[Leh 71] yield ¢*(w1, ... ,w,) = f*(w01, ... , W, Wny1, ... ,wy), for w # 0 and
w # a, and g*(0) = 3 + f*(a), g*(a) = —3 4 f*(0). Thus, all - but those for w = 0
and w = a - the Fourier coefficients of f and ¢ are the same, in different order. Some
algebraic manipulation yields

s(@)=m—s(f)+8 > w'(u—a)(f(wea)
w#0,w#a
from which s(g) > m — s(f).
The application of the above arguments to AC? functions gives rise to the def-
inition of the complexity classes p;,AC® = {glg = f @ p;, f € AC°}, and cAC® =
U™ pi ACY, where pgAC® = AC®. We have AC® C cAC° C ACC.

4 Evaluation of the Fourier Coefficients

Let f:{0,1}" — {0,1} and ¢{0, 1}% — {0,1}, ¢ = 1,..., m. Consider the
Boolean function h given by f(g1(w1),g2(w2),...,gm(wym)), where w; is a k;-tuple
of Boolean variables, and k; is the fan-in of the function ¢;. Let f* and h* be
the vectors of the Fourier coefficients of the functions f and h, respectively. H;
denotes the Hadamard matrix of size 2°. We say that h; < f; if the m-tuple
g1(w1) g2(w2) ... gm(wm), where wywy ... w, = (i), is equal to z(j), and ()
and z(j) denote the binary expansions of ¢ and j, respectively.
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Lemma 6 Let f, g; and h be as above. Let n = 3" k;, and V be a 2" x 2™ matrix
defined as 27" H,AH,,, where A is a 2" X 2™ malriz whose entries oy; salisfy

%:{ 1 ifhi < f

0 otherwise
Then h* =V f*.

Proof From the definition of the matrix A, we have h = Af. The thesis follows
from the fact that A* =27" H,h and f* =2""H, f.

Note that the columns of the matrix A are mutually orthogonal and thus the ma-
trix AT A is a 2™ x 2™ diagonal matrix whose (j, j)-th entry a; is given by S°% o' Pr{h; <
fit-

The matrix V contains all the information on the relationship between the Fourier
coefficients of the functions f and h. The next Lemma states an important property

of V.
Lemma 7 |V| = /277" p(ATA) = \/27 p, where p = max; p;, and p; = 27"a;.

Note that p (or a sharp estimate for it) can be easily computed for many functions.
Since 27™ < p < 1, we have that |V| < 2%, which shows that 2% is the maximum
amplification factor for the Fourier coefficients. In addition, note that, if we interpret
the set of the functions g; as a single mapping ¢ : {0, 1} — {0, 1}"*, then q; is the
cardinality of the inverse image of the string z(j) according to ¢, i.e. a; = f{w €

{0, 13"|g(w) = ()}
We now show two upper bounds on the average sensitivity of h as a function of
the average sensitivity of g; and f, respectively.

Theorem 8 s(h) < Y, s(gi).

Proof (Sketch) Follows from the definition of sensitivity as a sum of influences of the
variables and by using some probabilistic arguments on the propagation of influences
from the functions ¢;’s to the function f.

Theorem 9 s(h) < n2™ "p(AT A)s(f).

Proof Let D, be a 2" x 2" diagonal matrix whose (4,7)-th entry is defined as |i|z.
Then the average sensitivity of A can be written as

s(h) = 4|[Dn B7[|* = 4| Dn V 7|

Now, if D' is a 2™ x 2™ diagonal matrix whose (2,7)-th entry is defined as |i|_%, for
1 <i<2™and 0 for 7 = 0, we have that D' D,, + ¢ eip = [, from which

s(h) = 4DV (D! Dy + erey ) [,
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where D,, is defined as D,. Since D,V e; = 0 and s(f) = 4| D f*|*, we get
s(h) < ||Dn VD;%IH2 s(f), and the thesis now follows from Lemma 7 and from the
equalities || D, ||> = n and ||DY? = 1.

The upper bound of Theorem 8 is a starting point for understanding the strict
connection between parallel complexity and sensitivity. As an example, we have that,
if the function f is the OR (AND) function and the functions ¢; are AND (OR)
functions, and if the fan-in of the A (V) gates is of order n, then s(h) = O(c(n)3%),
where c(n) is the number of A (V) gates, from which c¢(n) = Q(£s(h)). (See also
[BOH 90] for another bound on ¢(n).) Thus the notion of sensitivity explains why
some functions can not be computed by circuits with polynomial size and small depth.
Other applications will be shown in the full paper.

