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Abstract
It is a well known fact that the generalized Vandermonde determinant can be expressed as

the product of the standard Vandermonde determinant and a polynomial with nonnegative
integer coefficients. In this paper we generalize this result to Vandermonde determinants
over the Chebyshev basis. We apply this result to prove that the number of real roots in_U`baNced

of a real polynomial is bounded by the number of its nonvanishing coefficients
(sparsity) when represented over the Chebyshev basis. This bound on the number of real
roots is used to prove finiteness of the Vapnik-Chervonenkis dimension (and thereby uniform
learnability) of the class of polynomials of bounded sparsity over the Chebyshev basis.
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1 Introduction

More than a century ago, Michell [6] proved the striking result that the determinant of the generalized
Vandermonde matrix over the standard power basis

���������
	���	�����������
can be represented as the product of

the standard Vandermonde determinant and a polynomial with nonnegative integer coefficients.

One of the most important consequences of Michell’s result is the nonsingularity of the generalized Van-
dermonde matrix when the indeterminates take on positive and distinct values. This in turn is equivalent to
the fact that the number of positive real roots of a polynomial over the real numbers is strictly less than its
sparsity (the number of nonvanishing monomials) with respect to

�
. This result also follows immediately

from Descartes’ Rule of Signs.

These results provide major tools for the recent developments in the area of interpolation [1] and learnability
[4] of sparse polynomials over the reals. Numerous generalizations of this setting are proposed in the literature
and have attracted a lot of attention. One natural question concerns the common properties of real polynomials
which have a sparse representation in bases of ��� 	�� other than the standard power basis

�
.

In this paper we study real polynomials that admit sparse representations in the Chebyshev basis � ���������	 �!�"�$#%��	 ���������&�
where

��'
��	 �
is the ( -th Chebyshev polynomial of the first kind. The main result of the

paper states the analogy of Michell’s theorem for the Chebyshev case. An immediate consequence of this
result is the nonsingularity of Vandermonde matrices over � provided that the indeterminates take distinct
values from either � ���*)+�

or
�-,.)���,/�%�

.

As an application, we answer the question posed by Lakshman and Saunders [5] about the relationship of the
number of real roots of a polynomial and its sparsity with respect to the Chebyshev basis. In fact, the number
of real zeros of a polynomial, either to the left or to the right of the interval of orthogonality, does not exceed
its sparsity with respect to � .

The bound on the number of real roots is used to prove tight lower and upper bounds on the Vapnik-
Chervonenkis dimension of the class of polynomials of bounded sparsity over the Chebyshev basis. Surpris-
ingly, these bounds coincide with the bounds given in [4] for the standard power basis.

2 Preliminaries and Notation

A polynomial set is a sequence 0 �1� 032 � 25476 8 in which 9;:!< � 0=2 �>�@?
for all

?BADCE�
. Every polynomial

set 0 represents a basis for the polynomial ring �=� 	F� . Hence every polynomial G A ��� 	�� can uniquely be
represented as a finite linear combination over 0 , i.e. G �IH 2'KJ$�ML ' 0 ' with L ' A � and

?N� 9;:�< � G � . This
representation is called the 0 -representation of G . As usual, we say that G is O -sparse with respect to 0 if at
most O of the coefficients of the 0 -representation of G are non-zero. The notation generalizes in the usual way
to multivariate polynomials.

The Chebyshev polynomials are a special case of orthogonal polynomials, distinguished by their particular
simplicity. The

?
-th Chebyshev polynomial of the first kind

� 2 ��	 � is defined by� 2 �P	 �Q�SR�TVU��P?XWZY[R�R�T\U\	 �!�^] 	�]�_B���
The Chebyshev polynomials admit a very simple three term recursion formula:�����P	;�`�N��� �$#*�P	;�E�a	�� � 2 ��	 �E�SbM	�� 2�c #*�P	;�d,e� 2�c  �P	;� for

?afB���
In the following we will frequently use the fact that�hgV��	 �Mi[��j���	 �E� # �7�hglkmj���	 �5no�$p g c j p �P	 �q�!�
therefore, we define

� g �P	 �Q�r� c g ��	 � , sut�v for simplicity of notation. It is a well known fact that

� 2 ��	 �E�1w 2�x [yz
{ Jm�

�q,/��� {}| 2 {*~ 	 2�c  { �-�=,e	  � { �

1



On the other hand the � -representation of powers of
	

is given by

b 2�c # 	 2 �
����� ���� w 2 x [yH��' Jm� | 2� 2�x �� k�' ~ �  '"��	 � if

?
even

�
w 2 x [yH' Jm� | 2� 2�x �� k�' ~ �  'KkE# �P	 � if

?
odd,

(1)

where
H �

denotes a sum with the first term halved. For the general theory of orthogonal polynomials the
reader is referred to Szegö’s classical textbook [7].

Let 0 be a polynomial set and a
� �
	$#7����������	 2 � a vector of distinct nonnegative integers. The general-

ized Vandermonde determinant ���� a ��	�#7���������
	 2 � over 0 is defined as the determinant of the generalized
Vandermonde matrix ����

�
0���� �P	 # � 0���� ��	 # � ����� 0���� ��	 # �0�� � �P	  � 0�� � ��	  � ����� 0���� ��	  �

...
...

. . .
...0�� � �P	 2 � 0�� � ��	 2 � ����� 0���� ��	 2 �

�����
�

where the
	;'

are indeterminates. Note that the number of indeterminates of ���� a is given by the length of a.
Let

?
denote the vector

� v �����������Z�
?D,a���
. Then � �� 2 is the (standard) Vandermonde determinant over 0 .

Let a
� �
	�#V�������!��	 2 � A C 2 � . We say that a is increasing if

	$# t ����� t 	 2 . If a consists of distinct
entries there exists a permutation ! A#" 2 such that ! � a �>� �
	%$�& #(' ����������	)$�& 2 ' � is increasing and we define
sgn

�
a
� �

sgn
� ! � . Let b

�I�
	;' � �������!��	}'+*Z� with
� _ ( # t ����� t�( { _N?

. Then a , b
ArC 2�c {� denotes the

vector
�
	m#7����������	}' � c #���	;' � kE#V�������!��	;'+* c #7��	}'+*-kE#�����������	 2 � . Any increasing a

� �
	m#7����������	 2 � can be written
uniquely as a

�S?en.- , b for some increasing b
� �0/ # ���������(/ { �3A C { �

with
/ { t 	 2 . We call the entries of

b the gaps in a.

