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Abstract
Building planning systems that operate in real domains requires coping with both
uncertainty and time pressure. This paper describes a model of reaction plans, which
are generated using a formalization of actions and of state descriptions in probabilistic
logic, as a basis for anytime planning under uncertainty.

The model has the following main features. At the action level, we handle in-
complete and ambiguous domain information, and reason about alternative action
effects whose probabilities are given. On this basis, we generate reaction plans that
specify different courses of action, reflecting the domain uncertainty and alternative
action effects; if generation time was insufficient, these plans may be left unfinished,
but they can be reused, incrementally improved, and finished later. At the planning
level, we develop a framework for measuring the quality of plans that takes domain
uncertainty and probabilistic information into account using Markov chain theory;
based on this framework, one can design anytime algorithms focusing on those parts
of an unfinished plan first, whose completion promises the most “gain”. Finally, the
plan quality can be updated during execution, according to additional information
acquired, and can therefore be used for on-line planning.



1 Motivation

As the field of planning matures, work focuses on the necessities of the real world. In
particular, two topics are moving back into focus, which are important for this paper:

Coping with uncertainty. In general, knowledge about the planning domain is in-
complete, or the domain may not be completely controlled by the planner or actions can
have nondeterministic or context-dependent effects, to name just some forms of uncer-
tainty. There is a variety of approaches for tackling some or many forms of uncertainty
at planning or execution time; examples include reaction plans and reactive planning (see
[Schoppers, 1989] for a discussion and references), conditional planning [Warren, 1976;
Peot and Smith, 1992], decision-theoretic planning methods [Feldman and Sproull, 1977;
Haddawy and Hanks, 1990], or execution monitoring and replanning [Fikes et al., 1972;
Wilkins, 1988, Ch. 11]. Moreover, uncertainty is also tackled by theory-oriented work in
reasoning about action and change, e.g. [Dean and Kanazawa, 1988; Brewka and Hertzberg,
To appear; Cordier and Siegel, 1992], with some texts, e.g. [Hanks, 1990; Dean and Wellman,
1991], explicitly relating theoretical concepts of reasoning about action to planning.

Implementing time-bounded rationality. Generating optimal plans from first prin-
ciples takes time. Under time pressure, a planner can produce some plan in a fixed amount
of time, and improve the plan quality as more time is allocated. Anytime planning algo-
rithms [Dean and Boddy, 1988] implement this idea. They have been applied to solving
time-dependent planning problems [Boddy and Dean, 1989] and are also used for a broad
class of planning applications, e.g. [Zilberstein and Russel, 1992].

Obviously, it is useful to combine work on these two topics, the perspective being to
build planners that cope with uncertainty, and incrementally increase the plan quality
if time permits. Examples of such works are [Drummond and Bresina, 1990; Beetz and
McDermott, 1992].

In a previous paper [Thiébaux and Hertzberg, 1992], we have described PASCALE, a
system for planning under uncertainty. This system is based on a particular theory of
actions with uncertain outcomes [Brewka and Hertzberg, To appear], which deals explicitly
with uncertainty arising from the incompleteness or ambiguity of information. PASCALE’s
representation of reaction plans allows them to be generated from first principles, as well
as revised off or on-line; this proved to be a good basis for exhibiting reactivity.

In this paper, we address the problem of generating PASCALE style plans using an any-
time algorithm. The crucial issue is to develop a framework for evaluating the quality of
these plans. This framework must have a dynamic flavor: the value of the still unexecuted
rest of some plan can be updated as more information becomes available during the exe-
cution of its first parts. This update leads to improving parts of the plan on-line, or to
selecting another plan that appears to be more promising at the moment.

As a result, we obtain a powerful framework for the anytime generation of plans under
possibly incomplete, ambiguous knowledge, and possibly including actions with alternative
and context dependent effects, where the framework allows for plan reuse, incremental
replanning, and incrementally integrating additional knowledge that reduces uncertainty.
All this builds on the firm grounds of logic and probability theory. Note that the framework
does not presuppose that all the forms of uncertainty actually occur in every planning
application. It enables a whole spectrum of implementations; special cases being, e.g.,
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classical linear plans and universal plans [Schoppers, 1987].

The paper is based on [Thiébaux, 1992], which contains additional details. It is organized
as follows. Section 2 describes our formalization of actions which blends our previously used
formalism with Nilsson’s [1986] probabilistic logic. Section 3 deals with the representation
of reaction plans and with its advantages for planning under uncertainty and time pressure.
Section 4 explains how the quality of these plans can be evaluated, building on Markov
chain theory, and sketches how anytime algorithms can be developed within the framework.
Section 5 discusses the implementation of a system based on our model, and describes
experimental results. Section 6 concludes by examining some relations to previous work.

2 Formalizing Actions In Probabilistic Logic

This section describes our action formalization. We show how it handles incomplete or
ambiguous information about the recent world state as well as alternative action effects,
and how it enables us to assess the probability of the world being in a given state after an
action has been performed. To this end, the formalization uses a possible models variant
of Nilsson’s probabilistic logic, as a basis for both reasoning about actions in the spirit of
[Brewka and Hertzberg, To appear|, and later, decision-theoretic planning.

2.1 Background on Possible Models And Probabilistic Logic

We first set up the possible models framework our formalization is based on, recall some
basics of Nilsson’s probabilistic logic, and introduce an example-domain that will be used
throughout the rest of the paper.

Given a first order language £ of closed formulae!, general information about the domain
is expressed in two ways. First, a set K C £, called logical background knowledge, contains
the logical constraints known to be true in all world states. Second, probabilistic background
knowledge is given as a set P of probability values for some sentences in £. It expresses the
constraints that must be verified by the probability distribution on world states believed
at any time, in absence of information beyond K. For instance, P might express that in
absence of information about today’s weather in Paris, we believe that it has 30% chance
to be fine.