We consider now the upper bound of Theorem 9. There are two properties of
composition which is worth analyzing, namely

e Since the average sensitivity cannot exceed n and there are functions in NC*
which attain this bound, for a study of completeness within NC?! with respect
to many-to-one reductions, it is interesting to find under which conditions we

have n2m~"p(ATA)s(f) < n.
e Consider circuits over the basis {AND,OR, NOT'}. Since s(AND) = s(OR) =

gt and since a polynomial number of AND/OR gates allows one to compute
functions with sensitivity up to n, e.g., the parity of n bits, in general the
amplification of the average sensitivity can have an exponential growth. Thus
it is important to distinguish cases under which the composition of sensitivity
has a polynomial, rather than exponential, amplification, i.e. s(h) < n°Ws(f).

We take into account two (extreme) cases:

e p is large. This corresponds to saying that the function ¢ maps many strings
onto a few strings. In this case the upper bound is very large, but we can get
direct information on A. In fact, if p = 1 then A is a constant function and thus
s(h) = 0;if p > 1—[a(n)]™!, where a(n) is any function increasing with n, then

s(h) = O(n[a(n)]™").

e p is small. This corresponds to saying that the cardinality of the inverse image
of any string under ¢ is approximately 27, If 27 < p < m@W2-" then we
have s(h) < n®Ws(f). If27" < p < [a(n)]7!, then ns(f) < n2™ " p(ATA)s(f) <
nla(n)]7*2™s(f). If p ~ 27™, then the functions f and h have approximately
the same density, i.e. 273, f(w) = 27" Y, h(v), so that S(n—f) < s(h) < ns(f).

As a consequence of these properties, we can use the upper bound of Theorem 9 to

see that a sparse set cannot be complete in NC!' under many-to-one reductions if
p= O(m), where 3(m) is any function growing more than any polynomial in m.
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5 Sensitivity: Between Structure and Complexity

In this section we first show that there is a correspondence between sparse - or co-
sparse - sets and functions whose average sensitivity decreases exponentially. This
fact is the basis for showing that low average sensitivity is a structural property of sets
which generalizes sparsity in a natural way. Then we find some interesting relations
between a measure of complexity for symmetric functions defined in [FKPS 85] and
the average sensitivity. These relationships allow us to use a result of [CK 91] for
proving that the average sensitivity of symmetric functions - and, more in general, of
functions with polynomial index - in AC decreases exponentially.

We say that a language over {0, 1} is (¢) sparse (co-sparse) if the strings of length
at most n which belong to it are at most n®() (at least 2% — n%M)); (ii) almost sparse
(almost co-sparse) if the strings of length at most n which belong to it are at most
npolvlogn (at least 27 — ppolvlogn),

Lemma 10 A set is sparse or co-sparse iff the average sensitivity of its characteristic
. . o(1) . .
function is O (” ) A set is almost sparse or almost co-sparse iff the average

on
npolylogn
2n

sensitivity of its characteristic function is O (

Proof From the definition of average sensitivity, we have that s(f) < 2np, where
p = Pr{f(w) = 1}, and the probability is taken over all w € {0, 1}". The if part
of the Lemma follows from the fact that the characteristic function of a sparse set
2&1). It remains to prove that the functions with exponentially low
average sensitivity are the characteristic functions of a sparse or co-sparse set. From
Parseval’s identity [Leh 71] and from the definition of f; we obtain p = Y ;(f*)* and

p = f5. Then, we get

n

satisfies p <

p= S = A XU < 2 Sl = gt 2,

i i#0 i#0

ie. p*—p+ ﬂfl > 0. Solving the latter inequality for p and using the hypothesis that

O(1) nO(1) nO(1)

5(f) < 55— we obtain that either p < 2 e
function of either a sparse or co-sparse set. The proof for almost sparse or almost

orp>1— i.e. f is the characteristic

co-sparse sets is similar.

From now on in this section f will be a symmetric Boolean function. We recall
some definitions from [FKPS 85]. The minimum number of variables of f that have
to be set to constant values so that f becomes a constant function is called measure
of f and is denoted by u(f). Let w € {0, 1}"*! with elements w;, where w; is equal
to the value of f when 7 variables are set to 1 and the other variables are set to 0. w is
called spectrum of f. w; is called i-th character of w. A subword of the spectrum is a
string of the form w; w;y1 ... witr. [FKPS 85] show that u(f) can be easily evaluated
from the spectrum because p(f) = n+ 1 —I', where I' is the length of the longest
constant subword of w.