3 Generalized Vandermonde Determinant

Let 0 be a polynomial set and a
A C 2 � . Note that the Vandermonde determinant �1�� a over 0 vanishes when	 ' �r	32

for some (�4�65 . Since � �� 2 viewed as a polynomial in
	 2 is of degree

?X,e�
and its zeros are

	 2 �a	 '
for

� _ (dt ?
there exists a constant L �� 2 depending only on 0 and

?
such that

� �� 2 � L �� 2 7#98�';: 2 8 2 ��	 2 ,e	}'-�!�
(2)

Hence, � �� a is divisible by � �� 2 in the polynomial ring ��� 	 # ����������	 2 � and we write< �� a � � �� a = �>�� 2 � (3)

Note that � �� a ��	�#7���������
	 2 �.� sgn
� ! � ���� a ��	)$�& #(' ����������	)$�& 2 ' � for any permutation ! A?" 2 since a transpo-

sition in ! corresponds to interchanging two rows in the Vandermonde matrix. Hence,
< �� a is a symmetric

polynomial in
�P	 # ����������	 2 � . Likewise, � �� a � sgn

� ! � � �� $�& a' and therefore
< �� a � sgn

� ! � < �� $�& a' for any
permutation ! A@" 2 .

Using our notation we restate Michell’s theorem:

Theorem 1 Let
�I� �����
	5�
	;����������

. For any
? ANC

and any increasing a
ANC 2� the coefficients of the�

-representation of
<BA � a are nonnegative integers.

In this section we extend Michell’s result to the Chebyshev basis.

2



Theorem 2 Let � denote the Chebyshev basis. For any
?aA C

and any increasing a
A C 2 � the coefficients of

the � -representation of
< � � a are nonnegative integers.

Evans and Isaacs [3] give a very elegant and simple proof of Theorem 1. Their proof is by induction on the
number of indeterminates, however, the proof relies on the homogeneity of

<�A � a.

It is easy to see that
< � � a is not homogeneous in general, so we cannot use their ideas in the Chebyshev setting.

Instead, we will use an induction on the number of gaps in the index vector a. This approach is used in [11]
to study the coefficients of the

�
-representation of

< A � a. It turns out that these techniques, which only use the
symmetry of

< A � a, can be transferred to the Chebyshev basis. However, the proof of Theorem 2 involves a
lot of technical details. Therefore, we sketch the alternative proof of Theorem 1 to provide a guideline for the
more complicated proof of Theorem 2.

3.1 Vandermonde determinants over the power basis

In this section we give a proof of Theorem 1 which, in contrast to the proof given by Evans and Isaacs, does
not depend on the homogeneity of

< A � a.

Since
< A � a is a symmetric polynomial it can be written as a polynomial of the elementary symmetric polyno-

mials. Let �
& 2 'g � � g;�P	�#��������!�
	 2 � denote the s -th elementary symmetric polynomial in the indeterminates	 # ���������
	 2 , i.e.

�
& �9'g � � v if s 4� v�

if s � v ,
�
& 2 'g �+	 2��

& 25c #('g n �
& 2�c #('g c # (4)

for
?aA C�� s A��

. Note that �
& 2 'g � v for s f ?

or s tSv and that

27'KJE# ��	 , 	}'-�`� 2zglJm� �q,/��� 2�c
g �
& 2 'g 	 g �

(5)

For an increasing vector a
� �
	 # ����������	 2 ��A C 2 � we will denote the number of gaps in a by

-
, i.e. a

�r? n - , b
for some b

�N�0/d#����������(/ { �=A C { �
. The proof of Theorem 1 is by induction on

-
.

Let
-.� v . Then a

�a?
and the statement of Theorem 1 is trivial since

< A � 2 � �
.

Now, assume that
-.� �

. Then a has exactly one gap and a
�a? n � , � s � for some v _ sXt ?

. Note that by
expanding the last row of the standard Vandermonde matrix in

? n �
indeterminates, we have

� A � 2 kE# � 2zglJm� �-,/��� 25c
g � A � 2 kQ# � & g ' 	 g2 kE#

and on the other hand by (5),

� A � 2 kQ# � 27'KJQ# ��	 2 kE#�, 	}'*� � A � 2 � 2zglJ$� �q,/��� 2�c
g �
& 2 'g 	 g2 kQ# � A � 2 �

Comparing the coefficients of
	 g2 kE# yields

� A � 2 kE# � & g ' � � & 2 'g � A � 2 � (6)

Hence,
< A � 2 kQ# � & g ' � � & 2 'g and the statement of Theorem 1 follows immediately from the definition (4) of

the elementary symmetric polynomials.
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Let us now consider arbitrary
- A C

. Then a
��? n - , b for some increasing b

� �0/`#��������!�
/ { �/A C { �
. It

turns out that for any increasing b
A C { �

,

� A � 2 k { � b �
det

�������
�

�
& 2 '� � ����� �

& 2 '� *
�
& 2 '� � c # ����� �

& 2 '� * c #
...

...

�
& 2 '� � c & { c #(' ����� �

& 2 '� * c & { c #('

� ������
� �

A � 2 � (7)

Note that (6) is a special case of (7). In order to prove (7) (and the nonnegativity of the coefficients of the�
-representation of

< A � 2 k { � b) we study the determinant of matrices that are slightly more general than the
matrix given in (7).

For vectors b
�
k
A C { �

with b
� �0/ # ���������(/ { � and k

�N� s # ��������� s { � let
� & 2 '

k
�
b
�

be defined by

� & 2 '
k

�
b
�Q�

det

����
�
�
& 2 '� � c g � ����� �

& 2 '� * c g �
...

...

�
& 2 '� � c g * ����� �

& 2 '� * c g *
� ���
� �

(8)

Using this notation we may rewrite (7) as � A � 2 k { � b � � & 2 '{ �
b
� � A � 2 . Note that

� & 2 '
k

�
b
�

vanishes when k (or

b) does not consist of distinct entries. By expanding
� & 2 kE#('

k
�
b
�

according to (4) it is straightforward to prove
that for

? �(- A C
and b

�
k
A C { �

,

� & 2 kE#('
k

�
b
�Q� {z jKJm� 	

j
2 kQ# z

q 4��������k

� & 2 '
q

�
b
�!�

(9)

where
" & j0'

k denotes the set of vectors q
AaC { �

with distinct entries derived from k by fixing 	 entries of k
while increasing the other

-E, 	 entries by 1. Note that for increasing k the vectors from
" & j0'

k are increasing as

well. Hence, by (9) and induction on
?