Given a finite subset L = {ay,...,a,} of ground atoms of £, the world states are repre-
sented as sets {ly,...,l,}, where [; = a; or else I; = —a;. These sets are interpreted as the
conjunction of their elements, and we will often switch between the set and the conjunctive
notation. From all such sets, those and only those consistent with the constraints in K
represent possible states of the world; they are called possible models. Possible models are
in fact Herbrand Models of K, restricted to L. We use possible models instead of possible
worlds to avoid syntax-dependent and unintuitive results obtained e.g. in [Ginsberg and
Smith, 1988]. For an arbitrary s € £, we define

Def. 2.1 (Possible models in s) Let s € L and let K be the logical background knowl-
edge. The possible models in s are the elements of the set

!Note that actually using an undecidable £ will almost certainly cause practical problems. We use a
propositional £ in all examples here.
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Possg(s)={M ={l1,...,1,} | K UM is consistent and K U M | s}

Possg (true) contains all possible state descriptions, i.e., all possible models, which are
mutually exclusive and exhaustive?. In the following, Possg is used as a shorthand for
Possg (true). Possk(s) is the subset of Possk containing all possible models that make
s true. Note that, just as we interpret possible models as conjunctions, a set of possible
models should be interpreted as the disjunction of its elements, i.e., as a disjunction of
conjunctions.

We can adapt results from Nilsson’s probabilistic logic to the above framework, in order
to define the probability distribution p over the possible models space that strictly reflects
the background knowledge. The key result using possible worlds in Nilsson’s work is trans-
ferred to possible models: the truth probability of a sentence is the sum of the probabilities
of the possible models in this sentence. To strictly comply with K and P, p is defined as

follows:

a. A tautology has truth probability 1: p(true) = 1 = 3 pjeposs, P(M).
b. pis subject to the constraints in P: Vp(s) € P p(s) = Y- preposs(s) P(M)-

c. The entropy of p, defined as — 3~ e poss,. P(M)logp(M), is maximal subject to a. and
b.

In general, a. and b. still induce an infinity of probability distributions. Among them, item
c. selects the p with maximal entropy, because this distribution assumes minimal additional
information beyond the background knowledge.

Consider an example-domain inspired by [Chrisman and Simmons, 1991] and shown in
the left-hand side of Figure 1. The task of a robot is to manipulate a cup from a fixed
position, using several actions to be detailed later. The cup can be either on the floor (of)
or on a table (ot). When on the floor, the cup can either stand upright (up), or be tipped
forward with its mouth facing the robot (fd), or be tipped backward (bk). Experiments
take place outside; thus rainy weather (ry) might affect the robot’s performance. Assuming
an appropriate definition of £, the following background knowledge is given:

ot < —of,
of < up vV {d V bk, p(ry) = 0.4,
K = up — —fd A bk, P = p(fd v bk) = 0.7,
fd — —wup A bk, p(ot) = 0.2

bk — —fd A —up

L = {ry,fd,bk,up} suffices to represent all relevant aspects of world states as possible
models®. These and the probability distribution p shown in the right-hand side of Figure 1
can be computed; lacking further knowledge, they constitute the robot’s beliefs.

This completes the prerequisites we will use in subsequent sections. We next explain
how to handle incomplete information about world states, and then define the result of an
action with uncertain outcomes, applied in a state about which information is incomplete.

2To ensure these properties with respect not only to L but also to £, we make the spanningness assumption
stating that L must be sufficient for possible models to represent all relevant aspects of the world: Vs €
L VM € Possg(true) KUMFE sorelse KUMF —s.

It is unnecessary to include ot and of in L, since their value can be deduced from those of the other
atoms.
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M € Possg p(M)

My { ry,—-fd,—=bk,—up }| 0.08

My { ry,fd,-bk,-up }| 0.14

Ms { ry,~fd,bk,-up }| 0.14

My { ry,-fd,-bk,up }| 0.04

Ms { -ry,~fd,-bk,-up }| 0.12

Mg { -—ry,fd,=bk,—up } | 0.21

M; { -—ry,=fd,bk,—up }| 0.21

=D Mg { -—ry,—fd,—bk,up }| 0.06

Figure 1: The cup domain, Possk and p

2.2 Coping With Uncertainty About World States

At planning time, many features of the current world state might be unknown. We therefore
assume that information about the state of the world is given as an arbitrary sentence s € L,
which might not completely describe this state. Given that s currently holds, our belief that
a possible model M represents this state is revised. Only possible models in Possg (s) might
now correspond to the actual state, and the new probability distribution p, over the possible
models space is computed according to Bayesian conditioning®. Thus, p,(M) = p(M | s),
where p(M | s) denotes the conditional probability of M given that s holds. Using Bayes
theorem, this can easily be shown equivalent to

p(M) . ,
ps(M) :{ D ntreross e(sPM) if M € Possg(s)

0 otherwise.

For example, suppose the robot acquires the information that it is rainy and that the cup
is on the table or tipped forward, i.e., s = ry A (ot V fd). Then

Possi(s) = {{ry, ~fd, =bk, ~up}, {ry, fd, =bk, =up }},

and the world is represented by the possible models M7 or M, with probability

_ (M) 0.08
ps(Ml) — p(M];()—H;()Mz) 0.22 —= 036

_ M. 0.14
ps(Ma) = p(M]j)-l-;(Mg) 0z ~ 064

This enforces, e.g., the conclusion that of holds with probability 0.64.

2.3 Coping With Uncertainty About Actions

We now examine the computation of the belief about the state resulting from the perfor-
mance of an action. We allow actions to produce alternative outcomes with some probabil-
ities, e.g., the action of tossing a coin. Independently from that, actions applied in different

*Bayesian conditioning can be seen as the probabilistic counterpart of belief revision in the sense of
[Gardenfors, 1988].
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contexts may produce differing outcomes, e.g., the action of toggling a light’s switch switches
the light on if it was off, and vice versa. The general form of an action a is then

a = [ prex | (Post%,ﬂ%),...,(P03t11(1)77ri(1));
| 1)

pre, | (Post}n,n}n)7."7(P08t57(1m)77r717gm)) .

For each context ¢, the precondition pre; is an arbitrary formula from £, the postconditions
Post! are subsets of possible models®, and 77 is the probability that executing the action
in the context ¢ leads to Postf. For simplicity of presentation, we assume that the pre; are
mutually exclusive and exhaustive, so that, when the action is applied, the unique context
whose precondition holds determines the possible outcomes. We furthermore assume that,
for each context, the postconditions are exhaustive and mutually exclusive; the meaning of
the latter will be discussed later.