12



Lemma 11 Let f be a symmetric Boolean function defined on {0, 1}" with measure

w(f). Then

J&i{(H%fi}_1)+<w@fi;—ﬁﬂfﬂﬁf2ﬁﬁ§;<ngly

k=0 2

where k = L%J Furthermore, both the lower and the upper bounds are tight.

Proof The influence of z; on a symmetric function f is given by
1 = n-1
) = i 2 (") o -,
k=0
where wy denotes the k-th character of the spectrum of f. Hence we have
n 2 n-1
s(f) = 5= > |[Wrt1 — wi] -
2 k=0 k

We need evaluate the maximum value which can be attained by the average sensitivity

for functions whose measure is p(f). By analyzing the behaviour of the binomial
. —1 . . .

coefficients | for 0 <k <n—1,1it is easy to see that this maximum can be

k
detected by looking at spectra of one of the forms

w=1010101...1011111...1;

u r
w=11111...10101010...10
r w
w = 1010101...0100000...0;
M r
w = 00000...01010101...01
r w

Thus, the maximum average sensitivity of functions with measure u(f) is

n ”(i):_l n—1
2n—1 k )

k=0

The lower bound on s(f) can be evaluated similarly. In fact, the functions of measure
©(f) whose average sensitivity is minimal must have spectra of the form:

000...0111...1000...0...111...1000...0111...1...000...0111...1000...0,
—_———— S — — ————
[ﬂ%lj—fd“ r r r r r r r [ﬂ}l]—fcf‘

kD kI

13



where k = [%IQJ Hence there esist functions of average sensitivity

e 2] e )+ (e T )

which is the minimum possible value for functions of measure p.

The above Lemma has a very interesting consequence for symmetric functions in

ACP.

Theorem 12 Let [ be a symmetric function in AC®. Then s(f) = OQ(2-"+rolvlogny,
and this is equivalent to saying that f is the characteristic function of an almost
sparse - or almost co-sparse - language.

Proof A consequence of Lemma 11, together with the characterization of [FKPS 85],
is that symmetric functions in AC? have exponentially decreasing average sensitivity.
In fact, since symmetric functions in AC? have measure bounded above by a polylog,
from Lemma 11 we obtain

n polylogn n—1 npolylogn
<t
k=0

Then Lemma 10 implies that f is the characteristic function of either an almost sparse
or almost co-sparse language.

Corollary 13 The number of symmetric functions of n vartables which are com-
putable by polynomial size constant depth circuits is of order nPevoIm,

Proof The upper bound follows from Theorem 1 in [WWY 92] and standard counting
arguments. The lower bound is obtained by counting the number of functions for

which u(f) = O(polylogn).

6 Applications

In this section we present some applications of the results of section 4 and we study
some special cases. We show that, in some cases, sets of high sensitivity can not
reduce to sets of substantially smaller sensitivity. The main idea behind the proofs
is to exploit a structural difference between AC® and NC', namely the fact that
NC" functions have any possible average sensitivity, while AC? functions have sen-
sitivity at most polylogarithmic. In particular we find another proof of the fact that
MAJORITY is not NC*' complete under projections.

Finally we find a simple formula for expressing the average sensitivity of functions
computable by read-once formulas. By using some relations between read-once for-
mulas and circuits, this expression can be used, e.g., to find a lower bound to the

14



number of A gates in a circuit computing f according to its disjuntive normal form.
Using a different terminology which refers to the notions of entropy and information
content, the same lower bound was proved in [BOH 90]. We first give a Lemma that
links sensitivity to adjacency [Sub 90] and then a Lemma that states a property of
the MAJORITY function.

Lemma 14 Let f and h be two Boolean functions over {0, 1}". Let g : {0, 1}" —
{0, 1}* be a function for which d(x,&) < 1 implies d(g(z),g9(&)) < d. If h(z) =
Fl(z)), then's(h) < s, (), where s0.(f) = max, sO(), and o (f) is the sen-

sitivity of f on w taken by looking at strings whose Hamming distance from w is at
most d.

Proof (By Contradiction.) Assume s(h) = k and 59 (f) < k — 1. Then there

exists at least one string w such that s, (h) > k, i.e. there are at least & Hamming

neighbors of w, w;, for which h(w) # h(w;). This means that f(g(w)) # f(g(w;)),
i =1,2,...,k, which is impossible because d(g(w), g(w;)) < d and s\ _(f) <k — 1.