, the coefficients of the
�

-representation of
� & 2 '

k
�
b
�

are nonnegative
integers for increasing b and k.

Let us now turn to the proof of (7). For this purpose, we note that
" & j '{ consists of the single element

-�n�� , � 	 � .
In consequence of (9) we obtain

� & 2 kE#
'{ �
b
�E� {z j Jm� 	

j
2 kE# �

& 2 '{ kQ# � & j0' � b �!� (10)

By induction on
-

we may assume that (7) holds for any increasing vector b
A C { �

and
?�AeC

. Note that the
induction basis is given by (6). Using the Laplace expansion, we have

� A � 2 kE#"k { � b � 2 k {z

�� 8
������ ����������� � *��

�-,/��� 25c��
sgn

���>�(/d#7���������(/ { � � A � & 2 k { kE# � b ' � & � ' 	 � 2 kE# � (11)

Applying the induction hypothesis and using (10) yields� A � 2 kE#"k { � b � � & 2 kQ#('{ �
b
�Mi � A � 2 kE#

� � {z jKJm� 	
j
2 kE# �

& 2 '{ kE# � & j ' � b ��� i � 2z
� Jm�

�q,/��� 2�c�� � & 2 '� 	 � 2 kQ# � A � 2 �
4



� � A � 2 2 k {z
� Jm�

�-,/��� 25c�� � {z j J$� �-,/���
j �
& 2 '� c j � & 2 '{ kE# � & j ' � b � � 	 � 2 kE#

� 2 k {z
� J$�

�q,/��� 2�c � � & 2 '{ kQ# ���>�
/ # �������!�(/ { � � A � 2 	 � 2 kE# � (12)

Note that we use the fact that �
& 2 '� � v for

� f ?
or
� tSv . Equating the coefficient of

	 � 2 kE# in (11) and (12)
yields

sgn
���>�(/d#7���������(/ { � � A � & 2 k { kE# � b ' � & � ' � � & 2 '{ kQ# ���>�(/d#��������!�(/ { � � A � 2 � (13)

Let
�0/��F�
/d#7���������
/ { �3A C { kQ#� be an arbitrary increasing vector. Note that sgn

�0/$���
/M#7���������(/ { �E���
. Then (13)

yields � A � 2 k { kE# � & � 8 � � � � ����� � � * ' � � & 2 '{ kE# � / � �
/ # �������!�
/ { � � A � 2
which establishes (7). Hence, < A � 2 k { � b � � & 2 '{ �

b
�

and Theorem 1 follows from the fact that the coefficients of the
�

-representation of
� & 2 '

k
�
b
�

are nonnegative
integers for increasing b and k.

3.2 Vandermonde determinants over the Chebyshev basis

In this section we give the proof of Theorem 2.

Let us first compute the constant L � � 2 in (2). Since
� 2�c # ��	 2 �E�Sb 2�c Z	 2�c #2 n�� �P	 2�c 2 �

for
?rfB�

, we haveL � � 2 �ab 25c  L � � 25c # and L � � # � �
. Hence, L � � 2 �Sb & 25c #(' & 2�c  ' x  and

� � � 2 �ab & 2�c #
' & 2�c  ' x  7#98 ' : 2 8 2 �P	 2 ,e	�'*�!�

Note that � � � 2 kQ# �Sb 2�c # 27'KJE# ��	 2 kE# , 	 ' � � � � 2 � (14)

Therefore, the coefficients of the � -representation of the polynomial
b 25c #�� 2'KJE# ��	e,a	}'-� A ��� 	�� with

indeterminates
	m#7���������
	 2 play an important role. Analogous to the case of the standard power basis

�
we

call these coefficients the elementary symmetric polynomials over � and define �
& 2 'g � � g �P	 # ���������
	 2 � by

�
& �9'g � � v if s 4� v�

if s � v ,
�
& 2 'g � �

& 25c #('glkE# n bM	 2��
& 25c #('g n �

& 25c #('g c # (15)

for
?aA C�� s A��

. Note that �
& 2 'g � v for

] s ]�f ?
and �

& 2 'g � �
& 2 'c g .

Lemma 3 Let
?aA C �

. Then

b 2�c # 27'KJE# ��	 , 	}'-�`� 2z �glJm� �-,/��� 25c
g
�
& 2 'g ��g��P	;���

PROOF. The case
? � v is trivial. Let

?rf v . Then, by induction,

b 25c # 27' JE# ��	 ,e	}'-� � b>��	u, 	 2 ��b 2�c 
25c #7' JE# �P	 ,e	}'-�

5



� 2�c #z �glJm� �q,/��� 2�c
# c g �

& 25c #('g bM	=� g ��	 ��n 2�c #z �glJm� �q,/��� 2�c
g bM	 2 �

& 25c #('g � g �P	;�

� 2�c #z �glJm� �q,/��� 2�c
# c g �

& 25c #('g � g c # ��	 �5n
2�c #z �glJm� �q,/��� 2�c

# c g �
& 25c #('g � glkQ# ��	 �

n 25c #z �glJm� �q,/��� 2�c
g bM	 2 �

& 25c #('g ��g\��	 �

� 2z �glJ c #
�-,/��� 25c g �

& 2�c #('glkE# �hgV��	 ��n 2z �glJE# �-,/��� 25c
g
�
& 2�c #('g c # �hgV��	 �

n 2z �glJm� �q,/��� 2�c
g bM	 2 �

& 25c #('g � g ��	 �

� 2z �glJE# �q,/��� 2�c
g � �
& 2�c #('glkE# n �

& 25c #('g c # n bM	 2 �
& 25c #('g ��� g �P	 �

n �-,/��� 25c # � # �
& 2�c #
'� n �

& 2�c #(' n # �
& 2�c #('� nDbM	 2��

& 2�c #('# ���$#%�P	 �
n �-,/��� 2 � �

& 2�c #('# n 	 2��
& 2�c #('� �������P	 �

� 2z �glJm� �q,/��� 2�c
g
�
& 2 'g �hgV��	 �!�

�

By Lemma 3 and (14) we have

� � � 2 kE# � 2z �glJm� �-,/��� 25c
g
�
& 2 'g �hgV��	 2 kE#�� � � � 2 � (16)

and expansion according to the last row of the standard Vandermonde matrix yields

� � � 2 kQ# � 2zglJm� �q,/��� 2�c
g � � � 2 kQ# � & g ' � g ��	 2 kE# �!� (17)

Comparison of the coefficients of
�5g��P	 2 kE#!� in (16) and (17) establishes

Lemma 4 Let
? � s A CE�

. Then

� � � 2 kE# � & g ' �
���� ���

# �
& 2 '� i � � � 2 if s � v ,

�
& 2 'g i � � � 2 if s f v .