For example, consider the action table2up for moving the cup from the table toits upright
position on the floor. If the weather is fine, this succeeds 80% of the time; otherwise the
cup falls to its tipped forward position. When it is rainy, the cup gets slippery, decreasing
the success probability to 60%. To ensure the exhaustivity of the preconditions, a default
context having the empty set as postcondition captures the intuition that the action changes
nothing when it is not applicable, i.e., when ot does not hold. We define:

table2up = [ —ryAot | ({up},0.8), ({fd},0.2);
ry Aot | ({up},0.6), ({fd},0.4);
-ot | ({},1) ]

Under some assumptions about L discussed in [Brewka and Hertzberg, To appear], the
approach solves both frame and ramification problems; it is unnecessary to specify that the
weather is unaffected and that the cup is not on the table any more. Unspecified features
are inferred via K, capturing the intuition that a possible model M’ that results from a
possible model M by applying an action that makes postcondition Post true, contains Post
but differs as little as possible from M. M’ is said to be maxzimally Post-conform with M:

Def. 2.2 (Maximal Post-conformity) Let M and M' be elements of Possg, and Post
be an action postcondition. M' is maximally Post-conform with M iff M N M’ is (set

inclusion) mazimal under the constraint that Post C M'. The set of all such models M’ is
noted C'g(Post, M).

In our example, we have Cr({fd}, M;) = {M;3}. In general, there might be multiple
maximally conform models, because a postcondition can be achieved by several minimal
changes in the world. Recalling that we interpret sets of possible models as disjunc-
tions, we define the probability of M’ resulting from the achievement of Post from M
as p(M' | Cg(Post,M)). Cg(Post,M) is then considered as the information available
about the resulting state, and the probability is computed as explained in Section 2.2.

® Alternative action outcomes are given as alternative sets (conjunctions) of literals built of ground atoms
from L, not as an arbitrary formula capturing all these outcomes at once. This is a difference to Winslett’s
[1988] approach, which is necessary to handle alternative action outcomes properly.
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Thus elements of C'k(Post, M) are the possible models resulting from the achievement
of a unique postcondition Post starting from a unique possible model M. From this, we
can define the result of applying an action in a state about which information is given as
an arbitrary formula.

Def. 2.3 (Result of an action) Let s € £, and a be an action as defined in (1). The
posstible models resulting from the application of a in a state where s holds are the elements
of the following set .

Ri(a,s) = {M' € Possk | IM € Possg(s) such that M' € Cg(Post!, M), where K UM F
pre; and j € {1,...,1(¢)}}.

For example, applying table2up in state s = ry A (ot V fd) yields
Ry (table2up, s) = {{ry, =fd, =bk,up}, {ry,fd, bk, —up} }.

For M, in Possk(s), the second context is selected, whose postconditions lead respectively
to My and M; shown in Figure 1; for My in Possk (s) the default context is selected, which
means that nothing changes.

Upon learning that a is applied in s, our belief about the possible models space is
updated. We compute the probability distribution p(, ) over the possible models that
result from performing « in s using a rule similar to Lewis’s imaging®. If p,(M’, M) denotes
the probability that a changes the world from possible model M to M’, then clearly

p(a,S)(Al/) = EMEPossK(s)pa(jw/7 M) ps(jw)

But how is p,(M’', M) calculated? Given a possible model M and the context ¢ whose
precondition holds in M, we assume that for any two postconditions Post!* and Post!®, we
have Cg(Post!* , M) N Cg(Post??, M) = (. This is our mutual exclusivity assumption on
postconditions, whose explanation was previously postponed”. If this property is verified,
then the probability that executing a in M leads to M’, where K U M F pre;, is

pa(M', M) = S0 p(M" | Cic(Post!, M) x.

When applying, e.g., table2up, things are simple since the maximally conform models are
unique, and our belief that a possible model results from applying table2up in s is

p(table?up,s)(jw4) = (1 X ﬂ-% + 0 x ﬂ-%) X pS(Ml) + 0 X ﬂ-% X pS(JMQ)
~ 0.6 x 0.36 ~ 0.22,
p(table?up,s)(IMQ) = (0 X ﬂ-% + 1 x ﬂ-%) X ps(ﬂll) + 1 x ﬂ-% X pS(AIQ)

~ 04x03641x0.64~0.78.

SLewis’s [1976] imaging can be viewed as the probabilistic counterpart of updates in the sense of [Katsuno
and Mendelzon, 1991]. It corresponds to the transfer of the probability mass of a possible model to its closest
neighbours according to the event that has happened. In our case, these closest neighbours are the maximally
conform models. [Dubois and Prade, 1993] studies the probabilistic and possibilistic counterparts of belief
revision and updates in detail.

"Imposing that Post!* € Post!? for all two postconditions Post!* and Post!? is a too strong condition for
ensuring the mutual exclusivity of possible models resulting from the achievement of the two postconditions.
Our criterion considers as valid a context of the form [I | ({=i}, 7), ({},1—7) ] even if {} C {=l}, because

=l is achieved with the first postcondition, while ! remains with the second.
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This example ends the description of our action formalization, about which details can be
found in [Brewka and Hertzberg, To appear; Thiébaux, 1992]. We have exemplified that this
formalization copes with uncertainty at planning time, such as incompleteness or ambiguity
in world state descriptions; it also copes with ambiguity and context dependency of actions
effects. Furthermore, probability assessments, once combined with utility functions, will
constitute a preference ordering which will enable us to choose among plan alternatives
under time pressure. We now explain how this action formalization can be used to generate
and improve reaction plans in an anytime fashion.

3 Structured Reaction Plans

We firstly show how to represent plans that are, first, reactive to the sources of uncertainty
predicted by the action formalization, that can, second, be generated from first principles
if time permits, and that, third, can be easily reused or incrementally extended if time is
tight. We do not yet exploit probabilistic information or deal with anytime planning issues;
this will be done in the next section. We are summarizing key issues from [Thiébaux and
Hertzberg, 1992] here. Our description will be informal; the reader is referred to [Thiébaux,
1992] for a more formal treatment.

A plan is a bipartite directed graph with two types of nodes: T-nodes representing tasks,
i.e., occurrences of actions in a plan, and M-nodes representing possible models. This is
to be interpreted as follows: a T-node T preceded by some M-node M means that the
plan specifies that 1" is to be applied whenever the plan execution finds itself in a situation
described by M; M preceded by T represents the possible model M that may result as one
of the effects from applying 7.