Lemma 15 Let f, be the MAJORITY function on n variables. Then

Smae(f) = max s () = |

n

1
2t

Proof Since f, = 1 on strings with at least | 7] + 1 bits equal to 1, then s,,(f.) =0
if w has at most |%] — 1 bits equal to 1 or at least |%] 4+ 2 bits equal to 1. Thus
we can restrict the analysis to strings with [Z] and |3] + 1 bits equal to 1. In both
cases, we easily get that the number of Hamming neighbors for which the function

changes value is L%J + 1.

Definition 1 Let f and g be sets represented as infinite collections of Boolean func-
tions, f; and g;. We say that g reduces to f by projections, denoted as g=,;f,

if, for any n, gn(x1,22,...,2,) = fp(n)(an(yl),an(yg), . ,Jn(yp(n)), where p(n) is
a function bounded above by a polynomial in n, and on = {yi1,y2,... ,Ypm)} —
{ZCl,fl,lﬁg,fg....lfn,lﬁn,o,l}.

The notion of projection reducibility was studied in [SV 81].

Lemma 16 Let f be a set and {f;,1 =1,...} be the set of Boolean functions repre-
senting it. If the maximal sensitivity of f,, t.e. the mazimum of the sensitivities of
fn on its arquments, is less than n, then f is not complete for NC' under reduction
by projections.

Proof Follows from the fact that g=<,;f implies s(¢) < Spaz(f).
[SV 81] proved that M AJORITY is not complete for the class NC' under reduc-

tion by projections. Lemma 16 allows us to find another proof of this fact.
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Corollary 17 MAJORITY is not complete for the class NC' under reduction by

projections.

Proof Follows from Lemma 16 together with Lemma 15.

We analyze now the role of sensitivity to characterize the relative complexity
of problems in NC' using DLOGTIME transformations which satisfy some con-
straints. In particular, a transformation will be called adjacency preserving if it does
not increase the Hamming distance between the strings.

Lemma 18 Let A be a language and {f; ;2 = 1,...} be the set of its characteristic
functions. If the maximal sensitivity of f, is less than n, then A is not complete for
the class NC' under adjacency preserving DLOGTIME transformations.

Proof Follows from Lemma 14 with d = 1.

Theorem 19 MAJORITY is not complete for the class NC' under adjacency pre-
serving DLOGTIME transformations.

Proof Follows from previous Lemma together with the fact that the maximal sen-
sitivity of the characteristic function associated to MAJORITY is L%J + 1.

Theorem 20 Let A be a language and {f; ;@ = 1,...} be the set of ils characteris-
tic functions. If the average sensitivity of f, is asymptotically o(n), then A is not
complete for the class NC' under invertible DLOGTIME transformations.

The average sensitivity is a measure of how a function behaves assuming that
all the possible arguments occur with the same probability. This is not the case, in
general, when the function describes a portion of a circuit. In this case, its arguments
can be viewed as the values computed by functions representing other parts of the
circuit. The nature of these functions strongly influences the distribution of the
arguments. To analyze this question we introduce a more general notion of sensitivity,
which we call on-line sensitivity. We then apply this notion to evaluate the sensitivity
of functions computable by read-once formulas. We also show the natural connection
between the notion of on-line sensitivity and the technique of amplification of Boolean
formulas - see [Bop 89], [DZ 92] for an introduction to this topic and for relevant
results.

Definition 2 The on-line sensitivity s,(f) of a Boolean function f is given by s,(f) =
>ow PwSw(f), where py, is the probability of occurrence of the argument w, and s,(f)
is the sensitivity of f on w.

Definition 3 Let A be a set of variables. The on-line influence of A on f, I ,(A),
is the probability that f remains undetermined as long as the variables in A are not
assigned values and the other variables are assigned according to a given probability
distribution p.

16



As for s(f), one can evaluate s,(f) as the sum of the on-line influences of all the
variables.

Definition 4 The amplification function Af(p) of a Boolean function f is given
by As(p) = Pr{f(z1,22,...,2,) = 1}, ¢f Pr{z; = 1} = p. The multivariate
amplification function A¢(p1,...,pn) of a Boolean function f is Ag(p1,... ,pn) =
Pri{f(zy1,29,...,2,) = 1}, if Pr{z, =1} = p;.

On-line sensitivity is closely related to the amplification of sensitivity due to com-
position. The following example puts into evidence that functions with exponentially
decreasing average sensitivity can combine together and rapidly produce functions of
increasing average sensitivity. The reason is that the combination process allows one
of the functions to produce strings on which the other one is very sensitive. In other
words, on-line sensitivity is very useful to analyze the composition of functions whose
sensitivity on different strings has a wide variance.