From the definition (15) it is obvious that the coefficients of the � -representation of �
& 2 'g are nonnegative

integers. This proves Theorem 2 for the case of vectors a with one gap.

For the general case assume that the index vector a has
-

gaps. Then a
�a? n.- , b for some vector b

A C { �
.

Similar to the representation of � A � a given by (7) we will prove in Theorem 5 that

� � � 2 k { � b �����0/d#��
det

�������
�

�
& 2 '� � ����� �

& 2 '� *
�
& 2 '� � c # n �

& 2 '� � kE# ����� �
& 2 '� * c # n �

& 2 '� * kE#
...

...

�
& 2 '� � c & { c #(' n �

& 2 '� � k & { c #(' ����� �
& 2 '� * c & { c #(' n �

& 2 '� *-k & { c #('

��������
� � � � 2

�
(18)

6



where
��� v �E� # and

�F� /d#!�E� �
for
/d# f v . Note that Lemma 4 is a special case of (18).

The proof of Theorem 5 requires more technical effort than the proof of the corresponding result (7) for the
power basis

�
. Again, it is convenient to study the determinant of matrices that are slightly more general than

the matrix given in (18). For this purpose we define

L & 2 'j � /5�Q� �
�
& 2 '� if 	 � v ,

�
& 2 '� c j n �

& 2 '� k�j otherwise.
(19)

for 	 �
/eA C �
. Let k

�N� s # ��������� s { ��A C { �
and b

� � / # ���������(/ { �=A C { �
. Then

� & 2 '
k

�
b
�

is defined by

� & 2 '
k

�
b
�E�

det

����
�
L & 2 'g � � /M#!�^����� L & 2 'g * � /M#��

...
...L & 2 'g � �0/ { � ����� L & 2 'g * �0/ { �

�����
� �

Note that this definition of
� & 2 '

k
�
b
�

should be distinguished from the definition (8). We choose the same
notation to point out the similarities in the proofs of Theorem 1 and Theorem 2.

Theorem 5 states that
< � � a is essentially given by

� & 2 '{ �
b
�
. The proof depends on the recursion formula for� & 2 '{ �

b
�

given by Lemma 8, however, we postpone Lemma 8 to the end of this section.

Theorem 5 Let
- A C

and b
� �0/ # �������!�
/ { ��A C { �

an increasing vector. Then

� � � 2 k { � b �
���� ���

# �
& 2 '{ �

b
�$i � � � 2 if

/d#>� v ,

� & 2 '{ �
b
�Mi � � � 2 if

/d#.f v .

(20)

PROOF. We prove the statement by induction on
-
. Note that the induction basis

- ���
is given by Lemma 4.

Then, assume that (20) holds for any increasing vector b
� �0/ # ���������
/ { ��A C { �

and
?rA C

.

By expansion according to the last row, we have

� � � 2 kE#"k { � b � 2 k {z

�� 8
���� � ����������� � *��

�-,/��� 25c�� sgn
���>�
/d#��������!�
/ { � � � � & 2 k { kE# � b ' � & � ' � � �P	 2 kE#!���

On the other hand, by induction, Lemma 3, and Lemma 8,

� � � 2 kE#"k { � b � � & 2 kE#
'{ �
b
�di � � � 2 kE#

� � {z �j Jm� b �
& 2 '{ kE# � & j ' � b ���hj��P	 2 kE#!� � i � 2z �

� Jm�
�q,/��� 2�c � � & 2 '� � � �P	 2 kE#�� � � � 2 �

� � � � 2 � 2z �
� J$�

�q,/��� 2�c�� � & 2 '� � & 2 '{ kE# � & ��' � b ��� � ��	 2 kE#��
n {z jKJE#

2z �
� Jm�

�q,/��� 2�c � � & 2 '� � & 2 '{ kE# � & j0' � b ��� � k�j��P	 2 kE#!�
n {z jKJE#

2z �
� Jm�

�q,/��� 2�c � � & 2 '� � & 2 '{ kE# � & j0' � b ��� ��c j
��	 2 kE#!� �
7



� � � � 2 � 2 k {z �
� J$�

�q,/��� 2�c�� � & 2 '� � & 2 '{ kE# � & ��' � b ��� � ��	 2 kE#��
n {z jKJE#

2 k {z �
� J�j

�q,/��� 2�c � k�j �
& 2 '��c j � & 2 '{ kQ# � & j ' � b ��� � ��	 2 kE# �

n {z jKJE#
2 k {z �
� J c j

�q,/��� 2�c � kmj �
& 2 '� k�j � & 2 '{ kQ# � & j ' � b ��� � ��	 2 kE# � �

� � � � 2 � 2 k {z
� JE#

�-,/��� 25c�� � & 2 '� � & 2 '{ kQ# � & �9' � b ��� � ��	 2 kQ#!��n # �q,/��� 2 �
& 2 '� � & 2 '{ kE# � & ��' � b �F������	 2 kE#!�

n {z jKJE# �
2 k {z
� J�j kQ#

�q,/��� 2�c � k�j � �
& 2 '� c j n �

& 2 '� kmj � � & 2 '{ kE# � & j0' � b ��� � ��	 2 kQ# �
n # �q,/��� 2 �

& 2 '� � & 2 '{ kE# � & j0' � b ��� j ��	 2 kQ# �
n # �q,/��� 2 �

& 2 '� � & 2 '{ kE# � & j0' � b ��� c j��P	 2 kE#!�
n
j c #z
� JE#

�q,/��� 2�c�� k�j � �
& 2 'c � kmj n �

& 2 '� kmj � � & 2 '{ kE# � & j0' � b ��� � ��	 2 kQ# ���
n {z jKJE# �q,/��� 2

k�j
�
& 2 'j � & 2 '{ kE# � & j ' � b �F� � ��	 2 kQ# ���

� � � � 2 � # �q,/��� 2 � & 2 '� � & 2 '{ kE# � & ��' � b �F������	 2 kE#!�
n #

{z jKJE# �q,/��� 2
k�j � �

& 2 'c j n �
& 2 'j � � & 2 '{ kE# � & j0' � b ���5����	 2 kE#!�

n 2 k {z
� JQ#

�q,/��� 2�c�� � & 2 '� � & 2 '{ kE# � & ��' � b �F� � �P	 2 kE#��
n {z jKJE#

2 k {z
� JE#

�-,/��� 25c�� k�j � �
& 2 '��c j n �

& 2 '� k�j � � & 2 '{ kE# � & j ' � b ��� � �P	 2 kE# �
� � � � 2 2 k {z �

� J$�
�q,/��� 2�c�� � {z jKJm� �q,/���

j L & 2 'j ���Q� � & 2 '{ kE# � & j ' � b � �.� � �P	 2 kE# �
� 2 k {z �

� Jm�
�-,/��� 25c�� � & 2 '{ kE# ���>�
/ # �������!�
/ { � � � � 2 � � ��	 2 kQ# �!�

Equating the coefficient of
� � ��	 2 kE# � yields

sgn
���>�
/ # �������!�
/ { � � � � & 2 k { kE# � b ' � & � ' � � & 2 '{ kQ# ���>�(/ # �������!�(/ { � � � � 2 � (21)

Let
�0/ � �
/ # ���������(/ { �=A C { kE#� be an arbitrary increasing vector. Then sgn

�0/ � �(/ # ���������
/ { �E� �
and by (21) we

have � � � 2 k { kE# � & � 8 � � � � ����� � � * ' � � & 2 '{ kE# � /5���
/d#��������!�
/ { � � � � 2
which completes the proof of our statement.

�

Similar to the proof of Theorem 1 in the preceding section we show in Theorem 6 that the coefficients of the
� -representation of

� & 2 kQ#('
k

�
b
�

are nonnegative integers for increasing b
�
k
A C { �

. Then, by Theorem 5, the

8



coefficients of the � -representation of
< � � a for increasing a

A C { �
are nonnegative integers. This establishes

Theorem 2.

The proof of Theorem 6 uses the following recursion formula for L
& 2 kE#('j � /��

which follows immediately from
(15) and (19). Let 	 A C �

. Then

L & 2 kQ#('j �0/5�Q�
����� ����
L & 2 '# �0/5��nobM	 2 kE# L

& 2 '� �0/5�
if 	 � v ,b L & 2 '� �0/5��nobM	 2 kE# L

& 2 '# �0/5��n L & 2 ' � /5�
if 	 � �

,L & 2 'j c # �0/5��nobM	 2 kE# L
& 2 'j �0/5��n L & 2 'jKkE# �0/5� if 	 fB�

.

(22)

Theorem 6 For any
- ADC

and increasing b
�
k
A C { �

the coefficients of the � -representation of
� & 2 kE#
'

k
�
b
�

are nonnegative integers.

PROOF. Note that
� & 2 '

k
�
b
�

vanishes when k (or b) does not consist of distinct entries. Expand
� & 2 kE#
'

k
�
b
�

according (22) and collect the terms corresponding to powers of
	 2 kE# . Then

� & 2 kE#('
k

�
b
�E� {z j J$� b

j 	 j2 kE# z
q 4���� ���k

�
q
� & 2 '

q
�
b
�!�

(23)

where
" & j '

k is the set of vectors q
ArC { �

with distinct entries derived from k by fixing 	 entries of k while
increasing or decreasing the other

-3, 	 entries by 1. The factor
�
q is always 1 except in the case s ' ���

and� ' � v where
�

q equals 2.

We call an entry � ' of q
A " & j '

k active if � ' � s ' . A subsequence
� � ' � � 'KkE# �������!� � 2"� of active entries of q is

called active sequence if � 'KkE# � � ' n@��� � ' k  � � 'KkE# n@����������� � 2>� � 2 c # nN�
. An active pair of q is an

active sequence of length 2.

Applying (1) to (23) and collecting the coefficients of the
�5j���	 2 kQ#�� ’s, we have

� & 2 kE#('
k

�
b
� � z

8�� � � *j
even

w
j x [yz �2 Jm� b | j� j x �� k 2 ~ �  2 ��	 � z

q 4�� �����k

�
q
� & 2 '

q
�
b
�

n z
8�� � � *j

odd

w
j x [yz 2 Jm� b | j� j x �� k 2 ~ �  2 kE#%�P	;� z

q 4�� ��� �k

�
q
� & 2 '

q
�
b
�

� w { x [yz
� Jm�

�z �2 Jm� b |  �� k 2 ~ �  2 ��	 � z
q 4�� � ��� �k

�
q
� & 2 '

q
�
b
�

n w
*�� �� yz
� Jm�

�z 2 J$� b |  � kE#� kE#"k 2 ~ �  2 kE# ��	 � z
q 4�� � �����%� �

k

�
q
� & 2 '

q
�
b
�

� w { x [yz �2 Jm� bd�  2 ��	 � � w { x [yz
� J 2 |  �

� k 2 ~ z
q 4���� ��� �k

�
q
� & 2 '

q
�
b
�

	 
�� J���� ��� & k '
�

9



n w
*�� �� yz 2 Jm� bd�  2 kQ#%��	 � � w

*�� �� yz
� J 2 |  � kQ#

� kE#qk 2 ~ z
q 4�� � ��� �)� �

k

�
q
� & 2 '

q
�
b
�

	 
�� J � � � � �%� & k '
�

(24)

Suppose that for every � � 5[�������!��� - = b�� each q
A " &  � '

k is increasing. Then, by induction, the coefficients

of the � -representation of
� & 2 '

q
�
b
�

are nonnegative integers and so are the coefficients of �  2%� k � . However,

if q has an active pair
� � ' � � 'KkE# � , there exits p

A#" &  & � c #
' '
k with � ' � � 'KkQ# and � 'KkE# � � ' (� 23� � 2 for5 4� ( � ( n��

). We say p is derived from q by flipping the pair
� � ' � � ' kE# � .

In general, if p
A." &  & � c�� ' '

k derived from q by flipping the 	 distinct active pairs, then p is non-increasing,
however � & 2 '

p
�
b
�E� �q,/��� � � & 2 '

q
�
b
�!�

(25)

On the other hand, every not increasing p corresponds by means of (25) to some unique increasing q.

Let 

& j '
k denote the set of increasing elements from

" & j '
k . By induction, the coefficients of the � -representation

of
� & 2 '

q
�
b
�

are nonnegative integers for q
A 


& j0'
k . Therefore, using (25), we replace in (24) the sum over" & j '

k by a sum over 

& j '
k by introducing appropriate weights. It then remains to show that these weights are

nonnegative integers.