Given a planning problem defined by an initial situation s, a goal formula ¢, a background
knowledge K and P, and a set of actions A, the root of a plan for this problem is a task
built from the dummy action start = [ true | (My, ps(My)),...,(My,, ps(My))] such that
{My,...,M,} = Possk(s). By construction, the successors of start are all M-nodes in
Possg(s). The leaves of a plan are M-nodes, which represent the possible world states
at the end of executing this plan. Some of them might match the goal (M matches g
iff M € Possk(g)), but since the planner may not have generated a complete subplan
for all alternatives, there is no requirement that every leaf match the goal. Each non-leaf
M-node M in the plan must not match g, and must have one unique 7T-node successor
corresponding to an action @ € A. The successors of this T-node, in turn, are all possible
models in Rg(a, M).

As a last property of plans, we consider their validity: from each node, there must be at
least one path to some leaf. As an informal lemma, note that a valid plan cannot include
a task that is not applicable in the state represented by its possible model predecessor.
The reason is that an intuitively non-applicable task changes nothing and would create a
blind alley in the plan. For example, applying table2up in an M-node where —ot holds is
prohibited in a valid plan: the default context, i.e., the context denoting that the action is
intuitively not applicable when —ot holds, would be selected, leading to the same M-node
as unique successor, which would create a blind alley.

Here is an example. Starting from our initial situation s = ry A (ot V fd), we want to
achieve the goal g = up. Available actions are table2up as previously described, as well as
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. —*  spin —™ back2up

M4

;’ table2up

Figure 2: Plan P, for the cup example

back2up for moving the cup from its bk to its up position, and spin for spinning a tipped
cup, defined as follows:

back2up = | -—ryAbk | ({up},1);
yAbk | ({up},08), ({),0.2)
-bk [ ({1}, 1) ]
spin. = | fdv bk | ({fd},0.5), ({bk},0.5);
S(fdvbk) | ({},1) ]

The example plan P; for this problem is shown in Figure 2. P; is to be interpreted as
follows: if the cup is initially fd, then spin it until the desired bk position is obtained and
apply back2up until it works; if the cup is initially ot, apply table2up, and if the cup becomes
fd, then go on as before. Note that P;’s single leal matches g; therefore, it is guaranteed
to achieve the goal under the sources of uncertainty predicted by the action formalization,
where “guaranteed” means that the probability of being in the goal model approaches 1 as
the length of execution sequences grows.

The requirement that a non-leaf M-node has exactly one T-node successor ensures that
the execution is deterministic. On the other hand, it enforces that only analogs of linear
plans can be represented. In this paper, we do not discuss sensing the external world in order
to monitor the possible models. We assume that the execution monitor is responsible for
updating its world model via sensing, so as to transit appropriately in the plans®. Including
explicit sensing actions in our plans is future research.

These plans can be generated with any forward search strategy through the space of
valid partial plans, starting with a plan embryo consisting of the start task and its M-nodes
successors, and expanding partial plans at some of their leaves. Provided that £ is decidable,
such a search always terminates, owing to the finiteness of the state space: possible models

8Decaling with sensing leads to non-trivial problems that have been rarely discussed in the literature.
[Chrisman and Simmons, 1991] proposes a solution for generating optimal plans of actions given a static
sensing policy, that might be adapted to fit with our framework
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occur only once in a plan, even if generated by different tasks. Furthermore, restricting
the search to valid plans reduces the search space considerably. We have not yet defined
an appropriate version of regression [Waldinger, 1977] for our action format, so that we
presently do not generate plans in a backward fashion. In fact, it is highly questionable
whether backward planning can bring advantages when planning under uncertainty and
time pressure.

Let aside, for the moment, how this plan representation could benefit from probability
information, the very structure of the plans yields some of interesting features for planning
under uncertainty and time pressure.

First, there is more support for execution monitoring, compared to other approaches to
encoding reactivity such as situation-action rules [Drummond, 1989]. A plan can obviously
be translated into a set of such rules, by interpreting M-nodes as IF parts, and the T-
nodes as THEN parts. But our plans allow us to focus more easily on the momentarily
relevant rules by representing explicitly what is expected to happen next, according to the
domain model. They also exclude what would be conflicts between different applicable rules,
allowing us to choose the next execution step deterministically. Moreover, our plans have
the same capabilities as situation-action rules for handling unpredictable or unpredicted
events at execution. E.g., suppose that when applying table2up, the cup drops on the
floor, but is serendipitously spun to the bk position by a blast of wind. Obviously, the
execution monitor can locate the corresponding unexpected M-node M3 in Py, and resume
the execution by directly executing back2up.

Second, replanning with this plan representation can inherit subsequently from previous
planning, making incremental planning possible. This helps mainly in two cases: when the
execution monitor is confronted with an unexpected situation for which the plan includes
no corresponding M-node, and when time did not suffice for generating a plan that is
complete according to the domain model. To exemplify the latter case, suppose no reaction
has yet been planned for the case where My represents the initial world state. Hence, My
is a second leaf of the plan, and table2up is not included yet. Incremental planning in
reaction to M; would then simply consist in inserting table2up after My and connecting it
to its possible models successors My and My, thereby profiting from a whole part of what
is already generated. If replanning is necessary due to an unexpected event, it suffices to
insert a new M-node representing the unexpected situation as a successor of the start task,
and to proceed as for the incremental planning case.

Finally, these plans can be reused as a default behavior if time to generate optimal ones
from first principles is lacking. A plan achieving a goal g (i.e., a plan whose leaves all
match g) can be reused to achieve h if Possi(g) C Possi(h). E.g., P1 can be reused to
achieve of. However, reusing does not require the plan to be finished with respect to a
new problem. There might be possible models of the initial situation of the new problem
which are not included in the M-nodes of a reused plan, and for which one must replan.
In general, solutions to problem instances are not simply found in plan libraries. But even
then, parts of old plans that are “useful” for a new problem can still be extracted. A
detailed discussion, however, lies beyond this paper’s scope.

In this section, we have seen that our plan representation shows several interesting
features for planning under uncertainty and time pressure. Plans are reactive to predicted
sources of uncertainty, and are a good basis to react to unpredicted events occurring at
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execution. Under time constraints, it is unnecessary to work on the whole possible models
space at once, since plans can be incompletely generated and incrementally extended or
reused later. The plan representation together with the action formalization enables us
to build reactive planners that can, like PASCALE, incrementally increase their reaction
quality. However, the representation itself does not provide a way of chosing purposefully
among plan alternatives, and an anytime planning algorithm using it would not have any
information about to which events it should rationally plan a reaction first. The topic of
the next section is to develop a framework that makes this possible.

4 The Quality of Reaction Plans

As introduced in Section 2, we have information about the probability of a possible model
representing an initial situation or resulting as the effect of an action. We will now exploit
this probability information to develop a framework that allows us to define quality measures
on plans. The framework is based on Markov chain theory; it provides dynamic quality
measures that can be used as input by existing anytime algorithms. Furthermore, it allows
one to select the parts of an unfinished plan to be extended first, thereby constituting a
basis for designing special-purpose anytime algorithms.

4.1 Basic Results About Markov Chains

We first recall basic results from Markov chain theory [Kemeny and Snell, 1960], and then
explain how these results can be used to define the quality of a plan. Markov chains
are stochastic processes used to described dynamic systems whose probabilistic transition
through a set of states at a given instant ¢ + 1 depends only on the state at the immediate
preceding instant ¢, and not on the states the chain passed through prior to time {. Fur-
thermore, if the transition probabilities do not depend on ¢ (i.e., remain stationary over
time), the Markov chain is said to be stationary. Stationary chains can by definition be
represented by a single transition matrix relating the probability of the succeeding state to
the current state. More formally:

Def. 4.1 ((Stationary) Markov chain, transition matrix) A Markov chain is a fam-
ily of random variables {X;,t = 0,1...} taking values in a set of states S, such that the
conditional probability distribution 11 of the state at time t + 1 verifies

VE>0 Vsg...s0401 €5 I(Xpy1 = seq1 | Xe = 54,0, Xo = 50) = IW(Xeg1 = 5441 | X = s¢)
A Markov chain is stationary if and only if

Vi>0 Vs, s;€ 8 H(Xepr =55 | Xy = s) = my;
The transition matriz for a stationary Markov chain is the malriz with entries m;;.

A classical example of a process that can be modeled as a stationary Markov chain is a
random walk. A particle moves between 5 points p;...ps on a line. At each step, it can go
from one point to the right with probability r, and from one point to the left with probabil-
ity 1 —r. It moves until it reaches one of the two boundaries of the line, and remains at this
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boundary. The corresponding stationary chain and its transition matrix are shown below.

P2 P3 Pa Y4l Ps
P2 0 r 0O(1—-» 0O r r r 1
p3 1—7r 0 T 0 0 e R /‘\’D
Pl T I N GO B CO R RGO
P1 0 0 0 1 0 1 1-r 1-r 1-r
s 0 0 0 0 1

We are interested here in a special type of stationary chain called absorbing chain.
An absorbing chain is a stationary chain with two types of states: transient states, which
can be left on at least one path that never return, and absorbing states, which cannot
be left once entered. It is easy to see that the random walk is an absorbing chain. p;
and ps are absorbing, while the other states are transient. The transition matrix of an
absorbing chain can be divided into 4 submatrices as shown below, where the submatrix ¢
denotes transitions from transient to transient states, R denotes transitions from transient
to absorbing states, I is the identity matrix, and O consists only of 0’s.

trans. | abs.
trans. Q R
abs. 0, I

These submatrices can be used to compute quantitative information about the process
modeled as an absorbing chain. The matrix I — ¢ always has an inverse N, called the
fundamental matriz, where N = (I — Q)™! = 22, Q*. The definition of N implies that
its ij*" element is the average number of times transient state j will be entered before an
absorbing state is reached, given that we are in transient state 7. Furthermore, the ij%*
element of matrix N X R is the probability of reaching absorbing state j, given that we are
in transient state :. Note that this probability of reaching an absorbing state can also be
viewed as the average number of times an absorbing state will be entered before the process
becomes stable. In the following, we will characterize an absorbing Markov chain by the
matrix (N N x R) whose leftmost columns are those of the fundamental matrix N of the
chain, and whose rightmost columns are those of the product of N by the submatrix R of

the chain.

4.2 Plan Quality

The starting point of our use of Markov chain theory for the definition of the quality of
a plan is to consider a plan as an absorbing Markov process. We associate a plan with
an absorbing Markov chain whose state set is a set of tasks. Transient states of the chain
correspond to the tasks in the plan. Its absorbing states shall denote that the plan execution
is finished, i.e., when the current world situation is represented by an M-node leaf of the
plan, then the state of the execution remains as it is. Therefore, we artificially introduce
two types of absorbing Markov states: unplanned states are dummy tasks applied in final
M-nodes that do not match the goal, and finish states are other dummy tasks applied in
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Figure 3: Incomplete plan P; and its associated Markov chain with its transition matrix

M-nodes that do match the goal. The probability law II of the Markov chain follows the
probabilities provided by the action formalization. More formally:

Def. 4.2 (Markov chain associated with a plan) Let s,¢, K, P and A define a plan-
ning problem; let P be a plan for this problem, characterized by its set of T-nodes T, its
set of non-leaf M-nodes M, ils set of leaf M-nodes My, and the function prep mapping
a T-node to its M-node predecessor in P. Let, moreover, T' = {unplanned(M) | M €
My \ Possk(g)} U {finish(M) | M € My N Possk(g)}, and let the function pre over
T UT'" such that

prep(T) forT €T
pre(T)=<¢ M for T = unplanned(M) € T'
M for T = finish(M) e T’

The Markov chain associated with P, noted chain(P), is the family {X;,t = 0,1,...} of
random variables ranging over the sel of tasks T U T', such that the conditional probability
distribution 1l of X411 is defined as

ps(pre(1”)) for T = start
_ oy ) Prpreqry)(pre(T')) for T & T' U {start}
M(Xpyy =T" | X;=T) =1 | for TET and T' = T
0 forTeT andT'#T

Figure 3 shows the incomplete plan Py for the cup example, chain(P;), and its transition
matrix. Note that it is the very validity property that ensures that the tasks in a plan are
indeed transient states of the associated Markov chain, and cannot be absorbing.
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Translating the results of Markov chain theory presented above to our framework, we
find that for any plan P, the ijth element of the matrix (N N x R) characterizing chain(P)
represents the average number of times task j will be executed before the plan execution
ends, given that we are currently executing task :. Note that, for j being an unplanned or
Sinish task, this also represents the probability that plan execution ends in task j, given
that task 7 is currently executed.

These results allow us to estimate the quality (or utility) of a plan prior to execution,
and to update this estimation during execution, according to the actual evolution of the
environment. We assume that each task in the plan is given a numerical wutility which
will mostly depend on the action from which the task is built and on its possible model
predecessor. E.g., if utility is understood as goal-achievement probability, a step utility
function [Haddawy and Hanks, 1990] should be used, that maps the finish tasks to 1 and
other tasks to 0. If partial goal-satisfaction is of interest, one can use a noisy step function
assigning the highest value to finish tasks, some lower positive values to unplanned tasks
that reflect the proximity to the goal of their possible model predecessor, and 0 to the other
tasks. If interested in minimizing the cost of plan execution, one can use a utility function
assigning the cost of their corresponding action to the respective tasks, where the cost of an
unplanned task would heuristically depend on its possible model predecessor. Let aside the
problem of building a multi-attribute utility function from individual attributes utilities,
which is dealt with in [Wellman and Doyle, 1992], the plan quality is defined from the utility
of tasks as follows.

Def. 4.3 (Plan Quality) Let P be a plan, and (N N x R) the matriz characterizing
chain(P). Let U be a column vector such that U; is the ulilily associated with task j.
The quality of P, given thal task i is executed, is the it" element of the vector Up) =
(N NxR)xU.

Hence, U(P) yields an a-priori estimation of P’s quality by considering its element corre-
sponding to the start task, as well as updates of this estimation, given the task currently exe-
cuted. As an example, consider the simple case where quality is defined as goal-achievement
probability. U(Pz) is calculated as follows, where N and R are calculated from II as ex-
plained in Section 4.1, and where II is itself calculated from the probabilities provided by
the action formalization, as defined in definition 4.2:

To Th T, T3 T, 0
T 1 0.36 1.56 0.78 0.22 0 0.22
T 0 1 0.8 0.4 0.6 X 0 = 0.6
T, 0 0 2 1 0 0 0
N NxR 1 U(P
~—~ 2)
U

The a-priori estimation of the quality is 22%. During execution, additional knowledge
about the task currently executed becomes available, reducing uncertainty about what may
happen during the rest of this execution. E.g., if we know that the task currently executed
is T1, i.e., table2up, then Py’s quality estimation increases to 60%. When P; gets extended,
e.g., by introducing back2up between M3 and M4, which leads to Py, the matrices and the
quality estimation must be recalculated.
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Given our definition of plan quality, a plan P is a-priori optimal for a problem if and
only if the element of U(P) corresponding to the start task is optimal?. On-line, given that
the world is in state M, a plan P is optimal for a problem if and only if the element of
U(P) corresponding to the task to be applied in M (if any) is optimal.

4.3 Use and Design of Anytime Algorithms

Anytime algorithms [Dean and Boddy, 1988] are algorithms that return an answer for any
allocation of computation time and are expected to return better answers when given more
time.

The a-priori quality estimation enables off-line planning using a general-purpose anytime
algorithm, such as those based on expectation driven iterative refinement, e.g., [Wah and
Chu, 1990]. Furthermore, the updated estimations are suitable to incrementally improve
an incomplete plan on-line, using the same general-purpose algorithms. The planner can
interact with the execution monitor, and work with the updated estimation corresponding
to the task currently executed. This implicitly focuses the anytime algorithm on the plan
part whose improvement will be of most use in the rest of the execution.

The framework also suggests a rational exploration of both state and search spaces,
thereby facilitating the design of special-purpose anytime algorithms for off-line or on-line
planning. The following algorithm, which can be viewed as a reformulation of the projection
algorithm in [Drummond and Bresina, 1990] without considering quantitative time, plans
for the most probable evolution of the environment first.

The search starts with a plan embryo containing the start task and the M-nodes cor-
responding to the initial situation of the problem. The state space is explored by selecting
the non-goal leaf that is maximally probable to be reached, supposing that the start task
is currently executed. This leaf can be computed according to the recent matrix N x R.'°
Once this leaf is expanded (by inserting a certain task 7" and its M-nodes successors), the
non-goal leaf that is maximally probable to be reached from T is further expanded, until
the currently expanded path reaches the goal, which leads then to a new selection from
the start task. To select among plans resulting from an expansion, the search space is
explored using a simple interruptible best-first search informed by the a-priori estimation
of the quality, and that guarantees monotonically increasing performance as a function of
time.

Pseudo-code for the algorithm is presented in Figure 4, and experimental results con-
cerning this algorithm are given Section 5. The algorithm can also be used to improve an
incomplete plan off-line. It suffices to start the search with this plan. The algorithm requires
only a few modifications to be suitable to the on-line improvement of an incomplete plan.
First, it must not backtrack on an already executed task. Second, current-task must not be
fixed to the start task, but must vary according to the current task of the execution. Last,
in order to focus on useful improvements with respect to the remainder of the execution,
the selection process must be performed each time a new task gets executed.

9U(P) depends on the problem considered, since the utility function on tasks depends on the problem
considered.

1%Given that we are currently executing task C, the non-goal leaf M that is maximally probable to be
reached is that, for which the element of N x R corresponding to C and unplanned(M) is maximal.



4.3

Use and Design of Anytime Algorithms

function off-line-plan (problem,deadline,utility-func) =
best-plan := empty-plan(problem);
current-task := start;
search-space := [ best-plan |;
current-time := start-timer();
while search-space # [| interrupt-when current-time > deadline
current-plan := head(search-space);
search-space := tail(search-space);
if quality(current-plan,current-task,utility-func) >
quality(best-plan,current-task,utility-func)
then best-plan := current-plan fi;
T := last-inserted-task(current-plan);
L := select-maximal-probable(current-plan, T problem,current-task );
if L # nil
then successors := expand(current-plan,L,problem);
successors := order(successors,utility-func,current-task);
search-space := append(successors,search-space) fi
end;
return best-plan

empty-plan(p) builds a plan embryo containing the start task and the possible
models of the initial situation of problem p.

quality( P, C, u) returns the quality of plan P according to the utility function on
tasks wu, given that the currently executed task is C'.

last-inserted-task(P) returns the lastly inserted task in plan P.

select-maximal-probable( P, T, p,C') returns the leaf of plan P that is maxi-
mally probable to be reach from task 7', unless one of the leaves that can be
reached from T matches the goal of problem p. In that case, returns the leaf
that is maximally probable to be reach from C' and which does not match
this goal. If there is none, then returns nel.

expand(P,[,p) returns the list of valid plans resulting from the expansion of plan
P at leaf [, using the available actions of problem p.

order(P, u, (') order the list of plans P in decreasing order of quality according
to the utility function on tasks u, given that task C' is currently executed.

