INTERNATIONAL COMPUTER SCIENCE INSTITUTE

1947 Center Street @ Suite 600 ® Berkeley, California 94704 e 1-510-642-4274 e FAX 1-510-643-7684

Labeling RAAM

Alessandro Sperduti
TR-93-029

May 1993

Abstract

In this paper we propose an extension of the Recursive Auto-Associative Memory
(RAAM) by Pollack. This extension, the Labeling RAAM (LRAAM), is able to
encode labeled graphs with cycles by representing pointers explicitly. A theoreti-
cal analysis of the constraints imposed on the weights by the learning task under
the hypothesis of perfect learning and linear output units is presented. Cycles and
confluent pointers result to be particularly effective in imposing constraints on the
weights. Some technical problems encountered in the RAAM, such as the termina-
tion problem in the learning and decoding processes, are solved more naturally in
the LRAAM framework. The representations developed for the pointers seem to be
robust to recurrent decoding along a cycle. Data encoded in a LRAAM can be ac-
cessed by pointer as well as by content. The direct access by content can be achieved
by transforming the encoder network of the LRAAM in a Bidirectional Associative
Memory (BAM). Different access procedures can be defined according to the access
key. The access procedures are not wholly reliable, however they seem to have a high
likelihood of success. A geometric interpretation of the decoding process is given and
the representations developed in the pointer space of a two hidden units LRAAM are
presented and discussed. In particular, the pointer space results to be partitioned in a
fractal-like fashion. Some effects on the representations induced by the Hopfield-like
dynamics of the pointer decoding process are discussed and an encoding scheme able
to retain the richness of representation devised by the decoding function is outlined.
The application of the LRAAM model to the control of the dynamics of recurrent
high-order networks is briefly sketched as well.

i

1 Introduction

In the last years, different researchers have focused their efforts to demonstrate how sym-
bolic structures such as lists, trees, and stacks can be represented and manipulated in a
connectionist system while preserving all the computational characteristics of the connec-
tionism (and extending them to the symbolic representations). The goal of these researchers
is to provide evidence of the potentiality of the connectionist approach to handle domains
of structured tasks. The common background of their ideas is the search for a realiza-
tion of the distal access ability and consequently of the compositionality one. BoltzCONS
[Tou90] is an example of how a connectionist system (i.e. Boltzman machine) can han-
dle symbolic structures. It is based on parallel associative retrieval and it differs from
other connectionist systems because it constructs and modifies composite symbol struc-
tures dynamically, by representing them as activity patterns rather than as weights. It uses
distributed representations of linked lists, loaded in coarse-coded memories ! [RT87], as ba-
sic representational elements and LISP’s car, cdr, and cons functions as basic operations.
Links are implemented by associations. The associative retrieval capabilities of BolzCONS
support computational primitives such as instantaneous access to an element of a list or
the capability to rapidly access parts of a symbol structure based on closest match (rather
than symbolic exact match) or efficient retrieval using multiple cues (in general, supply-
ing more constraints causes a connectionist model to settle faster; whereas a conventional
machine using hash table representations will be slowed down). The full architecture sup-
ports direct representations of arbitrary tree structures, and it can perform complex pointer
manipulations using multiple buffers operating simultaneously on its memory. It must be
noted that the dynamic manipulation of structures by BoltzCONS requires the same allo-
cation and reclamation problems usually met in conventional symbolic systems. Moreover,
even if coarse-coding representations give successful results, there remain some problems
associated with this representation strategy. Firstly, coarse-coding requires expensive and
complex access mechanisms (i.e. pullout networks). Secondly, coarse-coded memories can
only simultaneously instantiate a small number of representational elements before spurious
ones are introduced. Finally, the coarse-coded memory of BoltzCONS needs a huge number
of units because it utilizes binary codes.

The above problems, together with the observation that BoltzCONS needs a large
amount of human effort to design, to compress and to tune the representations, have
stimulated Pollack [Pol90] to design the Recursive Auto-Associative Memory architecture
(RAAM). The RAAM system uses back-propagation to discover compact recursive dis-
tributed representations for fixed-valence trees. The compact recursive distributed repre-
sentations obtained are very interesting because they synthesize the characteristics of an
item (categorical features) preserving its individual peculiarity (distinctive features). More-
over they utilize real values over few units and they can be composed selectively by a
potentially very large number of primitive elements. Other advantages are related to the
fact that they are developed mechanically, their aggregation mode is compositional, and
their access mechanisms are simple and deterministic. However the most relevant aspect
of this work is that a RAAM can devise representations of trees as numeric vectors. If

'In a coarse-coded memory each unit participates in the representation of many entities. A unit of such
a memory is said to be coarsely tuned.

inference over trees might be performed by numerical transformation (i.e. neural networks)
over their numerical representation, very fast and cheap inference engines would be built
(see [Cha90]).

A more formal characterization of representations of structures in connectionist systems
has been developed by Smolensky [Smo90]. He reduces the problem of representing struc-
tured objects to three subproblems: decomposing the structures via roles, representing con-
junctions, and representing variable/value bindings. The representation of variable/value
bindings is obtained through tensor algebra. In the tensor product representation, both the
variables and the values can be arbitrarily distributed ? , enabling representations in which
every unit is part of the representation of every constituent in the structure. This generality
allows to express existing cases of connectionist representations as particular cases of the
tensor representations. Smolensky discusses several features of the tensor product repre-
sentation, such as the graceful saturation and exact retrieval for non saturated memories,
the representation of continuous structures as well as of finite ones, the representation of
symbolic operators and recursive structures, the possibility to define and analyze optimal
role vectors, and to use a value bounded to one variable as a variable.

Reduced representations of structured objects in connectionist systems are related by
Hinton to the problem of mapping part-whole hierarchies into connectionist networks [Hin90].
The scheme he proposes considers two quite different methods for performing inference.
Simple “intuitive” inferences can be performed by a single settling of a network without
changing the way in which the world is mapped into the network. More complex “rational”
inferences involve a sequence of such settlings with mapping changes after each settling. He
discusses three approaches to map a part-whole hierarchy into a finite amount of parallel
hardware: fixed mappings, within-level timesharing, and between-level timesharing. In the
first approach each object in the hierarchy is always mapped into a pattern of activity in
the same set of units, and each set of units is always used to represent the same object
(one-to-one mapping). In the second approach, many different objects at the same level
can be mapped into the same set of units in the serial recognition apparatus, but whenever
one of these objects is recognized, it is represented in the same units. Finally, between-level
timesharing allows many different objects at the same level to be mapped into different sets
of units depending on the level at which attention is focused. The idea that he proposes is
to use role-specific reduced representations to implement pointers. This kind of pointers,
as Pollack’s reduced distributed representations, contains relevant information about the
object they point to and so some type of computations over objects can be performed on
them, without accessing to the full description of the object. In this framework a general
computation results from the combination of slow sequential access to full descriptions and
fast parallel constraint-satisfaction using reduced descriptions (“intuitive” inference). If the
appropriate representations are known, an “intuitive” inference allows to make a lot of useful
computation. When the computational task is difficult, a sequence of settlings is executed,
and after each settling the mapping between the world and the network is changed. The
possibility to change the mapping allows to apply the knowledge of the system to any part
of the task.

®The choice to have distributed representations of variables (i.e. roles) is controversial. Hinton [Hin90]
believes that in a nonlinear system it is probably easier to make use of the information about the fillers of
roles if this information is localized.

In this paper, we present an extension of the RAAM, the Labeling RAAM (LRAAM). A
LRAAM allows to store a label for each component of the structure to be represented, so to
generate reduced representations of labeled graphs. Moreover, data encoded in a LRAAM
can be accessed not only by pointer but also by content.

In Section 2 we review the standard RAAM model and discuss some technical problems
encountered in this model. The proposed extension is discussed in Section 3, where a
theoretical analysis of the constraints on the weights matrix imposed by the learning task
under some particular conditions is presented. On the basis of this analysis some suggestions
on how to represent the training set are given. A more natural approach to some technical
problems of the RAAM model, such as the termination problem of the decoding process
and the use of double tolerances, is discussed as well and some examples of encoding of
single structures are shown.

The possibility to access data not only by pointer, but also by content is discussed
in Section 4. In this section we show how transforming the encoder network used by the
LRAAM in a Bidirectional Associative Memory (BAM), it is possible to access directly data
by content with a high likelihood of success.

A study of the representational space built by a two hidden unit LRAAM is presented
in Section 5. More structures are present in the training set. The decoding function of
the LRAAM is analyzed and the set of structures found to be representable by the pointer
space discussed on the basis of a geometric interpretation of the former.

A discussion of the main characteristics of the LRAAM model, compared with the
RAAM model and the Hopfield model, is presented in Section 6. In particular, an example
of how LRAAM can be used to control the dynamics of a recurrent network is briefly
presented. Conclusions are stated in Section 7.

2 The RAAM model

The RAAM (Recursive Auto-Associative Memory) was introduced by Pollack [Pol90, Pol89]
to allow traditional symbolic data structures, such as trees with labeled leaves, to be rep-
resented subsymbolically as distributed patterns of activation. In the last years, different
papers have discussed or used the RAAM model with interesting results [Chr91, BMM92,
Rei92, SW92].

The basic RAAM can encode arbitrary tree structures of variable depth but fixed branch-
ing factor (valence). The idea is to map a symbolic tree into a numeric vector and then
to reconstruct a very close approximation of the symbolic tree starting from the numeric
vector. The mapping from trees to numeric vectors can be obtained by a compressor able
to encode small sets of fixed-width numeric patterns into single patterns of the same size.
The compressor can be applied starting from the leaves of the tree back to the root in a
recursive fashion, obtaining at the end of the process a fixed-width pattern representing
the entire structure. For example, consider the simple binary tree ((A B)(C' D)), shown in
Figure 1, where A, B, C', D are of equal size.

Firstly, A and B are compressed into a pattern, Ry, and C' and D into another pattern,
R,. Then Ry and R,, are compressed into the pattern R3 which represents the whole
tree. The tree represented by Rs can then be reconstructed in a top down fashion by a
reconstructor which is able to decode a compressed representation back to its components.

A e J[L¢c LD

Figure 1: Example of binary tree.

Thus, at the first step, R3 is decoded into R} and R). Then R} is decoded into A" and B’,
and R} into C" and D’. The compressor and reconstructor may be realized together by an
FEncoder Network (see Figure 2). Usually it is trained using back-propagation on a static
training set until the network is able to reproduce on the output layer the same pattern
as on the input layer by first encoding the input into an internal representation across the
hidden layer, and then decoding this hidden representation back to the original pattern on
the output layer. In the RAAM a dynamic training set is allowed to face the recursive
nature of the task at hand. In a general RAAM (see Figure 2) the number of units in the
input (output) layer is a multiple of the number of hidden units.

branch 1 branch 2 branch 3 branch k
m units m units m units . . | munits | Output Layer

munits | munits | munits | a = = Input Layer
branch 1 branch2 branch 3 branch k
km units

Figure 2: The encoder network for a general RAAM

More precisely, if the valence of the tree which must be represented is &, and each symbol
in the tree is represented with m units, then the network must have m hidden units and
km input (output) units. This constraint on the network is introduced since a group of m
units in the input (output) layer must be used, at different times, both to represent the
labels on the leaves and the compressed representations obtained by them on the hidden
layer. In the case of the example given above we have k = 2. Thus the Fncoder Nelwork is

a 2m — m — 2m feed-forward network and it must be trained as follows:

input pattern hidden pattern output pattern

(A B) — Ri(t)
(C D) — Ru(t)
(Ba(t) Ro(1)) — Ra(t)

—~
~
—~
o~
~—
%
—~
o~
~—r
~—r

N N
by C
=
==
xS
A/—\
==

where { represents the time, or epoch, of training. If the back-propagation algorithm is
able to learn the training set perfectly (perfec learning), i.e., the total error goes to zero, it
can be stated that:

A=A
B'=B
c'=C
D'=D
R, = R,
R/QIRQ

Note that at the end of learning we obtain not only a distributed representation of the

whole tree, but also of each subtree. In fact, Ry is a compressed representation of (4 B)
and R, of (C' D).
A version of the RAAM, called Sequential RAAM (SRAAM), can be used also to encode
sequences. In fact, sequences such as (A B C') can be represented as left-branching binary
trees, i.e., ((NIL A) B) C'). An SRAAM allows a Last-In-First-Out access mechanism for
sequences. The architecture of an SRAAM (see Figure 3) is simpler than a RAAM, since
only a branch of the tree is used.

The input (output) layer is split in two groups of units: one group is used to represent
the top of the sequence and the other the compressed representation of the stack; obviously,
the hidden layer counts as many units as the representation of the stack in the input layer.
One advantage of the SRAAM is that the number of units used in the representation of the
stack can be larger than the one used in representing the top, which allows to size up the
dimension of the hidden layer according to the length of the sequence. The training set for
the sequence above is as follows:

input pattern hidden pattern output pattern
(NIL A) — R,(1) — (NIL’() A'(1))
(Ra(t) B) — Rap(1) — (R.,(1) B'(1))
(Rap(1) C(1)) — Ranel(?) — (Ry(t) C'(1))

After convergence, Rgs. will be a representation for (A B C), Ry for (A B), and R, for
(A). As a final observation, note that, since the encoding strategy of the RAAM is based on
associative mechanisms, a single RAAM (resp., SRAAM) may encode a single tree (resp.,
sequence) as well as a collection of trees (resp., sequences).

top stack

| munits | n units | Output Layer
¥
n units Hidden Layer
AN
| munits | n units | Input Layer
top stack
(n+m) units

Figure 3: The encoder network for an SRAAM.

2.1 Technical Problems

The procedure described in the previous section to synthesize a RAAM presents some
technical problems.

The first problem concerns learning. The fact that the training set is dynamic leads
to the so called Moving Target Problem, i.e., the patterns which are not terminals change
during learning and consequently also the targets of the network change. Since, in general,
the nonterminals constitute about half of the training set, the resulting mobility of the
target may invalidate the convergence of learning. To prevent this event, small learning
parameters must be used, so that changes in the hidden representations do not overcome
the decreasing error granted by the changes in weights. Learning parameters, however,
must be large enough to allow learning. As a consequence of such setting, learning is, in
general, rather slow.

Another problem with learning concerns the stopping criteria. Since it is not realistic to
expect perfect learning in a finite time using back-propagation, some tolerance measure must
be used. In general, the terminals are represented by binary patterns, whereas nonterminals
are real-valued patterns since they represent activation patterns of the hidden layer. Because
of this difference between terminals and nonterminals, it is convenient to have two different
tolerances according to the type of pattern at hand. Terminal patterns may have a loose
tolerance, 7, (conventionally set to 0.2), whereas nonterminal patterns need a more strict
tolerance, v (conventionally set to 0.05). Setting these tolerances to the correct values is
very important, since the ability of the network to reconstruct the encoded tree depends
heavily on them, especially when the encoded trees are deep.

A termination problem is also present in the decoding of a compressed representation.
How to decide if a decoded pattern is a terminal or a nonterminal? A way to solve the

problem is to perform a test for “binary-ness” which consists in checking if all the values
of a pattern are above 1 — 7 or below 7. However, it may happen that a nonterminal
passes as well the test for “binary-ness”. Even if we can prevent this event by bounding the
range of activation of the hidden units, thus introducing a further constraint to the already
difficult task imposed by the moving target, the solution is not feasible if the terminals are
real-valued. A more robust solution would be to train a classifier to discriminate between
terminals and nonterminals, however it would result in a relevant computational overload.
A more elegant solution to this problem was developed by Stolcke and Wu [SW92]. They
used one unit of the hidden layer to represent explicitly the distinction between terminals
and nonterminals. In order to obtain this distinction, they injected an extra error in one
of the units of the hidden layer during learning, forcing the output of the unit to be 1
for all nonterminal codes, and 0 for all terminal ones. Actually, this method, which we
call the Injection Method, corresponds to develop a built-in classifier during learning. The
advantage of having a built-in classifier with respect to an external one is that the internal
representations of the RAAM may change in such a way to simplify the computational task
of the classifier, i.e., the classification problem becames linearly separable. Obviously, the
injection method implies harder constraints on the learning task of the encoder as well.

In the next section we will show how the introduction of a new variant of the RAAM,
the Labeling RAAM (LRAAM), which enables to store a label for each node of the tree
(terminal or nonterminal), allows one not only to have a more powerful tool to encode
complex structures, but also to give more satisfactory solutions to these technical problems.

3 Labeling RAAM

In this section we introduce a simple variant of the RAAM, the Labeling RAAM (LRAAM).
It differs from the RAAM because it allows us to encode labeled structures. The general
structure of the encoder network for an LRAAM is shown in Figure 4.

The idea is to allocate a part of the input for the label and the rest for one or more
pointers. The pointer fields must be all equal in size and of the same dimension of the
hidden layer. Actually, an LRAAM is a generalization of an SRAAM. In fact, an SRAAM
is an LRAAM with only one pointer field.

An LRAAM has several advantages over a standard RAAM. Firstly, it is more powerful,
since it allows to encode directed graphs where each node has a bounded number of outgoing
arcs. Secondly, the dimension of the label needs not to be equal to the dimension of the
pointers, thus allowing one to size up the dimension of the hidden layer according to the
complexity of the structure at hand. Moreover, a part of the label can be used to indicate
if the pointers are void or not, thus solving the termination problem in the decoding phase.
Lastly, we show in the next section how an LRAAM allows direct access to the components
of the encoded structure not only by pointer, but also by content.

3.1 Encoding of graphs

Labeled graphs can be easily encoded using an LRAAM. It suflices to represent each node
of the graph as a record with one field for the label and one field for each pointer to a
connected node. The pointers need to be only logical pointers, since their actual values will

n units Munits | u w = Output Layer

A

m units Hidden Layer
A<
| n units [munits | « = = Input Layer
|abel branch 1 branch k

\//

(n+km) units

Figure 4: The encoder network for a general LRAAM.

be computed by learning. A graph will be represented by a list of such records, and such a
list will be the training set for the LRAAM. For example, one way to represent the graph
shown in Figure 5 would be as follows:

input hidden output

(L1 Py Pra Prs) = Pu(l) — (Li(1) Prg(t) Pra(l) Prs(1))

(Ly Pz Poa NIL) — — Pupp(l) — (L5(1) Pra(t) Pra(t) NIL'(2))
(Ls Ppg NIL NIL) — Pus(t) — (L4(t) Plg(t) NIL'(t) NIL'(1))
(L4 Prg Prg NIL) — — Po(t) — (L4(1) Pe(l) Pra(t) NIL'(1))
(Ls Pra Pog NIL) = Pos(t) — (L5(1) Ppy(t) Pre(t) NIL'(1))
(Le NIL NILNIL) — Pug(t) — (Lgt) NIL'(t) NIL'(t) NIL'(t))

where L; and P,; are respectively the label and the pointer to the i-th node. For the sake of
simplicity, the void pointer is represented by a single symbol, NIL, but it must be pointed
out that each instance of it must be considered different. This statement will be made clear
in Section 3.2.

An important question about the representation of a graph is which aspects of the
representation itself can make the encoding task harder or easier. In order to get some
knowledge about this problem, we discuss in the following a theoretical analysis on the
constraints imposed by the representation on the set of weights of the LRAAM, under the
hypotheses of perfect learning (zero total error after learning) and linear output units. The
features we study are cycles and confluent pointers.

3.1.1 Cycles and confluent pointers

Cycles are the first feature of a graph which one can expect to impose strong constraints on
the set of weights of an LRAAM. In order to give an idea about these constraints, consider
a single pointer field in the output layer and the occurrence of the simplest possible cycle,
i.e., two nodes, Ny and N, pointing to each other:

]Vl —]VQ. (1)

If we name W), the weight matrix of the connections outgoing from the hidden units and
entering the output units representing the pointer field, then, after learning, the pointers
to the nodes, p; and P, must satisfy the following constraints:

Wpp1 = pa, (2)

Wpp2 = p1, (3)
which implies that:

W2py = i, (4)

Wi = pa. (5)

In general, given a cycle of length k, the following system of equations must be satisfied:

Wrp;, =p;, j=1,-,k (6)

This means that pointers to nodes belonging to the same cycle and represented in the
same pointer field, must be eigenvectors of the matrix W/Zf . Moreover, the eigenvalues
corresponding to those eigenvectors are all equals to 1. It can also be verified directly that
if & = Zé?:l D; # 0, where 0 is the null vector, then & is an eigenvector of the matrix W,
corresponding to a unity eigenvalue.

Other constraints can be imposed on W), and also on the pointer representations, by
confluent pointers (with respect to a pointer field), i.e., pointers to the same node represented
in the same pointer field. Suppose, for example, that nodes N; and N3 point to the same
node N3 then we have:

W,p1 = ps, (7)
Wopa = ps, (8)

which implies that W), cannot be of full rank, since pj # p>. Note that p; must be linearly
independent with respect to py to satisfy the above equations. However if another node Ny
points to N3, then the pointer to N4, ps, may be either linearly independent with respect
to p1 and Py, or a linear combination of them of the kind:

Pa = apr + (1 — a)ps, (9)

where « is any real number. The general form of the equation above is:

t—2 t—2
pe =) _(ajpj)+ (1=) aj)Pra, (10)
Jj=1 7=1
where a; are real numbers and p; (j = 1,---,¢{ — 1) are linearly independent. Actually,

the equation states that p; must be a point on the hyperplane defined by the vectors
p; (j=1,---,t —1). The constraints imposed on one pointer by the label and the other
pointer fields will force one of the two solutions. For example, supposing no other pointer
fields, if W; is the weights matrix of the connections outgoing from the hidden units and
entering in the output units representing the label, the following equations must be satisfied:

Wlﬁl = f17 (11)
Wlﬁ? = 127 (12)

where l_; and l_; are the labels of Ny and N;. Because of these equations, if py is a linear
combination of p; and ps, then it must be satisfied also the following equation:

ly=Wilapi + (1 - a)fz) = aly + (1 - a)b, (13)

where l_; is the label of N4. Thus l_; must be linearly dependent on l_i and l_;

It must be pointed out that the analysis we made in this section is too restrictive with
respect to the case of approximate learning and nonlinear output units. It, however, gives
some hints on how to represent a graph in order to avoid unnecessary constraints on the
learning task.

3.1.2 Graph representation

In the previous section we have shown that cycles represented in the same pointer field and
confluent pointers impose strong constraints on the structure of the weight matrix. In some
cases, when several pointer fields are present and no particular role is attached to them,
the number of confluent pointers to a node depends on the representation of the graph. For
example, the representation that we gave at the beginning of the graph shown in Figure
5 presents two cases of confluent pointers: nodes Ny and N3 point to node N4 (confluent
with respect to the second pointer field) and nodes N3 and N4 to node Ng (confluent with
respect to the first pointer field). Since the NIL pointer can be considered as a “don’t
care” symbol (we will discuss this statement in the next subsection), and since we had no
particular role, i.e., meaning, attached to the pointer fields, the confluence of the pointers
can be removed by rearranging the pointers as follows:

10

(L Pn2 Pn4 Pn5)
(Ly Pos NIL P,4)
(Ls NIL NIL P)
(Ly Pug Po3s NIL)
(Ls Pna Pog NIL)
(L¢ NIL NIL NIL)
The rearrangement of the pointers, in this case, has also the advantage to balance the
computational load over the matrices associated with the pointer fields. The same approach
can be followed when dealing with cycles.

3.2 The void pointer problem

One advantage of LRAAMs over RAAMs is the possibility to solve the termination problem
of the decoding phase by allocating one bit of the label for each pointer to represent if the
pointer is void or not. This solution works better than to fix a particular pattern for the
void pointer, such as a pattern with all the bits to 1 or 0 or -1 (if symmetrical sigmoids are
used). Simulations performed with symmetrical sigmoids showed that the configurations
with all bits equal to 1 or -1 were used also by non void pointers, whereas the configuration
with all bits set to zero reduced considerably the rate of convergence. The use of a part
of the label to solve the problem is particularly efficient since the pointer fields are free
to assume every configuration when they are void, and this adds more degrees of freedom
to the system. In order to avoid instabilities for the void pointers, their output activation
at one epoch is used as input activation at the next epoch. Experimentation showed fast
convergence to different fixed points for different void pointers. For this reason, in Section
3.1 we claimed that each occurrence of the void pointer is different and that the NI L symbol
can be considered like a “don’t care” symbol.

Our opinion about this approach to the void problem, in the context of the LRAAM
model, is that it compares favorably to the Injection Method, too. In fact, because of
the multiple representations the void pointer gets, the occurrence of the same label at the
leaves of different trees have a chance to be represented in different ways, even if the relevant
information, i.e., the label value, is the same.

3.3 Single tolerance

We have seen that the training of a RAAM needs two tolerance parameters, one for the
terminal patterns (which are binary), 7, and one for the nonterminal patterns (which are
real-valued), v. An advantage of an LRAAM, when binary labels are considered, is that
units representing labels are different from units representing pointers, whereas in a RAAM
a unit is used to represent both terminals and nonterminals. This fact allows us to remove
the need for a double tolerance if the steepnesses of the sigmoids of the units can be modified
at some point during learning. The basic idea is that units representing labels are more
effective if they are saturated (high steepness), while units representing pointers are more
effective if they are not saturated (low steepness), since they need to assume several different
values. This consideration leads to the following additions to the learning procedure:

11

1. The steepnesses of output units representing labels are initialized to a value vo; higher
than the value vo, used for output units representing pointers, and the steepness of
the hidden units is initialized to a value vh < vo,.

2. When the LRAAM is able to map the labels correctly, the steepnesses of the corre-
sponding units are set to a value VO; > vo,.

3. Only the tolerance v is used for every output unit.

The labels are said to be correctly mapped if for each training pattern and for each
output unit representing the label holds that:

netl

e () _ et
w _Jy>0 if ' =¢
‘ _{y<0 if 1P = ¢- (14)
(»)

7

is the net input of the i-th output unit representing the i-th bit of the label
(p)

7

where netl

when the p-th training pattern is presented to the encoder, ["’ the corresponding target

value and

1(0) i fi(z) = 5=
() = (15)
1(-1) i fi(s) = 2= -1

where f;() is the sigmoidal activation function used by the i-th output.

When the LRAAM is able to map the labels correctly, setting the steepnesses of the
corresponding output units to a large value corresponds to transform the sigmoids in step
functions. Since the labels are mapped correctly, the total error on the label will drop to
zero, and a single tolerance can be used. After the increasing of the steepnesses for the label
output units, learning can concentrate on the pointers since the internal representations are
no more influenced by the error on the labels. The steepnesses of the hidden units are
maintained low in order to reduce the probability for the hidden units to saturate.

In order to develop a robust LRAAM, the action described in point 2 can be postponed
until the distance between any outputs corresponding to opposite representations (£ and
&™) for each unit representing the label is larger than a given positive value. In this way
we avoid the noise in the activation of the hidden layer to turn a correct map of the label
into a wrong one.

3.3.1 Examples of encoding of single structures

In this section we discuss two examples of encoding of single structures using the LRAAM
model. The first structure under consideration is the graph shown in Figure 6.

The label of each node is represented by a sequence of boxes. Each box represents a
bit of information and the last tree boxes are used to encode the void pointer condition:
if the box contains a full circle, then the corresponding pointer field is void. This graph
was chosen as an example since, even if it is complex enough, it can be encoded by a
16 — 3 — 16 network with symmetrical sigmoids so that a 3D view of the pointers can be
given. The training method discussed in the previous section was employed. The following

12

n @LLLYee,

n2 HHEEOe | -

no EME[O0 @<

OO0~ COOmoe

3 mEl]ece

ns [ECIWCO0]@)

Figure 6: The codified labeled graph.

parameters were used: Vh,vop, = 0.5;VI],vo; = 2.5,VO; = 6;Vp,vo, = 157 = 0.07(learning
rate);p = 0.3(momentum);» = 0.05. The weights were updated by epoch. Actually, the
action described in point 2 of the training method was postponed until the modulus of the
output of the label units was above 0.2. This was made to render the encoder less sensitive
to noise in the encoded patterns. The void pointers were initially set randomly. The training
employed 5450 epochs to reach the stop criterion. Other simulations showed both faster
and slower training times, and in some cases no learning at all since one of the patterns
maintained a high error. The decoded representations of the nodes obtained following the
paths (n,, n1,ng, ns, ng, n4) and (ng, ng) are shown in Figure 7.

Negative activations are represented by white squares and positive activations by black
squares. The magnitude of the activation is proportional to the dimension of the square.
Note how the void pointers obtain different representations. Since a node can be reached us-
ing different paths in the graph, it is interesting to study how a pointer is transformed while
running through a cycle more than once. The cycles (n,, n1,n2, ng) and (n,, n1, n2, ns, N, N4,
ns,nz) were tested. The results of the first test are reported in Figure 8.

Each pointer is represented as a point in the bipolar cube. The decoding of a pointer p;
into another pointer p;;+; is represented by an arrow starting from the point representing
p; and arriving in the point representing p;+1. The decoding started from the pointer pg
and, after few cycles, the pointers converged to representations able to decode correctly
the associated labels and pointers. The same results were obtained for the other test (see
Figure 9).

Thus the encoding obtained can be considered robust, since the information contained
in the pointers do not deteriorate with the use. An interesting aspect revealed by these
tests is that the final stabilized representation for a pointer depends on the context, i.e., on
which cycle is traversed.

13

 HEER HEE /. o[/ AEEN
o OO AR
» HEEBEE B[/ /e HEo BHO
» RO O0aEC
o LB ER [/ AN B0O0D. .
o UL LICTL e e [
e JLJLHABEEe [(Im(]. o CJ0]0]

LABEL P1 P2 P3

Figure 7: Distributed representations of the graph’s nodes.

For example, the pointer p; has two slight different representations according to the
cycle in which the pointer is considered: in the cycle (n,,n1,n2,n9) its stable represen-
tation is (—0.926,—0.993,—0.966), whilst in the cycle (ng,n1,n2,ns, ne, na, n3, nz) it is
(—0.980, —0.967,—0.965).

Since the equivalent representations of the pointers are very similar, the whole graph can
be represented in the bipolar cube by choosing for each pointer one of its representations,
as shown in Figure 10.

The second structure we have encoded and which we will use in the next section, is the
tree shown in Figure 11. A 18-6-18 network and the following learning parameters were
used: Vh,vop, = 0.5;Vl,vo; = 2.5,VO; = 6;Vp,vo, = 137 = 0.05; ¢ = 0.1;v = 0.05. The
training stopped after 1719 epochs. The decodified representations of the pointers obtained
by the pointer to the root of the tree are shown in Figure 12. Even in this case the NIL
pointer is represented by different patterns of activation (see Figure 13).

It is worth to note that only two representations of the NIL pointer were very close,
namely NILigand NILqg. The result of a cluster analysis of the distributed representations
is shown in Figure 14. It can be noted that the representations for the void pointer are
located mainly on the bottom of the cluster tree, meanwhile the representations for non
void pointers are located mainly at the top. The distances among the nearest clusters are
reported in table I.

14

Figure 8: Recursive decoding of the cycle (n,,n1,ng, ng).

Figure 9: Recursive decoding of the cycle (n,,ny, n2, ns, ne, na, n3, n2).

15

Figure 10: Distributed representations of the pointers of the graph.

n0
COmmolC]
nl n2
Cmmmo[C)
n3 n4 n5 n6é
WOOOCOC0 memmEod) OO0Cee CmCmoIG)
n7 n9 10

n8 n
mEO0ce (mOmCoC) mOOmolc] COmCele)

nll nl2 nl3 nl4 nl5
O00mele] mmmee N mmee Ommee [m e

Figure 11: The encoded tree.

IG—all [a &
0.152643 (’RillG) (’nillo)
0.303315 | (nilys) (ps)
0.440908 | (nily) (nily)
0.500500 | (nily;) (p4)

Table I: Minimum distances among clusters.

16

r . . mEAENR
v B[] H. [
PQDDD.DD

rp LJOo. LJOO
r, H. HE[]O
Ps Dn I:‘D.I

rr n B]. [N
ﬂDDDDDD
rr B0 . 1. []
 (oHEm [N
re 1O ML
e LB OL], =
po Llm o OO0
> B B BN N |
e O Im m [
rs e L1000

Figure 12: Distributed representations of the pointers of the tree.

17

[]

NILg m 0. .
vie, - o[/e
Ni, [Jmm B m W
vie, /IO e B R
vie, - . [/m
Ni, LJH . O m =
vitge - . H. B
vie, [m o . N
vie, /I HNE
vie, L /B[1o o .
it . O Im N
vir,, o B[]
vi, Lo m OO
Nt Ll OLCJH m
vit, - I HLTH
vie,, L /o 0. B
vi, . IO /H A

Figure 13: Representations obtained for the null pointer.

18

nil4
nill
nil10
nil16

Figure 14: Cluster analysis of the distributed representations obtained for the tree.

19

4 Retrieval of Information in LRAAMs

Retrieval of coded information is performed in RAAMs through the pointers. All the
terminals and nonterminals can be retrieved recursively by the pointers to the whole tree
encoded in a RAAM. If direct access to a component of the tree is required, the pointer to
the component must be stored and used on demand.

In an LRAAM it is possible to access a component of the encoded structure in other
ways if the Encoder Network is transformed in a Bidirectional Associative Memory (BAM)
[Kos92].

A BAM consists of two layers of processing elements, name them layer By and Bo,
that are fully interconnected between layers with weight matrices My, from By to Bp, and
M,, from Bp to Bj. The weights matrices are such that M, = jW;{, where M;:F is the
transpose matrix of M. The units in a BAM may, or may not, have feedback connections
to themselves. In this section we will deal only with BAMs without feedback connections
to themselves. We will indicate with x; a unit in By and with y; a unit in Bp. The output
of x; and y; in a bivalent BAM is defined as:

+1 net? >0
yi(t+1) =< yi(t) net! =0
-1 net? <0

+1 net? >0
zi(t+1)=< y(t) nety =0
-1 net? <0

where netf = Y7L, Bo,,y;, net! = Y.7_) Bpy,;x;, m is the number of units in Bp and n is
the number of units in Bpy.
To retrieve information using a BAM, the following steps are performed:

1. Apply an initial vector pair, (Zp, ¥o), to the units of the BAM.

2. Update the output values of the Bp layer.

3. Update the output values of the By layer.

4. Repeat steps 2 and 3 until there is no further change in the units on each layer.

If a stable state (Zsiqbie, Ystable) is reached, the retrieval procedure stops. The stable state
represents the retrieved memory. Note that steps 2 and 3 can be exchanged, according to
which part (Zg or 4p) of the initial vector pair is considered relevant to retrieve the desired
memory.

In the next subsection we show how to transform the Encoder Network of an LRAAM

in a particular instance of a BAM and discuss which kind of operations we need to perform
on it. Some access procedures using the BAM are then defined in Subsection 4.2.

20

4.1 Transforming the Encoder Network into a BAM

The Encoder Network can be considered as a BAM. In fact, it suffices to feed back its output
into its input units to obtain a BAM. Thus, given an Encoder Network (£, Ey, Eo, Wi, W,),
where Fy is the set of input units, Fg the set of hidden units, Fo the set of output units,
Wy, the weight matrix from E; to Fy and W, the weight matrix from Epy to Eo, we can
define the BAM (Bpy, Bo, My, M,), where By = Ey, Bo = Eo, M, = W, is the weight
matrix from By to Bp and M, = W), is the weight matrix from Bp to By.® Actually, the
obtained BAM is not standard, since in general M), # MI, even if they often are similar.
Moreover, the update rule for the units is different with respect to the standard one, since
it uses a sigmoidal activation function. To give an idea of how much M} may be similar to
MY in practice, in Figure 15 we have reported the weight matrix of the LRAAM encoding
the graph shown in Figure 6 and in Figure 16 the weight matrix of the LRAAM encoding

the tree shown in Figure 11.

(Wo)"

(Wo)T

=
=

Figure 15: Visual representation of the weight matrix of the LRAAM (16-3-16) encoding
the graph shown in Figure 6.

The biases and the steepnesses are not represented. On the top of each picture there are
two strips representing the weight matrices where each weight is represented by a box whose
grey level represents the magnitude of the weight. Light boxes represent negative weights,
dark boxes positive weights. Since with this kind of representation similarities between the
two matrices are not clear at first glance, an interpolated version of them is given in the
second half of the picture. With this representation it is readily clear that the matrices Wy,
and W! have several common features.

Note that, if the training of the Encoder Network leads to perfect learning, then all the
vector pairs (7, Pi), where 7 is the k-th input to the LRAAM and pj the corresponding
pattern of activation of the hidden units (pointer), are stable states of the BAM. In practice
we will see in the next section that, since the learning is not perfect, the pairs (7%, px) may
be either very close to stable states or very different from them.

In order to extract information from a BAM, we need to define a class of modes of
operation for it. Given the BAM (By, Bo, My, M,), we define a mode of operation as a

?This is possible because, in an encoder, each input node has a corresponding output node.

21

(Wo) "

(Wg)"

Figure 16: Visual representation of the weight matrix of the LRAAM (18-6-18) encoding
the tree shown in Figure 11.

subset FIX of units of it. We impose that FIX C By or FIX C Bp. The idea is that
the initial value of the units in F7.X is maintained fixed during the execution of the recall
procedure, i.e., the units in F7X are not updated. Moreover, we allow that only units on
the same layer can be in F1X. Our convention will be that the first updating of the units
will involve the layer which does’t have units in F7X. Note that, FIX =) leads to the
standard recall procedure for a BAM.

This definition of mode of operation, gives us a way to describe in a compact way how
to use a BAM to retrieve information. In the next subsection we show how different FIX
sets may be used to retrieve different types of information from an LRAAM.

4.2 Access procedures

In the previous section we have shown how the Encoder Network of an LRAAM can be
used to define a BAM and noted that, under the hypothesis of perfect learning for the
LRAAM, the pairs (7, px) are stable states (memories) for the BAM. Moreover, we have
defined a class of modes of operation for the BAM. In this section we introduce the concept
of access procedure for an LRAAM, as a triple (FIX, Zf;z, Zp0fiz), which specifies the mode
of operation of the BAM (F1X), a vector of initial values Zf;; for the units in £ /X, and
a vector of initial values Z,,¢;; for the units not in F’/X. An execulion of the procedure
(FIX,Ztig, Znofiz) 1s obtained by instantiating Zt;, and Z,.f,;. The execution converges if
3t such that Z,,5i(1) = Znofiz(t+1), and 7€s = 25, 5ix(1) is the resull of the execulion. Two
particular modes of operation lead to the decoding and encoding procedures:

o (Bpy,pk,*) decodes the pointer p;

22

e (Bo, [l_;g,p_ik, -+, piy], ¥) encodes the component [l_;g,p_ik, RN Tk

where ¥ is any real valued vector, usually chosen with random components, and [l_;c, p_ik, N
is a vector composed by the subvectors l_;g,p_ik, .-, prp. The encoding and decoding pro-
cedures are the same as defined and used in both RAAMs and SRAAMs. The general
structure of the LRAAM allows us to define other interesting procedures. In order to do
that, we have to recall that the layer Bp is composed by a label field, L, and one or more
pointer fields, Py, --, P,.

The first useful procedure that we can define is the direct access to a component of the
encoded structure by using the label as key:

(L, 1, %)

This procedure is not as reliable as the decoding and encoding procedures. In fact, also if
the learning converges, it is not guaranteed that the result of the computation, r€s, is the
expected one. In several cases, however, it is possible to know if r€s is a wrong result. In
fact, r€s contains not only the information on the pointer ﬁelds of the component, but also

the pointer pj to the component itself. Thus, if the label ik, obtained by the procedure
(B, pr, %), is different from I, it means that 7€s is not the correct result. In the next

section we will see that nothing about the correctness of r€s can be said if ik = l_;g, since
in some cases the information regarding the pointers may be incorrect even if the label
information is correct. Obviously, the more the label covers the Bp layer, the more the
procedure will be reliable.

The dual procedure of the direct access by label, is the retrieval of pointer pr and label
I given the pointers p_ik, RN T

(PlUP2U"'UPm[p_ikf'Hp?kL;)

This procedure is very useful in trees processing, since it allows to retrieve all the information
of a node by knowing its children. In this case, the test on the correctness of r€s must be
performed between [ﬁ_ik, . ,ﬁ_}k] and [ply,-- -, pry], where [ﬁ_ik, . -,ﬁ_*;'k] is again obtained
by the procedure (B, p, ¥).

Other procedures can be defined by considering FIX as the union of any combination
of the sets L, Py,---, P,.

4.2.1 Examples of retrieval

We will use the LRAAM s developed in Section 3.3 to show the efficiency of our access
procedures. The LRAAM s codifying the graph and the tree were transformed in BAM s,
as discussed in Section 4.1. The results obtained by applying the access procedure by label
to them are reported in Table II. The vector ¥ was initialized with random real numbers

in the range [—1,1] and 100 trials for each label were performed. The labels I, and I}, were

considered different (I}, # l_;c) when at least one component of the vectors differed for more
than 0.1 (0.06 for the access procedure by pointers).

The first column in the table reports the label used in the procedure, the second column
the success rate obtained, where a success is a correct retrieval of the information in the

23

ACCESS BY LABEL

GRAPH

label | success rate | wrong rate | error rate | mean
lo 100% 0% 0% 7.35
I 100% 0% 0% 36.05
ly 100% 0% 0% 6.04
I3 100% 0% 0% 3.99
ly 100% 0% 0% 23.12
l5 100% 0% 0% 18.12
ls 100% 0% 0% 29.26

TREE

label | success rate | wrong rate | error rate | mean
lo 0% 100% 0% 16.48
ly 94% 6% 0% 14.57
ly 47% 53% 0% 16.92
I3 100% 0% 0% 18.07
lg 97% 0% 3% 32.64
l5 100% 0% 0% 16.03
ls 49% 51% 0% 27.50
l7 42% 58% 0% 27.10
ls 57% 43% 0% 62.45
lg 20% 0% 80% 14.75
l1o 100% 0% 0% 19.11
I 100% 0% 0% 10.83
l12 100% 0% 0% 19.12
lis 29% 1% 0% 23.87
l14 100% 0% 0% 12.09
l1s 100% 0% 0% 13.11

Table II: Results obtained accessing the data by label.

24

node, the third column the rate of trials which led to a wrong retrieval (ik # l_;g), the fourth

column the rate of errors (I = I and incorrect retrieval), the last column the mean number
of iterations employed by the BAM to stop. Note that a wrong retrieval is not an error,
since we know that the procedure failed in retrieving the expected information and we can

run again the procedure, until the condition [, = I is satisfied. However, a high rate of
wrong retrievals reduces the efficiency of the procedure, since several attempts must be
performed to obtain a correct answer. The efficiency of a procedure depends also on the
mean number of iterations employed by the BAM to stop (last column in the table).

It can be seen from Table II that the procedure worked very well for the graph (no
errors and no wrong retrievals), but had some problems with the tree. In particular, the
procedure applied to the tree showed a dependence on the initial random vector ¥. A range
from one to three different results for the same label was observed. The pointers to the
nodes retrieve_@ by the labels are shown in Figure 17. The retrieved pointers which satisfied

the condition I;, = [are shown on the left side of the picture (success + error), the others
on the right side (wrong). The pointers on the left side which led to errors are marked at
the end by an asterisk (*).

The procedure was very efficient when called with labels belonging to leaves (with the
exception of the label l13), but was unable to recover the information of the root of the tree.
Moreover, it had a high rate of errors (80%) for the label lg. This disparity of performance
between terminal and nonterminal nodes may be due to the fact that, during the training
of the encoder network, patterns representing leaves reach stable representations sooner
than others because of the NIL pointers, whose output representations are reused in the
training set. It is as if the memories of the BAM are constructed around those stable
representations.

No errors, instead, were made by the access procedure using children pointers * when
applied to nonterminal nodes of the tree (see Table III).

The pointers to the children of a nonterminal node were used as fixed activations, with
the exception of node n; for which only one pointer was used. The success rate obtained
with the access by pointers was lower than the one obtained with the access by label, and
the number of results for the same pointers ranged from three to eight.

The reduction of the error rate may be attributed to the fact that the steepness of
sigmoids of units representing the label is higher than the steepness of units representing
pointers, and consequently it is more probable that the same label could be obtained by
different hidden activations (pointers), as happened for labels l4 and lg.

Another difference with respect to the access by label is the lower mean number of
iterations employed by the BAM. This is due to the bigger dimension of the FIX set
which simplifies the dynamics of the BAM. This behaviour matches the general claim that
relaxation in a connectionist system is more efficient when more constraints are imposed.
Note that a classical symbolic system becomes less efficient when more constraints are
imposed.

In conclusion, the LRAAM model does not only extend the class of structures which
can be encoded by a neural network, but it also allows the definition of access procedures
different from the classical access by pointer.

*The children pointers of a node are used as key in the access procedure.

25

Po

j41

P2

Ps

P4

Ps

p7

Y4

Pa

P1o

P11

P12

P13

P14

P1s

SUCCESS + ERROR™)

WRONG

Hl - 0. []
(oo o [
(1o . Lloao

H. BR[O
....DI
o oOomBL][]

Ll LI m
s B]. [N
OOoOo U
mo . []. [

Hi=sl B BER |
EEEC N

HispEIEE N
(Imol]. =
(1w« OLIO
EEE_ m N

HiNEEY B BN
. OO O

*

*

*

 FEEE R
OJom Hm R

B. 000
HE. Es B

Hann Nis
m. [T
H. s s H

ey F B B
1. W], O

Figure 17: Pointers of the tree retrieved by label.

26

ACCESS BY CHILDREN POINTERS
TREE
node | success rate | wrong rate | error rate | mean
o 49% 51% 0% 6.29
11 10% 90% 0% 8.55
N9 40% 60% 0% 12.48
i 8% 22% 0% 6.57
ng 9% 91% 0% 6.22
) 14% 86% 0% | 14.01
ng 14% 86% 0% 7.87
N9 28% 2% 0% 6.07
(*) one pointer

Table III: Results obtained accessing the data by children pointers.

5 Encoding of a Set of Structures and Generalization

The standard generalization test proposed by Pollack for the RAAM cannot be performed
directly on the LRAAM model due to the presence of NIL pointers which cannot be guessed
when trying to compose a leaf with a well-formed structure. A solution to this problem
would be to use the BAM in order to find a fixed point for the NIL pointers: it suffices
to access the BAM using the label on the leaf as key; if a fixed point is found, then the
representations obtained for the NIL pointers can be used in the representation of the leaf.
This process, however, is too strict with respect to the standard test since it requires an
asymptotically stable representation for the leaf, which may not happen in a RAAM where
the test is not iterated on time. Amnother solution to this problem can be to perform a
gradient descent on the pointers maintaining the label fixed. This can be performed using
the inversion technique proposed by Kindermann and Linden [KL90]. Using this method,
representations for the pointers which satisfy the generalization test, without the constraint
to be an asymptotically stable memory of the BAM, can be found. Obviously, this technique
is computationally more expensive since it involves gradient descent.

Both of the above solutions, however, must face the combinatorial explosion of the
method when the number of different labels increases. For this reason, we prefer to follow a
different approach with respect to generalization, that is to try to extract global information
on the classes of structures that for sure cannot be encoded by a particular LRAAM. For
example, the first question may be: how much powerful is the decoding function, i.e., given
a structure does it exist a reduced representation from which the recursive application of
the decoding function can extract all the components of the structure?

The approach we use in performing this exploration is very close to the one used by
Blank and al. [BMM92], but adjusted to the LRAAM model and extended in scope. In
the next section we will give a geometric interpretation of the binary LRAAM model with
respect to the decoding process.

27

5.1 Geometric interpretation of the decoding process

As a first approximation let us consider an LRAAM with binary labels whose sigmoidal
output functions in the label field has been replaced by hard limiters >. Under this condition,
the function computed by each output node of the label field consists of the splitting of the
hidden space by an hyperplane whose normal is the vector of weights entering the unit.
Thus the set of labels which can be represented by our LRAAM is given by the set of
regions in which the hidden space is partitioned by the hyperplanes of the label field.
Moreover, we must also consider the constraints on the hidden output, which is limited to
the k-dimensional hypercube, where k is the number of hidden units. Consequently all the
regions outside the k-dimensional hypercube must be thrown away.

The situation at this point is that each label which is representable by our LRAAM
decoder has a region of the hidden space associated to it and, as long as an hidden repre-
sentation (pointer) will fall in this region, the decoded label remain the same.

Let us now turn the attention to the pointer fields. They are used to transform the
actual pointer to the next pointer, which can be, in the case of a binary tree, the pointer
to the left or the right child. This new pointer will fall in one of the label regions and the
decoded label will be the one associated with it. Thus, if we get some information about
how this transformation works, then we can decide if some class of trees, for example the
class of trees with labels all equal to A on the path obtained by choosing always the left
child, is representable by the LRAAM decoder or not.

In order to understand the transformation of a pointer let us consider the decoding part
of an LRAAM with two hidden units (see Figure 18).

LABEL LEFT RIGHT
bl b2 b3 X y X y

QO OO0 00

bl 011 06
b2 —] 07 ~"

1 B . .
001 s T --1 RO

Figure 18: Geometric interpretation of a binary LRAAM.
Consider, for example, the left pointer field of the LRAAM. Each unit of the field splits

the xy-plane in two parts. All the points along the split, the line defined by the weight
vector, are mapped into 0.5 (or 0, accordingly to the kind of sigmoid used). The other

®An hard limiter can be obtained by increasing the steepness of the sigmoid to infinity.

28

points of the plane are transformed according to equipotential lines parallel to the splitting
line and to the modulus of the weight vector. On one side of the splitting line the output
value will decrease from 0.5 to 0 (or from 0 to -1) with the increasing of the distance of
the point from the splitting line; on the other side of the hyperplane it will increase to 1.
The sharpness of the decreasing and increasing is proportional to the modulus of the weight
vector.

Actually the transformation implemented by a pointer field is completely described by
the analog Hopfield network obtained by feeding back the output of the pointer field to
its input. In order to get a feeling of how this transformation works, let us consider two
very simple examples where more than a single structure is encoded in a two hidden units
LRAAM. The training set for the two examples are shown in Figure 19.

O N
/) /

Figure 19: The training sets.

In the first example only three binary trees are present, in the second we have a tree and
a graph composed of a single loop. The letters are represented by two bits (A=10, B=01,
C=00) and the void conditions for the pointers by another two bits (void pointer=1).
The following parameters for the learning procedure were used: Vh,vo, = 0.5;Vl,vo; =
2.0,VO; = 6;Vp,vo, = 1;1 = 0.15; u = 0.5;v = 0.06. The first training set was learnt after
4574 epochs, the second one after 2872 epochs. Note that the training sets used for training
contained a different instance for each component. Thus, for example, the leaf ”C”, in the
first training set, got two different input patterns: one for the first tree, one for the second.
These input patterns are initially different, because of the multiple representations for the
void pointer. Actually, after learning, the different representations become almost identical.
The resulting partition of the unit square for the first training set is shown in Figure 20.
It can be noted that two labels not present in the training set are represented as well: the
leaf ”A” and the internal node labeled ”C” with a left child. In the partition there is also
an undefined region since no meaning was assigned to the configuration 11 for the first two
bits of the label.

A feeling of how a pointer is transformed by the left and right fields can be gained by
looking at how the boundary of the unit square is transformed (see Fig. 21). Since the
sigmoidal functions are monotone, the restriction of the transformation to the boundary of
the unit square returns a quite synthetic and realistic view of its global characteristics.

This kind of reduced representation of the transformation, however, fails to capture the
extent to which the domain is twisted and deformed. In order to remedy to this limitation,
we drew as well the vector field of the transformation computed on a small set of points
distributed on a grid into the unit square (Fig. 22). The vector field is represented by
plotting the domain point and its transformed result (image point) as a vector with the
arrowhead ending at the image point.

In the case of the first training set, both the transformations implemented by the left
and right fields collapse the unit square into fixed points very close to the boundary of the

29

NOT
DEFINED

0
Figure 20: Partition of the pointer space obtained for the first training set.

unit square in a few steps. Both the fixed points are located at the right part of the unit
square, where the regions representing leaves laid.

Since the weight matrices entering the pointer fields were invertible, it was possible to
draw for each transformation a partition of the unit square were each region is labeled with
the label of the image point (see Fig. 23). In fact, called W, the weight matrix entering the
left pointer field and W, the weight matrix entering the right pointer field, the inverse of
the left and right pointer transformations can be written as:

(#) =W (B) - 6), (16)
(ﬁ)r_l = Wr_l(f_l(ﬁ) - ®7°)7 (17)
where W' is the inverse of W, (31 and @T are the bias vectors for the left and right
pointer fields and £=1(%) = [/~ (v1), -+, f~Hvn)], i-e., the function computing the inverse

of the sigmoidal transformation of the input vector’s components. In our case, f(z) = 0, =
H_BIIW and thus f~!(0,) = —log(é -1).

Now an inverse partition of the unit square can be obtained by applying eq.(16) or
eq.(17) to the points laying on the hyperplanes defined by the label field and retaining

30

Left Pointer

/

Iter. 1 Iter. 2 Iter. 3
Right Pointer
Iter. 1 Iter. 2 Iter. 3

Figure 21: The first three transformations of the unit square boundary by the left and right
pointer functions for the first training set.

only the transformed points falling into the unit square. The combination of the original
partition of the unit square and the partitions obtained by exploiting the inverse of the left
and right pointer transformations allowed us to draw a more complex partition where each
region is labeled by structures till to two levels deep (see Fig. 24).

In particular, this partition was obtained overlapping the partitions in Figures 20 and 23,
and disregarding the regions not consistent with the correct interpretation of the void pointer
bits (the 3th and 4th bit of the label). Partitions representing explicitly deeper structures
can be obtained considering the recursive application of the pointer inverse functions to the
label hyperplanes and combining the partitions obtained till then. If the LRAAM is able
to represent only finite structures (as in our examples) this process will reach a fixed point
partition, either because all the transformed hyperplanes are outside the working space,
i.e., the unit square minus the regions representing leaves, or because the inverse functions
reach a fixed point.

The partition shown in Figure 24 is reminiscent of a fractal set, with the remarkable
difference that we are dealing with a finite partition due to the collapsing of each left and
right pointer to the respective fixed points of the left and right pointer transformations. In
fact, the unit square is subdivided in a top-down fashion, where larger regions are used to
represent the different possible roots of a tree, then each root region is partitioned according
to the labels of its children and so on recursively, till no more subdivision can occur because
of the reaching of the regions representing leaves (where the fixed points of the left and
right pointer transformations are located).

An interesting aspect of this kind of representational scheme is that pointers pointing
to very different structures get very different representations, while pointers to very similar
structures get very similar representations. Moreover, the hierarchical organization of the

31

L eft Pointer Right Pointer

T%%%

]

Figure 22: The vector fields of the left and right pointer transformations for the first training
set.

compressed representations allows one to consider only a certain number of regions according
to the level of discrimination he/she is interested in.

Considering the second training set, in Figures 25-29 we have reported the same kind
of plots we presented for the first example.

This time, due to the presence of a loop in one of the structures represented in the
training set, the right pointer transformation gets as fixed point a cycle of period two
({]0.01,0.98],[0.984,0.036]}). This cycle is the responsible of the particular form of the plot
shown in Figure 26 for the right pointer. Even in this case, the partition of the unit square
by the label field is such that labels not present in the training set are represented as well.
The compressed representations obtained for the cycle were stable also in this case.

32

L eft Pointer Right Pointer

B
“

Figure 23: The label partitions after the application of the inverses of the left and right
pointer transformations for the first training set.

33

B
A
A c
C \
\ C
c
A \
A B
c
1
A c
CB
A
A Cc C
A
B C ‘
B
A
A
BC |
/
2
B B
A
c
A B
¢ /
/ NOT B
DEFINED

0
Figure 24: The partition of the unit square obtained by combining the label partition with
the partitions after the application of the inverses of the left and right pointer transforma-
tions for the first training set.

34

NOT
DEFINED

1
Figure 25: Partition of the pointer space obtained for the second training set.

35

Left Pointer

Iter. 3

Iter. 2

Iter. 1

Right Pointer

Iter. 3
Figure 26: The first three transformations of the unit square boundaries by the left and

Iter. 2
right pointer functions for the second training set.

Iter. 1

Right Pointer

Left Pointer

Figure 27: The vector fields of the left and right pointer transformations for the second

training set.

36

L eft Pointer Right Pointer

B
3
B
c
-
N

Figure 28: The label partitions after the application of the inverses of the left and right
pointer transformations for the second training set.

37

A A
A A A
BC ccC \
A 4 2 ¢
A A
C 0
/ A / J
B BC
/
A
/
B % c
‘ ; A
/¢
C
A
cc
v
NOT
DEFINED
B
! c :
B
/
C
\ B

1
Figure 29: The partition of the unit square obtained by combining the label partition with
the partitions after the application of the inverses of the left and right pointer transforma-
tions for the second training set.

5.2 The fusion, the missing, and the dragging effects

Three main effects on the representational abilities of the decoder are induced by the under-
laying Hopfield-like dynamics: the fusion, the missing, and the dragging effects. The fusion
effect means that if in the training set there are two structures with an identical sequence
of labels, then with high likelihood the fusion of the structures on the identical sequence
belongs to the image of the decoder. Examples of the fusion effect are present both in the
first and second learning tasks we have discussed. Two examples of the fusion effect, one
for each training set, are reported in Figure 30.

S A
A S
Cc Cc
2/ T

Figure 30: The fusion effect: two examples.

Strictly correlated with the fusion effect is the missing effect. The missing effect means
that, with high likelihood, copies with missing components of a structure in the training
set are in the image of the decoding as well. These two effects can be understood as an
indirect consequence of the proximity of the representations of the labels in the partitions
of the pointer space.

Another effect, more correlated with the Hopfield-like dynamics, is the dragging effect.
It is present when the vector field of the left and /or right pointer transformations is not very
strong. In these cases, the transformed pointers tend to move slowly, i.e., to drag themselves,
in a same restricted area which usually contains the regions representing variants of the same
label (i.e., with two children, with one child, with no children).

Our opinion is that a large percentage of the generalization ability of the LRAAM is
based on these three effects. Obviously it is not possible to foresee a priori how much
and where they will appear. However, they should be kept in mind when evaluating the
expected generalization of the LRAAM.

5.3 The encoding problem

Till now, we have discussed the representational capabilities of the decoding process in an
LRAAM. However, due to the encoding process, not all the points in the pointer space are
consistent, i.e., several points returned by the encoding process are not decoded back to
the original structure. Moreover, given a trained LRAAM, it is not straightforward how to
devise the compressed representation (encoding) of a cycle.

39

In the previous sections we have seen that the decoder function usually defines a rich
representational space starting from few examples in the training set. Therefore, it is worth
to try to derive a better encoding procedure, able to retain such a rich structure. In this
section we sketch a method to exploit the decoder function in the encoding process.

The first observation is that it is not possible to apply directly the inverse functions
defined in eqs.(16-17)% in the encoding process because of the multiple representations the
leaves, in particular, and each component, in general, get. The problem could be solved
by giving a fixed representation to the void pointer. However, this constraint can be very
strong since it makes a precise requirement on the shape of the pointers transformations.

Thus, let us assume we have multiple representations for the void pointer. The difficulty
relays on the fact that a different representation of the pointer to the same component is
needed according to the context in which the component is. Since, in general, it is not plau-
sible to have the whole information about the correct location of the correct representation
for the pointer in each possible context, we must assume no particular knowledge on each
particular context. The only information we allow is the knowledge of the region in the
pointer space where each single label is represented.

The basic idea is to build a network according to the shape of the structure we want
to encode using as building blocks the components of the decoding function, i.e., we unroll
the decoding function in the space. The compressed representation of the structure is then
devised by an inverse gradient descent on the pointer space. Two examples of how to built
such networks are shown in Figure 31.

When the structure is free of cycles, the target of the associated net is given by its labels
and “don’t care” components are introduced dynamically as soon as bits of the labels are
mapped on the correct side of the labels’ hyperplanes”. In this way, the likelihood to get
stuck in a local minimum decreases. Moreover, the starting point for the pointer to the
structure is chosen according to our knowledge about the region in the pointer space where
each single label is represented, so to satisfy at least the first constraint on the label of the
root. If we are lucky or our knowledge about the topology of the pointer space is more
accurate than the supposed one, we just may choose the correct pointer and no search is
needed. In general, however, the chosen pointer will be decoded in a wrong structure and
inverse gradient descent is needed.

If the structure contains cycles, then constraints on some pointer fields must be satisfied
as well (see Fig. 31). Thus, in general, the error function which must be minimized by
the inverse gradient procedure to obtain the correct encoding of a structure is composed by
two terms: one which involves labels (and “don’t care” symbols), and one which involves
pointers.

6 Discussion

The introduction of the LRAAM model can be viewed from different perspectives. It can be
considered as an extension of the RAAM model, which allows one to encode not only trees
with information on the leaves, but also labeled graphs with cycles. On the other hand it

S1f they exist.
"Or, in order to obtain a more robust encoding, as soon as the input net value is on the correct side and
over a given tolerance.

40

| label | et | right |

NS T

Lo W W

-
-

Figure 31: Examples of encoding networks.

can be viewed as an approximate method to build analog BAMs, which actually are analog
Hopfield networks with a hidden layer [AAM93].

Most probably an LRAAM is something between them. In fact, while extending the
representational capabilities of the RAAM model, it doesn’t possess the same synthetic
capabilities of the RAAM, since it uses explicitly the concept of pointer. Due to this fact,
different subsets of units are used to codify labels and pointers. In the RAAM model,
the use of the same set of units to codify labels and reduced representations gives a more
natural way to integrate a reduced descriptor previously developed as a component of a
new structure. Actually, we guess this ability was the original motivation of the creation
of the RAAM model by Pollack since, because of that, it is possible to fill a linguistic role
with the reduced descriptor of a complex sentence. In the LRAAM model the same target
can be reached, but in a less naturally way. There are two possible solutions. The first
one is to store the pointer of some complex sentence (or structure, in general) previously
developed in the label of a new structure. This solution, however, calls for a more accurate
approximation of the label field, since it would be no more possible to use sharp sigmoids,
and for the already discussed constraint between the size of the label field and the pointer
one. The other solution would be to have a particular label value which tells us that the
information we are looking for can be retrieved using one conventional or particular pointer
among the current ones.

41

An issue strictly correlated with this topic is that, even if in an LRAAM it is possible
to encode a cycle, what we get from the LRAAM is not an explicit reduced representation
of the cycle, but several pointers to the components of the cycle forged in such a way
that only implicitly the information on the cycle is represented in each of them. However,
the ability to synthesize reduced descriptors for structures with cycles is what makes the
difference between the LRAAM and the RAAM. The only system that we know of which
is able to represent labeled graphs is the DUAL system proposed by Dyer [Dye91]. It is
able to encode small labeled graphs representing relationships among entities. The idea is
to have two networks, one responsible for the encoding of the relationships between one
particular entity and the others, and one which devises a compressed representation of the
weights of the first network. In this way, the compressed representation can be used in
the first network as target for the training and, when information about the relationships
of an entity with the others is needed, as pattern of activation for the hidden units of the
second network to obtain the weights for the first network. However, this system cannot be
considered at the same level of the LRAAM, since it devises a reduced representation of a
set of functions relating the components of the graph instead of a reduced representation
for the graph. Potentially also Holographic Reduced Representations [Pla91] are able to
encode cyclic graphs.

The LRAAM model can also be viewed as an extension of the Hopfield networks phi-
losophy. The basic idea is that, while Hopfield networks are able to exploit only minima of
the associated energy function, the LRAAM is able to exploit the maxima as well. In fact,
data stored in an LRAAM can be accessed both by pointer and by content. While access
by pointer is a reliable procedure, access by content is not so reliable. However, recent
developments in analog Hopfield networks with hidden units [AAM93] allow to test if an
equilibrium state is asymptotically stable. Since the training set of an LRAAM defines, in
first approximation, a set of equilibria states for the associated BAM, a prediction of the
reliability of the access procedures can be made.

A relevant aspect of the use of the BAM associated to an LRAAM, is that the access
procedures defined on it are able to exploit efficiently subsets of the weights. In fact, their
use corresponds to generate several smaller networks from a large network, one for each
kind of access procedure, each specialized on a particular feature of the stored data. Thus,
by training a single network, we get several useful smaller networks.

6.1 Application of LRAAMs to neural dynamics control

Actually, the LRAAM model was developed as a way to synthesize a neural code, i.e., a set
of weights which can be interpreted as a program for a particular recurrent neural network.

An example of neural code implementing a Neural Tree [SN90] has been given and
different aspects of the neural code discussed in [Spe93, SS93a, SS93b]. Neural Trees (NTs)
are decision trees where the decision at each node is taken by a perceptron®. Usually, the tree
structure is stored and managed using classical symbolic data structures and programming.
The joint use of w-connections and LRAAMs allows to implement a NT in a full neural
architecture. The procedure to obtain this neural architecture is composed of three main
steps:

80r, in general, by a more complex neural network.

42

1. Represent the NT as a labeled tree, where the labels are the weights of the discrimi-
nators associated to the tree nodes;

2. Encode the NT in a LRAAM;

3. Load the weights of the LRAAM, i.e., the neural code, in a special network exploit-
ing m-connections (the Executor Network) in order to “run” the NT encoded in the

LRAAM.

In order to “run” the NT encoded in the LRAAM the Executor Network must be
initialized with the pointer to the root of the NT. Then the flow of computation is driven
by the input pattern, till a leaf of the NT is reached (terminal condition).

It is interesting to note that this method may optimize the number of parameters of the
NT. In fact, if the dimension of the input patterns is far less than the number of nodes of the
tree, linear redundancy in the weight space is present. This redundancy is automatically
reduced by the LRAAM, since each pointer is a compressed version of the weights of a
discriminator.

In this case only the storage properties of the LRAAM are used, but it would be in-
teresting to study if the neural code generated in such a way subsumes other meaningful
executions starting from pointers different than the pointer to the root of the NT.

Since the LRAAM is able to encode cyclic graphs it is not hard to imagine how to
construct a neural code to generate a more complex dynamics. For example, a finite state
machine (which in general contains cycles) can be encoded and executed using the same
technique.

7 Conclusions

In this paper we have proposed the Labeling RAAM, an extension of the RAAM model by
Pollack, which allows the encoding of labeled graphs with cycles. The LRAAM model allows
also to solve in a more naturally way some technical problems of the RAAM. A theoretical
analysis of the LRAAM under the hypotheses of perfect learning and linear output units
showed cycles and confluent pointers impose constraints on the eigenvalues, eigenvectors
and rank of the output weight matrices. These results bring an understanding on how to
represent the training set in such a way to avoid useless constraints on the learning process.
Examples of encoding of single structures has been presented, showing the proposed model
to be able to synthesize not only structures with cycles, but also robust representations
for the pointers, i.e., representations which do not degrade with recursive decoding along
a cycle. However, more work on this issue must be done, in order to assess the condition
under which such representations develop. A second relevant advantage of the LRAAM
model is that it allows one to access data not only by pointer but also by content. In fact,
it is possible to define an associated BAM which can be used under different operational
modes in order to access data by different types of keys. The access by content is not wholly
reliable. However, recent developments in analog Hopfield networks with hidden units can
be used to foresee the reliability of the access procedures.

A study of the decoding part of an LRAAM with two hidden units has been presented
in order to show the richness of the representations the model is able to develop. In partic-

43

ular, the partition of the pointer space is reminiscent of a fractal set, since information on
deeper structures is codified in smaller and smaller partitions of the pointer space. Some
representational effects related to the Hopfield-like nature of the decoding process have been
noted, but more work is needed for a correct definition of their entity.

A sketch for the encoding of structures not present in the training set has been presented.
The new encoding scheme is needed because of the use of multiple representations for the
void pointer.

References

[AAMOY3]

[BMM92]

[Cha90]

[Chr91]

[Dye91]

[Hin90]

[KL90]

[Kos92]

[Pla91]

[Pol8Y]

[Pol90]

[Rei92]

A. Atiya and Y. S. Abu-Mostafa. An analog feedback associative memory. IEFFE
Transaction on Neural Networks, 4:117-126, 1993.

D.S. Blank, L.A. Medeen, and J.B. Marshall. Exploring the sym-
bolic/subsymbolic continuum: a case study of raam. In J. Dinsmore, editor,
The Symbolic and Connectionist Paradigms: Closing the Gap, volume 1, pages
113-148. Lawrence Erlbaum, 1992.

D. J. Chalmers. Syntactic transformations on distributed representations. Con-
neclion Science, 2:53-62, 1990.

L. Chrisman. Learning recursive distributed representations for holistic compu-
tation. Connection Science, 3:345-366, 1991.

M. G. Dyer. Symbolic NeuroEngineering for Nalural Language Processing: A
Multilevel Research Approach., volume 1 of Advances in Connectionist and Neural
Computation Theory, pages 32-86. Ablex, 1991.

G. E. Hinton. Mapping part-whole hierarchies into connectionist networks. Ar-
tifictal Intelligence, 46:47-75, 1990.

J. Kindermann and A. Linden. Inversion of neural networks by gradient descent.
Parallel Computing, 14:277-286, 1990.

B. Kosko. Neural Networks and Fuzzy Systems. Prentice Hall, 1992.

T. Plate. Holographic reduced representations. Technical Report CRG-TR-91-1,
Department of Computer Science, University of Toronto, 1991.

J. B. Pollack. Implications of Recursive Distributed Representations, pages 527—
536. Advances in Neural Information Processing Systems I. San Mateo: Morgan
Kaufmann, 1989.

J. B. Pollack. Recursive distributed representations. Artificial Intelligence, 46(1-
2):77-106, 1990.

R. Reilly. A connectionist technique for on-line parsing. Network, 3:37-46, 1992.

44

[RTS7]

[Smo90]

[SN9O]

[Spe9d3]

[SS93a]

[SS93b]

[SW92]

[Tou90]

R. Rosenfeld and D. S. Touretzky. Four capacity models for coarse-coded symbol
memories. Technical Report CMU-CS-87-182, Carnegie Mellon, 1987.

P. Smolensky. Tensor product variable binding and the representation of symbolic
structures in connectionist systems. Artificial Intelligence, 46:159-216, 1990.

J. A. Sirat and J-P. Nadal. Neural trees: a new tool for classification. Network,
1:423-438, 1990.

A. Sperduti. Optimization and Functional Reduced Descriptors in Neural Net-
works. PhD thesis, Computer Science Department, University of Pisa, [taly, 1993.
TD-22/93.

A. Sperduti and A. Starita. An example of neural code: Neural trees implemented
by LRAAMs. In International Conference on Neural Networks and Genelic Al-
gorithms, 1993. Innsbruck. To appear.

A. Sperduti and A. Starita. Modular neural codes implementing neural trees. In
6th Italian Workshop on Parallel Architectures and Neural Nelworks, 1993. to
appear.

A. Stolcke and D. Wu. Tree matching with recursive distributed representations.
Technical Report TR-92-025, International Computer Science Institute, 1992.

D. S. Touretzky. Boltzcons: Dynamic symbol structures in a connectionist net-
work. Artificial Intellicence, 46:5-46, 1990.

45

