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Abstract

It isawell known fact that the generalized Vandermonde determinant can be expressed as
the product of the standard Vandermonde determinant and a polynomia with nonnegative
integer coefficients. In this paper we generalize this result to Vandermonde determinants
over the Chebyshev basis. We apply this result to prove that the number of real roots in
[T,00] of areal polynomial is bounded by the number of its nonvanishing coefficients
(sparsity) when represented over the Chebyshev basis. This bound on the number of real
rootsisusedto provefinitenessof the Vapnik-Chervonenkisdimension (and thereby uniform
learnability) of the class of polynomials of bounded sparsity over the Chebyshev basis.
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1 Introduction

More than a century ago, Michell [6] proved the striking result that the determinant of the generalized
Vandermonde matrix over the standard power basis S = {1,x,x?, ...} can be represented as the product of
the standard VVandermonde determinant and a polynomial with nonnegative integer coefficients.

One of the most important consequences of Michell’s result is the nonsingularity of the generalized Van-
dermonde matrix when the indeterminates take on positive and distinct values. Thisin turn is equivalent to
the fact that the number of positive real roots of a polynomial over the real numbersis strictly less than its
sparsity (the number of nonvanishing monomials) with respect to S. This result also follows immediately
from Descartes' Rule of Signs.

These results provide major tools for the recent developmentsin the area of interpolation [1] and learnability
[4] of sparse polynomialsover thereals. Numerousgeneralizationsof this setting are proposed in theliterature
and have attracted alot of attention. One natural question concernsthe common propertiesof real polynomials
which have a sparse representation in bases of R[x] other than the standard power basis S.

In this paper we study real polynomials that admit sparse representations in the Chebyshev basis 7 =
{To(x), T1(x), ...} where Ti(x) is the i-th Chebyshev polynomial of the first kind. The main result of the
paper states the analogy of Michell’s theorem for the Chebyshev case. An immediate consequence of this
result is the nonsingularity of Vandermonde matrices over 7 provided that the indeterminates take distinct
vaues from either [1, c0) or (—oo, —1].

As an application, we answer the question posed by L akshman and Saunders [5] about the relationship of the
number of real roots of a polynomial and its sparsity with respect to the Chebyshev basis. In fact, the number
of real zeros of a polynomial, either to the left or to the right of the interval of orthogonality, does not exceed
its sparsity with respectto 7.

The bound on the number of real roots is used to prove tight lower and upper bounds on the Vapnik-
Chervonenkis dimension of the class of polynomials of bounded sparsity over the Chebyshev basis. Surpris-
ingly, these bounds coincide with the bounds given in [4] for the standard power basis.

2 Preliminaries and Notation

A polynomial set isasequence ® = {®, }nen, in which deg(®,) = n for all n € Ny. Every polynomial
set @ represents a basis for the polynomia ring R[x]. Hence every polynomia f € R[x] can uniquely be
represented as a finite linear combination over ¢, i.e. f = Y I, c;®; with ¢; € R and n = deg(f). This
representation is called the ®-representation of f. As usual, we say that f is t-sparse with respect to & if at
most t of the coefficients of the $-representation of f are non-zero. The notation generalizesin the usual way
to multivariate polynomials.

The Chebyshev polynomials are a special case of orthogonal polynomials, distinguished by their particular
simplicity. The n-th Chebyshev polynomial of thefirst kind T,,(x) is defined by

Tn(x) = cos(narccosx), |x| <T.
The Chebyshev polynomials admit avery simple three term recursion formula:
To(x) =1, Ti(x) = x, Ta(x) = 2xTro1(x) — Thoa(x) forn > 1.
In the following we will frequently use the fact that
Te(x) - Tu(x) = 3 (Tiea(x) + Tje—y (¥),
therefore, we define Ty (x) = T_x(x), k < 0 for smplicity of notation. It isawell known fact that
[n/2]

Ta(x) = ) (=171 =)
=0



On the other hand the T -representation of powers of x is given by

[n/2 |
1 Z_ l (fﬂ/TZLT—i-i) Tai(x) if n even,
2“-_ Xn = L-:L_/gJ (1)

;0 (pn/2141) T2ie1(x)  ifnoodd,

where )_’ denotes a sum with the first term halved. For the general theory of orthogonal polynomials the
reader isreferred to Szegd's classical textbook [7].