Figure 4: A simple off-line anytime planning algorithm

15
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Apart from on-line plan generation, the ability to update the quality estimation has
another advantage for a reactive executor alone: if many reaction plans are available for
the current problem, one can start execution with the a-priori best plan but interrupt
its execution and switch to another plan, whenever this one becomes better. Kanazawa
and Dean [1989] follow this approach: their planner continually selects the behavior with
maximal utility among those available.

The model presented here aims at a combination anytime planner/reactive executor. As
in [Drummond et al., 1993; Beetz and McDermott, 1992], it can be reasonably assumed,
for a broad class of applications, that a reactive executor can be designed that uses default
user-provided plans, thereby having some probability of solving a problem. The role of the
anytime planner is to increase this competence. If the planner was fast enough to generate
a complete plan for the problem, then the reactive executor can use it to achieve the goal. If
no plan at all could be generated by the planner, then the reactive executor uses its default
plans.

The interesting case is the intermediate one where only an incomplete plan could be
generated: the reactor can begin by executing this plan, and ends the execution with its
default plans. This case leads to an important problem: since the incomplete plan might
not lead to a solution, i.e., be a prefix of no solution, it might decrease the executor’s
performance. [Drummond et al., 1993] presents the RFS type of search (Reaction-First
Search) which is designed to solve this problem. By exploring the possible behaviors of the
reactive executor and constraining them, the search releases incomplete sequences of actions,
that will, on average, monotonically increase the executor’s performance, performance being
understood as goal-achievement probability.

Our model provides another way of dealing with such a combination planner/reactive
executor, that is not limited to a definition of quality as goal-achievement probability. The
problem-related utility being expressed via a utility function on tasks u, it suffices that the
planner use a quality measure based on a utility function on tasks that maps non-unplanned
tasks 7" to the value u(7), and unplanned(M ) tasks to the quality estimation based on u of
the best default plan for achieving the goal, given that the task succeeding M in these plans
(if any) is currently executed. Any anytime algorithm built within our framework, whose
performance increases monotonically as a function of computation time and that uses this
quality measure, will release a (possibly incomplete) plan at the timeline only if it increases
the executor’s performance.

This strategy is different from RFS’s. Rather than exploring first the default behaviors
and constraining them, the planner directly attempts to generate incomplete plans after the
execution of which the default plans will be of higher utility than they initially were. RF'S
performs better than this method if a large number of default plans is available, provided
that these plans already have, on average, a high utility for solving the problem. On the
other hand, our method is more appropriate than RFS if the default plans have a low utility.

5 Implementation and Experimental Results

PASCALE2, a domain-independent planning system based on our model, has been imple-
mented in Standard ML on top of the gwertz toolbox [Gordon et al., in preparation], a
software toolbox for building planning systems developed at GMD.
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The most time-critical task in PASCALE2 is that of computing the possible models and the
probability distribution p in accord with the background knowledge. Fortunately, this task
is to be performed only once per domain, when this domain is first presented to PASCALE2.
The task of computing all possible models is the most costly of the whole procedure, being
exponential in the cardinality of L. Once this step has been performed, it is fairly simple
to determine an approximation of p, following the lines given in [Cheeseman, 1983]. If P
is, as before, the probabilistic background knowledge, this computation amounts to solving
a non-linear system of k equations, where k = card(P) + 1, i.e., the number of sentences,
including {ruwe, for which an a-priori probability is available.

One cannot compute the exact solution of such a non-linear system, but only an approx-
imation as accurate as needed. This can be done using Newton’s method, whose complexity
is O((k® + m)i), where m is the complexity of computing the Jacobian of the system, and
¢ the number of Newton’s iterations required to obtain the desired accuracy. Since a rel-
atively low accuracy is required, and since Newton’s method converges quadratically, ¢ is
small. Unfortunately, m can be as large as the number of possible models times &% in this
system. The theoretical complexity of solving this system is then O(k32"7). However, in
general, the number of possible models will be much lower than 2", and from our practical
experience, the time required to compute p can be neglected, compared to that of computing
the possible models.

The single reason for computing all possible models in advance is that this is necessary
for obtaining the probability distribution p. A solution that can be applied to a broad
class of domains is to have a special-purpose procedure generate the models, and PASCALE2
compute p. This is the solution we usually choose when confronted to large domains.
Note that if no a-priori probability is available for a domain, then the whole computation
should be skipped. Possible models of the initial situation of a problem as well as multiple
maximally conform models will then be equiprobable, but the probabilities of alternative
action effects will still be taken into account.

Since PASCALE?2 is still in its infancy, we use a straightforward algorithm for computing
the result of applying action « in situation s, namely that one directly derived from the
definitions given in Section 2. We

e compute the possible models in s,

e select the appropriate context of a for each of these models,

e compute the possible models in each of the postconditions of the selected context,
e filter the models that are maximally conform,

e compute the union of the maximally conform models for each model in s and each
postcondition of the corresponding selected context in a,

e and finally compute the resulting probability distribution.

The performance of the algorithm is acceptable because the possible models in s as well as
those in the postconditions of @ can be computed by just updating the available complete set
of possible models, using, in our case, a sequent-calculus based theorem prover. Moreover,
the availability of the possible models set makes validating action preconditions faster.
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Figure 5: A-priori plan quality as a function of computation time

However, we plan to use the more efficient algorithm described in [Chou and Winslett,
1991], which can trivially be adapted to our framework.!! Instead of computing all possible
models in a postcondition Post and filtering maximally Post-conform models with a possible
model M in s, the latter algorithm incrementally updates M U Post so as to make it
consistent with the logical background knowledge K. For this purpose, it modifies a minimal
subset of M, by looking to see inhowfar M is inconsistent with K U Post. The drawback
of this algorithm is that it must be given a complete set of counter-models of K. However,
the complexity of computing all counter-models is much lower than that of computing all
possible models, provided that K primarily consists of implications, which is the natural
case.

From our experiences, the exploration of the finite search space of valid plans does
not cause much performance problems. Naturally enough, if the planner is given a highly
incomplete initial situation and if actions are highly undeterministic, plans will branch
excessively. However, the practical disadvantage of this branching factor is reduced by
the fact that possible models are uniquely represented in a plan. In the current stage of
implementation, PASCALE2’s anytime algorithms library only consists of simple algorithms
for exploring the search and state spaces, such as that of Figure 4. Part of our future
implementation work will be devoted to building more elaborate algorithms, and to their
compilation into anytime algorithms with an optimal performance profile [Zilberstein and
Russel, 1992].