Example 1 CNF formulas. Let

m k
F= Puww=Ve,
=1 7=1

It is easy to see that Iy, (w;) = [1;4 p;, where p; is the probability that w; = 1. Let

n = mk. Since p; = 1 — 3z, we obtain I;,(w;) = (1 — 55)™" and thus

Note that the mazimum value of s,(f) is of order @ and is attained for k = logn.

In addition, note that
n

() = (Au, (1/2) 77

To study more general functions, it is convenient to use the multivariate amplifi-
cation function. Let for example h = f(g1(w1), g2(w2), ..., gm(wy)). Forw e {0, 1}"

we get
27-1

Prih(w) =1} = > (k)" = As(pr,--. ),

=0
where Pr{g:(w;) =1} = p;.
Further connections between amplification and Fourier coefficients are the follow-
ing:

o Fuvaluation of the on-line sensitivity. The value of the weights that arise in the
definition of on-line sensitivity can be computed according to a formula of the

type [I; Agi Hj(l - Agj)-
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o Fvaluation of the Fourier coefficients of the composition of Boolean functions.
The j-th entry of the diagonal matrix AT A (see Section 4) can be written as

A Hz Agi Hj(l - Agj)-

Recall now that a formula is a Boolean circuit of fan-out 1 and a read-once formula
is a formula in which each variable appears only once.

We turn to the analysis of the sensitivity of Boolean functions computable by
read-once formulas (read-once functions from now). These functions are important,
expecially for low complexity classes, because every NC' function on n variables can
be viewed as the projection of a read-once function with n®®) variables.

Lemma 21 Let h be a read-once Boolean function defined as

h(z) = f(g1(w1), g2(w2), -+, Gm(wm)),

where w; = T1; T2 - .. This.

?

(a) The influence of xi; on h is Iy(xi;) = Iy (2:) I5p(2;), where z; and z; denote
the i-th and the j-th bits in input to g; and f, respectively.

(b) The average sensitivity of h is s(h) = "2, (I5,(2;) s(g;)) -
Proof
(a) Follows from the definitions of influence and on-line influence.

(b) Follows from the definition of average sensitivity as sum of the influences of all
the variables.

Corollary 22

1. s(h) <30 s(g5)-
s(h) < maxicj<m{s(g;)}sp(f) < maxicjcm{s(9;)}smas(f)-
If gj =g for all j, then s(h) = s(g) sp(f).

Ifg; € {V, A} forally, then s(h) < QTkm"fl < oit—r, where kyip = minj<icm ki

min — ka

o

If ¢ is a read-once Boolean function computable by a layered circuit of depth k,
then s(¢) < s(f1) TIE, s,(fi), where the functions f; satisfy

o The output of fi is the value computed by ¢

o For i # k, f; is the function of maximal on-line sensitivity whose output
is an input for fiiq.
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Proof
1. Follows from the fact that I;,(z;) <1 for 1 <j < m.

2. Follows from

s(h) = Z]fm (2j) s(g;) < max {s(g;)} Z]fm (2;) = max {s(g;)}s,(f) =

1<j<m 1<5<m
i=1

= 1I<HJ%X{ 9;)} prsw ) < lglfix{ s(gi)} max{sw( )}

3. Follows from

D) = 3 T1(5) sla) = 3 T1a(55) slo) = s(9)sy (1),

4. Follows from 2 and from the following facts:

e maxi<;<m{s(g;)} = maxlSjSm{ . _1} = "’L’;;l"_l , with ki = ming<i<m {£i }.
o Spaz(f) <m.

Note that for k. = 2, we get s(h) < 7, and for ks, = logn + 1, s(k) < 1.

5. Follows by repeated applications of 2.

The above corollary has several interesting consequences, e.g. the fact that the
average sensitivity of functions computable by read-once formulas is upper bounded
by %, and that, if the minimum fan-in of a gate is of order logn, then the average
sensitivity is not increasing.

7 Concluding Remarks

This paper is a step forward in the process of understanding the intriguing relations
between sensitivity and quantitative aspects of computing. The influence of sensitivity
on the efficiency of computational tasks has been studied in other areas, like, e.g.,
parallelism [CLR 93], dynamization [EGIN 92|, and program checking [ABCG 93].
We believe that more general results are to come, expecially for what concerns the
interplay between parallel complexity and sensitivity.
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