Let & be a polynomia set and a = (aq,...,a,) avector of distinct nonnegative integers. The general-
ized Vandermonde determinant Vg a(x1,...,xn) over ¢ is defined as the determinant of the generalized
Vandermonde matrix

<I>a](x1) @aZ(X]) Cban(X])
4"1] (Xz) éaz (Xz) e 4"1“ (Xz)
Bo,(xn) Bas(n) ... Ba. (o)

where the x; are indeterminates. Note that the number of indeterminates of Vs , is given by the length of a.
Let n denote the vector (0,1,...,n — 1). Then Vs » isthe (standard) Vandermonde determinant over &.

Leta = (a1,...,an) € Nj. We say that a isincreasing if a1 < ... < an. If a consists of distinct
entries there exists a permutation 7w € Sy, such that m(a) = (an(1),- .., Ax(n)) isincreasing and we define
sgn(a) = sgn(m). Letb = (ay,,...,a;,) with1 <i; < ... < i, <n.Thena\b € Ny~" denotes the
vector (a1,...,Qi;—1,0i,41,--+,Qi,—1, i +1,.--,0an). ANy increasinga = (ai,..., an) can bewritten
uniquely asa=n 4\ b for someincreasingb = (by,...,b,) € Nj with b, < a,,. We call the entries of
b thegapsin a.

3 Generalized Vander monde Deter minant

Let ® be apolynomial set and a € N . Note that the Vandermonde determinant Vg , over ¢ vanishes when
xi = x; for somei # j. Since Vs » viewed asapolynomial inx,, isof degreen — 1 anditszerosarex,, = x;
for 1 <1i < nthereexistsaconstant cs n, depending only on € and n such that

Ve n=—Cen H (x5 — x4). 2
1<i<j<n
Hence, Vs aisdivisibleby Vs ,, inthe polynomial ring Rx1, ..., x] and we write
Psa= Vs a/ Ve n. (3
Note that Vi a(x1,...,%n) = SON(7) Ve a(Xr(1), - - - Xm(n)) fOr any permutation 7 € S, since a transpo-

sition in 7t corresponds to interchanging two rows in the Vandermonde matrix. Hence, Ps 5 is a symmetric
polynomial in (x1,...,xn). Likewise, Vs o = SgN(7) Vg (5 and therefore Pg o = sgn(7) Pe (5 for any
permutation € S,,.

Using our notation we restate Michell’s theorem:

Theorem1 Let S = {1,x,x2,...}. For any n € N and any increasing a € Nj the coefficients of the
S-representation of Ps 5 are nonnegative integers.

In this section we extend Michell’s result to the Chebyshev basis.



Theorem 2 Let 7 denote the Chebyshev basis. For any n € N and any increasinga € N the coefficients of
the 7 -representation of P, are nonnegative integers.

Evans and Isaacs [3] give a very elegant and simple proof of Theorem 1. Their proof is by induction on the
number of indeterminates, however, the proof relies on the homogeneity of Ps a.

Itiseasy to seethat P75 is not homogeneousin general, so we cannot use their ideasin the Chebyshev setting.
Instead, we will use an induction on the number of gapsin the index vector a. This approach isused in [11]
to study the coefficients of the S-representation of Ps ». It turns out that these techniques, which only use the
symmetry of Ps 5, can be transferred to the Chebyshev basis. However, the proof of Theorem 2 involves a
lot of technical details. Therefore, we sketch the alternative proof of Theorem 1 to provideaguidelinefor the
more complicated proof of Theorem 2.