Experiments with PASCALE2 were conducted on a Sparc IPX workstation. Figure 5
shows the quality of the plans generated by the algorithm of Figure 4 as a function of

111Val, 1992] also proposes algorithms for updating databases, based on a syntactic characterization of
updates. However, in the presence of a large logical background knowledge, those seem to be less efficient
than the algorithm given in [Chou and Winslett, 1991].



19

computation time, for our cup example. The example was augmented with the action wait,
for waiting during a fixed amount of time with a 0.1 probability that the weather changes
during waiting:
wait = [ vy | ({-ry},0.1), ({},0.9);
ary | ({ry},0.0), ({1,0.9) ]

The problem-related utility was expressed using a utility function on tasks mapping the
start task to 0, finish tasks to 1500 (i.e., reaching the goal provides a gain of 1500), tasks
built from spin to —200, tasks built from back2up and table2up to —300, tasks built from
wait to —5, and unplanned(M ) tasks to a number roughly estimating the proximity of M
with the goal. Note that wait has a much lower cost than the other actions because the
experiment was interested in minimizing the physical resources such as energy, rather than
execution time.

Figure 5 shows that the plan quality increases step by step with the timeline. These
steps corresponds to different plans 51 through 56 depicted in Figure 6. The planner first
releases the two incomplete plans S1 and S2, the latter having a 0.64 goal-achievement
probability. The following plans 53 through 56 all achieve the goal with probability 1. The
complete plan 53, which is simply our plan example Py, is found after 1 second compu-
tation time. Thereafter, less resource-consuming plans 54, §5 and 56 that include wazt
actions are successively found, 56 being optimal for the problem considered. Note that
with a more powerful function for evaluating the proximity of unplanned M-nodes with
the goal, the algorithm does converge directly towards 56, which is then found within 2
seconds. Experiments on larger problems also gave satisfactory results.!? Moreover, we
expect the run-time performance of PASCALE2 to be considerably improved by using Chou
and Winslett’s algorithm.

6 Summary and Further Related Work

To conclude, let us first summarize what we have achieved and then briefly discuss the
relevance of our results.

In this paper, we aim at viewing planning as a choice under uncertainty and time pres-
sure, for which symbolic planning and decision theory act as two complementary functions.
As Haddawy and Hanks [Haddawy and Hanks, 1992] point out,

Symbolic planning provides a computational theory of plan generation ... Deci-
sion theory provides a normative model of choice under uncertainty.

Within our model, symbolic planning enables the search of a plan under uncertainty stem-
ming from incomplete information about the start situation, from context dependency of
actions, and from alternative action effects. We did not go into detail concerning these
issues as they are presented elsewhere [Thiébaux and Hertzberg, 1992].

The new issue is basically to introduce probabilities in order to both guide the search,
and chose among feasible plan alternatives. These probabilities are handled like in Nilsson’s
probabilistic logic to reason within single world situations; we use Markov chain theory to

12Moreover, the current version of the system does not use tricky implementations of sets, and matrix
manipulation is far from being as optimal as with the existing numerical analysis tools.
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calculate the probability of tasks in a plan being executed and, eventually, final states of a
plan being reached, given that the plan execution has proceeded in some direction.

Based on the notion of utility of tasks in a plan being executed, we have then defined
plan quality, which allows us to estimate where to extend a given incomplete plan with
most effect on the plan quality. This is crucial for a rational anytime planning algorithm;
and it allows for rationally jumping to another plan at execution time if the estimated
quality of the plan currently under execution turns out to be lower than that of some other
suitable off-the-shelf plan. Gathering statistics about plan quality as a function of time
in our system will also enable future versions of PASCALE2 to reason about the value of
computation [Horovitz, 1988; Russel and Wefald, 1989; Zilberstein and Russel, 1992], i.e.,
to reason about when to stop planning and about which computational action to perform

Our framework differs from operation research methods by laying stress on flexible
symbolic Al approaches. Koenig [Koenig, 1991] shows how to elegantly model a planning
problem as a Markov decision problem, and derive an anytime algorithm producing universal
plans from the policy iteration algorithm [Howard, 1960]. However, the algorithm must
work on the complete state space at once. This is avoided by our model, which furthermore
provides additional reasoning capabilities.

Garcia [Garcia, 1993] has developed time-independent non-linear and hiearchical plan-
ning algorithms, based on a formalization of actions similar to ours. This formalization
takes into account context-dependent effects, and plans can be revised on-line, according to
additional information acquired. However, actions must be deterministic, and hence, plans
remain classical partially ordered sets of actions. We believe that this work can be used as
a basis for integrating hierarchical planning to our approach.

An academic advantage of our model is its high expressiveness, which allows a variety
of seemingly different plan formats to be generated or reformulated in its terms and thus
made comparable. As examples, let us mention

Linear (sTRrIPS type) plans. To generate them within our model, everything about the
world must be known, all actions are context free and unambiguous. The reactive
execution of such a plan is comparable to that of a STRIPS triangle table [Fikes et al.,
1972]. See [Thiébaux and Hertzberg, 1992] for details.

Universal plans, as proposed in [Schoppers, 1987]. To generate them, nothing about the
initial situation is known, all actions are context free and unambiguous.

Decision trees, as proposed by [Feldman and Sproull, 1977]. No restrictions can be made
to generate them.

Situation-action rules as from [Drummond, 1989; Drummond and Bresina, 1990], see
Sections 3 and 4.

PASCALE plans, as described in [Thiébaux and Hertzberg, 1992]: to generate them, possible
models always have equiprobability.

A non-instance of our framework is, e.g., the planner by Kanazawa and Dean [1989],
whose causal model of the world is more expressive than ours. It explicitly considers changes
in the world that do not need to be caused by single actions of the planner. However, optimal
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plan selection with respect to the current state of knowledge is NP-hard within this model.
The planner uses a revolving approach, that trades plan quality for computation time.
It suffers from a limited horizon problem, and hence cannot make long-term predictions.
Extending our model to handle external events at planning time as in Kabanza’s [1990]
world automata is part of our future research.

Practically, expressiveness is dangerous, because it yields computation cost. Thus, if
your domain is completely deterministic and completely known, we recommend that you
apply something simpler than what we propose here. On the other hand, if your domain is
very uncertain, then it would be nonsense to calculate a plan to the tiniest detail. For such
cases, algorithms with a rational anytime behavior seem most promising.
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