Let � g � q � denote the number of distinct vectors that can be derived by flipping s active pairs of q. Note that
this number depends only on the number and length of active sequences of q. Assume q consists of 	 active
sequences of lengths � #7��������� �� . Then � g � q �Q� � g � � #��������!� �� � where

� g � � # �Q�
�� � |�� � c gg ~ if � #�� s

v otherwise
and � g � � # �������!� � � �E�

gz'KJm� � ' � � # � � g c ' � �  �������!� � � �!�

Applying the addition law for binomial coefficients,

� g}� � #���������� � '��������!� ��� �E� � g}� � #V��������� � 'M,a����������� �� �5n � g c #�� � #7��������� � '$, b ��������� �� �!� (26)

In order to deal with the sum in (24) we have to take the multiplicity
�

p (p derived from q) into account.
Suppose

� v ����� is an active pair of q, so
� v ����� is a subsequence of the first active sequence of q. Then

the number of vectors derived by flipping s active pairs of q counted with multiplicity is denoted by� g �
q
�E� � g � � #��������!� �� � where

��g � � # � �  ��������� � � �`�rb � g c # � � # ,eb�� �  �������!� � � ��n � g � � # ,r�V� �  ��������� � � �!�
Note that

��g
is not symmetric, however, using (26),

��g � � # �������!� � ' �������!� � � �Q� ��g � � # ��������� � ' ,a���������Z� � � �mn ��g c # � � # �������!� � ' ,eb ��������� � � �!� (27)

Finally, let � g � q � equal
�5g �

q
�

or � g � q � depending on whether
� v ����� is an active pair of q or not. Then for5M� v ���������q� - = b��

�  2 � k �E�1w { x [yz
� J 2 z

q 4�� � ��� �k

�
q �

2 � � �
q
� � & 2 '

q
�
b
�

(28)

where

�
2 � � �

q
�E� �z ' J 2 �q,/��� � c ' |  '' k 2 ~ � � c '[� q �E� zg 4��

�q,/��� g |  � c  g� c 2 c g ~ � g � q �!�
10



In a similar manner, we have for
5$� v ���������"� { c # �

�  2 kE#7� k �Q� w
*�� �� yz
� J 2 z

q 4�� � ��� �)� �
k

�
q �

�2 � � �
q
� � & 2 '

q
�
b
�

(29)

where

�
�2 � � �

q
�E� zg 4��

�-,/��� g |  � c  glkE#� c g c 2 kE# ~ � g � q �!�
Fortunately, we don’t have to compute the weights �

2 � � , however, we have to show that �
2 � � �

q
� � v for

q
A 


&  � '
k and �

�2 � � �
q
� � v for q

A 

&  � kE#
'
k . (From the definition of � g �qi&� it is obvious that the weights

are integers). Note that q
A 


& j0'
k implies that the sum of the lengths of the active sequences of q is at most 	 .

Let

�
&
�
'2 � � � � #7��������� �� �Q� zg 4��

�q,/��� g |  � c  g� c 2 c g ~ � g � � #��������!� �� � (30)

and define �
� & � '2 � � �-i �

, �
&�� '2 � � �-i �

, �
� &�� '2 � � �qi&�

likewise.

From (26) and (30) we derive that

�
&
�
'2 � � � � #��������!� � 'h, ����������� �� �Q� �

&
�
'2 � � � � #���������� � '���������� �� ��n �

&
�
'2 � � c # � � #7��������� � '�, b���������� ��� �!� (31)

Using (31) twice, we have

�
&
�
'2 � � � � # ,r�V� �  n���������� �

�
�
&
�
'2 � � � � #V� �  ������� �5n �

&
�
'2 � � c # � � #�, b � �  ������� �M, �

&
�
'2 � � c # � � #=,r��� �  ,a��������� �!�

(32)

Assume that �
&
�
'2 � � �Pb � �

is a nonnegative integer for � � 5
. Then, by fixing

5
and induction on � and � we

derive from (31) that for v/t � t b �
�
&
�
'2 � � � � ,a��� �

�
&
�
'2 � � � � � � v � (33)

Likewise from (32) we conclude that

�
&
�
'2 � � � � #�,a��� �  n ����������� �� �=_ �

&
�
'2 � � � � #�� �  �������!� �� �

provided that � # t �  and
H � ' _+b � . Hence, under the same assumption,

�
&
�
'2 � � � � #�� �  ��������� �� � � �

&
�
'2 � � � H � '-�

which is a nonnegative integer by (33).

The same conclusions are valid for �
� & � '2 � � provided that �

� & � '2 � � �Pb � n ���
is a nonnegative integer. Furthermore,

because of (27), the above reasoning can be applied for �
&�� '2 � � and �

� &�� '2 � � . From the following Lemma 7 we
conclude

�
2 � � �

q
��A CE�

for q
A 


&  � '
k , � � 5[�������!��� - = b�� , and

�
�2 � � �

q
��A CE�

for q
A 


&  � kE#('
k , � � 5%�������!��� { c # �

,

which completes the proof.
�
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Lemma 7 Let
5[� � A C

with � � 5
. We use the above notation. Then

�
&
�
'2 � � � b � �`�

�
� & � '2 � � � b � n ���Q���

and

�
&�� '2 � � �Pb � �Q�

�
� &�� '2 � � � b � n����Q� � �

if
5d� � ,v otherwise.

PROOF. Using basic binomial coefficient identities, we have

�
&
�
'2 � � � b � � � z g �q,/��� g |  � c  g� c 2 c g ~ |  � c gg ~ � zg 8  � �-,/��� g |  � c  g� c 2 c g ~ |  � c g � c  g ~

� zg 8  � �-,/��� g |  � c g� c 2 ~ | � c 2g ~ � �q,/��� � c 2 | c #� k 2 ~ � ���

Note that
� g�� b � �Q�ab |  � c  g c #g c # ~ n |  � c  g c #g ~ � |  � c  gg c # ~ n |  � c  gg ~ . Let � f#5

. Then

�
&�� '2 � � � b � � � z g �q,/��� g |  � c  g� c 2 c g ~ � |  � c g c #g c # ~ n |  � c gg ~ � � �Qn z g �q,/��� g |  � c  g� c 2 c g ~ |  � c g c # � c  g ~

� �Qn zg 8  � c # �q,/���
g |  � c # c g� c # c 2 ~ | � c # c 2g c # ~ � �Qn��q,/��� � c 2 | c #� k 2 c # ~ � v �

and

�
&�� '
� � � �Pb � � � �Qn z g �q,/��� g |  � c # c gc # ~ | c #g c # ~ � �Qn v � ���

The identities for �
� & � '2 � � �Pb � n ���

and �
� &�� '2 � � �Pb � n����

are established in the same way.
�

Lemma 8 Let
? � - A C

and b
A C { �

. Then

� & 2 kQ#('{ �
b
�E� {z �jKJm� bd� j ��	 2 kE# � �

& 2 '{ kE# � & j0' � b �!�
PROOF. We use the notation from the proof of Theorem 6. For each v _ 	 _ - the set 


& j0'{ consists of the
single element

-`n � , � 	 � . Note that
� { kE# � & j ' � �

and
� v ����� is an active pair of

-Qn � , � 	 � . Furthermore,-`n�� , � 	 � constists of one active sequence of length 	 . Hence, by (28) and Lemma 7,

�  2 � - �E� w { x [yz
� J 2 z

q 4�� � ��� �* �
q �
&�� '2 � � �

q
� � & 2 '

q
�
b
�`� w { x [yz

� J 2 �
�2 � � �Pb � � � & 2 '{ kE# � &  � ' � b �Q� � & 2 '{ kQ# � &  2 ' � b �

and likewise by (29)

�  2 �0- �E� w
*�� �� yz
� J 2 � �

�2 � � � b � n���� � & 2 '{ kE# � &  � kE#(' � b �E� � & 2 '{ kE# � &  2 kQ#(' � b �!�
Hence

� & 2 kQ#('{ �
b
� � w { x [yz �2 Jm� bd�  2 ��	 � � & 2 '{ kE# � &  2 ' � b ��n w

*�� �� yz 2 Jm� bd�  2 kE# ��	 � � & 2 '{ kQ# � &  2 kE#
' � b �
� {z �j Jm� bd� j ��	 2 kE# � �

& 2 '{ kQ# � & j ' � b ���
�

12



4 Number of Real Zeros of Sparse Polynomials

One of the basic results in the theory of orthogonal polynomials is that the zeros of these polynomials are
all real, simple and lie in the interval of orthogonality. By Theorem 2 the sign of the coefficients of the� -representation of

< � � a equals sgn
�
a
�
, hence,

< � � a does not vanish when the indeterminates take values
in either

�q,.) �!,/�[�
or � ���%) �

. Furthermore, the standard Vandermonde matrix is nonsingular for distinct
indeterminates. We conclude

Theorem 9 The generalized Vandermonde matrix over � is nonsingular provided that the indeterminates
take distinct values from either

�-,.)���,/�%�
or � �V�*)+�

.

As an application, we answer the question posed by Lakshman and Saunders [5] about the relationship of the
number of real roots of a polynomial and its sparsity with respect to the Chebyshev basis.

Theorem 10 The number of real zeros of a nonvanishing polynomial in the interval � �V�*)+�
(or

�-,.)���,/�%�
)

does not exceed its sparsity with respect to � .

PROOF. Let G 4� v be an � -sparse polynomial with � -representation

G ��	 �E�
�z' JE# L ' � ��� �P	 �

with a
� � 	 # ����������	 � � A C � �

. Assume that there exists distinct
	 # ���������
	 � A � ���%) �

such that G ��	 ' � � v
for ( �N�V��������� � . Then ��

�
� � � ��	 # � ����� � � � ��	 # �

...
...� ��� ��	 � � ����� � � � ��	 � �

� �
� i

��
� L #

...L �

� �
� �

��
� v

...v

� �
� �

Note that the left-hand side matrix is nonsingular by Theorem 9. Therefore,
� L # �������!� L � � �

0 and G � v ,
contradicting the assumption.

�

5 VC Dimension of Sparse Polynomials

Given a set
�

and a finite subset
"

, a collection
�

of subsets of
�

shatters
"

if for every subset
�

of
"

there is
a L A �

with
� � L�� " . The Vapnik-Chervonenkis dimension of the class

�
is the largest (possible infinite)

integer � such that some set
"�� �

of cardinality � is shattered by
�

. If the VC dimension of
�

is finite,
�

is
called a VC class.

This notation was introduced by Vapnik and Chervonenkis [9] to give sufficient conditions on a class
�

of
events so that the relative frequency of an event in the class converges to its probability. Recently, the VC
dimension proved to be useful in the field of uniform and distribution-free learnability. In fact, it turns out
that the VC classes are exactly the concept classes which are learnable in Valiant’s so-called PAC model of
learning [8] (cmp. [2] for this relationship as well as for bounds on the sample complexity in terms of the VC
dimension).

Let 	 be a collection of real-valued functions on a set
�

. Let pos
��
D, 	 � denote the collection of all sets

pos
��
 , G �E�N�!	 A � ]�
 , G �P	;�=f v � for G A 	 . We identify the VC dimension of 	 with the VC dimension

of pos
��
e, 	 � .

Wenocur and Dudley [10] proved that for vector spaces 	 of real-valued functions the VC dimension of
pos

��
 , 	 � coincides with the vector space dimension of 	 . The VC dimension of general collections of
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real-valued functions might therefore be thought of as a measure of the degree of freedom in the absence of
an underlying vector space structure.

Let
� �� � � �=� 	F� denote the set of univariate polynomials with O -sparse 0 -representation. A labeling of a

finite set
" � �  is a mapping ��� "��� � v ���l� . A polynomial G A � �� � is said to satisfy the labeling � on

"
if� �q�P	�� 
M�q�Q�����
	 
Df G ��	 � for every

��	�� 
$��A "
. Hence, the set

"
is shattered by

� �� � if there is a satisfyingG�� A � �� � for every labeling � of
"

. For a fixed set
"

of cardinality � we may identify the set of all labelings
of
"

with
� v ���l�� .

In [4] Karpinski and Werther prove linear bounds on the VC dimension of sparse polynomials over the
standard power basis. In this section we extend their result to sparse polynomials over the Chebyshev basis.

Theorem 11 The VC dimension of
� � � � on � �V�*)+��� � equals

b O and is infinite on
�q,/��������� � .

Theorem 11 follows from the three lemmas below. The first lemma gives a lower bound on the VC dimension
of sparse polynomials over arbitrary polynomial sets.

Lemma 12 Let 0 � � 0�2 � be an arbitrary polynomial set. For any O A1C
and

/ A � there exists a
set

" � � � /M�%) ��� � of size
b O that is shattered by polynomials of degree less than

b O and O -sparse 0 -
representation.

PROOF. We prove the statement by induction on O .
Let O � �

. Then 0 � ��	 � � L and 0 # � 	F	un � . We may assume
	af v . It is easily verified that the set" # � ���0/d� 0 # � /��$nB���!���0/Xn�� � � 0 # �0/5�mn��\�[� is shattered by the

�
-sparse polynomials G �!� ��	 �`� 0 # � /��$n�� ,G �l# �P	 �E� 0 # � /��mnDb

, G #-� �P	;�E� 0 # ��	 � , and G #!# �P	 �Q� 0 # � /5�M,r�
, each of degree at most 1.

For purpose of induction let s � b O and assume that
" � � ����	 ' � 
 ' �%� ' JE# � ����� � g is shattered by the set� � �@� G � � � 4�� � � #���� of O -sparse polynomials of degree at most s ,+�

. We assume that the leading coefficients
of 0 g and 0 glkE# are positive.

We construct the set
" � kE# by adding a set

"�� �\�P	 glkQ#7� 
MglkE#����!��	 glk  � 
Mglk  �%� , 	 g t 	 glkE# t 	;glk  to" � . We will specify
"

such that
"

is shattered by a set  � �"!�#�� # 4�� � � #�� � of
�
-sparse polynomials of

degree at most s n �
with the following property: For each labeling ��� AD� v ���l� g � � v ���l�Z the polynomialG � n$!%#

satisfies � on
" � and � on

"
. Hence the set

" � kE# � " �'& " of size
b O n+b

is shattered by the set� � kQ#3�N� G n(!.] G A � � �)!uA  � . Note that each G A � � kE# is O n �
-sparse and of degree at most s n��

.

To be more precise we define * 'Q�$+�,.-/ 4�021 ] G ��	}'-�d, 
m'Z]
for ( �N�V��������� s and * 'E�3+�,.-4 465 ]7! ��	}'*�$, 
m'Z]
for ( � s n ��� s nDb

. Since 9;:!< � G � trs � G A � � there exists a constant L A � k such that

8/ 4�0 1 ] G �P	;��]�_ L ] 0 g c #���	 ��]

for
	 f 	 g

. Clearly, the above requirement is fulfilled if
]7! # �P	 ' ��] t * '

for � A � v ���l�Z and ( � ����������� s andL ] 0 g c # ��	 ' ��] t * '
for ( � s n ��� s nob

. Let

L ��� � # +�,.-
� � � ��������� �9 � �7: � � � 8

* '
] 0 g ��	}'-��] and L �l# � # L �!� �

Now we set
!��!�1� L ��� 0 g ,

!F�7#N� L �l# 0 g , and
! #�#N� v . By definition

];!<#$�P	}'-��] t * '
for � �� v � v ���!� v �������!�-�V����� and ( � ����������� s . Since 9 :!< � 0 g��ef 9;:�< � 0 g c #�� there exists a

	�glkE#oA � such that
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!F�7#7��	 glkE#�� � � L ] 0 g c #7�P	;glkQ#���] and 0 g;�P	 �.f ] 0 g c #7��	 ��] for
	 fS	 glkE#

. Let

MglkE#/� b L ] 0 g c #���	 glkE#���] . We

set L #-� � +�,.- � # +�,.-
� � � ������� � �9 � �%� �7: � � � 8

* '
] 0 glkE# �P	 ' ��]

� L ] 0 g c #7��	 glkE#!��]] 0 glkE# ��	 glkE# ��]��
and

!�#-� � L #-� 0 glkE# . Note that
];! #*����	}'-��] t * '

for ( �N���������Z� s and
]7!�#-���P	 glkE#���]-n L ] 0 g c #l��	 glkE#!��]�_ 
$glkQ#

.
Hence

* glkE# f L ] 0 g c #7��	 glkE#!��] .
Since 9;:!< � 0 glkQ#��uf 9 :!< � 0 gF� there exists a

	 glk  A � such that
!��l#���	 glk  � � !F�!�F��	 glk  � . Let


MglkE# �# ��!F�!����	 glk  ��n3! #-�F��	 glk  �q� . Then
* glk  f L ] 0 g c #7��	 glk  ��] and the claimed properties are established.

�

The upper bound depends on the number of real roots of sparse polynomials.

Lemma 13 Let
" � � ���%) ��� � be a set shattered by

� � � � . Then
] "5]F_+b O .

PROOF. Let
"�� ����	 ' � 
 ' �%� 'KJE# � ����� �  ,

/ _ 	 # t 	  t ����� t 	  , be a set of points shattered by
� � � � .

Let G # � G  A � � � � satisfy the two alternating labelings � # � �*��� v ����� v �������&� and �  � � v ����� v ������������� . Then� � � G # , G  � is
b O -sparse. Furthermore,

� ��	 ' �Mi � ��	 ' kE# � tSv for ( ������������� � ,r�
, forcing

�
to have at least

� ,r�
real roots in the interval

��	 # ��	  ��� � ���*)+�
. By Theorem 10, � ,a� t b O . �

Lemma 14 The class
� � � � is of infinite VC dimension on

�q,/��������� � .

PROOF. We construct for each � A C
a set

" � � �q,/�V����� � � of size � shattered by � � � � � # .
Let

	 A �q,/�������
. Then

� 2 �P	;�`�SR�T\U�� ?XWZY%R�R�T\U[��	 �q�
. Note that

� 2 �P	;�`�N�
if
	X��R�TVU!�  g2 ! � for some s A C

and� 2 �P	 � t �
otherwise.

Let � ' f@b
, ( �I����������� � , denote distinct prime numbers and let

	 ' � R�TVU�� � � ! � , ( �I����������� � . For each

labeling � A � v ���l� � we define
? � � � �'KJE# � �

& ' '' . Then for all � A � v ���l� � ,

� 2�� �P	 ' �E� � � b
� ' ! � b s? � ! for some s A C � � ' ]Z? � � � � ( �Q���

and
� 2 � �P	}'-� t �

if � � ( �/� v . Define
* f v such that

� 2 � �P	�'*� t � , *
for all labelings � and all ( with� � ( �>� v . Let

" � �1�\��	}'����3, * �[��'KJQ# � ����� � � . Then for each � A+� v ���l� � ,
� 2 � satisfies � on

" � , i.e. the set" � is shattered by � .
�
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