3.1 Vandermonde deter minants over the power basis

In this section we give a proof of Theorem 1 which, in contrast to the proof given by Evans and Isaacs, does
not depend on the homogeneity of Ps a.

Since Ps 5 isasymmetric polynomial it can be written as a polynomial of the elementary symmetric polyno-

n)

mials. Let o3’ = ox(x1,...,%n) denote the k-th elementary symmetric polynomial in the indeterminates
X1yeooyXn, i.e

(©_J 0 ifk#0 () _ o) 4 n=)

oy —{] if k = 0, oy Xn Oy + o 4

forn € N,k € Z. Notethat o{™ = 0 fork > n or k < 0 and that

TT0c— ) ZU“"(“)“ )
i=1

For anincressingvectora = (ar,..., an) € Nj wewill denotethenumber of gapsinabyr,i.ea=n+r\b
for someb = (by,...,b,) € Nj. The proof of Theorem 1 isby inductiononr.

Letr = 0. Then a = n and the statement of Theorem 1istrivia sincePsn = 1.

Now, assumethat r = 1. Then a hasexactly onegapanda =n + 1\ (k) for some 0 < k < n.. Note that by
expanding the last row of the standard Vandermonde matrix in n 4+ 1 indeterminates, we have

n

Vsnt1 =) (=) Vs ninao X
=0
and on the other hand by (5),
H Xnt1 —Xi) Vsn = Z(_]) Gin) XEH Vs,n

k=0

Con paring the coefficients of X1 ylelds
V = 0( )V 6
S ,n+1\(k) k S,n- ( )

Hence, Ps ni1\(k) = oi“) and the statement of Theorem 1 follows immediately from the definition (4) of
the elementary symmetric polynomials.



Let us now consider arbitrary r € N. Thena = n+ v\ b for someincreasingb = (by,...,b;) € Nj. It
turns out that for any increasing b € N,

(n) (n)

Gb] . GbT
(n) (n)
o . (0}
Vs ntn\p = det o A R (7)
US,L)—(r—U e O_S:)—(r—u

Note that (6) is a specia case of (7). In order to prove (7) (and the nonnegativity of the coefficients of the
S-representation of Ps n4r\p) We study the determinant of matrices that are slightly more general than the
matrix givenin (7).

For vectorsb, k € Nj withb = (by,...,b;) andk = (kq,..., k) let Cﬁ“)(b) be defined by

Gg)_k] . GS:)_k]
CiV(b) =det | C | ®)
GST)— L GS:)— ke

Using this notation we may rewrite (7) 8 Vs nir\p = C{™(b) Vs . Notethat C{™ (b) vanisheswhenk (or

b) does not consist of distinct entries. By expanding Cﬁ“’” ) (b) according to (4) it is straightforward to prove
that for n,r € Nand b,k € Nj,

) =Y by Y M), ©)
1=0

(1)
qESk

where SS) denotes the set of vectors q € N with distinct entries derived from k by fixing 1 entries of k
whileincreasing the other r — 1 entriesby 1. Note that for increasing k the vectorsfrom SS) areincreasing as
well. Hence, by (9) and induction on n, the coefficients of the S-representation of Cﬁ“) (b) are nonnegative
integersfor increasing b and k.

Let usnow turn to the proof of (7). For this purpose, we notethat S (11) consistsof thesingleelementr + 1\ (1).
In conseguence of (9) we obtain

CIN(b) = Y Xyt CPy oy (B). (10)
1=0

By induction on r we may assume that (7) holds for any increasing vector b € Nj andn € N. Note that the
induction basis is given by (6). Using the L aplace expansion, we have

n+4r
Vs nti4np = Z (=)™ sgn(v, b1, ..., br) Vs (npr+1\0)\(v) Xnt 1+ (11)

v=0
vE{by,...,br}

Applying the induction hypothesis and using (10) yields

VS,n+1+r\b = C(1n+])(b)'vs,n_—H

= (i"}m Cnw®) - ( i(—”“—v o{V X1 Vi)
1=0



n+4r
VSnZ( n" V(Z( ! (n) C$1)1\(1)(b)) Xn41

n+4r

Y Dmvel (v, ba, ) Vel (12)

Note that we use the fact that oﬂ,“) = 0forv > norv < 0. Equating the coefficient of x} , ; in (11) and (12)
yields

sgn(v, bq,... ,br) VS,(n+r+1\b)\(v) = C%(’V, bq,... ,b-,-) VS‘E- (13)
Let (bo,b1,...,by) € N{)“ be an arbitrary increasing vector. Note that sgn(bo, b1, ..., b;) = 1. Then (13)
yields

vS,TL—i—r—H\(bo,b] yeersbr) = 'r+‘l (bo, b1 Yooy br) VS,E
which establishes (7). Hence,
Ps.ntro = CI(b)

and Theorem 1 follows from the fact that the coefficients of the S-representation of C ﬁ“) (b) are nonnegative
integersfor increasing b and k.

3.2 Vandermonde deter minants over the Chebyshev basis

In this section we give the proof of Theorem 2.

Let usfirst compute the constant c 7y, in (2). Since Ty—1(xyn) = 2"~ 2x1~1 + O(x2~2) forn > 1, we have
CTn = 2n—207_7n_1 and cr1 = 1. Hence, CTn = 20n=1)(n=2)/2 gnq

Vi = 200-1(n=2)/2 H (x5 — Xi).

1<i<i<n
Note that N
Vrner =2 [ (e = x1) Vrm. (14)
i=1
Therefore, the coefficients of the T-representation of the polynomial 2™~ [T, (x — xi) € R[x] with
indeterminates x1, . .., x play an important role. Analogous to the case of the standard power basis S we
call these coeffici entsthe elementary symmetric polynomialsover 7 and define fri“) = T(X1,...,%n) by
o _J 0 ifk#0 (n) (n—1) (n—1) (n 1)
Ty _{ 1 ifk=o0, T = Trgr H2xn Ty + Ty (15)

forn € N,k € Z.Notethat t{™ = 0 for |k| > n and t{™ = (",

Lemma3 Letn € Ny. Then

n

A ]H X — i) Z'(—])“_k’rin) Ti(x).

k=0

PrOOF. Thecasen = Oistrivia. Letn > 0. Then, by induction,

n—1

2! ﬁ(x —xi) = 2(x—xq)2"? H(x —Xi)
i=1

i=1



-1 n—1

= /(_])n—1—kT$<n—1) ZXTk(X) + Z I(_])n—kzxn Tin—]) Tk(X)

2

k=0 k=0
n—1 n—1
DI G i PATCO R WG D i iy PR TC)
k=0 k=0
n—1

(=) * 2%, T Ti(x)
0

k=
° n— n—1
= > (=R D T +
k=-1

n

+) =D F 2k T Ti(x)
k=0

+

M

(=) R D Ti(x)
1

TM™a

R Y+ 2 ) T
1
—1)““(%15,“‘” + T(Z"_U + %Tg“_]) +2an§“_]))T1(x)

1Y o 1Y) To(x)

M:L * M-

()Y T,
0

-
I

By Lemma3 and (14) we have -
Vi = 31500 Tulknsn) Vi, (16)
k=0
and expansion according to the last row of the standard VVandermonde matrix yields
VTne1 = i (D" Vrnienag Te(xns1)- (17)

k=0
Comparison of the coefficients of Ty(xn1) in (16) and (17) establishes

Lemma4 Letn,k € Ny. Then

1M ove, ifk=o,
VTntng =
XMWV, ifk>o.

From the definition (15) it is obvious that the coefficients of the 7 -representation of TSL) are nonnegative
integers. This proves Theorem 2 for the case of vectorsa with one gap.

For the general case assume that the index vector a hasr gaps. Thena = n + v\ b for some vector b € Nj.
Similar to the representation of Vs 5 given by (7) we will provein Theorem 5 that

TS]L) TS:)
(n) (n) (m) (n)
Ty 1+ T Ty, 1 +7T
Vi minp = 5(b1) det oot ot e Vrn,  (18)
(n) (n) (n) (n)
Tor—(r=1) T Tor4(r=1) = Too—(r=1) T To,4(r—1)



where §(0) = 1 and §(bq) = 1 for by > 0. Notethat Lemma4 is aspecial case of (18).

The proof of Theorem 5 requires more technical effort than the proof of the corresponding result (7) for the
power basis S. Again, it is convenient to study the determinant of matricesthat are slightly more general than
the matrix given in (18). For this purpose we define

(n) ifl=
(n) (b) = T(n) (n) = O (19)
Ty 1+ Tpyy Otherwise.

forl,b e Ny.Letk = (kq,...,k:) € Njandb = (by,...,b,;) € Nj. Then Cﬁ“)(b) is defined by

cg‘)(b]) c@(b])
c{™(b) = det
<“)(br) “”(b)

Note that this definition of Cl((“)(b) should be distinguished from the definition (8). We choose the same
notation to point out the similarities in the proofs of Theorem 1 and Theorem 2.

Theorem 5 states that P15 is essentially given by C(I“)(b). The proof depends on the recursion formulafor
C(I“) (b) given by Lemma 8, however, we postpone Lemma 8 to the end of this section.

Theorem5 Letr € Nandb = (by,...,b;) € Ny anincreasing vector. Then

1c(b) - Vry  ifbr =0,
VT,n_—i-r\b = (20)
c™(b)-Vyn  ifby >0.

PrROOF. We provethe statement by induction on r. Note that the induction basisr = 1 isgiven by Lemma4.
Then, assume that (20) holdsfor any increasing vector b = (by,...,b,) € Ny andn € N.

By expansion according to the last row, we have

n+r
Vingiene = 2 (=)™ s9n(v,b1,...,bs) Vrgrsnon o) Tv(Xng1)-

On the other hand, by induction, Lemma 3, and Lemma 8,

Vinsrenp = COFD(D) - Vrngr
= (Z 2000y 0) Tnsn)) - (3 (=1 9 Toftnsn) V)
v=0
V(A L 0B T
v=0
LYY ) CE () ()
1=1 v=0
+ii'(— mY ) ey (0) Tuixnsn))
1=1 v=0



n+r
= Vra( ) (=17 €D 0y () To(xnsn)

v=0
T n4r
+ Z Z /(_])n_w_l Tgxn—)l C&\a)(b) Ty(xn+1)
1=1 v=1
T Nn4r
+ Z Z ! (_])n—v+l T’(VT:-)[ C%\(l)(b) Ty(Xna1 ))
1=1v=-1
¥ ( () (
= VT,E( Z(_])n—v Tg,n) C&\(o)(b) Tv(Xn-H) + %(—])n Ton C&\(O)(b) TO(xn+])
v=1
T n+r
+3 (3 1l € ) (0) To(xng)
=1 ~v=1+1
+%(_] " Tg)n) C%\(U (b) Tu(xnt1)

+3(=1)" Tg)n) C%\a)(b) T 1(xnt1)
1-1
+ 3 (P + ) L (0) TGt ))

v=1

+ Y (—1nttm C&\(l)(b) To(xn+1))
= Vra (30" P o) (0) Tolens)

+3 3 (M + 1) P 1) () To(xnt)
1=1

n+r

+ 3 (=)™ i) ) (0) Ty(xn)
v=1

T Nn4r

+3 > (S #7000 e o (0) To(enan)
1=1~v=1

n+r T

= VTrﬂZ (=)™ ( Z(_])lc{“) (v) C%\(l)(b)) Tyv(Xn+1)
v=0 1=0
n+r

= Y )R (v bey b)) Vi To(xng)-
v=0

Equating the coefficient of T (x11) yields
sgn(v, bq,..., br) V’T,(n+r+1\b)\(v) = C%(’V, bq,... ,br) V7j£. (21)

Let(bo,by,...,b) € N{,’” be an arbitrary increasing vector. Then sgn(bo, by, ..., b;) = 1 and by (21) we
have

VT,n—i—r—i—]\(bo,b] ,,,,, b,) = C%(bo,b],. '-)bT) VT,E
which completes the proof of our statement. O

Similar to the proof of Theorem 1 in the preceding section we show in Theorem 6 that the coefficients of the
T -representation of Cl((“+1)(b) are nonnegative integers for increasing b, k € Nj. Then, by Theorem 5, the



coefficients of the 7-representation of P for increasing a € INjj are nonnegative integers. This establishes
Theorem 2.

The proof of Theorem 6 usesthe following recursion formulafor c{““ ) (b) which followsimmediately from
(15) and (19). Let 1 € Ny. Then

cgn)(b) +2%n41 cgn)(b) ifl=0,
™) =19 2c07(b) + 2xnpr SV (b) + V() ifL=1T, 22)
™ () + 2xnp1 MV (B) + M (b)  iF1> 1.

Theorem 6 For any r € N and increasing b,k € Nj the coefficients of the 7 -representation of Cﬁ““)(b)
are nonnegative integers.

ProOF. Note that C{™ (b) vanishes when k (or b) does not consist of distinct entries. Expand C{™ " (b)
according (22) and collect the terms corresponding to powers of x,,41. Then

™ (p) Zzl X1 > 8CEV(b). (23)
qeS(l)

where Sm is the set of vectors g € N with distinct entries derived from k by fixing 1 entries of k while
increasing or decreasing the other r — 1 entriesby 1. The factor 8¢ isaways 1 exceptinthecase k; = 1 and
gi = 0 where 84 equals 2.

Wecdl anentry q; of q € SS) activeif q; = ki. A subsequence (qi, qi+1,-- -, q;) Of activeentries of g is
called active sequence if qi4+1 = qi + 1,442 = diy1 + 1,...,0d; = gj—1 + 1. An active pair of g isan
active sequence of length 2.

Applying (1) to (23) and collecting the coefficients of the T1(xn+1)’s, we have

[1/2]

M) = Y Y 2(m4) T2 Y 84C5Y(b)

o< 0 Q]
Leven = quk

[1/2]

+ )Y 2(m) Ta(®) Y 8,C5(b)

i =
[v/2] m ( )
n
= Zzzm-ﬂTz] ZéC
m=0 j=0 ges(™
%] m
+ 2(2M ) Toa(x) Y 84CEV(b)
m=0 j=0 qesl((2m+1)
[v/2] [r/2] -
- Z 200 (Y (2 Y 8.CcM(b))
m=j qes(kZm)
:K‘zrj(k)



1251 155
+ ) 2T2i+1(x)( I e r A Y 5ch“)(b)) (@9

j=0 m=j (2m+1)
qES,

~ ~

=:Kzj+1(k)

Suppose that for every m = j, ..., |r/2] eachq € Sﬁzm) isincreasing. Then, by induction, the coefficients
of the 7 -representation of Cg“) (b) are nonnegative integers and so are the coefficients of K;(k). However,
if g has an active pair (qi, qi+1), there exitsp € Sﬁzm_m with p; = dqiy1 and pit1 = qi (pj = qj for
j #1,1+ 1). We say p isderived from q by flipping the pair (qi, qi+1)-
In general, if p € Sﬁz(m_s)) derived from q by flipping the s distinct active pairs, then p is non-increasing,
however

i (b) = (~1)*C{V (b). (25)
On the other hand, every not increasing p corresponds by means of (25) to some uniqueincreasing g.

Let QS) denotethe set of increasing elementsfrom S,((l) . By induction, the coefficients of the 7 -representation
of Cg“)(b) are nonnegative integers for q € Qﬁl). Therefore, using (25), we replace in (24) the sum over

SS) by a sum over QS) by introducing appropriate weights. It then remains to show that these weights are
nonnegative integers.

Let o (q) denote the number of distinct vectorsthat can be derived by flipping k active pairs of g. Note that
this number depends only on the number and length of active sequences of q. Assume g consists of s active
sequences of lengths N1, ..., Ng. Then ax(q) = (N1, ..., Ns) where

(MR Ny >k K
ar(N1) = , and (Xk(Nh---,Ns)=Z°¢1(N1)0€k—i(Nz,---,Ns)-
0 otherwise i=0
Applying the addition law for binomial coefficients,
(Xk(N1,...,Ni,...,NS) = ock(N1,...,Ni— 1,...,NS) + (Xk_1(N1,...,Ni—2,...,NS). (26)
In order to deal with the sum in (24) we have to take the multiplicity 5, (p derived from q) into account.
Suppose (0, 1) is an active pair of g, so (0,1) is a subsequence of the first active sequence of g. Then

the number of vectors derived by flipping k active pairs of q counted with multiplicity is denoted by
Bx(q) = Bx(N1,...,N;) where

ﬁk(N],Nz,...,NS) =Zock_1(N1 —2,N2,...,NS) + Ock(N] — ],Nz,...,NS).
Note that 3y is hot symmetric, however, using (26),
Br(Nq, ...y Nyt y)Ng) = Bre(Nq, o o, Ny = 1,000 Ng) + Br—1(N1, ..., Ny — 2,..., Nyg). (27

Finally, let v« (q) equal B«(q) or ax(q) depending on whether (0, 1) is an active pair of q or not. Then for
j=0,...],1/2]

[r/2]
Kyk)= Y > 8qwjm(a)C{M(b) (28)
m=j qu(kZm)
where .
Wi m(@) =Y (D)™ () ymoi(@) = Y_(-D* (225 vi(a).
i=j keZ

10



In asimilar manner, we haveforj =0,... |, %

LTI
Kri(k)= Y Y sqwj (@) Ci(b) (29)

m=j qEQ(ZnH-I)

where
=Y (DF A2 ve(a).
kEZ
Fortunately, we don’t have to compute the weights w;, m, however, we have to show that w;,m (q) > 0 for
qe Qﬁzm) and wj . (q) > 0forq e Qﬁzmﬂ). (From the definition of v (-) it is obvious that the weights

areintegers). Notethat g € QS) impliesthat the sum of the lengths of the active sequences of q isat most 1.
Let

Wi (N1, Ng) = 3 (=1 (Zm52%) (N1, ..., N) (30)
keZ

anddefmew'(“)() w(B)(), /(ﬁ)()ervVISG
From (26) and (30) we derive that

W (N7, N =T, Ng) = @l (N, N N + ol (Ng, L N =2, 000 Ng). (3D)

)

Using (31) twice, we have

w{® (N7 = 1,N3 + 1
)m N; 2+ ,)
= @ (N1,Ng, )+l (NT=2,N2, ) =l (Ng =1, N2 = 1,..). (3D

J,m

Assume that w(“) m(2m) isanonnegative integer for m > j. Then, by fixing j and induction on m and N we
derivefrom (31) that for0 < N < 2m

WS (N =1) > w{® (N) > 0. (33)

Likewise from (32) we conclude that
Wi (N1 = 1,N2 + 1, Ng) < @l (N1, N2, o NY)

provided that N7 < N, and )~ N; < 2m. Hence, under the same assumption,

which isanonnegativeinteger by (33).
The same conclusionsarevalid for w; ("‘)  provided that w'(“) (2m+ 1) isanonnegativeinteger. Furthermore,

because of (27), the above reasoning can be applied for w(ﬁ) and w'(ﬁ) From the following Lemma 7 we
conclude

wWim(@) €Ny forge QP™, m=j,...,[r/2), and

W@ €N forge Q™ m=j,...,[3],

which completes the proof. O
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Lemma7 Letj, m € Nwithm > j. We use the above notation. