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Abstract
pSather is a parallel extension of the existing object-oriented language Sather. It
offers a shared-memory programming model which integrates both control- and data-
parallel extensions. This integration increases the flexibility of the language to express
different algorithms and data structures, especially on distributed-memory machines
(e.g. CM-5). This report describes our design objectives and the programming lan-
guage pSather in detail.
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1 Introduction

The parallel Sather (pSather) project focuses on language and library support for general purpose
parallel programming. Sather began as a smaller, simpler and faster variant of Eiffel [55]. A pre-
liminary version [60] released in summer 1991 has developed a significant global user community.
The design of Sather 1.0 [61], released in 1993, retains much of the original simplicity, but includes
several additional features that were found to provide the greatest increase in functionality. These
include exception handling, a form of closures, and a general iterator feature [58] that is particularly
important for parallel computation. The central theme of Sather is flexible encapsulation: libraries
of carefully written parameterized classes support programs that are efficient and powerful and also
easy to write, read and reason about. Sather is basically, but not religiously, object-oriented.

The pSather project is research oriented, but does involve running systems and applications. An
implementation of our first design has been running on the Sequent Symmetry and Sparcstation since
early 1991 and a CM-5 version has been running (and changing) since early 1992. Implementation
and performance monitoring of a range of non-trivial problems has been one of the cornerstones
of the design. Our thesis is that the flezible encapsulation mechanisms that characterize Sather
are even more important in parallel computation. The key constructs of pSather include support
for both distributed and replicated data structures and a statement for data-parallel computation
with associated distributed objects. At a more fine-grained level are uniform memory addressing,
placement operators, and general mechanisms for thread creation and synchronization.

We assume that the computers of the forseeable future will have non-uniform memory access
(NUMA ) and that they will incorporate increasing parallelism. While there are reasonable method-
ologies for programming parallel computers for certain classes of tasks, there is nothing like the
parallel equivalent of general programming in languages like C4++4, Modula-2, Eiffel, etc. Much
of the work that attempts to address this problem is actually more suitable for concurrent and
distributed computing, which differ in several important ways from parallel computing.

Distributed and concurrent systems are often designed to support multiple parallel tasks which
compete for shared resources. Fairness and mutual protection are central issues in these systems and
consume a large part of the available computing power. The main goal for parallel systems, however,
is to make many resources (processors, I/O-devices, etc.) cooperate on one large task. Although the
interaction and synchronization of multiple flows of control are common issues in both fields, the
trade-offs in parallel systems are fundamentally different from those in distributed and concurrent
systems. Current attempts to produce low-latency local networks are considered in section 9.6.

True parallelism differs from concurrency in that multiple threads of control are active on the same
data. This occurs in shared-memory machines like the Sequent and in the clusters of designs like the
DASH [47]. Tt turns out that the coordination mechanisms needed for shared memory hardware are
also important for the shared address space abstraction underlying pSather. Distributed computing
is inherently concurrent and also differs in two other crucial ways from parallel computing. A major
concern in distributed computing, recovery from partial failures, is not an issue for parallel machines.
More importantly for our purposes, the memory latency penalty for remote access is tolerable (~ 100
cycles) in parallel machines but not in distributed networks where the latency can be 10,000 or more
times the fastest internal memory access.

Distributed computing is largely concerned with the realization of systems that are inherently
separated in space and are best thought of as loosely coupled modules. In parallel computing, the
emphasis is on efficient execution; there is no inherent need for the programmer to deal explicitly
with multiple threads of computation and most people would rather not. The implicit approach
to parallel programming strives for languages and compilers that totally mask all considerations
of parallelism. This may eventually encompass general programming, but we seem to be quite far
from that. In explicit approaches, such as pSather, the goal is to provide constructs that help in
the construction of sound and efficient parallel code. A dilemma that confronts such efforts is that
programmers prefer shared-memory models but physics requires that large parallel computers have



distributed memory. We offer a cluster machine model which reflects the NUMA characteristic but
retains a shared-memory programming model.

Our basic goal is to explore how well the flexible encapsulation paradigm of Sather can support
general purpose parallel programming. We envision libraries of classes for powerful data structures
and operations that the ordinary user can employ without any explicit concern for parallelism. This
can be viewed as an attempt to extend data-parallel and functional programming styles to complex
data structures such as sets, trees, and hash-tables. Our hope is that the parallel programming
constructs of pSather will be used mostly by the designers of these parallel class libraries, but
application programmers can also directly employ both control and data parallel mechanisms as
needed.

The basic pSather design is grounded in a shared-memory computational model and it is natural
to write pSather programs that yield identical results independent of placement. Considerable
research has been focused on the development of low-level support for the shared-memory abstraction
and, if this works out, this placement-independent style of pSather programming will be an excellent
fit. But none of the proposed general shared-memory simulations perform well enough for our needs,
so pSather also has features that support explicit placement of objects and of threads. Again, we
hope that most of the concern with placement can be confined to class libraries and that the average
user can employ parallel data structures obliviously. To the extent that this works out, specialized
class libraries can make pSather an implicitly parallel language for various domains. This is, we
believe, the best current hope for general purpose parallel programming.

1.1 Roadmap of this Report

pSather adds only a few constructs to Sather, but each construct carries a significant semantic
burden. This paper describes the new features and how they interact with Sather 1.0 constructs,
and gives examples of their use. There is some discussion of design decisions and much more can
be found in [27] and [48]. We can order the features of pSather into four layers as illustrated in
Figure 1. Upper layers are proper extensions of the lower layers.

In section 2 we give a brief introduction into Sather 1.0 the base language for pSather. A complete
description of Sather 1.0 can be found in [61]. A complete grammar (including Sather) of pSather
is in appendix A.

Section 3 adds a second layer to the single processor model of Sather, incorporating a multiple
processor shared-memory model. We introduce non-blocking routine calls for spawning parallel
threads of execution. Synchronization among parallel threads in pSather is provided by built-in
synchronization and communication objects, called gates. The features of these gate classes plus the
related lock statement cleanly support all of the synchronization mechanisms in the literature and
also embody our versions of futures and of thread control. This design has been stable since summer
1991 under the old name of “monitor” and is discussed in detail in [27]. Section 3.3 contains a brief
description of the gates and how they interact with the rest of the design.

Sections 4-7 present material that is new since [27] and was largely motivated by distributed
memory considerations. pSather continues to be based on a shared address space abstraction, but
some additional constructs greatly help in mapping programs to distributed memories.

Section 4 describes the third layer which extends the shared-memory model to a shared address
space model consisting of multiple shared-memory clusters, each with potentially multiple processors.
We introduce remote routine calls for moving the locus of execution to remote clusters. We describe
the language features that make the two-level structure of the shared address space visible in the
programming model. The with-near statement helps the compiler by asserting that a variable
references only objects located on the local cluster.

Section 5 describes how pSather supports copying and migration of objects among clusters.

In section 6 the built-in class $SPREAD is introduced as a basic building block for replicated
objects and reduction operations. In contrast to ordinary objects which reside entirely on one



Data-parallel pSather:

$DIST{T}, SPREAD{T},
dist-statement

Distributed Memory pSather:

two-level shared address space, remote routine
calls, locality predicates, with-near-statement

Shared-memory pSather:
asynchronous routine calls, synchronization objects (gates)

Sequential Sather 1.0
object-oriented, type parameters, iterators, bound routines, strongly typed

Figure 1: Layered Design of pSather

cluster, $SPREAD-objects are spread out on all clusters of the machine.

Section 7 describes the built-in class $DIST and the associated dist statement for data-parallel
computations. These constructs support a high-level way of forking multiple threads, each working
with its local data, and make up the fourth layer in our construction. Classes that descend from
$DIST all share a common mechanism for distributing chunks of data over multiple clusters. It
becomes quite natural to write dist statements in which the execution of the parallel body is
completely distributed and co-located with the appropriate data chunks, such that there are no
remote accesses.

We compare pSather to a number of related approaches in section 8, and discuss some possible
future directions in section 9. We give our conclusions in section 10.

1.2 Grammar Notation

The grammar rules are presented in a variant of Backus-Naur form. Non-terminal symbols are
represented by strings of letters and underscores in an italic font and begin with a letter. The
nonterminal symbol on the lefthand side of a grammar rule is followed by an arrow “ = ” and
right-hand side of the rule. The terminal symbols consist of Sather keywords and special symbols
and are typeset in the typewriter font. Italic parentheses “(...) ” are used for grouping, italic
square brackets “[...]” enclose optional clauses, vertical bars “... | ... ” separate alternatives,
“...*7” follow clauses which may appear zero or more times, and italic plus signs
“...+ 7 follow clauses which may appear one or more times.

All code examples and names refering to classes and features in the code are printed in the
typewriter font.

italic asterisks



2 Sequential Sather

In this section we will briefly describe Sather 1.0, the base language for pSather. We will concentrate
on the relevant concepts for the purpose of this report. Most of this section consists of condensed
version of [61]. Refer to this report for a full definition of the language.

Sather is an object-oriented language that supports highly efficient computation, powerful ab-
stractions for encapsulation and code reuse, a flexible interactive development environment, and
constructs for ensuring code correctness. It has garbage collection, statically-checked strong typing,
multiple inheritance, separate implementation and type inheritance, parameterized classes, dynamic
dispatch, iteration abstraction, higher-order routines and iters, exception handling, constructors for
arbitrary data structures, and assertions, preconditions, postconditions, and class invariants. The
development environment integrates an interpreter, a debugger, and a compiler. Sather code can be
compiled into C code and can efficiently link with C object files.

Data structures in Sather are constructed from objects. Each object has a unique type which
defines the supported operations. Each Sather variable has a declared type which determines the
types of objects it may hold. Types are defined by textual units called classes. Sather programs
consist of sets of classes. Classes may define the following features: object attributes which make up
the internal state of an object, routines which perform operations on objects, iters which encapsulate
iteration abstractions, and shared and constant attributes which are shared by all objects of a
given type. Features may be declared private which restricts access to the class in which they
appear. Access routines are automatically defined to access and modify object, shared, and constant
attributes. The set of non-private routines and iters in a class define the interface of corresponding
type. Routine and iter definitions consist of statements and these in turn are constructed from
expressions. There are special literal expressions for boolean, character, string, integer, and floating
point objects. There are also certain predefined classes and features.

2.1 Types and Classes

There are three kinds of objects in Sather: value objects are passed by value (e.g. integers), reference
objects are referenced via pointers (e.g. strings) and bound objects are the Sather version of closures.
There are five kinds of types: wvalue types describe value objects, reference types describe reference
objects, bound types describe bound objects, abstract types describe sets of reference types, and
external types are used to access code from other languages. Variables may be declared by abstract
types but there aren’t objects of abstract type. Neither variables nor objects may be of external
type.

The type graph is a directed acyclic graph whose nodes are types and whose edges define type
conformance. The type graph specifies the object types that a variable may hold and imposes
conformance constraints on interfaces of types. If there is a path in the type graph from a type t1
to a type t2, we say that ¢ is an ancestor of {2 and that t2is a descendant of t1. Only the abstract
types and bound types can have descendants in the type graph.

A type is said to conform to each of its ancestors in the type graph. The fundamental Sather
typing rule is: “An object can only be held by a variable if the object’s type conforms to the variable’s
declared type.” Sather is statically type-safe and it is not possible to write programs which compile
and yet violate this rule. Variables declared by value or reference types can only hold objects of the
same type. Variables declared by abstract types can typically hold more than one type of reference
object and variables declared by bound types can typically hold more than one type of bound object.

There are four kinds of classes: wvalue classes which define value types, reference classes which
define reference types, abstract classes which define abstract types, and ezternal classes which specify
interfaces between Sather and other languages. The bound types do not correspond to classes.

Value, abstract and external class definitions begin with the keywords value class, abstract
class and external class, respectively. The most common classes are reference classes and their



definitions begin with the single keyword class. Class names must be uppercase. The names of
abstract classes must begin with a dollar sign $.

class A{S,T:=INT,U<B} is ... end
value class B is ... end
abstract class $E > G,H is ... end

Abstract, reference, and value classes may be parameterized by type parameters which are spec-
ified when the class is referred to. Type parameter names must be uppercase and may be used
within the body of a parameterized class wherever a type specifier is allowed. The semantics of
parameterized classes is precisely the same as if there were a separate copy of the class text for each
distinct parameter instantiation. The parameters are textually replaced by their specified values in
these copies.

Sather types are specified syntactically by type specifiers of one of the following forms:

e A $A. The name of a non-parameterized class or a parameterized class in which all parameters
specify default values.

e A{B,C}. The name of a parameterized class followed by type specifiers for its parameters. If
all parameters have default values, then the class name alone is also a legal specification.

e {A} {A,B,C}. Tuple types are built-in value types which are specified by a list of type specifiers
enclosed in braces.

e T inside class B{T} is ... end. The name of a type parameter within the body of a pa-
rameterized class.

e ROUT{A,B}:C, ITER{A!}:D. Bound routine and iter type specifiers consist of one of the key-
words ROUT or ITER followed by optional argument types in braces, followed by an optional
return value type. Bound iter argument types may be followed by a “!”.

e SAME. The special type specifier SAME refers to the type of the class in which it appears.

The parameters of parameterized classes are specified positionally from left to right. A type specifier
may specify fewer parameters than are declared in the class if the remaining parameters have default
values.

If a type parameter specifies a type constraint, then only descendants of that type may be used
as values for the parameter. The components of parameter constraint type specifiers may include
any of the parameters in the parameter list (eg. A{E,S<$SET{E}}) but may not include SAME.

The components of parameter default type specifiers may include earlier parameters in the param-
eter list (eg. A{E,S<$SET{E}:=HSET{E}}) but may not include SAME. Parameterized class definitions
must lead to valid classes when the parameters are assigned left to right by the following procedure:
parameters with a default type are assigned that type and the rest are assigned their constraint type
if present or $0B otherwise.

The set of non-private routines and iters of a class is called the interface of that class. The type
system constrains the interfaces of classes according to the rule: “FEach descendant of an abstract
class must define a routine or iter corresponding to each routine or iter in the abstract class. It must
have the same name, the same number and types of arguments, and a conforming return type if one
is present and must not have a return type otherwise.”

Most of the edges in the type graph are defined by the class_inheritance clause in class definitions.
The first optional portion consists of “<” followed by a list of abstract type specifiers. These specifiers
may not contain “SAME” but they may contain type parameters. A type may not be listed more
than once.



This clause specifies that, after any type parameters are specified, the type defined by the class
is beneath each of the specified abstract types in the type graph. There must not exist a cycle of
abstract classes such that each inherits from the next, ignoring the values of any type parameters.
Every type is automatically a descendant of $0B.

A second optional portion consists of “>” followed by a list of type specifiers and may only appear
in abstract class definitions. It means that, after any type parameters are specified, the type defined
by the class is above the listed classes in the type graph. These type specifiers may not contain
“SAME” | be of external type, or be a type parameter (though they may contain type parameters).
A type may not be listed more than once. There must not be a cycle of abstract classes such that
each is over the next, ignoring the values of any type parameters.

If both a “<” portion and a “>” are present, then each class listed in the “>” portion must have
each class listed in the “<” portion as an ancestor using only links defined by “<” clauses. This
ensures that conformance can be tested by examining a sequence of classes beginning at one of the
two classes in question.

2.2 Features

The main body of each class is a semicolon separated list of feature definitions and include clauses.
The semantics of a class is independent of the textual order of these class elements. The five kinds
of features are: constant attributes, shared attributes, object attributes, routines, and iters. FEach
feature has a name and may potentially contribute a “reader” and a “writer” routine of the same
name to the class interface. The feature namespace of a class is separate from that of other classes
and from the class namespace. If a routine or iter is “private”, then it may only be called from
within the class and is not part of the class interface.
Classes in Sather may define three kinds of attributes.

o QObject attributes are variables which are part of the internal state of reference objects. Only
abstract and reference classes may define object attributes.

o (onstant atiributes are accessible by all objects in a class and may not be assigned to. If a
type is specified, then the construct defines a single constant attribute named ident. It must
be initialized by the expression ezpr which must be statically evaluable by the compiler.

Each constant attribute definition causes the definition of a “reader” routine with the same
name which returns the constant’s value. It has no arguments and its return type is the
constant’s type. The routine is private if and only if the constant is. Constants may not be
assigned to.

o Shared attributes are like constant attributes but may be assigned to.

private shared i,j:INT
shared s:STR:='"name"
readonly shared c:CHAR:=’x’

Each shared attribute definition causes the definition of two routines with the same name. The
“reader” routine returns the value of the shared and has a return type which is the shared’s type
and no arguments. It is private only if the shared is declared “private”. The “writer” routine sets
the value of the shared and has a single argument whose type is the shared’s type and no return
value. It is private if the shared is declared either “private” or “readonly”.

Routine definitions contain the code associated with classes. Routines may have zero or more
arguments, each of a declared type.

a(FLT) :FLT pre arg>1.2 post res<4.3 is ... end



b is ... end
private d:INT is ... end
c(s1,s2,s3:STR)

Routines may also have a return value. Within the body of the routine, the local variable res is
used to refer to this value. When the routine begins execution, res is initialized to void. When the
routine exits, either at its end or due to a return statement, the value res is returned. Tuple types
are used to return more than one value.

The optional pre construct contains a boolean expression which must be true when the routine
is called. When checking is enabled, the expression is evaluated when routine is entered and an
exception is raised if it is false. The expression may refer to both self and the routine arguments.

The optional post construct contains a boolean expression which must be true when the routine
returns. When checking is enabled, an exception is raised if it is false on return. The expression
may refer to self, the routine arguments, and res.

When a routine call is made on a variable of an abstract type, any pre and post tests defined
for the routine in the abstract class will be checked in addition to those of the routine itself. The
body of a routine definition is a list of statements.

Abstract classes may define non-private routines without the body “is stmi_list end”. Such
routines specify an interface without an implementation.

Iters are similar to routines but encapsulate iteration abstractions. Iter names end with an
exclamation point !. This symbol is part of the name and may not be separated from the rest of it.
Iters may only be called within loop statements. The type specifiers declaring iter arguments may
be followed by a ! symbol to indicate that they will be re-evaluated on each iteration.

elts!(i:INT, x:FLT!):T is ... end

The description of routine arguments, return values, and pre and post constructs applies equally
to iter definitions. Unlike routine bodies, iter bodies may include yield and quit statements. Iter
bodies may not contain return statements. When checking is enabled, the pre clause is evaluated
each time the iter is called and the post clause is evaluated each time it yields, but not when it
quits.

Include clauses: Implementation inheritance is defined by one of two forms of include clause.
The form with “::” is used to include and possibly rename a single feature from another class.
The other form includes an entire class but may cause features to be undefined or renamed with
“feat_mod” clauses. When an abstract class is included, any routines or iters without bodies are
ignored. If the “include” clause starts with the keyword private, then any included feature which
isn’t modified is made private.

include A a:INT->b, c(INT)->, d:FLT->private d;
private include D e:STR->readonly f;
include A::a(INT)->b;

The type specified by type_spec must not be an external type, a bound type, a type parameter
(though type parameters may appear within the type specifier) or any type specifier containing SAME.
There must not be an “include path” from a reference type to a tuple type or one of the built-in
value types: INT, FLT, FLTD, FLTE, FLTDE, or BITS (section 2.6). There must not be an “include
path” from a value type to the built-in array type ARR (section 2.6). There must not be a cycle of
class names such that each named class includes the next named class (ignoring the values of any
type parameters).

Each “feat_mod” clause begins with an identifier which is optionally followed by a list of argument
types and a return type. These type specifiers are interpreted with “SAME” taken to be the included
type. The included type must define a feature with the specified signature. Iter signatures must

10



mark arguments with a “!” if they are so marked in the original definition. Object, shared and

constant attributes are described by using the type signature of their “reader” routine. The feature
signature is followed by the transformation symbol: “->”.

If no clause follows the “->” symbol, then the specified feature is not included in the class.
When the reader routine for an object, shared, or constant attribute is undefined in this way, the
corresponding attribute and writer routine are also undefined.

If an identifier follows the “=>” symbol, it is used to rename the feature. The included definition
is textually identical to the definition in the original class, i.e. routines and iters retain their bodies
and attributes retain their initializing expression.

When a feature is renamed, the new name may optionally be preceded by either the keyword
“private” or “readonly”. If no keyword appears, then routines and iters become part of the public
interface and attributes have both their “reader” and “writer” routines made public. With the
keyword “private” no additions are made to the public interface. With the keyword “readonly”
shared and object attributes have only their “reader” routines made public.

Two routines or iters are said to “conflict” if they have the same name, the same number and
types of arguments, and either both have or both do not have a return value. A class may not
explicitly define two conflicting routines or iters. A class may not define a routine which conflicts
with the reader or writer routine of any of its attributes (whether explicitly defined or included from
other classes). If a routine or iter is explicitly defined in a class, it overrides all conflicting routines
or iters from included classes. The reader and writer routines of a class’s attributes also override
any included routines and must not conflict with each other. If an included routine or iter is not
overridden, then it must not conflict with another included routine or iter. Element modification
clauses can be used to resolve these conflicts.

2.3 Statements

The body of a routine or iter is a semicolon separated list of statements. Statements in a statement
list are executed sequentially unless interrupted by a call of return, quit, yield, or raise.

2.3.1 Declarations

Declaration statements are used to declare the type of one or more local variables.
i,j,k:INT

Local variables may also be declared in assignment statements and typecase-statements. Unlike
many languages, the scope of local variables in Sather is the entire routine or iter in which they
appear. Local variables must be declared exactly once in each body and the declaration must be
the first occurrence of the variable. Local variable names within a routine or iter must be distinct
from each other and from any argument names. Local variable names may shadow feature names
in the class, however. Local variables are initialized to void at the beginning of a routine or iter.

2.3.2 Assignments

Simple assignment statements are used to assign objects to locations and can also declare local
variables.

a:=b
b(7).c:=5
A::d:=5
[3]:=5
e[7,8]:=5
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B::[7,8,9]:=5
_:=f

g:INT:=5
h::=5

The expression on the righthand side must have a return type which conforms to the declared type
of the location specified by the lefthand side. We consider each of the allowed forms for the lefthand
side in turn.

e a:=5 ident. If ident refers to a local variable, to a routine or iter argument, or to res
or exception, then the assignment is directly performed. If the variable has an abstract,
reference, or bound type, the variable will be assigned a reference to the object returned by
the righthand side. If the variable has value type, then the object itself will be copied to the
variable.

If ident does not refer to one of these variables, then it must refer to a routine in the class in
which it appears. In this case, the statement is syntactic sugar for a dotted call on self with
a semantics that is described in the next item.

® b(7).c:=5, A::d:=5 ident. These forms are syntactic sugar for calls on a routine named
tdent with the righthand side as an argument. The two examples would be transformed into
b(7).c(5) and A::4(5).

e [3]:=5, e[7,8]:=5,B::[7,8,9]:=5. These forms are syntactic sugar for calls on a routine
named aset with the array index expressions and the righthand side as arguments. The three
examples would be transformed into aset(3,5), e.aset(7,8,5), and B::aset(7,8,9,5).

e _:=f. When the lefthand side is an underscore, the righthand side is evaluated and the result
is ignored.

e g:INT:=5 h::=5 ident. This form declares a new local variable and assigns to it. If a type
specifier is not provided, then the declared type of the variable is the return type of the
expression on the righthand side.

Tuple assignments are used to extract or modify the components of tuple value objects.

#(a,b):=c
#(a:,b):=c
#(a,_):=c
c:=#(a,b)
c:=#(a,_)
#(a,b):=#(b,a)

The first form has what looks like a tuple object constructor on the lefthand side. Each component
must be the lefthand side of one of the simple assignment forms described in the last section. The
righthand side must return a value object with the same number of components as appear on the
lefthand side. Each component is assigned as described in the last section. A subset of an object’s
components may be extracted by using underscores “_” for unwanted components on the lefthand
side (eg. #(a,_):=c).

The second form is used to assign to some of the components of a value object. The righthand
side looks like a value object constructor but may also contain underscores “_”. The lefthand side
must describe a location of value type with as many components as are specified by the construct on
the right. The righthand side expressions are first evaluated from left to right. If the lefthand side is
a local variable of value type, then each righthand side expression is assigned to the corresponding
object component. Components corresponding to underscore positions are left unchanged.
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2.3.3 Conditionals

if a>b then foo elsif a>2 then bar else error end

corresponding to underscore positions are left unchanged.if-statements are used to conditionally
execute statement lists according to the value of boolean expression, as usual in most programming
languages.

2.3.4 Loops

loop ... end

loop-statements are used to perform iteration. Their real power arises in conjunction with iters.
Iters are like routines except that their names end with “!” | their arguments may be marked with
“1” and their bodies may contain the statements “yield” and “quit”.

Storage is associated with each iter call to keep track of its execution state. When a loop is first
entered, the execution state of all enclosed iter calls is initialized. The first time each iter call is
executed in a loop, the expressions defining self and each of the arguments are evaluated left to
right. On subsequent calls, however, only the expressions for arguments that are marked with a “!”

are re-evaluated. self and any arguments not marked with a “!” retain their earlier values.

When an iter is called, it executes the statments in its body in order. If it executes a yield
statement, control is returned to the caller and the current value of res, if any, is returned. Sub-
sequent calls on the iter resume execution with the statement following this yield statement. If
an iter executes quit or reaches the end of its body, control passes immediately to the end of the
enclosing loop in the caller. In this case no value is returned from the iter.

2.3.5 Termination and Yield Statements

return
yield
quit

return statements may only be executed in the body of a routine and cause immediate return from
the routine. Routines return the value of res if they are declared to have a return value. Iters may
not contain return statements.

yield statements may only be executed in the body of an iter and serve to return control to the
point where the iter was called. The iter yields the value of res if it is declared to have a return
value.

quit statements may only be executed in the body of an iter and cause immediate termination of
the iter, the enclosing loop, and all fellow iters in the same loop.
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2.3.6 Typecase Statements

typecase a
when $A then ...
when INT, FLT then ...
else ... end

Operations that depend on the runtime type of an object that is held by an abstract variable may
be performed using typecase statements. ident must name a local variable, argument, or return
value of a routine or iter. If the typecase appears in an iter, then ident must not refer to a “!”
argument because the type of object that such an argument holds could change. ident may also be
a local variable declared and assigned to in the typecase statement itself. This case is syntactic
sugar for a statement assigning or declaring the variable followed by the typecase statement listing
only the variable’s name.

On execution, the type of the object held by the variable is checked for conformance with the
successive type specifiers in each type_spec_list. The statement list following the first type specifier
it conforms to is executed. Within that statement list, however, the type of the variable is taken
to be the type specified by the conformant type specifier. All type checking within that statement
list is done as if the variable were declared by the corresponding type specifier. If the object’s type
doesn’t conform to any of the listed type specifiers, then the statements following the else keyword
are executed. The declared type of the variable is not changed within the else statement list. If
the value of the variable is void, then it is an error to attempt to execute a typecase statement.

2.3.7 Exceptions

protect ...
against $E then ...
against E1, E2 then ... end

protect-statements define exception handlers. Execution begins with the statement list following
the protect keyword. As long as no exception is raised, the statements in this list are executed
to completion. If an exception is raised during the execution of these statements, then the object
held by the built-in variable exception:$EXCEPTION is used to select a handler. Its type is checked
for conformance against successive type specifiers in the lists following the against keywords. The
statement list following the first type specifier to conform is executed. If the type of the object held
by exception doesn’t conform to any of the type specifier lists, then the same exception is raised
to the next dynamically enclosing protect statement.

exception := ...; raise

raise statements are used to raise exceptions. Programs typically assign an object to the built-
in variable exception:$EXCEPTION which describes the nature of the exception before executing a
raise statement.

2.3.8 Expression Statements

foo(1,2)

A statement may consist of just an expression with no return value executed for its side-effects.
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2.4 Expressions

Sather expressions are used to compute values or to cause side-effects. They may have a return value
in which case they have a declared return type. Expressions may appear in statements, in the bodies
of routines and iters, as the pre and post tests for routines and iters, as initializers for constant,
shared, and object attributes, and as the specifier and default value for integer class parameters.

2.4.1 Local Access Expressions

a
self

The simplest expressions return the contents of a routine or iter argument or local variable. Unless
otherwise noted, these may only appear in the bodies of routines and iters. There are several cases:

e ident may name a local variable of the routine or iter in which it appears. The return type is
the declared type of the local variable.

e ident may name an argument of the routine or iter in which it appears. These expressions may
also appear in pre and post clauses. The return type is the declared type of the argument.

e self refers to the object on which the routine or iter was called. It may also appear in pre
and post clauses. Its type is the same as the class in which it appears.

e res may appear in the body or post clause of a routine or iter that returns a value. It holds
the value that will be passed to the caller when a routine returns or an iter yields. Its type is
the declared return type of the routine or iter.

e arg may appear in the body and pre and post clauses of routines and iters. It is defined in
routines and iters which have only a single argument whose name is not specified.

e exception of type $EXCEPTION refers to the current exception object. It is typically accessed
within an against clause of a protect statement.

2.4.2 Routine and Iter Call Expressions

All other expressions consisting of a single identifier are syntactic sugar for calls of routines or iters
on self.

a(5,7)
b.a(5,7)
A::a(5,7)

The most common expressions in Sather programs are routine and iter calls. :dent names the routine
or iter being called. The object to which the routine or iter is applied is determined by what precedes
ident. If nothing precedes it, then the form is syntactic sugar for a call on self (eg. a(5,7) is short
for self.a(5,7)). If ident is preceded by an expression and a dot “.”, then the routine or iter is
called on the return value of the expression. If ident is preceded by a type specifier and a double
colon “::”, then the routine or iter is taken from the interface of the specified type with self set
to the value of void for that type.

Sather supports routine and iter overloading which means that the declared argument types and
the use of a return value are used to choose between routines or iters with the same name. The
expr_list portion of a call must supply an expression corresponding to each declared argument of
the routine or iter. The return type of these expressions must conform to the declared types of the
corresponding arguments.
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While overloading is resolved statically by the compiler, Sather also supports dynamic dispatch
on the type of self. This happens when the declared return type of the expression expr on which
the call is made is abstract. The routine or iter which is actually executed will be from the class
corresponding to the runtime type of the returned object. The name of the called routine or iter
may be overloaded in the abstract class. In this case, the choice is resolved statically in the abstract
class as described above. Each routine or iter in an abstract class uniquely corresponds to a routine
or iter in each descendant class which has the same name, argument types, and presence or absence
of a return value. It is this corresponding routine or iter which is called at runtime.

Direct calls on a class’s routines and iters may be made using the double colon “::” syntax.
type_spec must specify a reference, value, or external class. The name ident and the argument
number and types and the presence or absence of a return value are used to select a routine or iter
from the specified class as described above. The value of self in such calls is void.

2.4.3 Constructor Expressions

#R(a:=1,b:=2,c:=3)
#V(1,"test")

#R

#

#ARR{INT}(a,b,4)

#ARR{INT} (asize:=17)
#LINK(1link:=#LINK(1link:=#1))

Constructor expressions start with “#” and are used to build data structures. If type_spec appears,
it specifies the type of the object returned and must be a reference or value type. If no type is
specified, the type is inferred from the use of the expression. If it is assigned to a variable with a
declared type, then that type is taken to be the return type of the constructor (it must be either a
value or a reference type). If it is assigned to a local variable using the “::=" syntax, then the type
is a tuple whose component types are the return types of any “cons_elt”’s which appear.

In reference object constructors, the cons_elt elements specify attribute values and array elements.
Attribute specifiers consist of the name of the attribute, “:=”  and an expression for the value of
the attribute. Within the class itself, any attribute may be specified in this way. Within other
classes, only those attributes whose “writer” routine is public may be specified. Attributes specifiers
may appear in any order and are all optional. Unspecified attributes will be set to the value of
the corresponding initializing expression in the class definition. If there is no initializer, then the
attribute is set to “void”. Any specified expressions are evaluated left to right.

Constructors for reference objects which include ARR may explicitly give a value to asize (eg.
#ARR{INT} (asize:=17) unless it is declared as a constant in the class. If asize is specified, then
the elements of the array portion are initialized to “void”. Alternatively, expressions giving values
for the array elements may be listed in order after any attribute specifiers. In this case, the size of
the array portion is taken to be the number of expressions provided. If “asize” is a constant, then
it must equal the number of expressions.

When a constructor component expression consists of a sharp sign followed by digits (eg. #5), it
represents a textually earlier object in the outermost enclosing constructor. The digits specify how
many constructors from the front of the constructor the object is. This notation is used for data
structures with cycles.

2.4.4 Bound Routines and Iters

#ROUT(2.plus(_))
#ITER(_:INT.upto!(5))

16



Bound routines and iters generalize the “function pointer” and “closure” constructs of other
languages. They bind together a reference to a routine or iter and zero or more argument values
(possibly including self).

The outer part of the expression is #ROUT(. ..) for bound routines and #ITER(...) for bound
iters. These surround an ordinary routine or iter call in which any of the arguments or self may be
replaced by the underscore character “_”. These arguments will be specified when the bound routine
or iter is eventually called. Optional :{ype_spec clauses are used to specify the types of underscore
arguments or the return type and may be necessary to disambiguate overloaded routines or iters.
The expressions in this construct are evaluated from left to right and the resulting values are stored
as part of the bound routine or iter. If self is specified by an underscore without type information,
the type is taken to be SAME.

Each bound routine defines a routine named call and each bound iter defines an iter named
call!. These have argument and return value types that correspond to the bound type descriptor.
Invocation of this feature behaves like a call on the original routine or iter with the arguments spec-
ified by a combination of the bound values and those provided to call or call!. The arguments to
callor call! match the underscores positionally from left to right (eg. i::=#ROUT(2.plus(_)).call(3)
is equivalent to i::=2.plus(3)).

2.4.5 Syntactic Sugar Expressions

a+b
x<7

Several syntactic constructs in Sather are simply syntactic sugar for corresponding routine calls:

e “exprl + expr?’ is transformed to “expri.plus(ezpr2)”.
e “cxprl - expr?’ is transformed to “exprl.minus (expr2)”.
e “cxprl * expr?’ is transformed to “exprl.times(expr2)”.
o “cxprl / expr?’ is transformed to “expri.div(ezpr2)”.

o “exprl = expr? is transformed to “expri.pow(ezpr?)”.

o “cxprl % expr?’ is transformed to “expri.mod(expr2)”.

e “cxprl /= expr?’ is transformed to “not (expri=expr2)”.

o “ecxprl < expr?’ is transformed to “expri.is_lt(expr2)”.

o “exprl <= expr?’ is transformed to “exprl.is_leq(ezpr?)”.
o “exprl > expr?’ is transformed to “exprl.is_gt(expr2)”.

o “exprl >= expr?’ is transformed to “expri.is_geq(expr2)”.
e “— expr” is transformed to “erpr.negate”.

o “[expr_list]” is transformed to “aget (expr_list)”.

o “exprilerpr_list]” is transformed to “exprl .aget(expr_list)”.

o “(expr)” is transformed to “expr”.
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2.4.6 Boolean Expressions

0<=x and x<10
x=2 or x=3
not s.is_empty

and expressions are boolean-valued as must be the two component expressions. The first expres-
sion is evaluated and if it is false, this is immediately returned as the result. Otherwise, the second
expression is evaluated and its value is returned.

or expressions are boolean-valued as must be the two component expressions. The first expression
is evaluated and if it is true, this is immediately returned as the result. Otherwise, the second
expression is evaluated and its value is returned.

not expressions are boolean-valued and as must be the contained expression. The value returned
is the logical complement of the expression.

2.4.7 Equality
x=5

Equality test expressions return boolean values. The two component expressions must each have a
return value but are otherwise arbitrary. Regardless of their types, the left side is evaluated first and
then the right side. If one of the two sides returns a value type, then the other side must return the
same type or the result is automatically false. If they both return the same value type, then the
return values are compared bitwise for equality. If the two sides return bound or reference objects,
then they are compared for reference equality.

2.5 Special Features

This section describes some of the features of classes that are automatically defined or have special
properties.

type: Every type defines the routine “type:TYPE” which may not be redefined. It returns a value
object that identifies the type. It is useful in tests such as a.type=F00::type. A string
representation of an object’s type may be obtained with “a.type.str”.

copy: Each class defines “copy:SAME” to return a copy of an object. Because bound objects are
immutable, they simply return self. By default, value classes also just return self but
reference classes return a one-level shallow copy. Classes should redefine this to be most
appropriate for the structure they represent.

destroy: Bound and reference classes have the built-in routine destroy which may not be redefined.
It is used to aid debugging and to improve the performance of programs. When checking is
enabled, it is used to mark an object that shouldn’t be referenced again. Any such reference
will raise an exception. When checking is not enabled, this call will explicitly free the object
and save the garbage collector some work. Sather is garbage collected and there is no need to
explicitly deallocate objects.

while!, until!, and break!: Each class has three predefined iters which may not be redefined.
while! (BOOL!) yields when its argument is true and returns when it is false. until! (BOOL!)
yields when its argument is false and returns when it is true. break! immediately quits. These
may be used to imitate each of the traditional loop constructs. For example, when the while!
iter is called at the top of a loop the behavior is like a “while do” construct and if it is
called at the bottom of the loop the behavior is like a “do while” construct. The break! iter
immediately transfers control to the statement following the innermost loop it is called within,
like a traditional break statement.
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invariant: If a routine with the signature “invariant:B0O0OL”, appears in a class, it defines a class
wmvariant. When checking is enabled, it is evaluated after each non-private routine of the
class returns or each non-private iter yields. It is also evaluated when objects of this type are
constructed. If the routine returns false, an exception is raised.

main: Execution of a program begins at the routine named main in a class specified to the com-
piler. Main may be declared to have an argument of type ARRAY{STR} which will contain any
command line arguments in the order specified when the program is called. It may be declared
to have a single return value of type INT which becomes the exit code of the program when it
finishes execution.

2.6 Built-in classes

Most classes are defined by explicit code in a Sather program, but there are several classes which are
automatically constructed by the compiler. These classes have certain built-in features that may be
defined in an implementation dependent way. In each case, the choices made by the implementation
are described by constants which may be accessed by a program. This section provides only a short
description of these classes. The detailed semantics and precise interface is specified in the Sather
class library documentation.

e $0B is automatically an ancestor of each abstract and reference class. It may be used to declare
variables that can hold any reference object. It supports type:TYPE, id:INT, copy:SAME,
destroy, str:STR.

e BITS may be inherited by value classes which represent a single field of data. The descendant
may define the two constants bsize:INT and balign:INT to specify the size in bits of the
object and its alignment requirements. The default value of void is all zeros.

e BOOL defines value objects which represent boolean values. The value of void is false.
e CHAR defines value objects which represent characters. The value of void is *\0’.
e STR defines reference objects which represent strings.

e INT defines value objects which represent machine-dependent integers. The size is imple-
mentation dependent and must be large enough to hold a machine pointer value. The two’s
complement representation is used to represent negative values. Bit operations are supported
in addition to numerical operations. The value of void is 0.

e INTINF defines reference objects which represent infinite precision integers. They support
arithmetic operations but do not support bit operations.

e FLT FLTD, FLTE, and FLTDE define value objects which represent floating point values according
to the single, double, extended, and double extended representations defined by the IEEE-754-
1985 standard. The value of void is 0.0.

e ARR{T} is a reference class defining dynamically-sized arrays of elements of type T. Array
indices start at zero. Classes which inherit from this are called array classes. They allocate
space for the array and the attribute asize:INT whose value is the number of elements in the
array. They also define a number of operations including copy(INT) : SAME, aget (i:INT):T,
aset(i:INT, T).

e $EXTOB is used to refer to “foreign pointers”. These might be used, for example, to hold refer-
ences to C structures. Such pointers are never followed by Sather and are treated essentially
as integers which disallow arithmetic operations. They may be passed to external routines.
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SYS defines a number of routines including deep_str (ob:$0B) : STR, deep_copy (ob: $0B) : $0B
and deep_equal (ob:$0B) : BOOL for manipulating arbitrary data structures.

TYPE defines the value objects returned by the type routine. “str” applied to these objects
returns a string with the name of the class.

$REHASH, which defines the single routine rehash, should be inherited by any class whose
objects need to perform special operations when they are moved or copied. rehash is called
on such objects after the construction of literal structures, after deep copy operations, after
the construction of deep data structures from a string or file description, and after any object
movement during garbage collection.

$EXCEPTION is inherited by all exception types.

After this concise introduction into the base language Sather we will show how to extend Sather for
parallel computation in the remainder of this report.
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3 pSather on a Shared Memory Machine

In a first step we extend Sather for a machine model where multiple processors have equal access
to the same shared memory. Examples for such architectures include DASH [47], Sequent [50], and
Sun SPARCcenter 2000 [25], SPARCstation 10/xx etc. In order to make use of multiple processors
the language must provide means to create and synchronize multiple parallel threads of instructions.
This version has been running on the Sequent and SPARCstation since early 1991.

We will not give many examples and motivations for design decisions in this section because this
part of pSather has not changed much since [27].

3.1 Non-Blocking Calls: Creating Threads

Each regular pSather routine call without return values can be made to a simple non-blocking (or
asynchronous) call by preceding it with a deferred assignment operator (:-). It will become clear
in section 3.3.4 why we call the :- operator deferred assignment instead of thread forking operator
(although forking a new thread is part of the semantics of the :- operator) and how we deal with
routines with return values.

The :- operator extends the Sather expression statement syntax! as follows:

expr_stmt = [:=] expr

We will call the asynchronous streams of instructions initiated by deferred assignments threads. A
non-blocking call creates a new thread and installs it as a child thread to a running thread. Parent
threads may terminate earlier than their children. A running pSather program has a collection
of threads. The whole program terminates when all threads created during the execution of the
program have terminated. Except for the total amount of memory in the system there is no limit
on the number of threads in a program. Scheduling of threads is fair in the sense that every ready
(non-blocked) thread will eventually run.

Sather exception handling (cf. 2.3.7) has some subtle interactions with the parallel constructs
of pSather: Each thread starts a new chain of exception handlers directly attached to the system
exception handler. This implies that exceptions that are not caught within the thread are passed
directly to the system exception handler and not to the parent thread. This semantics is necessary
because child threads may in general live longer than their parents.

The simplest way to synchronize threads is the cobegin-statement. The creation of several
threads by deferred assignment can be enclosed in a cobegin-statement that has the following
syntax:

cobegin_stmt = cobegin stmi_list end

A thread executing a cobegin-statement will not continue with the statements following the
cobegin-statement until all child threads that were created during the execution of the body of the
cobegin-statement are terminated. Note that this includes all threads that are created by routines
called in the body. If no threads are created in the body, the cobegin-statement has no effect.

The cobegin-statement belongs to a group of structured statements which have to perform a
termination action. In the case of the cobegin-statement, correct termination means waiting for all
child threads to terminate. This leads to the following semantic rules:

e If an exception is passed on beyond the end? of a cobegin-statement, all threads are first
synchronized. One may look at the cobegin-statement as an implicit exception handler; it

1The pSather syntax is an extension of the syntax of Sather in [61]

2We say that an exception is passed on beyond the end of a statement if it is raised (explicitly by the raise-
statement, or implicitly by an inner exception handler that could not catch the exception or the runtime system)
within the body of that statement and cannot be handled in the body.
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handles all exceptions by first properly synchronizing all threads and then passing the exception
on to the next outer handler.

e return or quit from within a cobegin-statement does all the synchronization before leaving
the routine or the iter, respectively.

e yield from within a cobegin-statement in an iterator does not synchronize the threads as
long as control returns to the iterator. If however the loop containing the iterator invocation
is terminated, the cobegin-statement synchronizes the threads.

e Iter calls from within a cobegin-statement which belongs to a loop enclosing the cobegin-
statement do not affect synchronization immediately. However, if one of these iter calls termi-
nates the loop, all threads are synchronized before termination of the loop.

3.2 Example: Fractals I

The following example is a classical parallel algorithm. We compute the Mandelbrot set for a given
2-dimensional range into a pixel array. For each pixel we fork man_pixel as a separate thread. For
many machines this might be too fine grained, but it shows one possible use of the :- operator.

class FRACTALS is
attr left, right, bottom, top, hstep, vstep: FLT;

private man_pixel(p:ARRAY2{BOOL}): {INT,INT} is
#(i:, j:):=indices;
xpos::=i.flt*hstep+left; ypos::=j.flt*vstep+tbottom;
X::1=Xpos; y::=ypos;
loop
100.times; —-- Iterator
X2::=X*X; y2::=y*y;
if (x2+y2>=4.0) then p[i,j]l:=true; return; end;
x:=(x2-y2)+xpos; y:=x*y*2.0;
end;
pli,jl:=false;
end;

mandel (p:ARRAY2{BOOL}) is
-- Display part of the mandelbrot set in a 2-d black/white
-- pixel array
hstep::=(right-left)/p.asizel.flt;
vstep: :=(top-bottom)/p.asize2.£f1lt;

cobegin
-- Compute each pixel in parallel.
loop
-- ‘‘inds_tup2’’ is an iterator producing all index tuples
-- for a 2-dimensional array.
:- man_pixel(p, p.inds_tup2);
end;
end;
end;
end;

We will see more synchronization constructs in the next section.
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3.3 Synchronization: Gates

The central synchronization construct is based on two concrete classes of gates with a set of pre-
defined attributes and routines. Gate is a new name for the “monitor” in [27] because the name
“monitor” is already used in computer science for similar but not identical concepts leading to un-
necessary confusion. Although pSather gates add some new functionality they are similar to the
classical shared memory synchronization primitives (semaphores [22], monitors [38] [33] etc.). Not
surprisingly, one can easily model all the classical synchronization primitives using gates.

There are two versions of gates sharing the same basic functionalities: the parameterless GATEO
class and the parameterized GATE{T} class. The difference is that objects of type GATE{T} contain
a value of type T whereas objects of type GATEO contain no value. Both classes are predefined and
can be used with the functionalities described below.

These gate classes do not alter the syntax or semantics of Sather’s existing type system, and can
be used like other reference classes. Each class provides both interface and implementation for its
predefined routines. User classes may include either GATEO or GATE{T} (to inherit the implementation
according to the Sather rules). The only thing special about including a gate class is that the
predefined operations may not be redefined by the inheriting class. The reasons for this are that on
one hand these atomic operations need special support from the compiler and the runtime-system and
on the other hand we would like to protect the user from redefining the synchronization primitives.
The abstract view of a gate of type GATE{T} is that it contains the following unnamed attributes:

e a queue of values whose types must all conform to T (the type parameter of GATE{T} class),

e a set of associated threads,

a lock status (set to locked or unlocked) and

e a binding status (set to bound or unbound).

These unnamed attributes are not directly modifiable by the programmer. There is, however,
a set of predefined routines that allows the programmer to act on these attributes, as we will see
below.

3.3.1 Controlling the Locked/Unlocked Status

The lock-statement and the try-statement can be used to lock a gate. We will refer to these
statements as locking statements. The syntax of the lock-statement is:

lock_stmt = lock expr_list then stmi_list end

The expression list in the header of the lock-statement consists of gate expressions. A gate
expression specifies a gate and can be followed by a predicate as described in section 3.3.2. If all
of the denoted gates are in the unlocked status or locked by the executing thread, then they are all
atomically locked and the statement list in the body of the lock-statement is executed. If any of
the gates is not available for locking, the executing thread is suspended. The executing thread is
woken up again as soon as all the gates become available for locking. After the execution of the body
statements, the lock status existing before the execution of the locking statement is restored. That
is, if a gate was already locked by the executing thread, it is still locked after the lock-statement is
executed, otherwise it is unlocked.

The lock-statement, like the cobegin-statement, belongs to the group of structured statements
which have to perform a termination action. In the case of the lock-statement proper structure
termination means restoring the proper lock status for all the gates locked by the statement. This
leads to the following semantics rules:
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e If an exception is passed on beyond the end of a lock-statement, the corresponding gates are
first unlocked. One may look at the lock-statement as an implicit exception handler that
handles all exceptions by properly unlocking all gates and passing on the exception to the next
outer handler.

e return or quit from within a lock-statement does all the unlocking before leaving the routine
or iter, respectively.

e yield from within a lock-statement does not change the lock status of the locked gates
implicitly as long as control returns to the iterator. But if another iterator terminates the
whole loop such that after yielding, control never returns to the same iterator invocation
again, open lock-statements in the iterator are properly terminated. This implies that an
iterator may keep a lock on a gate during the execution of a loop.

e lter calls from within a lock-statement which belong to a loop enclosing the lock-statement
do not affect the lock status immediately. However, if one of these iter calls terminates the
loop, the proper lock status is restored.

The try-statement is a non-blocking variant of the lock-statement. The syntax of the try-
statement is:

try_stmt = try expr_list then stmi_list [else stmi_list] end

The expression list again consists of gate expressions. If all of the gates specified in the header are
in the unlocked status or are locked by the executing thread, then the try-statement has the same
semantics as the Lock-statement. If any of the gates is not available for locking, the executing thread
is not suspended. If the optional statement list is given after else, it is executed. If no else-branch
is specified, execution continues after the try-statement is executed. All the special rules concerning
abnormal termination of the lock-statement apply to the then-part of the try-statement.

Early restoration of the original locking status of a gate can be done by using the unlock-
statement which has the syntax:

unlock_stmt = unlock expr

An unlock-statement can only appear inside the scope of a lock-statement or the then-branch
of a try-statement. Only a gate that is in the gate list of a surrounding locking statement can
be specified in the gate expression of the unlock-statement. Because of possible aliasing among
reference objects this condition must be checked dynamically by the runtime system. A gate can
only be unlocked once per locking statement, either by an unlock-statement or when the locking
statement terminates as described above. In order to guarantee this property of gates statically,
the compiler checks that unlock-statements do not occur in loops enclosed by lock-statements or
then-branch of try-statements.

Figure 2 shows the possible state transitions 2 of a gate between locked and unlocked status. A
locked gate may only be locked again by the same thread.

3.3.2 Predicates in Gate Expressions

The following set of built-in predicates can be used to test the various status of a gate object.

g.1is_bound
g.is_unbound
g.has_threads
g.no_threads

3Note that labels attached to the state transitions consist of two parts separated by a vertical bar where the first
part defines the name of the event leading to the state transition and the second (optional) part defines some action
that is executed atomically together with the state transition.
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lock.../try... | lctr:=lctr+1
new lock.../try... | lctr:=1

unlocked
(Ictr=0)

|ocked
(Ictr>0)

... end/unlock & Ictr=1 | Ictr:=0
... end/unlock & Ictr>1 | Ictr:=lctr-1

Figure 2: Possible state transitions of the gate lock status

The predicate g.is bound returns true, if g is in the bound status. The predicate g.is_unbound
returns true, if g is in the unbound status (section 3.3.3 has more details on the binding status).

A gate g can be used to control the execution of a thread as described in section 3.3.4. The
created threads are attached to g. If g is a of type GATE{T}, the values returned by the threads after
completion are stored in g. The boolean predicates has_threads and no_threads test whether any
threads are attached to g.

The gate expressions in the header of a locking statement can be specified with one of the built-in
predicates. The semantics is that a gate is successfully locked if it is available for locking and also
in a status in which the predicate is true*. If the gate status does not satisfy this condition, in the
case of a lock-statement the executing thread is suspended until the condition becomes true, after
which it is normally locked. In the case of a try-statement the alternative sequence of statements
(if any) is executed.

3.3.3 Controlling the Binding Status

The binding status of a gate of type GATE{T} is associated with a queue of values of type T that is
stored in the gate. The gate is in the bound status if the value queue is not empty. Otherwise, the
gate is in the unbound status.

The binding status of a gate of type GATEO is associated with a binding counter instead of a value
queue’.

There are several built-in operations on gates that manipulate the value of a gate or the queue
of values. A thread that executes one of these operations on a gate locked by another thread, is
suspended until the gate is unlocked. The following operations are provided to store/remove data

items of type T in/from a gate g with type GATE{T}:

g.set(<expr>)
g.enqueue(<expr>)
x:T:=g.take

4This is the reason why we have both positive and negative status predicates.
5The semantics of a GATEO object are actually very similar to those of counting semaphores, where the take- and
read- operations correspond to the P- und V-operations on semaphores, respectively.
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x:T:=g.read
g.clear
g1:GATE{T}:=g.copy

All the operations explained below work as well for gates of type GATEO. The only difference is
that they neither take an argument to be bound to the gate nor return a value of the gate. They
just keep track of the number of binding operations.

set-operation: The argument of type T is stored as a new first element in the value queue of g
and overwrites a previous value if g was already bound. g is in the bound status after the
operation. The other elements in the value queue are not affected. This is the destructive
write operation on a gate.

enqueue-operation: The enqueue-operation enqueues its argument to the tail of g’s value queue.
If the gate was unbound (i.e. the queue was empty) before the operation, the binding status
of the queue changes to bound. When compared to set this is the non-destructive write
operation on gates. It is a bad programming practice to mix destructive and non-destructive
write operations on the same gate in the same part of a program.

take-operation: If g is unbound when the operation is executed, then the executing thread is
suspended until the gate becomes bound. If g is of type GATE{T} and is bound when the
operation is executed, then the operation returns the first element stored in the value queue g
and removes it from the queue. If the queue of values attached to g is empty after execution,
the take-operation puts g into the unbound status. take is the destructive read operation on
gates.

read-operation: If g is unbound when the operation is executed, then the executing thread is
suspended until the gate becomes bound. If g is of type GATE{T} and is bound when the
operation is executed, then the operation returns the first element in the value queue of g
without removing it from the queue. g remains bound. If g is of type GATEO and is bound
when the operation is executed, then the read-operation has no effect. According to our
classification scheme, read is the non-destructive read operation on gates.

clear-operation: The gate g is put in the unbound status and all threads attached to g are de-
tached. The suspended threads that are waiting for g are not affected by the operation. If g is of
type GATE{T}, the queue of values of g is emptied. With the predicate CONFIG: : clear request
a thread attached to a gate can actively find out that its gate was cleared and, therefore, the
thread detached (see section 3.3.4 for more).

copy-operation: Like any other object in pSather, gates can be copied. The copy-operation returns
a new gate object. It the queue of the source object was empty the queue in the new object
is empty, too. If the queue of the source gate was not empty the new object gets a queue
containing only the first element of the queue in the source object. Copied gates are always
unlocked, and bound or unbound depending on whether the queue is empty or not. l.e. read-
operations on copied gates have the same results as on the original, whereas take-operations
do not produce the same sequence of results. In our classification copy of a non-empty queue
consists of a non-destructive read from the source gate and a write into the destination gate.
The list of threads attached to g (i.e. threads that are controlled by g and that are not
suspended) are not copied into the new gate. The list of threads suspended on g is also not
copied.

If there is more then one take- or read-operation suspended when g becomes bound, they are
resumed and executed in FIFO order, as far as the gate status allows it. E.g. if two take-operations
are suspended, only the first one will be resumed. Similarly, suppose that three take-operations are
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suspended on a locked gate, and the gate is finally released. If the gate is bound and two values
are present in the queue, only the first two of the three take-operations will be resumed one after
another (leaving the gate unbound).

Figure 3 shows the possible gate state transitions between bound and unbound. In the state
diagram, “bctr” refers to either the binding counter of GATEO or the number of queue elements of
GATE{T}. Again we use the convention that labels belonging to state transitions consist of an event
name and an action to be executed atomically, separated by a vertical bar. Note that the request
of a state transition not defined in Figure 3 (e.g. read from an unbound gate) causes the executing
thread to suspend until the gate is in a state from which the transition is defined. Binding operations
may only be performed either on an unlocked gate or by the locking thread on a locked gate.

take & bctr>1 | betr:=betr-1

enqueue/":-" (normal) | betr:=1

set/read

copy& source.bctr=0 take & bctr=1 | betr:=0
enqueue/":-" (normal) | betr:=bctr+1

copy & source.bctr>0 | betr:=1

Figure 3: Possible state transitions of the gate binding status

3.3.4 Deferred Assignment

Gates can appear on the left hand side of non-blocking routine calls returning a result®. We call
this a deferred assignment extending the Sather simple assignment statement syntax as follows:

simple_assign_stmt = lhs_elt [:~ | :=] expr

The left hand side of the deferred assignment evaluates to a gate g. The expression on the right
hand side can be a call of any ordinary routine or of a bound routine. If the routine returns a
value, then the gate must be of type GATE{T} where the return type of the routine must conform
to the type parameter of the gate. Non-blocking calls to routines without any return value may be
synchronized by a deferred assignment to a gate of type GATEO.

61t is tempting to allow non-blocking calls to iters [58], as well. For iters that only produce a stream of values
but do not take a stream of values (only once-parameters) this is possible. It gets more complex for general iters
which take and return values at each yield-statement, enforcing tightly synchronized execution of the iters and the
loop body. But, even in the first case, where it seems possible to let the iter run ahead of the loop body, we have no
longer the well behaved coroutine semantics because the iter and the loop body may access common state in shared
variables.
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If g is currently locked by another thread, the executing thread is suspended until the gate
becomes unlocked. If g is not locked by another thread, then a new thread is created that runs
asynchronously from the creating thread. If g is of type GATE{T}, then the value returned by the
routine in the thread is enqueued after the forked thread has terminated. If the function has no
return type, then an enqueue-operation without parameter is performed on the corresponding gate
of type GATEO. The execution of the deferred assignment does not lock g. A thread started by a
deferred assignment is said to be attached to the gate. The predicates has_threads and no_threads
indicate whether a gate has attached threads which have not terminated.

The clear-operation detaches all threads attached to a gate. From within a thread the program
can check the predicate CONFIG::clear request:BOOL in order to find out whether its gate has
been cleared and it has been detached. A typical application of this is to start multiple threads
in parallel for searching a data structure. As soon as the gate gets bound (i.e. one of the results
has been found), the result is read from the gate and the gate is cleared. In order to not continue
searching after a result has been found, the searching threads can occasionally check whether the
gate got cleared, and terminate immediately if this is the case.

One typical application for deferred assignments are simple futures [63]:

g: :=#GATE{T};

g - £(x);
. —— Do something in parallel.
res:=g.take; —— Wait and assign result.

3.4 Readers/Writer Synchronization with Gates

In order to demonstrate some of the capabilities of gates in an object-oriented language we show
the example of a library class for readers/writer synchronization (Figure 4). The readers/writers
problem [19] is the classical problem of synchronizing a number of processes accessing a common
resource. The resource accepts only n (n > 1) readers or 1 writer at the same time. Each thread
must start a transaction and identify itself as either a reader or a writer by calling start read or
start_write, respectively. At the end of the transaction the resource is freed by a call to either
end read or end _write. It is a nice example to demonstrate the binding operations on gates. More
examples exposing the full flexibility of gates (under the old name “monitor”) can be found in [27].

Internally the synchronization is organized around two gates, one for the readers and one for
the writers. The binding counter of the readers (writers) gate is equal to the number of readers
(writers) accessing the resource in parallel.

start_read waits until the writer gate is unbound and then lets the thread access the resource.
end read adjusts the count of readers via a take-operation on the readers gate.

Synchronization for writers works analogously, except that start write waits for both the
readers and the writer gate to be unbound to proceed. Note that the outer lock-statements
both lock the writer first. This ensures fairness between writers and readers, because locking re-
quests are accepted FIFO. When the writer gate is locked, start_writer waits for all readers to
terminate, and then sets the writer gate to bound, denying access to any other reader or writer.

3.5 Atomicity and Consistency of Memory Operations
3.5.1 Atomicity

Any programming language must specify a semantics that allows users to program with confidence
in what their code will do. The pSather shared address-space model requires specification of the
atomicity and consistency of memory operations. As always, this involves a trade-off between clean
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class RW_SYNC is
-- Class may be inherited by any other class to provide
-- a fair readers/writer protocol if accessed by multiple
-- threads. It is the responsibility of the class designer
-- to protect his/her routines with the corresponding
-- "start_x"/"end_x" pairs.

private attr readers::=#GATEOQ;
private attr writer::=#GATEOQ;

invariant:BOOL is
res:= not (writer.is_bound and readers.is_bound)
end;

start_read is
lock writer.is_unbound then
readers.enqueue;
end;
end;

end_read is
readers.take;
end;

start_writer is
-- 1. establish place in queue waiting to lock writer among
—- other readers and writers
lock writer.is_unbound then
—- 2. Wait for all readers to terminate
lock readers.is_unbound then
-- 3. Set reader guaranteeing exclusive access
writer.set;
end;
end;
end;

end_write is
writer.take;

end;

end;

Figure 4: Class for readers/writers synchronization
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language specification and efficient realization based on possible implementations on modern multi-
processors. The basic atomicity rule is: every read or write of a variable of a built-in Sather type or
of any reference type is atomic.

This means that during a write operation (assignment) the executing thread has exclusive read
and write access rights to the affected part of the memory. Assignments are atomic in the sense that
threads cannot be suspended during an assignment. The following example illustrates the problem:

class FOO{T} is
attr found: T;

search is
found := ...
end;

global_search:T is
cobegin
:— search;
end;
res:=found;
end;
end;

Assuming that a programmer writes the above code to do a parallel global search on some data
structure. He/she is just interested in the one result that fulfills the requirements for the search.
Thus, whatever is written into found should be correct. Under the above stated rule for atomicity
of memory operations in pSather the program works as expected as long as T is one of the built-in
value types or a descendant of $0B. It, however, may produce wrong results if T is a compound value
type (tuple). In this case, the user should employ the GATE mechanism (Section 3.3), for example
by making found be of type GATE{T}.

For most architectures and data representations, the atomicity condition is ensured by the hard-
ware design. A primitive data type is usually a single word and is read/written by an indivisible
machine operation. But pSather includes built-in types such as FLTE (extended float) that may
well require multiple machine operations to read or write. Since thread pre-emption is allowed, it
would be possible for only part of a FLTE variable to be updated in the absence of our atomicity
requirement. Even more important, pSather far pointers (Section 4.5) might well require multiple
machine operations. The atomicity rule ensures that pointer operations will not be interrupted.

The atomicity rule does not impose any extra burden on the programmer — it has always
been assumed implicitly. It does require the programmer to protect with a gate (Section 3.3)
any operation on a variable of a basic type that is not built-in and is shared among more than
one thread. Since basic type objects can be of arbitrary size, it seems unreasonable to force the
implementation to ensure atomicity. The implementation ensures atomicity for built-in types. This
does add some constraints to code generation, for example FLTE variables might need to be contained
to a single cache line and far pointer operations in some architectures could be expensive. But our
understanding of current and planned architectures suggests that the extra costs will be minimal.
For one thing, pSather local variables and routine parameters are visible only to a single thread and
do not require locking. Object and shared attributes are potentially visible to multiple threads but
compiler flow analysis can sometimes show that these also need not be locked.

In addition, all gate operations (section 3.3) are atomic. Gates are, among other things, the basic
synchronization primitives of pSather and are necessarily atomic. Some gate operations, particularly
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[Thread T1] [Thread T2]

-- "flag" has value false. if (flag = true) then
x := 3; -— "x" must be 3
g.set; end;

flag := true;

Figure 5: An example of consistency-ensuring operation.

in distributed systems, can be expensive but these do not seem to be needed very often. Section 9.4
briefly discusses some ways to improve the efficiency of gates.

3.5.2 Memory Consistency

PSather allows threads to freely read and write variables on remote clusters. Multiple threads on
different clusters may write to the same variable simultaneously. The atomicity rule guarantees
that the variable will have a value written by one of the threads. Another independent question
concerns when various threads reading a variable will see the newly written value. This problem
arises in modern cache-based processors and is called the memory consistency problem (for which a
concise introduction is given in [37]). If every processor cache in a shared-memory machine needs to
be synchronized on each write instruction, performance can be greatly reduced”. Various levels of
consistency among processors have been defined and studied [32]. The strongest of these is sequential
consistency [41] which guarantees that every read operation sees the most recent write to the same
location.

One condition of sequential consistency is that within a process(or), memory accesses respect the
program order, ie. the access order specified by the control and data dependences in the program
code for that particular process(or) when no reordering takes place. In fact, this condition is also
found in other consistency models eg. processor consistency and weak consistency.

Since this is essential for reasoning about the semantics of sequential programs, the semantics of
pSather adopts this requirement. The intra-thread consistency requirement specifies that accesses
issued from a single thread always obey the program order (based on the code executed by the
thread). This does place some constraints on an implementation as we will discuss at the end of this
section.

However if we require the program order of a thread to be similarly observed by all other threads,
we may not be able to take advantage of the parallelism available in the multiprocessor memory
system. For example, if a thread T1 executes:

x := 3;
y = 4;
£(x, y);

and, x and y are located on distinct physical memory modules, the writes may happen in parallel
without violating the intra-thread order. But the write to y may complete before x, so that another
thread sees the old value of x and new value of y. In order for this update order to be observed
globally, T1 must make sure that the write to x is definitely completed before issuing the write to y.

We therefore relax the consistency requirements across threads as follows. The update order in
thread T1 is observable by other threads when T1 performs a consistency-ensuring operation. The
following pSather operations are consistency-ensuring: the forking of a child thread, the termination

7[31] gives performance measurements for several levels of relaxed consistency.
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of a thread, any gate operation, and the termination of a dist-statement. The inter-thread consis-
tency rule states that all writes executed by T1 before an ensuring operation will be seen by other
threads, before the ensuring operations executes. For example:

e Consider Figure 5. If thread T1 executes an operation on a gate gi, all the updates performed
by T1 before its access of g1 are observable by T2. We note that T2 does not need to perform
a consistency-ensuring operation.

e A child thread will see the updates done by its parent before its creation.

e Suppose a parent thread executes:
cobegin
-1
end;

After the cobegin-end statement, the parent thread is guaranteed to see the updates done
by the child thread before its termination. (The crucial operation here is the child thread’s
termination; the updates are observable by other threads which may not be its parent.)

The other consistency conditions are that all processors in the machine will eventually see any update
of memory, and that all shared attribute broadcasts (c¢f. bcast x in section 4.5.4) are guaranteed to
complete before the next operation is executed.

The relaxed consistency model presented above is a variant of the weak consistency model [23].
However, we need to define consistency on the language level instead of the machine level, as is the
case for the traditional consistency definitions.

Both the intra-thread and inter-thread consistency rules place constraints on pSather implemen-
tations. The serial intra-thread rule is just the conventional requirement so long as execution is
confined to a single processor. Even this entails restrictions on remote operations for systems (such
as CM-5) that do not preserve message order. In addition, pSather allows a thread to continue
execution on a different processor by invoking a remote procedure. There is also the possibility in
some implementations that a thread can be interrupted and later resumed on a different processor.
The serial intra-thread rule specifies that pre-emption and the starting or ending of a subthread
must include establishing memory consistency between the old and new processors executing the
thread.

The weaker inter-thread rule imposes similar implementation requirements. The forking or termi-
nation of a child thread and any gate operation forces the completion of outstanding write operations.

We believe that our consistency model, while retaining a simple semantics, will enable future im-
plementations to take advantage of efficient memory mechanisms in large-scale distributed-memory
multiprocessors®. Note that the weak consistency model is also satisfied by sequentially consistent

implementations®.

8In fact, most modern shared memory multiprocessors have weakly consistent memories and provide special in-
structions to enforce consistency in the memory system.

9Our prototype implementation on CM-5 (cf. [48]) actually retains a sequentially consistent model because it is
simpler to implement. The usefulness of this consistency model, therefore, remains to be verified.
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4 pSather on Distributed Memory Machines

4.1 Machine Model

Providing a shared memory on today’s multiprocessors requires maintaining coherence among the
caches of the single processors. There exist cache coherence protocols that solve this problem for
a moderate number of processors. Massively parallel machines with shared memory do not appear
practical with the current technology. In order to overcome these limitations pSather provides a
two-level shared address space.

Note that a shared address space does not imply having a shared memory. Shared address spaces
and shared memories differ with respect to memory latency and bandwidth. Shared memories, on
the one hand, try to maintain uniform short latencies and high access bandwidth over the whole
address space. In modern processors with multi-level memory hierarchies latencies are not really
uniformly short, but it is the goal of any memory system to keep up this illusion statistically by
good cache-hit ratios. In a shared address space, on the other hand, memory latency and bandwidth
may vary depending on the address. They are not distributed uniformly over the address space.
However, we retain the important property of a single name space for a program.

An alternative way of looking at clusters is to partition the set of processors into equivalence
sets as follows. We first define the address set of a processor p, address-set(p) such that an address
z € address-set(p) iff access latency for # approaches optimal hardware limit when p makes a
sufficient number of accesses to . We assume that for any two processors p, ¢, their address sets are
either equal or disjoint. This is justified from our observations of current and foreseeable machine
configurations. Two processors p, ¢ are in the same cluster iff address-set(p) = address-set(q).

It is often important to replicate (i.e. make multiple copies of an object in the shared address
space such that it is near on more than one cluster) or distribute data (i.e. allocate a data structure
in the shared address space such that different parts of it appear near on different clusters) in order
to achieve the necessary access bandwidth and locality for effective parallel computation.

The model presented in section 3 corresponds exactly to one cluster in the clustered shared
address space model presented in this section. Thus the clustered model is a further generalization
of the shared memory pSather model by combining multiple shared memories together into a shared
address space. We will see that all the new features of pSather introduced in this and the following
sections follow from this extension. Figure 6 gives a user view of the model.

This model covers a wide range of parallel systems from shared memory multiprocessors (one
single cluster) to distributed memory multiprocessors (each cluster has one processor). pSather has
indeed been implemented on both shared memory multiprocessors (e.g. Sequent [50]) and distributed
memory multiprocessors (e.g. CM-5 [18]).

4.2 Identification of Clusters

Clusters are identified by numbers of type INT in the range between 0 and the number of clusters
in the system minus one. Consequently, the @-operator (section 4.3) expects operands of type INT.
Remote calls to non-existing clusters lead to runtime errors. Often we want to deal with whole
sets of clusters representing a part of the whole machine. For this purpose we introduce the class
CLUSTER_SET as a subclass of FAST BIT_VEC in the Sather library which provides bit sets and all the
usual set operations. CLUSTER _SET adds a clusters iterator which yields the clusters in the set in
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Figure 6: Clustered machine model in pSather.

ascending order:

class CLUSTER_SET is
-— bit-set [0..CONFIG::nr_of_clusters-1]

include FAST_BIT_VEC;
iter clusters!: INT is ... end;
end;
The class CONFIG provides some standard information about the system:

class CONFIG is

constant num_clusters: INT;
shared all_clusters: CLUSTER_SET;

iter clusters!:INT is ... end;

current_cluster: INT is ... end;

working_set(n:INT):CLUSTER_SET is ... end;
end;

e num _clusters returns the number of clusters in the current configuration.
e all clusters is a shared attribute with a constant cluster set of all clusters in the machine.

e A clusters iterator yields the integer identifier of all clusters available in the current config-

uration. We might use it as follows:
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loop
:— worker @ clusters!;
end;

e A query function current_cluster returns the identifier of the cluster on which the current
thread is executing.

e working set returns a set of n clusters according to some internal load balancing criteria. The
general idea is that these are the n clusters that are expected to be the least active in the near
future.

4.3 Remote Routine Calls

Since accesses to far data cost considerably more than near memory accesses it is often important to
move the execution to the data. For this purpose pSather provides the @-operator with the following
syntax:

call_expr = [expr . | type_spec ::] ident [( expr_list )] [@ expr]

The expression after the @-operator designates the cluster on which the corresponding procedure
call will be executed. Note that the @-operator works both with blocking and non-blocking calls.

A thread consists of a stack of subthreads on different clusters. Only the top subthread on
this stack can be active at any time. In the case of a remote blocking call the active subthread is
suspended and a new subthread is set up on the cluster designated after the @-operator and pushed
on the subthread stack. The new subthread is inserted into the ready queue of the scheduler on the
appropriate cluster. When the top subthread terminates it is popped from the stack and the new
top subthread eventually resumes execution.

Another view of this model is that the stack of a thread consists of multiple segments on different
clusters. In the case of a remote blocking call a new segment is created and the locus of control is
moved to a new cluster. This view explains that value objects, local variables and parameters (all
on the stack) always reside on the near cluster!?.

Note that each cluster has its own scheduler. Normal blocking and non-blocking calls execute
on the processors of the cluster of their invocation. There is no automatic load balancing among
clusters. Thus, threads only change clusters at a remote call explicitly indicated by the @-operator.

Remote non-blocking calls (indicated by both the :- and the @-operators) are simpler. A new
child thread is set up on the appropriate cluster. Notice the difference between subthreads and child
threads: a thread consists of one or more subthreads of which only one is active at the time, whereas
child threads are threads on their own forked by some parent thread. Figure 7 shows the difference
between blocking and non-blocking remote calls.

Note that although ezceptions are not passed from child to parent threads, remote blocking calls
behave exactly like ordinary routine calls with respect to exceptions. In a reliable system one might
like to protect the program against exceptions caused by a remote thread (e.g. HW-failure on the
remote cluster). Obviously one doesn’t want to have the exception handler on the remote cluster
as well, because everything on the remote cluster breaks in case of a HW-failure over there. The
appropriate functionality may be accomplished by separating the remote non-blocking call into a
local non-blocking call and a remote blocking call. More precisely, one writes a little stub routine that
protects the remote call against every possible exception and terminates the local thread correctly
producing a result indicating the error. Figure 8 shows a continously running program fragment
with a watchdog thread on one cluster that starts a worker thread on a different cluster and monitors

10 This freedom of dynamically moving the locus of control implies that a simple implementation should replicate all
code on all clusters. However, one may imagine more sophisticated implementations with code caches on the clusters
such that code is loaded on demand. This may be a better implementation on a machine with many clusters and
little memory per cluster.
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Figure 7: Blocking and non-blocking remote routine calls.

its execution. Programs like this are typical for control applications Exceptions in the worker thread
are caught, passed to the watchdog where it causes the appropriate action (e.g. set an alarm and
restart the worker on a different cluster).

4.4 Example: Fractals 11

If we reconsider the fractals example from section 3.2 on a machine with multiple clusters, the
algorithm gets slightly more complex because we cannot rely on the runtime scheduler to do the
necessary load balancing between clusters. We have to explicitly assign each parallel computation
of a pixel to a cluster. For a moderate number of clusters we can do this through a centralized
controller!! that keeps track of how many threads are active on each cluster. The class CONTROLLER
(Figure 9) serves exactly this purpose. The attribute free_clusters is a gate that keeps track of
free clusters in its internal list. par_threads counts the number of parallel threads to be forked
before the controller should wait for a free cluster. The constant threads per_cluster defines the
maximum number of parallel threads per cluster. Its value should be slightly higher than the number
of processors per cluster, such that all processors are kept busy and there is some spare work to
hide the controller latency until a new thread is assigned to the cluster. reset initializes a parallel
computation on this controller by resetting the free clusters list and initializing par_threads
to the maximum number of parallel threads on the whole machine. Tasks are submitted to the
controller as bound routines. These tasks are wrapped into a simple routine that executes the
task and returns the cluster number upon termination. These wrapper routines are started on a
target cluster. There are two possibilities to determine the target cluster: If the initial number of
parallel threads has not been reached, the thread is forked immediately equally distributed among
the clusters. If the desired degree of parallelism is reached, submit awaits the first cluster to have a
free slot and forks the thread there. synch just waits for all threads of this controller to terminate.

In the code of the class FRACTALS (Figure 10) we show one possible application of controllers.
Note that we barely change the code in the FRACTALS class compared to the one cluster version
in section 3.2. By employing the generic abstraction and encapsulation facilities of pSather we are

11 Otherwise we need a distributed solution.
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stub(worker: ROUT; cluster: INT): $EXCEPTION is
protect
worker @ cluster
against $EXCEPTION then
res:=exception;
end;
end;

watch_dog is
g: :=GATE{$EXCEPTION};

loop
g:-stub(foo(1),1); -- start worker on 1
g.take; -- failure on 1
g:-stub(foo(2),2); -- start worker on 2
g.take; -- failure on 2
end;
endd

Figure 8: Exception handling across thread boundaries

able to successfully hide the issues of load balancing and architectural details (number of clusters,
number of processors per cluster) from the programmer of the fractal application. This is a good
example of how we envision parallel programming in pSather: CONTROLLER should be a library class
and FRACTALS might belong to an application program.

4.5 Near and Far Objects
4.5.1 Reference Object Pointers

Each cluster manages a local heap of reference objects ($0B-descendants). A pointer to a reference
object identifies both the cluster and the address within that cluster. We add the routine o.where to
the standard reference object protocol in order to obtain the cluster id where the object is located.
The access to attributes of an object o may either be near or far depending on whether the condition
o.where=CONFIG: :current _cluster is true or not, respectively. Note that each reference object is
located as a whole on a single cluster with the exception of objects from the class SPREAD{T} (cf.
section 6). The standard object protocol in pSather provides two predicates to check whether an
object is near or far:

<obj-expr>.is_far
<obj-expr>.is_near

The predicate is_far returns true if the object is on a far cluster. is near returns true if the
variable references a near object (with respect to the executing thread). Void pointers return false
to both is_far and is_near!Z.

Implementation note: On machines with large virtual address spaces the memory management

unit may generate traps when far pointers are dereferenced. In other implementations pSather

121n fact void is a perfectly valid pointer value, but it does not point to any object. Consequently, both predicates
return false on void pointers. This convention is practical in many algorithms where we would like to operate on an
object depending on whether it is far or near, and do nothing in the case it is void. It saves a lot of void checks.

37



class CONTROLLER is
private attr free_clusters:#GATE{INT};
private attr par_threads:INT;
private const threads_per_cluster := 2; -- CM-5

private wrap(r:ROUT):INT is
-- wrapper routine, calls its argument and returns the
-- the cluster on which it was executed
r.call; res:=CONFIG::current_cluster;

end;

reset is
free_clusters.clear;
par_threads:=threads_per_cluster*CONFIG: :num_clusters;
end;

submit (task:ROUT) is
if par_threads>0 then
par_threads:=par_threads-1;
free_clusters:-wrap(task)
@ par_threads.mod(CONFIG: :num_clusters);

else
free_clusters:-wrap(task) @ free_clusters.take;
end;
end;
synch is
lock free_clusters.no_threads then end;
end;

end;

Figure 9: CONTROLLER class
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class FRACTALS is
attr left, right, bottom, top, hstep, vstep: FLT;

private man_pixel(p:ARRAY2{BOOL}, indices: {INT,INT}) is
#(1i:INT, j:INT):=indices;
xpos::=i.flt*hstep+left; ypos::=j.flt*vstep+bottom;
X::1=Xpos; y::=ypos;
loop
100.times!; —-- Iterator
X2::=X*X; y2::=y*y;
if (x2+y2>=4.0) then p[i,j]:=true; return; end;
x:=(x2-y2)+xpos; y:=x*y*2.0;
pli,jl:=false;
end;
end;

mandel (p:ARRAY2{BOOL}) is
-- Display part of the mandelbrot set in a 2-d black/white
-- pixel array
hstep::=(right-left)/asizel.flt;
vstep: :=(top-bottom)/asize2.flt;
—-- compute each pixel in parallel
ctr::=#CONTROLLER; ctr.reset;
loop ctr.submit(#ROUT(man_pixel(p, p.inds_tup2!))); end;
-- ‘‘inds_tup2’’ is an iterator producing all index tuples
-- for a 2-dimensional array
ctr.synch;
end;

end;

Figure 10: FRACTALS class
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pointer variables might consist of two words, one identifying the cluster and the other giving the
address on that cluster. In these implementations the compiled code has to check on each pointer
access whether a far memory request has to be issued.

4.5.2 with-near Statement

An obvious cost factor in the software implementation of the shared address space are the extra
checks on pointers for near/far objects. Since the user may have knowledge about distribution of
objects (e.g. certain components of an object are allocated locally), it would be useful if the user
could specify that a pointer need not be checked for far reference.

We therefore add an assertion-like statement for the user to specify a set of variables to reference
objects which are dynamically near to an executing thread. This with-near-statement has the
following syntax:

near_stmt = with ident_list near stmi_list [else stmi_list] end

The list of identifiers may contain the following kinds of variables:

1. local variables

2. parameters

3. predefined variables: res, self

These near variables must be of a type derived from $0B (and henceforth, we will refer to them as
near variables). The idea of near is not applicable to variables of either external or value types. The
with-near statement works as follows. When the statement is encountered, the following assertion
is tested: every variable in the identifier list references an object which is near to the current locus of
control. If this does not hold the else-part is executed if available. An exception is raised if there is
no else-part. The programmer is also asserting that in the first list of statements, the variables will
be used to reference only near objects. The runtime system checks each assignment to one of the
near variables to verify that the variables really reference only near objects at execution time. Note
that one cannot define attributes of objects and shared attributes as near variables. This is because
attributes and shareds may be accessed by more than one thread whereas locals and parameters
always belong exclusively to one thread. Shared access makes run-time checks for the near assertion
almost infeasible. There is a simple workaround for attributes to be defined as near variables by just
assigning them to a local variable.

A typical situation in pSather is that you want to execute a routine such that accesses to the
corresponding objects are near. There are two possibilities to do that. Either you move the locus
of control to the object or you copy the object to the current cluster. FEither solution may be
appropriate depending on whether multiple copies of the object are acceptable or load balancing is
less important than locality. The following examples show two code patterns with the proper use of
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the with-near statement:

bar:T is
-— copy object to current cluster, then do bar
with self near

else
res:=self.copy.bar;
end;
end;

bar:T is
-- move locus of control to object
with self near

else
res:=self.bar @ self.where;
end;
end;

4.5.3 Constructor Expressions for Remote Object Creation

Reference objects are created with constructor expressions in pSather. If not specified otherwise,
all objects are created on the current cluster (CONFIG::current cluster). In order to be able to
create new objects on far clusters we need a way to locate object creation. We do this by adding
the @-operator to the syntax of constructor expressions:

cons_expr = # [type_spec] [( cons_elt (, cons_elt}*) | [ @ expr]

As for remote calls the @-operator must be followed by an integer expression which evaluates to a
valid cluster number. The following code fragment creates an array of 1000 integers on the lightest
cluster according to some load balancing class:

block: :=#ARRAY{INT}(asize:=1000) @ LOAD_BAL::lightest;

4.5.4 Shared Attributes

Like the code, space for shared attributes is allocated on all clusters. References to shared attributes
always refer to the near instance of the shared attribute. Assignments to shared attributes only affect
the near instance of a shared attribute. By combining assignments with the @-operator you can set
any instance of a shared attribute selectively. Hence, the values stored in shared attributes may
not necessarily be consistent throughout the machine. In order to broadcast a value to all instances
of a shared attribute a special routine bcast x(T) is implicitly defined for each shared attribute
x of type T. bcast x(x:T) broadcasts its argument (x) to all instances of a shared attribute and
continues after the broadcast has been acknowledged by all clusters. Multiple active broadcasts
to the same shared attribute are detected by the run-time system and raise an exception of type
BROADCAST _ERROR.

4.6 Execution of Implicit Code

There are various cases when pSather programs have to execute implicit code. Since the locus of
control is visible in the pSather programming model we must define where this code is executed:
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Invariant clauses are executed at the location of the object they belong to. Thus the invariant
self.where=CONFIG: :current_cluster is always true.

Object attribute initialization expressions are executed on the cluster where the object is
allocated.

class FOO is
attr bar::=CONFIG::current_cluster
end;

o::=#F00;
if o.where=o.bar then -- is always true

pre-, post-, and initial expressions are executed in the context of the callee. This has subtle
consequences for non-blocking and remote calls. Whether the precondition of £ evaluates to
true or not in the following example is subject to race conditions:

class FOO is
attr bar:INT;
end;

f(x:F00) pre x.bar=1 is ... end;
o::=#F00(1);

:- £(0);
o.bar:=0;

We may use preconditions to test that a routine is always executed at the location of the
corresponding object:
class FOO is

£(F00) pre self.where=CONFIG::current_cluster is ... end;
end;
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5 Object Copying and Movement Operations

In a NUMA (Non-Uniform Memory Access) model such as pSather’s, objects often need to be
moved or copied to improve data locality. We demonstrate how the operations in Sather 1.0 can
work together with the @-operator to provide copy/move mechanisms.

5.1 Regular, Deep and Near Copies

We first describe how the object-copy operations in Sather 1.0 (copy and deep_copy) work in pSather.
Since these operations are routine calls, our use of the @-operator applies to them as well. We can
have:

X.Copy;
x.copy @ cluster_id;

In conformance with the semantics of remote routine calls (section 4.3), “x.copy” returns a local
copy of x wherever the current thread executes (i.e. CONFIG::current cluster). For “x.copy @
cluster_id”, since the routine call executes at cluster_id, the result is a copy of x at cluster_id.
The orthogonality of the object-creation operations and the use of @-operator therefore works out
nicely. The @-operator allows the user to specify the final object’s location independent of where the
original object is located.

The routine deep_copy(ob:$0B):$0B (in SYS class) copies the graph of objects rooted at ob.
Since the pSather semantics dictate that the location of the deep-copied object is where deep_copy
is executed, the result object graph is located on one cluster even if the object graph was originally
distributed over multiple clusters. Calling deep_copy with the appropriate cluster id using the
@-operator allows us to specify where we want the deep-copied object to be.

Because of the distinction between remote and local objects, we feel that another copy routine
(near_copy) is more useful in many cases. The routine near_copy(ob:$0B) :$0B is defined in the
SYS class. It copies the structure of all objects reachable from the root object ob directly via near
pointers. The nearness is with respect to the root object and not with respect to the current locus
of control. Suppose we have a root object O; which points to a remote object O3 and Oz points to
another object O3 which is near with respect to O;. Oj is not copied because it is not reachable
directly via local pointers from O;. The call SYS: :near copy(x) @ cluster_id copies all objects
directly connected via near pointers to x, to the cluster given by cluster_id.

Implementation note: Since deep_copy and near_copy are part of a standard library, we expect
that these operations will be implemented in an intelligent manner. When message startup cost is
high, one possible strategy is to first pack the entire structure into a compact form, copying the
compact form to the new cluster and then expanding it.

5.2 Migration of Objects

To support user-managed object migration, SYS class also defines a routine move_to:

move_to(ob:$0B; id:INT):$0B is
res := ob.copy @ id;
ob.destroy;

end;

The common usage will probably not require a client to use move_to with an @-operator (even though

using an @-operator such as SYS: :move_to(tree, current processor) @ tree.where makes per-
fect sense). In a similar vein, we define the move-counterparts of near_copy and deep_copy:
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near_move_to(ob:$0B; id:INT):$0B is

res := near_copy(ob) @ id;

-- And destroy all objects which have been copied.
end;

deep_move_to(ob:$0B; id:INT):$0B is

res := deep_copy(ob) @ id;

-- And destroy all objects which have been copied.
end;

The x_move_to operations return a new object identity. pSather in contrast to other approaches (e.g.
Emerald [40]) does not support migrating objects which retain their identity, because the identity
of an object is its address (including the cluster location) in our simple yet efficient model. The
code for a class $MOVEABLE shows how the user can define a class for more transparently migratable
objects.

class $MOVEABLE{T} is

attr obj:T;
move_to(cid:INT) is
if (obj.where /= cid) then
obj := SYS::move_to(obj, cid);
end;
end;
end;

It is not totally transparent because instead of:

x:POLYGON;
x.move_to(cid);
x.draw;

the user has to explicitly retrieve the object before invoking draw:

x:MOVEABLE{POLYGON};
x.move_to(cid);
x.obj.draw;

Thus far all the object allocation routines are either predefined or provided as part of a standard
class (SYS). We expect these to handle most of the distributed cases, but we also need general
mechanism (an example of which is the PACKET class described in the next section) that allows
sophisticated users to define their own copying mechanisms.

5.3 General Copy/Move via PACKET
5.3.1 The Class PACKET

In general, one might want to have complex rules for deciding which parts of a data structure
should be copied/moved to another cluster and which parts should remain uncopied/unmoved. An
additional design constraint is that the copy/move of a large structure should execute efficiently.
Due to high startup costs of communication, for the forseeable future this means that the most
effective way of copying/moving data structures is to send packed representations. For this purpose,
pSather provides a system class PACKET with the following interface:
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class PACKET is
-- Standard class for packing structures.
attr psize:INT;
mark(ob:$0B) is end;
pack(ob:$0B, invalid_flag:BOOL):SAME is end;
unpack:$0B is end;
is_empty:BOOL is end;

end;

Instead of copying/moving the data structure, a user builds a PACKET object p which contains (in
a packed form) the data structure to be copied/moved. The PACKET object (instead of the data
structure) is copied/moved, and then it is unpacked at the destination to rebuild the desired data
structure. The objects to be packed are marked using p.mark(ob). Note that even though we use
mark, the object remains unchanged. Rather it is the packet p that makes a note and remembers
the object ob. The p.pack(ob, flag) function applied to an object ob will traverse all reachable
objects from ob!®. The object attributes are treated differently depending upon their type.

Value types: We distinguish between value types which inherit or do not inherit from the BITS
class. Attributes whose type inherits from the BITS class are packed (i.e. copied into the
packet). Otherwise, we have value objects with components. Each component is handled
recursively depending on its type. (E.g. this handles the case when we have an attribute of
value type with $0B sub-attributes.)

External type: Foreign attributes are not packed, and are replaced by the appropriate void value.

Reference or abstract type: If the attribute (near or not) contains a marked object, the object
is recursively packed. Otherwise, the contents (pointer) is just copied into the packet!?.

The packed objects are destroyed when the invalid flag parameter for pack operation is set to
true . Therefore, the invalid_flag parameter gives the option of whether to retain or to destroy
the original data-structure (and it has nothing to do with the packet).

p.pack(ob, flag) returns a PACKET object containing the packed objects that we want to copy
or move. The objects are packed into a single block of memory, so that copying/moving a packet
can make use of the machine’s bulk communication mechanisms. Because the mark/pack/unpack
operations work on each PACKET object, multiple threads, each with its own PACKET object, can
perform packed copy/move in parallel. We can then invoke any of the copy/move operations on
the returned packet using the @-operator (or not) appropriately. If we call copy on a packet, we
can make use of the same packet to copy to several destinations. A moved packet is destroyed.
These collapsed packets can be reconstituted by executing the p.unpack operation. A packet may
be unpacked more than once. For example, if p.pack is called multiple times, then each call to
p-unpack returns a copy of the corresponding graph of reference objects. p.unpack returns void
when there is no more object to be extracted. p.is_empty returns true before any pack operation
is called and after all objects are unpacked; otherwise it returns false. We do not expect the average
user to do any of this, but the mechanism is needed for distributed data classes.

5.3.2 Implementation of PACKET

PACKET can just be an ARRAY{CHAR} or ARRAY{INT} with an additional hash-table for remembering
objects. (After a pack operation, we might deallocate the hash-table, so whether we do a copy,

12 After calling p.pack(ob, flag), the packet does not remember any object. So even if we had called p.mark(o)
and o was not one of the reachable objects in p.pack(o1,flag), p no longer remembers 0. The ob argument in p.pack
may or may not be one of the marked objects.

14Tn some implementations (not the current CM-5 one), this may require transforming a near pointer to a far
pointer.
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near_copy, or deep_copy the effect is the same.) The unpack operation just looks at the array part
to rebuild the data-structure and ignores the presence/absence of hash-table. The mark operation
first creates a hash-table if none exists, and records ob into the table. If we copy a packet p without
first calling p.pack, only the empty packet is copied without containing any objects.

5.3.3 Example of PACKET use

For example, a class for distributed binary trees might need a way of copying/moving a local subtree
to another cluster, but leaving any pointers to other clusters unchanged. This would require a func-
tion that moved exactly those objects that are dynamically near. Every recursive call of tree_pack
marks the subtree below, and eventually after the root has been marked, we pack everything that
has been marked.

private tree_pack(ch: PACKET) is
if 1t.is_near then lt.tree_pack(ch) end;
if rt.is_near then rt.tree_pack(ch) end;
ch.mark(self);
end;
-- Footnote: We rely on the fact that void.is_near is false.

tree_copy_to(id:INT):TREE is
-— Suppose ‘self’ is the root of sub-tree. Return
-— pointer to remote copy of sub-tree at cluster given
-— by ‘id’.
p:PACKET := PACKET: :new;
tree_pack(p);
res := (p.pack(self, false).copy @ id).unpack;
end;

tree_move_to(id:INT):TREE is
p:PACKET := PACKET: :new;
tree_pack(p);
P := SYS::move_to(p.pack(self, true), id);
res := p.unpack;
end;
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6 The Class SPREAD{T}, Replication and Reduction

6.1 The Class SPREAD{T}

Normal objects in pSather reside completely in the memory of the cluster they were created on. To
support distributed objects we introduce the class SPREAD{T} as a base class for objects whose space
is allocated by spreading over all clusters. As we proceed through the section we will show some
essential classes based on SPREAD{T}.

We may allocate an object of class SPREAD{T} exactly like any other reference object in Sather:

s ::= #SPREAD{T};

If T is a reference type this statement allocates space for a pointer on each cluster of the machine.
Otherwise, T is a value type and space is reserved according to the size of an object of type T on
each cluster.

The use of SPREAD{T} is syntactically similar to the class ARRAY{T} in sequential Sather. The
difference is that the index range is mapped on clusters instead of consecutive memory locations
with the classic array. Thus, the statements with index expressions

local ::= s[CONFIG::current_cluster];
and
s[i] := local.copy @ ij;

read the local instance of a T-typed object on the current cluster, and make a copy of a local object
on cluster 7 and assign it to the element of s on cluster ¢, respectively.

In contrast to a regular Sather array where the index range corresponds to the size of the array
defined at creation time, the indices of SPREAD{T} always range from 0 to CONFIG :: num_clusters—1.

Cluster O Cluster 1 Cluster 2 Cluster 3
‘ [
02@2 o4@3
00 @0 ‘ @ | @ Local
o1@1 Heap
03@2 O5@3
e e L _ % __________ - F ___________________
S0[0] So[1] S0[2] S0[3]
| | | Replicated
S1[0] S1[1] S1[2] S1[3] Heap
\ \ \

Figure 11: Memory organization for SPREAD and ordinary objects

Spread objects are a low-level concept in pSather and it is of central importance that remote parts
of a spread object can be accessed directly without going through a centralized directory (mapping
cluster indices to addresses of local chunks of memory) in order to avoid memory access bottlenecks
at the directory. Therefore, spread objects need to share a single object identification on all clusters.

Implementation note: Since object identification means memory address in pSather, it may help
to look at one possible implementation in order to understand the semantics of spread objects.
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Ordinary reference objects are allocated from a heap that is managed for each cluster individually.
In addition to this heap there is a second heap for spread objects, located in the same address range
on each cluster. This heap is managed by a central agent for the whole machine. Thus, if new
memory is requested for a replicated object a chunk of memory is reserved by the central agent in
the replicated heap on the same address for each cluster. Figure 11 shows the memory map on each
cluster after allocating six local (O0-05) and two spread (S0, S1) objects. Note that the replicated
heap may also hold other replicated entities like code, shared attributes and constants, whereas the
stack segments for the threads are allocated in the local heaps.

6.2 Replication built on top of SPREAD{T}

Often we would like to replicate an object under the same name on all or a subset of clusters in order
to have local access to the object irrespective of the locus of control. We may employ SPREAD{T} to
implement a library class REPL{T} (Figure 12) providing the functionality to replicate an object of
type T, access the local copy on any cluster, and to coordinate the copies when necessary.

This class allows reading (Local) the local instance of the underlying spread object. In addition
to that it provides a number of routines to broadcast a value over the whole set of clusters or just
part of it. By passing the copy routine as a bound routine one is able to control the depth of copying
when broadcasting. It is, for example, very useful to copy the objects and not just the pointers if
T is a reference type. The copy routine may be anything as long as all arguments are bound and it
returns exactly one result of the appropriate type, e.g.:

bcast (ROUT(root.copy))

The broadcast operations in Figure 12 do not guarantee that all the local instances in the replication
range are consistent after a broadcast. Multiple simultaneous broadcasts may lead to inconsistencies
because there is no synchronization. This is however sufficient in situations where consistency is not
required or where control flow guarantees that only one broadcast is active at the time. If we want
to guarantee consistency we need a class with synchronization such as SYNCHREPL in the example
below.

class SYNCH_REPL{T} is
include REPL{T};

attr mutex: :=#GATEOQ;

becast(x:T, s:CLUSTER_SET) is
lock mutex then
loop [s.clusters!] := x; end;
—- there are more elaborate methods
end;
end;

bcast(x:T, r: RANGE, copy_rout: ROUT{T}:T) is
lock mutex then
loop c:=s.clusters!; [c] := copy_rout(x).call@c; end;
end;
end;
end;
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class REPL{T} is
include SPREAD{T};

bcast(x:T) is
bcast(x, CONFIG::all_clusters);
end;

becast(x:T, s:CLUSTER_SET) is

loop [s.clusters!] := x; end;

—- there are more elaborate methods
end;

-- copying broadcasts
bcast(copy_rout: ROUT:T) is

bcast (CONFIG::all_clusters, copy_rout);
end;

bcast(copy_rout: ROUT:T, s: CLUSTER_SET) is
loop c::=s.clusters!; [c]:=copy_rout.call@c; end;
end;

-— tree copying broadcast to all clusters
private tbc_helper(s,n:INT, copy_rout:ROUT{T}:T) is
n2::=n/2;
[s+n2] :=copy_rout.call([s])@s+n2;
cobegin
if n2>1 then :- tbc_helper(s,n2)@s end;
if (n-n2)>1 then :- tbc_helper(s+n2,n-n2)0@s+n2 end;
end;
end;

tbcast(x:T, copy_rout: ROUT{T}:T) is
[0] :=copy_rout.call(x)@O;
if (CONFIG::num_clusters>1) then
tbc_helper(0,CONFIG: :num_clusters,copy_rout);
end;
end;

local: T is
res := [CONFIG::current_cluster];

end;
end;

Figure 12: REPL{T} built on top of SPREAD{T}
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6.3 Reduction built on top of SPREAD{T}

Another generally useful class can accumulate values in cluster-local accumulators according to a
given reduction rule and finally reduce all the values on the clusters to one single value. This class
is useful in a context where values are produced on many clusters and have to be reduced to a single
value at the end.

class REDUCTOR{T} is
include REPL{T};

attr redex: ROUT{T,T}:T;
attr cs: CLUSTER_SET := CONFIG::all_clusters; ——- Default.
attr z_val: T;

reset is
becast(z_val, cs);
end;

accum(x:T) is
[CONFIG: :current_cluster] :=
redex.call([CONFIG: :current_cluster],x);
end;

result: T is
res := z_val;
loop i::=cs.clusters!; res:=redex.call(res,[i]); end;
-- Here again: Better reduction strategies depending
-— on the machine are welcome

end;

end;

Note that the local accumulator in accum is not locked for mutual exclusion in this code. This
works on machines with only one processor per cluster and non-preemptive semantics of threads on
one processor. On architectures with more than one processor per cluster we need to add cluster
local mutual exclusion across the accum routine. On the basis of this REDUCTOR class we can build
all kinds of more specific reductors like INT_SUM, FLT_SUM, INT MAX, INT MIN, FLT_PROD, etc. We
will better understand the usefulness of these classes in the context of distributed objects and data
parallel computation in the next section.
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7 The Built-in Class $DIST{T} and the dist Statement

On a parallel machine we would like to distribute data structures piecewise over the whole or part
of the machine. In order to profit from local memory accesses we would also like computations to be
located on the same processor as the involved data. In simple cases this is similar to the data-parallel
model supported by many SIMD architectures, but pSather supports a much more general SPMD
(single program multiple data) model of data parallelism.

7.1 $DIST{T} keeping track of different chunks of data

In general a distributed data structure consists of a directory and a number of chunks. The directory
keeps references to all the chunks. The chunks hold the local parts of the distributed data structure.
There may be more than one chunk per cluster but all data in one chunk are usually located on the
same cluster. Figure 13 shows one possible memory organization for a distributed data structure
consisting of a directory and five chunks on a machine with four clusters.

Cluster 0 Cluster 1 Cluster 2 Cluster 3
)
= /2
8 Chunk 2
Q
<
Chunk O L
Chunk 4
Chunk 3
Chunk 1 v

Figure 13: Memory organization for a $DIST object with its chunks

To support such distributed data-structures in a general way pSather incorporates a common
abstract class $DIST{T}. $DIST{T} provides the basic information to support SPMD-like operations
(cf. dist-statement), Section 7.2). The interface for the abstract class $DIST{T} is shown in Figure

14:
nr_of_chunks: Returns the number of chunks in this distributed data-structure.

is_aligned with: aligned with is a predicate checking whether two distributed objects are aligned
with each other. To be aligned means that both objects have the same number of chunks
and chunks with the same directory indices are located on the same cluster. Note that this
implementation defines alignment between arbitrary $DIST{T} descendants. Nothing prevents
you from aligning a distributed array of complex numbers to a distributed array of reals
with the same size, for example. Depending on the details of the concrete distributed data-
structure may allow for cheaper implementations of is_aligned with (see implementation of
SIMPLEDIST (Figure 17, for example).

chunks!: The iter chunks! yields all chunks of a distributed data structure. It will be used by
some implementations of the dist-statement.
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abstract class $DIST{T} is
—— supertype of all distributed data structures to be used
-- with the dist-statement
nr_of_chunks: INT;

is_aligned_with(d:$DIST{$0B}): BOOL is
-- check alignment
if nr_of_chunks=d.nr_of_chunks then
loop res:=chunks!.where=d.chunks!.where; until!(res=false) end;

end;
end;
iter chunks!:T; -- iterate through all chunks in a given sequence
iter chunks_on!(INT):T; -- iterate through all chunks on a given cluster

end;
Figure 14: Abstract $DIST{T} class

chunks on!: The iter chunks_on! yields all chunks of a distributed data structure on a given cluster.
It will be used by most implementations of the dist-statement.

Note that the abstract class $DIST merely implements the minimal features needed by the dist-
statement. Concrete implementation of distributed objects provide a richer interface including oper-
ations to create, redistribute, add, and remove chunks from the distributed object. We will discuss
a number of particularly useful implementations of distributed objects.

One possible simple implementation of $DIST{T} uses ALIST{T} to implement the directory
(Figure 15). This is actually the data structure as drawn in Figure 13.

A more interesting implementation is built on top of SPREAD{T} with subdirectories on each
cluster (Figure 16). This implementation is optimized for distributed structures with chunks on all
or most of the clusters and big data-parallel operations. Note that a dist-statement can be executed
distributed without having the directory as a bottleneck because each cluster holds its part of the
directory. It could also serve as a base class for multiple parallel access distributed structures. The
distributed directory could prevent a directory access bottleneck.

Even more simply we may provide a special class SIMPLE DIST (Figure 17) with at most one chunk
per cluster. This is a very common case for many distributed objects. Note that is_aligned with
gets particularly simple if two SIMPLE DIST{T} objects are compared.

7.2 $DIST{T} and the dist Statement

pSather has a dist-statement for data-parallel computation on objects that are subtypes of $DIST{T}.
In this section we will first introduce the syntax and the semantics of the dist-statement and show
examples for the dist-statement in the next section. Syntactically the dist-statement is another
block statement in pSather:

dist_stmt = dist expr as ident (, expr as ident)* do stmi_list end

The dist statement executes its body in parallel body threads, one for each chunk of a given
distributed object!®.

15Since the code in the body of the dist-statement is executed sequentially, whereas the single body threads are
executed in parallel to each other, the body code determines the granularity of parallelism in a dist-statement.
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class LDIST{T}<$DIST{T} is
include $DIST{T};
dir: ALIST{T}:=#ALIST{T};
add_chunk(c:T) is
dir:=dir.push(c);
end;
nr_of_chunks:INT is
res:=dir.size;
end;
iter chunks!:T is
loop res:=dir.elts!; yield; end;
end;
iter chunks_on(cl:INT)!:T is
loop res:=dir.elts!; if res.where=cl then yield; end; end;

end;

end;

Figure 15: Simple implementation of $DIST{T} based on a list directory
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class SDIST{T}<$DIST{T} is

include SPREAD{ALIST{T}};
include $DIST{T};

add_chunk(c:T) is
if [c.wherel=void then [c.where] :=#ALIST{T}@c.where end;
[c.where] :=[c.where] .push(c)@c.where;

end;

nr_of_chunks:INT is
loop res:=res+[CONFIG::clusters!].size@c; end;
end;

iter chunks!:T is
loop
c::=CONFIG::clusters!;
loop res:=chunks_on(c); yield; end;
end;
end;

iter chunks_on(cl:INT)!:T
if [cl]/=void then loop res:=elts! end; end;

end;

end;

Figure 16: Concrete implementation of $DIST{T} with a distributed directory
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class SIMPLE_DIST{T}<$DIST{T} is

include SPREAD{T};
include $DIST is_aligned_with($DIST{$0B}):BOOL -> o_is_aligned_with;

nr_of_chunks:INT is
loop if [CONFIG::clusters!]/=void then res:=res+1 end; end;
end;

is_aligned_with(d:$DIST{$0B}): BOOL is
typecase d
when SIMPLE_DIST{$0B} then res:=nr_of_chunks=d.nr_of_chunks
else res:=o_is_aligned_with(d)
end;
end;

iter chunks!:T is
loop
res::=[CONFIG: :clusters'];
if res/=void then yield; end;
end;
end;

iter chunks_on(cl:INT)!:T is
res:=[cl]; if res/=void then yield; end;

end;

end;

Figure 17: Specialized implementation of $DIST{T} with a single chunk per cluster
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The as expression in the header of the statement defines a chunk variable to relate distributed ob-
jects to variables referring to the corresponding chunks throughout the body of the dist-statement.
The body thread is always executed on the cluster the corresponding chunk is located on. The
purpose of this semantics is to bind parallel computation to the location of data, in order to exploit
locality.

It is possible to specify more than one distributed object in the header, if all the distributed
objects are pairwise aligned; i.e. x.is_aligned with(y) is true for every pair of x and y in the
header. An exception of type ALIGNMENT ERROR is raised if the distributed objects are not all
aligned'®. All expressions before the as in the header must be of types descended from $DIST{T}.
The chunk variables automatically get the type of the chunk, i.e. d as c, defines a variable ¢ of
type T where d’s type is of a subtype of $DIST{T}.

plus(a:SAME) : SAME
-— A new vector equal to self plus a.
pre is_aligned_with(a) is
-- create result object
res:=SAME: :create;
dist res as res_c, self as ¢, a as a_c do
res_c.to_sum_of(c, a_c);
end;
end;

Figure 18: Use of dist-statement in DVEC class

Before continuing with details of the dist-statement semantics, Figure 18 shows an example
from the DVEC class for distributed vectors, illustrating the practical use of the dist-statement!?.

The DVEC class for distributed vectors is a $DIST{T}-descendant with sequential vectors as chunks.
This is an important construction principle. Many distributed classes are built on top of their
sequential counterparts by distributing sequential objects with the same functionality as chunks of a
distributed data structure. The plus routine adds two distributed vectors and creates a new one as
the result. The precondition for addition is that both self and the argument a are aligned to each
other. Alignment for distributed vectors has the generic semantics for distributed objects, requiring
that two objects have the same number of chunks and chunks are located pairwise on the same
cluster (cf. section 7.1). Furthermore the vector chunks are required to have the same dimension
pairwise.

After checking for alignment in the precondition, the routine plus continues by creating a new
distributed vector of the same dimension as self for holding the sum. The actual computation is
performed in the body of dist-statement over res, self, and a with chunk variables res_c, ¢, and
a_c, respectively. Each body thread just uses the to_sum_of routine of ordinary vectors to sum over
the single chunks. This is again a very typical pattern in distributed data structures: the distributed
operation is just a distributed application of the ordinary operation.

The dist-statement is also a scope for body local variables. Local variables of a dist-statement
body and the chunk variables defined in header are only visible within the body of the dist-
statement. There is one instance of each body local variable per body thread.

The same instance of every variable in the surrounding scope is visible from the body threads of
a dist-statement (i.e. local variables and parameters of the enclosing routine, self as an implicit

160f course, it is always possible to refer to additional distributed objects within the body which are not aligned
to the ones mentioned in the header.
17 There are more examples from this class in section 7.3.
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parameter and with it all attributes of the corresponding object, local variables of surrounding dist-
statements, shared and constant attributes). Assignments to all these different classes of variables
(except constant attributes) are allowed from within body threads, but note that the general rules
for atomicity and consistency of memory operations (cf. section 3.5) apply in the context of the dist-
statement under the assumption that the beginning and the end of a dist-statement correspond
to implicit thread multi-fork and multi-join operations'®. Thus, different body threads do not
necessarily see a consistent picture of the shared variables unless they employ explicit synchronization
operations like lock-statements around accesses to shared variables. Note, also, that the end of the
dist-statement is a synchronization operation enforcing consistency in the sense of Section 3.5.2.

Implementation note: A naive implementation of the above semantics could lead to a completely
sequential execution of a dist-statement because of the memory bottleneck at the location of the
local variables of the surrounding scope. An important optimization is to pass variables that are
only read in the body by value to each body thread. All accesses to these variables are then local.
Note, however, that only pointers are passed for reference objects. For local access to the objects we
need to replicate the objects first. For techniques to prevent read and write bottlenecks see sections
6 and 7.3.

The dist-statement belongs to the group of structured statements which have to perform a
termination action. In the case of the dist-statement, proper structure termination means waiting
for all body threads to terminate. This is very similar to the cobegin-statement in Section 3.1. This
leads to the following semantic rules:

o If an exception is passed on beyond the end!® of a dist-statement the statement waits for
termination of all its body threads before passing the exception on to the next outer handler.
If more than one body thread terminates exceptionally, only one of the exceptions is passed on
beyond the end of the statement. One may look at the dist-statement as an implicit exception
handler, that handles all exceptions by properly synchronizing all body threads and passing
on one of the exceptions to the next outer handler.

e return from within a dist-statement terminates all body threads before eventually returning
from the routine.

e yield statements in the body of a dist-statement and iter-calls from the body of a dist-
statement are not allowed.

In addition to structure termination issues we may have multiple parallel body threads changing
the same local variable. This implies some restrictions on the use of these variables in statements
relying on established assertions.

e with-near-statements in dist-statements may not refer to local variables which are defined
outside the dist-statement but are assigned in the body.

Note that it is in theory possible to modify the distribution structure of a distributed object
from within the body of a dist-statement. Doing so may lead to unpredictable behavior of this
dist-statement.

18 Note that this is not exactly the same termination semantics as in the cobegin-statement (Section 3.1), where
the termination of all threads forked within the body have to terminate before the whole statement terminates. In
the dist-statement only the body threads need to terminate for termination of the whole statement. Threads forked
by the body threads may continue running beyond termination of the dist-statement.

19We say that an exception is passed on beyond the end of a statement if it was raised (explicitly by the raise-
statement, or implicitly by an inner exception handler that could not catch the exception or the runtime system)
within the body of that statement and cannot be handled in the body.
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7.3 Examples with the dist Statement

First, some examples from the DVEC class for distributed vectors. DVEC is based on DARRAY{FLT}
and provides the same functionality as the VEC class in serial Sather library.

In the first example we multiply each element of the vector by a scalar factor. This example
already shows that it is important to pass read-only variables (s in the example) by value to the
parallel body threads. If we didn’t do that in this case the memory access bottleneck to s would
sequentialize the whole computation.

scale_by(s:FLT) is
-— Scale self by s.
dist self as c do
loop c.set_elts!(a*c.elts!) end
end;
end;

The memory access issues get even more complex for the dot product of two vectors. Recall the
general reductor class we introduced in the last section built on top of the SPREAD class. This is
exactly the intended use for this class: First we create a reductor object with a reduction operation
(FLT: :plus in this case), a reduction cluster set equal to self.cl set, the cluster set occupied by
chunks of the distributed vector, and a zero value 0.0. Note that all accesses to the reductor red
through accum are local reads and writes because the reductor is a replicated object. The only place
where communication is necessary, is for forking the body threads in the dist-statement and for
collecting the results in the result routine of the reductor.

dot (v:SAME) :FLT
-— The dot product of self and v.
pre aligned_with(v) is
—— create reductor on the same cluster set as self
red: :=#REDUCTOR{FLT} (#ROUT(FLT: :plus(_,_)), cl_set, 0.0);
dist self as ¢, v as v_c do
loop red.accum(c.elts!*v_c.elts!) end;
end;
res := red.result;
end;

In the next example we look for the index of the greatest element in the array. The algorithm first
looks for the maximum and its index in each chunk. Each chunk knows its index offset in the vector
(offset). This is an example where we use a gate to guarantee mutually exclusive access for the
parallel body threads when they update the maximum. Note that res and mval are shared by all
body threads. This together with the locking of the mutex gate may lead to write contention in the
final stage of each body thread. An alternative solution would have been to use a reductor object to
do the maximum reduction. The trade-off is whether the parallel body threads terminate sufficiently
out of synch. With the reductor we wait until all body threads are terminated and do the reduction
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afterwards (Asynchronous reduction with more synchronization overhead vs. synchronous solution).

max_index:INT is
-- The index of the maximum component of self. Lowest index
-- in case of equality.
mval::=[0]; -- initialize global maximum with first vector element
res := 0; mutex::=#GATEO;
dist self as ¢ do
Imax::=[c.offset]; 1li::=c.offset;
loop
i::=inds!; le::=elts!;
if le>lmax then lmax:=e; li:=i end;
end;
lock mutex then
if lmax > mval then mval:=1lmax; res:=1i end;
end;
end;
end;

The next example uses even more complex synchronization between the parallel body threads. In
bounded_square dist_to it would be very inefficient to compute the complete square of the distance
if the bound is reached very quickly. Therefore we update the total square distance after every 100th
iteration of the loop and stop the computation as soon as the bound is reached. In the worst case
we do 100 additional iterations in the body thread before terminating if the bound is reached. The
maximum value for the counter needs to be balanced against the overhead for extra computation
vs. communication on the architecture for which the library is designed.

bounded_square_dist_to(v: SAME, sbnd:FLT):FLT
-- The square of the Euclidean distance from self to v if it is
-— less than or equal to ‘sbnd’, ‘-1.0’ if it is greater than it.
-— Can avoid some operations if used in a bounding test.
pre aligned_with(a) is
mutex: :=#GATEOQ;
dist self as ¢, a as a_c do

lsum ::= 0.0; ct ::= 0;
loop
lsum := lsum+(c.elts!-a_c.elts!).square; ct:=ct+1;
if ¢t >= 100 then
lock mutex then res := res+lsum; end; —— atomic update

ct:=0; lsum:=0.0;
if res > sbnd then break end;
end;
end;
lock mutex then res := res+lsum; end; -- atomic update
end;
if res > sbnd then res:=-1.0 end;
end;

One typical usage of the class REPL{T} is to provide an object for local access in all parallel body
threads of a dist-statement. Consider the following excerpt of a graphics program that applies a
transformation matrix to all vectors of a large structure, in order to rotate and translate a three-
dimensional picture:
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-— PICTURE: some distributed structured collection of points
pic: PICTURE;
a: T_MATRIX;

-- replicate transformation matrix
t::=#REPL{T_MATRIX};
t.bcast (#ROUT (a.copy));
dist pic as pic_c do

loop p::=pic_c.points; p.transform(t.local); end;
end;

This example would produce exactly the same result without replicating the transformation matrix.
However, since all body threads would refer to the same physical location of the transformation
matrix, the bottleneck would slow down the program to completely sequential execution.

7.4 The sync-Statement

A common pattern of synchronization among body threads is barrier synchronization. pSather
provides a special sync-statement for barrier synchronization of body threads with the following
syntax:

sync_stmt = sync

sync-statements must be syntactically enclosed by a dist-statement. When one of the body
threads encounters a sync-statement it waits until all other body-threads of the same dist-statement
have arrived at a sync-statement. As soon as all body threads are waiting on a sync-statement the
barrier is released and all body threads continue after the sync-statement. If one of the body threads
encounters a sync-statement while a partner body thread has already terminated or if a body thread
terminates while others are waiting at a barrier, a runtime error occurs.

One typical application of the sync-statement are data-parallel computations that proceed in
multiple phases, wherby each phase has to be finished before the new one is started. Parallel merge
sort algorithms are one typical example. Figure 19 implements a coarse-grain variant of a parallel
sorting network. It sorts the whole vector by first sorting each chunk an then performing a parallel

merge of all chunks. The parallel merge proceeds in w parallel merge steps merging each
chunk with another chunk in the vector, whereby n is the number of chunks. For the details of how
to determine the partner chunk in the merge steps we refer to the sorting network introduced in
[17, Chapter 28]. The merge steps have to proceed in lock-step. Each new merge step depends on
the results of the preceding merge steps. The merge steps proceed in two phases: First, the local
chunk is merged with a remote partner chunk into a temporary vector chunk (t). After all body
threads have completed this operation the body threads encounter a barrier (first sync). In the
second phase, the local chunk is exchanged with the temporary chunk (double buffering) in all body
threads and the body threads synchronize again (second sync).

7.5 The Class $MDIST{T}

In all the previous sections there was only one dist-statement with its parallel body threads operat-
ing on the distributed data structures. The only form of parallelism was non-nested dist-statements.
This corresponds to the simple SPMD (single-program multiple-data) model. For many applications
this is all we need. There are, however, applications with multiple parallel body threads accessing
the same distributed data-structure (e.g. data base). This creates a number of additional problems:

e To preserve consistency of the data the chunks must observe a single writer multiple reader
protocol (cf. section 3.4 for a readers/writer library class).
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merge_with(i:INT, into: VEC_CHUNK) is
-- merge local chunk with chunk on cluster i and keep the smaller
-- (larger) values depending on the chunk positions

if i<CONFIG: :num_clusters then -- only merge if there is a partner
1:VEC_CHUNK:=self[CONFIG: :current_cluster]; r:VEC_CHUNK:=self[i];
if i>CONFIG::current_cluster then -- merge from bottom

1j:INT:=0; rj:INT:=0;
loop j:INT:=0.upto!(into.asize-1);
if 1[1j1<r[rj] then into[j]:=1[1j]; 1j:=1j+1;
else into[jl:=r[rjl; rj:=rj+1; end end;
else -- merge from top
1j:=1.asize-1; rj:INT:=r.asize-1;
loop j:=(into.asize-1).downto(0);
if 1[1j]1>r[rj] then into[j]:=1[1j]; 1j:=1j-1;
else into[jl:=r[rjl; rj:=rj-1; end end end end end;

xchg_with(c: VEC_CHUNK) is
-- exchange ¢ with the local vector chunk
t :VEC_CHUNK :=[CONFIG: : current_cluster];
[CONFIG: :current_cluster]:=c; c:=t end;

sort is
dist self as c do
c.sort; -- inherited from VECTOR
m:INT:=1; -- merge the sorted chunks in parallel
t : VEC_CHUNK :=VEC_CHUNK (offset :=c.offset,asize:=c.asize);
loop while!(m<CONFIG: :num_clusters); -- while! is also an iterator
m:=m*2;
k:INT:=(i/m)*m; -- k := lowest multiple of m lesser than i
merge_with(k+(n-i-1) .mod(m) ,t); sync; —-- merge & sync
xchg_with(t); sync; -- set new chunks & sync
n:=m/2;
loop while!(n>1);
k:=(i/n)*n; -- k := lowest multiple of n lesser than i
merge_with(k+(i+n/2) .mod(n)); sync; -- merge
xchg_with(t); sync; -- set new chunks & sync
n:=n/2; end end end end;

Figure 19: Use of dist-statement for the sort routine in DVEC
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e Each client of a distributed data structure should have his own copy of the directory. Otherwise,
the directory accesses will lead to a severe memory bottleneck on the cluster holding the
directory in a large system.

e The copies of the directory need to be kept consistent if a client wants to change the directory.

Changes of the distribution structure should happen only rarely in well designed distributed data
structures. Normally only the size of the chunks grows and shrinks corresponding to the size of the
structure. The number and location of the chunks should stay the same throughout the lifetime of
a distributed data structure.

The following library class $MDIST{T} provides a generic solution for distributed structures being
accessed from multiple threads. This is just one example of the kind of classes that can be as a
descendant of the built-in class $DIST{T}. The routine dup_header copies the header information
to a new client thread. The object keeps track of its header duplicates in a cyclically linked chain
of headers. The header itself is a RW_SYNC. Users should therefore bracket each operation reading
the header (virtually everything) by a start read/end. read-pair. start_hchange and end_hchange
serve to enclose changes to the header. start_hchange locks a one-per-distributed object gate wlock
and then starts a write access to all headers in the chain. Note that wlock is not duplicated by
set_header, keeping a single copy for all headers of the same object (collection of chunks). The
driving assumption behind this design is that header changes happen very infrequently compared to
read accesses to the header (directory, etc.). Therefore opening a header for a read operation is very
cheap (access to one or two local gates, see RW_SYNC), whereas locking all headers for write might be
pretty expensive with many headers.

class $MDIST{T}<$DIST{T} is
include LDIST{T};
include RW_SYNC;
attr wlock::=#GATEO;
attr chain::=self;

private set_header(from: SAME) is

-- maintain a ring of copies

dir:=from.dir.copy; readers:=#GATEOQ; writer:=#GATEOQ;
end;

dup_header:SAME is
res:=copy; res.set_header(self); res.chain:=chain; chain:=res;
end;

start_hchange is
lock wlock then
c::=self; loop c.start_write; c:=c.chain; while(c/=self) end end;
end;

end_hchange is

h::=chain; —-- next
cobegin -- maybe it’s worth to do it in parallel
loop while(h/=self); :-h.set_header(self)@h.where; h:=h.chain; end;
end;
h:=self; loop h.end _write; h:=h.chain; while(h/=self); end;
end;

end;
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7.6 Other Distributed Data Structures

$DIST{T} is not restricted to such simple data structures as arrays. One could for example build
distributed balanced trees where each chunk holds a subtree of the whole tree. The top-most nodes
of the tree are replicated in each chunk. The idea is that most operations affect only nodes close
to the leaves in a large tree. On the other hand the top-most nodes of a tree are the most read
parts of a tree because any operation starts at the root. The balancing algorithm keeps all subtrees
(chunks) about the same size which also leads to good load balancing. Preliminary versions of tree
abstractions have been studied, but more work remains to be done.

Furthermore we can implement multi-dimensional arrays, lists, tables, hash tables, vectors, ma-
trices, etc. on top of the DARRAY abstraction. Actually we took many of the examples in section 7.3
from a class for distributed vectors.

We think that the $DIST class together with the dist statement are very powerful tools to create
parallel library classes optimally utilizing the power of the underlying machine without bothering
the user with the architectural details. The next question to be answered will be whether there is a
set of data structure classes with the following properties:

1. They are as a whole general enough to cover most users’ needs for parallel computing.
2. They are special enough that there exist efficient solutions.

3. They are independent enough from specific architectures to be portable to many different
machines.

$DIST{T} should be the common ancestor for this class library.
So far we have used the $DIST{T}-abstraction for distributed arrays and matrices, distributed
hash-tables and distributed schedulers for discrete event simulation.
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8 Related Work

This section gives the design dimensions for parallel object-oriented languages and describes where
pSather fits in. It also goes into some detail in comparing parallel constructs in pSather with other
approaches. This includes:

e high-level synchronization constructs (gates vs. monitor [34], M-structures [8])

e constructs to support NUMA (pSather’s @-operator and copy/move operations vs. object
movement in Emerald [40])

e constructs to support data-parallelism (dist-statement and $DIST{T} class vs. approaches in
PC++ [30], [46] and C* [35])

A more complete and detailed description of related work (which involves discussing other specific
parallel object-oriented languages) can be found in [48].

8.1 Processes/Threads

There are three general ways to create parallel processes or threads in object-oriented languages.

e A thread may be explicitly treated as a first-class object in the system (e.g. Presto [11]). In
this case, methods are defined in the threads class to activate, suspend and perform other
synchronization operations (e.g. fork-join). In this model, threads are independent of data
objects and multiple threads can execute on an object in parallel.

e A second approach is to have active objects (actors [2]), each with its own message queue
and thread of control. From the user’s point of view, a thread exists to receive and service
incoming message requests. Examples include POOL2 [4] and ABCL [24].

e In a third approach, threads of control are independent of any object in the system and
managed by the system (e.g. scheduling). In this model (e.g. Hybrid [59], COOL [15]), objects
are passive while threads are the loci of control. Normally, the programmer does not have
any explicit handle to the threads, so that he/she cannot perform operations like moving the
thread object from one scheduler to another. Most languages in this model allow multiple
parallel threads to execute in an object. Some (e.g. Hybrid [59]) group objects into protection
domains such that at most one thread can be active in a domain.

The design choice affects how threads and objects are created. For example, if the thread is an
explicit object, to create and schedule a thread, one will invoke methods in a THREAD class. This
approach also requires the language support routines or some form of closures as first-class objects,
so that a created thread can use the value of the routine/closure to decide what to start executing.

On the other hand, in the active object model, a new thread is implicitly created and becomes
active whenever an object is created. So instead of introducing thread creation construct, such a
language needs a way to decide which messages can be received. In POOL2, each class definition
has a body code (e.g. POOL2). An active object, when created, starts executing the body code that
decides which incoming messages can be received.

In the system-managed thread/passive object model, thread creation is usually decoupled from
object operations because code blocks and/or routines are not first-class objects. Languages with this
model have constructs that support explicit thread creation (e.g. the reflex operation in Hybrid [59]
or invocation of parallel function in COOL [15]).

pSather currently follows the third model. The threads are not however completely invisible to
the user. For example, a thread can be attached to a gate (“g :— £”) and by testing the predicate
g.no_threads, the user can determine if the thread executing £ has terminated.
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abstract class $THREAD{T} is
fork(ROUT) is end;
-- The call ‘‘fork(#ROUT(o.f))’’ would be equivalent to

-— ‘‘:-= 0.f’’ in current design.

fork_at (ROUT, cluster_id:INT) is end;
—-- The call ‘‘fork(#ROUT(o.f),i)’’ would be equivalent to

-- ‘‘:- 0.fQ@i’’ in current design.

fork(g:$GATE{T}, r:ROUT) is end;
—-- The call ‘‘fork(g,#R0OUT(o0.f))’’ would be equivalent to

-- ‘‘g 1= 0.f’’ in current design.

fork_at(g:$GATE{T}, r:ROUT, cluster_id:INT) is end;
—-- The call ‘‘fork(g,#R0OUT(o0.f),i)’’ would be equivalent to
- ‘‘g - 0.f@i’’ in current design.

end;

Figure 20: THREAD{T} class

One reason that pSather does not treat threads as first-class objects is that an older version of
Sather [60] does not support any form of closure or routine as first-class objects. The new language
specification has a form of closure called bound routines (section 2.4). As pSather evolves, one
might imagine consolidating the deferred assignment with the normal class semantics by supporting
a predefined THREAD{T} class (Figure 20). On the other hand, the use of a distinct construct like
“:=” helps to clarify programs and allows a user reading a program to easily pick out the code that
departs from normal sequential execution.

A design goal in pSather is suitability for efficient implementation. We therefore do not adopt
the actor model [2] because of the performance costs of maintaining a message queue for each object,
and disallowing parallel operations (e.g. reads) on an object.

In this design, the object-oriented term “message passing” in pSather does not involve com-
munication between threads but has procedure invocation semantics instead; we might view it as
message-passing between passive objects rather than threads. pSather does not need message-passing
forms of parallel constructs like actors in POOL2 [4], broadcast in Orca [6], or asynchronous reply
in Natasha [20] and ConcurrentSmalltalk [67]. In pSather, sequential routine calls are viewed as the
default synchronous mode of message-passing while the deferred-assignment statement corresponds
to asynchronous message-passing.

8.2 Machine and Programming Model

Some languages are more suited to certain architectures than others. For example, languages such
as Orca and Distributed Smalltalk [9] are aimed at distributed systems. There is no shared address
space like pSather, so that an object is not directly accessible from all processors. To share objects
among processes, some languages (e.g. Orca) provide a shared data-object model, in which a parent
process can pass its objects to its child processes via shared parameters in the children. Thus the
shared objects serve as communication channels in a machine model where each processor has a
logically distinct address space.

Other languages such as pC++ [14] and parallel versions of Eiffel implicitly assume a uniform
shared address space. The clustered machine model in pSather (section 4.1) is one of the more dis-
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tinct departures from other parallel languages. It provides a flexible model for both shared-memory
multiprocessors and distributed-memory architectures whose network latencies are of the order of a
few hundred (or fewer) instructions. We feel that this is a justifiable choice because many parallel
architectures are converging to this characterization, and scalability and programmability considera-
tions have led to many efforts at supporting distributed shared memory with NUMA characteristics.

8.3 Synchronization

There are two general approaches to achieving synchronization among threads [5] — shared data
or message-passing. An example of the shared data approach is the use of monitors ([38], [66]) in
Concurrent Pascal ([34]) and Mesa [42]; on the other hand, the message-passing approach is used
in notations such as the rendezvous in Ada ([7], [65]), channels in CSP (Communicating Sequential
Processes [39]) and Occam [62], and the send/receive constructs in PLITS [26].

In an object-oriented language, conceptually, objects interact among themselves by message
passing. An object invokes a routine (or method) on another object or itself by sending a message to
the destination object. It would therefore seem natural that object-oriented languages should adopt
a message-passing approach for synchronization. This is indeed the approach adopted by the actor
languages such as POOL2. Synchronization is achieved by controlling the receipt of messages.

Message-passing however is not the only means to achieve synchronization in parallel object-
oriented languages. In the model with explicit thread objects (e.g. PRESTO), synchronization is
more in the tradition of well-understood constructs such as fork-join and locks except that these
mechanisms are not built-in and are defined as part of a class interface.

The synchronization mechanisms in the system-managed thread/passive object model depend on
whether multiple parallel threads can execute in an object. If this is the case, explicit synchronization
mechanisms are needed. The difference from the PRESTO-like model is that the synchronization
constructs are normally provided via additional language extensions. Consider each of the synchro-
nization patterns (lock protection, barrier and conditional wait) in COOL:

e To achieve locking, attributes and functions can be qualified as mutex at declaration.

e There is a predefined binc construct which encloses a block of statements. The current thread
suspends until all threads created during the execution of the block terminate.

e There is a predefined class cond; objects of this class provide the functionalities of a condition
variable.

In pSather, all three synchronization patterns can be done using gates (though the cobegin-end-
statement provides a cleaner way to express barrier synchronization).

When multiple threads cannot execute on an object, locking is automatically available. But it
is not clear (e.g. in the case of Hybrid) how the condition-wait and barrier synchronization patterns
can be easily achieved without additional constructs.

8.3.1 Comparison of Synchronization Constructs

In pSather, since multiple threads can execute on an object, additional constructs are defined for
synchronization. Instead of providing a different construct for each commonly-used synchronization
(e.g. lock vs. barrier vs. conditional wait), a gate object unifies all the common synchronizations.
The philosophy behind the design of $GATE classes resembles other synchronization constructs in
other languages, such as monitors in Mesa and Concurrent Pascal [34], and M-structures [8] in Id,
such that a relatively small set of powerful operations are provided, on top of which the user can
build more sophisticated synchronization mechanisms.

Monitors. The pSather gate objects were previously called monitors [27] because of a similarity
with the monitor concept in Mesa [42] and Concurrent Pascal [34].
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Firstly a gate operation (monitor entry procedure) guarantees a thread (process) exclusive access
to the object (module). But in pSather, the gate operations are predefined since GATE{T} and GATEO
are predefined classes. In Mesa (for example), the entry procedures are user-defined because any
module can be declared to be a monitor. This means that if a Mesa monitor operation is ever
suspended, the user has to take care that it gets resumed correctly later and to prevent deadlocks.

In Mesa, condition variables can be declared in monitors such that a wait operation on a condition
variable atomically suspends the process on a queue while a notify resumes one of the processes
suspended on the condition variable. This functionality is achieved in pSather by the take and
enqueue operations (corresponding to wait and notify respectively).

However, in terms of programming style, gates and monitors are used quite differently. We
expect gates to be mostly used as components of objects to control synchronization among different
routine calls acting on the same object. On the other hand, Mesa monitors are roughly “protected
classes”: “classes” because a monitor is an instance of a module (which encapsulates both data and
procedures in a unit); “protected” because a monitor entry procedure is guaranteed exclusive access
to the monitor. The wait and notify operations are also lower level than gate operations.

The deferred assignment unifies the functionalities of a gate with thread creation. As a result,
a gate can be used as a future (section 3.3.4). This is not possible in Mesa because the monitor
functionalities are independent of process creation.

M-structures. M-structures are designed to overcome the absence of state in Id, by allowing data
structures to be updated. An M-structure has a state (empty or full) associated with it. This is like
the bound state of gate objects and is used to synchronize access to M-structure. There are only two
primitive atomic take and put operations that can be performed. When doing take on an empty
M-structure, the thread is suspended, until another thread performs a put and atomically stores the
value into the M-structure. The stored value is atomically retrieved by take. This is similar to the
take and set operations in gates.

Unlike gates, M-structures do not store multiple values; thus there is no need to have any enqueue
operation. The examine operation (similar to GATE’s read) is built on top of take and put.

def examine ¢ = { v = take ¢ ; -- ‘¢’ is an M-structure.
_ = put c v;
In v}

8.4 Object Placement

One attractive feature of object-oriented programmingis that objects provide a high-level abstraction
for programmers to deal with memory (shared or distributed). Because (local/remote) memory
latency costs are more critical than costs of computation cycles, the user view of objects is especially
relevant for program efficiency. We will treat the two aspects of placement of objects — allocation
and relocation — together.

Some languages have a uniform shared memory model, so that if implemented on distributed
memory multiprocessors, the communication costs of remote access are hidden from the programmer,
and a runtime system (e.g. Tarmac [52]), that automatically performs load balancing and maps
allocated objects on different processors, is needed.

There are however parallel object-oriented languages which support a non-uniform shared address
space in a high-level manner. For example, Sloop [51] allows the programmer to specify alignment
relationships among objects via calls to an align routine. The alignment relationship specifies the
“spatial” relationship of objects; for example, two strongly aligned objects are always located on the
same processor so that whenever one is moved to a different processor, the other has to move with
it. Calls to the align routine may cause objects to be moved.
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Similarly, Emerald [40] and pSather incorporate object placement in the language semantics. In
fact, object mobility is a major design goal and affects the language design (e.g. parameter passing)
of Emerald.

Emerald’s location-independence vs. pSather’s @-operator. Emerald supports location-
independent invocation; a routine invoked on an object always executes at the object’s processor,
wherever the invoking thread might be. When a routine is invoked on an object, it is executed at
the object’s processor. Therefore when an object moves, activation records of its routines have to
be relocated as well. This means that the runtime system has to keep track of the activation records
of every movable object; this might entail high runtime costs. Jul et al [40] describes how to reduce
such costs and what to update when activation records are moved. In pSather, the locus of control
is independent of the object’s location and is specified by the @-operator. The @-operator has the
relatively simple semantics of specifying where a subthread executes. The orthogonality of the design
allows this semantics of @-operator to be used with the copy/move operations for relocating objects.
By using the @-operator, a thread’s control can span multiple clusters even though subthreads (or
activation records with locations) stay on a fixed cluster.

Emerald’s transparent move vs. pSather’s move/copy operations. The movement of Emer-
ald objects is transparent to the user. Emerald distinguishes between objects which can be moved
(global objects) and those which cannot be moved (local objects), and implements them differently.
A global object is not referenced directly by any user variable. User variables point directly only
to local objects or local object descriptors. An object descriptor either holds a pointer to a resident
global object or a forwarding address which gives the processor on which the global object is resi-
dent. When an object is moved, its object descriptors on the source and destination processors are
updated accordingly.

PSather’s move operations do not relocate objects in a transparent manner. The programmer
has to update the references to the new object. But pSather does allow a programmer to implement
objects which move in an almost transparent manner. (The $MOVEABLE{T} class in section 5 corre-
sponds to the object descriptor in Emerald.) There is also a variety of copy/move operations that
allow a user to have complex rules to decide which parts of a data structure should be copied/moved.

8.5 Support for Data-Parallelism

In pSather, there is a dist-statement which specifies that its body is executed for each chunk in a
distributed data structure (whose type is a descendent of $DIST{T}). There are five characteristics
to note for pSather’s style of data-parallelism.

e The so-called “data”, which are operated upon in parallel, are actually large-grained chunks
(e.g. tree, array) consisting of finer-grained data (e.g. tree nodes, array elements).

e Although data-parallelism was previously associated with the execution mode of SIMD ma-
chines [3], the dist-statement moves away from this association to an SPMD form of data-
parallelism in which parallel threads execute the same piece of code on different chunks, but
not necessarily in lock-step.

e The execution of body code is co-located with the cluster location of the corresponding chunk to
ensure data locality. From the user’s point of view, load balancing then consists of partitioning
the distributed data structure such that each chunk requires approximately the same amount
of computation.

e The setup can also be used for dynamic distributed data structures which can grow or shrink
during program execution.
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e A distributed object is just like any ordinary object and is not used exclusively only in dist-
statements. For example, it is possible to perform the usual object operations (e.g. routine
calls, iterator calls) on distributed objects just like ordinary objects.

In C* [35], the user can declare a domain data type (just like a C struct) and then use this
data type to declare domain arrays. A domain array is then used in a domain select statement such
that the body of the domain select statement is executed in parallel on every element of the domain
array. Comparing C* with pSather:

e The data operated upon in parallel in C* is fine-grained, compared to the large-grained chunks
in pSather.

e The execution of the body is synchronous so that the model of computation is still SIMD.

e Like pSather, the execution of the body code is located on the same processor as is the domain
element. A difference from pSather is that in C*, the partitioning and partition locations of
domain array are determined at compile-time, whereas in pSather, the chunk locations are
determined during program execution.

e The size of a domain array is fixed at declaration, and therefore there is no way to dynamically
change its size, even when the number of needed domain elements changes.

e Because the idea of domain is closely associated with the data-parallel construct (domain select
statement), it is not obvious that a domain object can exist independent of a domain array.

In PC++ [46], there is the concept of a homogeneous collection of objects which is analogous
to the domain array in C*. The data-parallel construct is also similar to that in C*. One major
difference is that a collection class in PC++ only needs to know the interface of the type of its
elements. Thus any element type which satisfies the interface can be used in the collection. This
allows the code in a collection to be reused; there is no similar facility for code reuse in C*.

There is also a research effort on dpSather [64] to add only “loosely synchronous data parallelism”
to sequential Sather, without the notions of threads, synchronization etc. dpSather has bulk types;
the elements in a bulk type is finer-grained than chunks. A variable can be declared to have a bulk
type by writing “x:par <class>"; an invocation “x.£” then calls £ in parallel on all elements of the
bulk data. The “loosely synchronous data parallelism” breaks away from SIMD execution and is
similar to our approach.

The ideas behind the class SPREAD{T} were motivated by replicated objects as in [57], concurrent
aggregates [16] and the spread arrays in Split-C [21].
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9 Future Research

This report doesn’t solve all problems that occur when going from Sather to pSather. We see the
following main directions for further research:

9.1 Memory Management [by David Stoutamire]
9.1.1 Allocation

PSather requires maintenance of local heaps on each cluster as well as distributed management of
global replicated space (in which each heap object resides at the same position in each local address
space). 2° Replicated allocation requires synchronization between threads and the garbage collector
and will be part of the same runtime microkernel that handles thread scheduling, messages and
garbage collection.

An obvious way to manage replicated memory is dedicate a single cluster to service all requests for
replicated heap allocation. However, this could become a bottleneck at large scales. Alternatively,
each cluster could exclusively manage a portion of the address space, passing on requests to other
clusters when insufficient free space remains. This would not have the bottleneck but would waste
increasing space as the scale increases due to fragmentation (replicated objects could not be allocated
if they would span that portion of the space managed by a single cluster). These two approaches
can be balanced by having some subset of the clusters manage exclusive regions, as determined by
consideration of the architecture at hand.

9.1.2 Garbage Collection

There is a large literature on distributed garbage collection techniques [1]. Current versions of
pSather use uniprocessor conservative garbage collection [13] and avoid collection by conservatively
identifying known garbage at compile time [48]). There are a number of constraints that the pSather
garbage collector has to meet:

e To the extent possible, processors must refrain from stopping other processors from doing
useful work while garbage collecting. Performance of a program may rely on short remote calls
finishing quickly, so it may be necessary for the garbage collector to get out of the way by
being incremental.

e Distributed machines often have less available memory at each cluster than their single proces-
sor counterparts. Therefore, for some applications efficiency of memory use is important; the
management of memory should avoid excessive fragmentation or space wasted due to multiple
semispaces.

e Locality should be exploited. To a large extent objects will be referred to only by other local
objects. This should be exploited by allowing garbage collection to proceed at each cluster
without the attention of other clusters. This indicates the need to be able to identify objects
that may be referred to remotely.

e Compiler knowledge of the structure and nature of object types should be used to minimize
collection effort. For instance, in some cases the compiler can identify types of objects or
particular objects which cannot become remotely referenced or form cyclic structures; this
may be used to avoid some work.

200n machines where direct control over address space placement is not available, other schemes using indirection
are possible. However, this would negate the performance advantage of using $SPREAD.
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9.1.3 Proposed method of garbage collection

There are many possible choices to be made about such a distributed garbage collector. Here is one
possible implementation for the CM-5, a machine without hardware support for the shared memory
abstraction:

Memory allocation occurs in the runtime microkernel as a result of a call by a thread requesting
memory. If insufficient memory exists, then a local garbage collection occurs. If there is still insuf-
ficient memory, a global collection occurs. Objects are not relocated once allocated; this eliminates
many possible synchronization points between processors that may otherwise have to occur to handle
forwarding pointers, and allows the use of the destroy operation. Local collection is a combination
of incremental methods (to the extent that the architecture allows this to be done efficiently) and
mark and sweep.

To allow local collections, each processor keeps a record of all objects which might be externally
referenced, and treats these as roots for each local collection. The table is added to during remote
calls and remote writes (all referenced items placed in a message must be inserted) as well as when
objects are placed in PACKET objects. Note that this table is conservative; entries can only be
removed after a global garbage collection identifies they are no longer needed.

The best way to avoid garbage collection is to avoid generating garbage. The current pSather
compiler attempts to do this by flow analysis, and by placing provably short lived objects on the
stack. Sather provides the destroy operation to allow explict invalidation (or direct freeing if run-
time checks are off) of objects as well.

The compiler may be able to identify some types as impossible to form remote references to. Such
types can be dealt with by reference counting; a word or fraction of a word can be used to count the
number of references. When this goes to zero, the object may be put on a list to be reclaimed and
all recursive references have their counts adjusted. This may work especially well when the compiler
can determine that the type cannot form cyclic structures, for example by noting the absence of
cycles in the type usage graph. The advantage to this technique is that it can be made real-time;
the garbage collector can operate in bounded time in response to a need to execute a new thread or
attribute access. On the negative side this requires extra operations on every reference assignment,
including memory system access to the object in question. Whether this is worthwhile may depend
on the number of objects that can be reclaimed in this way and their manipulation, and is likely
program dependent.

A distributed variant of this that does not require message passing is to keep single-bit saturating
reference counts in the references to allow reclamation of objects that do not become aliased. In this
technique, a newly created object’s reference has a cleared bit which is set in both lhs and rhs on
a reference assignment; overwriting a reference with a clear bit allows the object to be reclaimed.
Again, this will require some overhead on each reference assignment, but much less than for full
reference counting, and with better memory system behavior.

Other techniques will be required because the above techniques may not reclaim data when it is
cyclic, remote, or aliased. Because objects are not relocated, a mark and sweep will suffice for local
collection when recovery of reference counted structures fails to provide memory. An incremental
version can be implemented efficiently when hardware memory management is available [12]. If such
hardware is not present, then a compiler-emitted read or write barrier (card marking) could also be
used to be incremental. Whether this is necessary depends on the frequency and tolerable latency of
local garbage collections, which again may be program dependent. Remote attribute accesses (read
and writes) may proceed concurrently with local garbage collection, as long as exiting references are
properly added to the list of remotely referenced objects. Remote writes are not a problem because
any new references created by a write must already have existed in the table of local objects with
remote references.

When the local collect fails, a global garbage collect must be undertaken to remove spurious
entries in the entrance tables; this is probably also the best point to reclaim replicated heap objects.
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This can occur by stopping the program and doing a concurrent mark and sweep, or by doing an
incremental version relying on hardware memory management, or again by barriers emitted by the
compiler. Global collection is complicated by the possibility that references may exist in messages
still in transit in the network; it is likely that all nodes must at some point be prevented from sending
messages long enough to guarantee conservatism.

9.2 Construction of Parallel Class Libraries

pSather was designed under the assumption that there shouldn’t be one single layer of abstraction
that separates the user from the machine. Rather we envision a layered library of classes with
distributed data structures and parallel algorithms. This library should be open on different levels
such that it pleases the programmer who is willing to invest some effort to obtain utmost performance
as well as the scientist looking for an immediate solution to his problem. In addition to that, the
library should be structured such that it relies on a limited number of architecture-dependent classes.
One may argue that this is a general problem in the design of class libraries. We think, however,
that this is a particularly difficult task due to the broad architectural diversity of parallel computers.
pSather offers a powerful set of building blocks for such libraries, but the structure of the libraries
is subject to further research.

9.3 Atomicity and Consistency of Memory Operations

The goal of all weak memory consistency approaches is to guarantee sequential consistency for
“properly synchronized” programs. In section 3.5.2, we very briefly introduced the idea of weak
consistency and consistency ensuring operations on the language level. It seems that this is one of
the first attempts to define consistency on the language level and work needs to be done to formally
define it and relate it to hardware-based consistency models. It is particularly important to show that
this model is a weaker form of the well known weak consistency. This would allow us to put the new
model into the hierarchy of existing consistency models. Thus, all architectures supporting stronger
consistency models would automatically satisfy our model. Furthermore, it should be interesting to
clearly characterize “properly synchronized” programs. Can the compiler in common cases detect
such programs and issue warnings? Another question is the worst case behavior of our model in
the case of “badly synchronized” programs. What are the minimum safety guarantees we can give
in this case? Would a system help that could generate code with higher consistency guarantees
for debugging? How is the performance of the new consistency model compared with stronger
consistency models? Are there implementations that can take advantage of our weak consistency
definition?

9.4 Improving the Efficiency of Gates

Gates (see section 3.3) are very powerful and versatile synchronization constructs. Most of the
examples in this report would be more complex and error-prone if only traditional primitives were
available. However, from our experience so far, it is often the case that only part of the gate func-
tionality is used by a statement. This may, depending on the implementation, incur unnecessary
overhead both in space and time for the unused functionality. One possible solution would be to
split the gate class into a hierarchy of multiple built-in classes with gate as the most sophisticated
synchronization primitive. Possible classes include locks only dealing with the lock status or futures
only dealing with the binding status of gates. Another approach would be that the compiler auto-
matically generates reduced code for a gate where only part of the functionality is used. It remains
open to what extent this is automatically possible.
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9.5 Extending Other Programming Languages Like pSather

The layered model of extensions from Sather to pSather is applicable to other modern object-
oriented programming languages, too. We should investigate to what extent features of different
existing programming languages help or inhibit building pSather-like extensions on top.

9.6 pSather on LAN-coupled Workstation Clusters

There is a great deal of current interest in using workstation clusters as a single distributed-memory
computing system. It is tempting to extend the idea of pSather to such systems. The problem is
that the shared address space as a low-level language abstraction requires a low-latency network. If
well implemented on multiprocessors, round-trip latencies for memory accesses to remote clusters
cost about two orders of magnitude more than a local cache-hit. Minimum round-trip latencies
over a LAN in current realizations are still at least two orders of magnitude slower. There are
proposed research programs to greatly reduce LAN latencies and success here would allow pSather
to work well on such systems. The CM-5 implementation uses only processor-local techniques and
(active) messages and should port without great difficulty to a LAN. But the fastest memory access
times continue to improve and the nanosecond/foot limitation suggests that peak performance will
continue to require tightly packaged systems.

9.7 Instrumentation and Debugging [by Mark Minas]

When programming in parallel, concurrency, nondeterminism, and synchronization add complexity
that makes debugging even harder than debugging sequential programs. This is particularly true
for pSather programs. Experiences with programming applications in pSather have shown the need
of debugging tools.

Errors in parallel programs can be classified in two distinct categories: Performance errors like
bottlenecks and insufficient load balancing reduce the program performance without changing pro-
gram results, while the second class of errors includes errors leading to wrong or unpredictable
program behavior. Conventional errors occurring in sequential programs belong to this class, as well
as race conditions and deadlocks.

The obvious way to detect performance errors is visualizing the execution of a program including
its communication behavior, its frequency of memory accesses, and so on. The question of which are
the program and execution parameters that should be visualized and how the information should
be presented in order to effectively and efficiently detect performance errors [44] is an open research
issue. For the second error class no uniform debugging technique exists. Much effort is spent on the
solution of this problem. But so far, no completely satisfying solution has been found.

We plan to construct a debugging tool for pSather that mainly addresses errors of the second
class by using the classic technique of cyclical debugging [54] that has proved useful for sequen-
tial programs: The sequential program is repeatedly stopped during execution, the program state
examined, and the program either continued or reexecuted in order to stop at an earlier point in
execution to locate an error. This works for sequential programs since they consist of only one
thread of control and their behavior is deterministic. Thus the program behaves identically in each
execution and reexecution. In general, this is not true for pSather programs. Because of the inherent
nondeterminism, the program may behave differently when reexecuted. The standard solution for
this problem is instant replay [43]: The generated code is automatically instrumented such that it
writes traces of its behavior during its execution. For pSather these traces must include the sequence
of shared memory accesses, timing of synchronizations, etc. After termination of the program these
traces are used by the program to replay the first execution, thus leading to an identical behavior.
The replaying program must have been further instrumented to obey the traces.

Instrumenting leads to a dilemma: On the one hand, the instrumentation should generate suf-
ficient trace information that allows an identical replay of the original execution. On the other
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hand, instrumenting the code alters the program behavior (“Probe Effect” [45], “Heisenberg Uncer-
tainty” [29].) In order to minimize such changes, instrumenting should be reduced. Instant replay
is a helpful method by tracing only causalities between events rather than transmitted data, thus
minimizing the amount of information to be traced. Data can be reconstructed during replay. Fur-
thermore, writing traces results in a large amount of data increasing monotonically with time. Due
to space limitations this amount of data must be restricted. A possible solution to this problem
might be introducing checkpoints to the program and removing traces gathered so far whenever such
a checkpoint is reached during execution.

We plan to use the outlined monitoring and replay approach as a platform for several debugging
methods:

e Since the traces contain all the information that is needed for an identical reexecution, the
replayed program need not to be executed on the same machine as during the monitoring
phase. The program can be replayed on a workstation even if it has been monitored on a large
parallel machine.

e Many debuggers for sequential programs allow checking of predicates while executing the
program and stopping the program as soon as one predicate is satisfied. Thus, predicates
generalize the idea of breakpoints. Similarly, we plan to insert predicates to program replay
control. One difficulty that must be dealt with is the absence of directly observable global
states in distributed systems, which must be addressed for pSather programs. Some work
in this direction has been done in [53, 56]. Future work will investigate which classes of
predicates are needed. A sort of temporal logic is a possible candidate, since many problems
when programming in parallel are timing problems.

e With the ability to insert arbitrary breakpoints by checking predicates the monitoring and re-
play approach allows cyclical debugging. It is planned to use standard techniques to investigate
program states of stopped pSather programs.

e Further instrumentation of the program is possible without affecting the program behavior.
Gathering this information while replaying allows for visualization needed especially to detect
performance errors.

e So far, the traces are used as an aid for reproducibility of program behavior. Recent research on
debugging parallel programs deals with analyzing the traces by itself to detect race conditions
and candidates for deadlocks [10, 36]. Using such techniques for traces of pSather programs
may lead to the detection of errors that cannot be found by simply replaying the program
execution.
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10 Conclusions

The problem of general purpose parallel programming remains one of the most challenging and
important research tasks. Constructing flexible and efficient parallel data structures and algorithms
will remain difficult at least for some time. The premise behind this paper is that appropriate
language constructs can both help in the development of good parallel abstractions and in their
utilization. The pSather approach relies on the underlying clarity, safety, and efficiency of the
Sather language and libraries. The additional GATE class and associated constructs provide a general
mechanism for directly coordinating multiple execution threads. The with-near-statement and
copying mechanisms provide additional support for mapping the pSather shared address space model
to distributed memory architectures. The additional classes SPREAD{T} and $DIST{T} and the dist-
statement simplify the use of distributed data structures in general computation. A preliminary
version of these mechanism has been built on the CM-5 and is yielding promising initial results.
Now we need to construct the full system described here and try it on a wide range of problems.
We hope to release a preliminary version of pSather for experimental use early in 1994.
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A Complete Grammar of pSather 1.0
In this appendix we give the full grammar of pSather 1.0 and point out the new or changed produc-

tions compared to Sather 1.0 by putting them into boxes.

A.1 Declarations

class_def list = [class_def] | class_def list ; [class_def]

class_def = [value | abstract | external/class class_name
[£ param_dec (, param_dec)}*}] [< type_spec_list] [> type_spec_list] is class_elt_list end

param_dec = ident [< type_spec] [:= lype_spec]

type_spec = [class_name] [{ type_spec_list }] | ROUT [{ type_spec_list }] [: type_spec] |
ITER [{ type_spec [V] (, type_spec ['\])*}] [: type_spec]

type_spec_list = type_spec (, type_spec)*

class_elt_list = [class_elt] | class_elt_list ; [class_elt]

class_elt = const_def | shared_def | attr_def | rout_def| iter_def| include_clause
const_def = [private] const ident (: type_spec := expr | [:= expr] [, ident_ list])
ident_list = ident (, ident)*

shared_def = [private | readonly/ shared
(ident : type_spec := expr | ident_list : type_spec)

attr_def = [private | readonly/ attr
(ident : type_spec := expr | ident_list : type_spec)

rout_def = [private]ident [( arg_dec (, arg_-dec)*)][: type_spec] [pre expr] [post expr] [is stmi_list
end/

arg_dec = [ident_list : ] type_spec
stmi_list = [stmt] | stmilist ; [stmi]

iter_def = [private]iter iter_name [( iter_arg_dec (, iter_arg-dec)®)] [: type_spec]
[pre expr] [post expr] [is stmi_list end]

iter_name = ident !
iter_arg_dec = [ident ['] (, ident ['])}*:] type_spec

include_clause include type_spec : : feal_mod | [private] include type_spec [feat\_mod (, feai_mod

)%

feat_mod = ident [( type_spec ['] (, type_spec [V} ¥)][: type_spec] = [[private | readonly] ident]
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A.2 Statements

stmt = dec_stmi | simple_assign_stmt | tuple_assign_stmt | if-stmt | loop_stmt | return_stmt |
yield_stmt | quil_stmi | case_stmi | typecase_stmil | asseri_simt | protect_stmi | raise_stmi |

expr_stmt | cobegin_stmt | lock_stmt | try_stmi | unlock_stmt | near_stmt | dist_stmt | sync_stmi

dec_stmt = ident_list : type_spec

simple_assign_stmi = lhs_elt := | := expr ‘

lhs_elt = expr | _ | ident : [type_spec]
tuple_assign_stmt = #( lhs_elt (, lhs_elt)*) ) := expr | lhs_elt := #( rhs_elt (, rhs_elt)*))
rhs_elt = expr | _
if-stmt = 1if expr then stmi_list
(elsif expr then stmi_list)*
[else stmi_lisi] end
loop_stmi = loop stmi_list end
return_stmt = return
yield_stmi = yield

quit_stmt = quit

case_stmt = case expr (when expr (, expr)* then stmt_list)*
[else stmi_lisi] end

typecase_stmt = typecase ident [: [type_spec] := expr]
(when type_spec_list then stmi_list)*[else stmi_list] end

assert_stmt = assert expr
protect_stmt = protect stmi_list (against type_spec_list then stmit_list)* end

raise_stmit = raise

expr_stmt = [:-] expr

cobegin_stm? = cobegin stmi_list end

try_stmt = try expr_list then stmi_list [else stmi_list] end

unlock_stmt = unlock ezpr

|
|
‘ lock_stmt = lock expr_list then stmi_list end
|
|
|

near_stmt = with ident_list near stmi_list [else stmi_list] end

dist_stmt = dist expr as ident (, expr as ident)*do stmi_list end

78



sync_stmt = sync

A.3 Expressions
expr = local_expr | call_expr | void_expr | cons_expr | bound_cons_expr | sugar_ezpr | and_expr |
or_expr | not_expr | equal_expr | initial_expr | bool lit_expr | char_lil_expr | str_lit_expr | inl_lil_expr |

flt_lit_expr

local_expr = ident

call_expr = [expr . | type_spec ::] ident [( expr_list )] [@ expr] ‘

exprlist = expr (, expr)*

void_expr = void

‘ cons_expr = # [type_spec] [( cons_elt (, cons_elt)*) ][ @ expr]

cons_elt = | [ident :=] (expr | # digit+)

bound_cons_expr = (#ROUT | #ITER )( [type_spec :: | bound_arg .] ident
[Cbound_arg (, bound_arg)®) ][: type_spec] )

bound_arg = expr | _[: type_spec]

sugar_expr = expr binary_op expr | — expr | [expr] [ expr_list1 | ( expr)
binaryop =+ | = | % | /|~ |%] & ] /= |<|<=|>|>=

and_expr = expr and expr

OT_€TpT = €IPT OT eTPT

not_expr = not expr

equal_expr = expr = expr

wnitial_expr = initial( ezpr )

A.4 Lexical Elements in pSather

ident = letter (letter | digit | _)*

class.name = [$] uppercase_letter (uppercase_letter | digit | _)*
letter = lowercase_letter | uppercase_letler

lowercase letter > a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|lplalxr|s|t|u]|v]|w]
x|y[z]

uppercase_letter = A |B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|U|V|W]|
X|v|z
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digit=0]1]2]3]4|5]6]|7|8]9

specialsymbol = (1) | LIT1E1H] |15 1c 181 1%=1*|/1=]<|>|#]"|%]&]
/=|<=|>=]:=]::]:-]|@

A.5 Predefined Identifiers

special_classnames = $EXCEPTION | $EXTOB | $0B | ARRAY | BITS | BOOL | CHAR | FLT | FLTD |
FLTE | FLTDE | INT | INTFIX | INTINF | $REHASH | SAME | STR | SYS | TYPE | $GATE | GATE |
$GATEO | GATEO | $SPREAD | SPREAD | $DIST | DIST |

special_featurenames = aget | append | arg | aset | break | clear | copy | enqueue | exception |
fix | id | destroy | is_geq | is_gt | is_leq | is_1t| | main | minus | mod | negate | over |
plus | pow | read | res | self | set | str | take | times | type | until | void | while

A.6 Literals

bool_lit_expr = true | false

char_lit_expr = * (ISO_character | \ escape_seq) ’
escape_seq = a | b |f|n|x |t |v|\]|"’|"]| octal digit+

strolit_expr = (" ISO_character* " )+

int_lit_expr = binary_int | octal_int | decimal_int | hez_int
binary_int = Ob binary_digit+

binary_digit = 0 | 1

octal_int = 0o octal_digit+
octal_digit =0 |1|2|3|4|5]|6]|7

decimal_int = digit+

hex_digit = digit |a |b|c|d]|e|f

hex_int = 0x hez_digit+

fitlit_expr = digit+ . digit+ [e [+ | -] digit+] | NaN | Inf
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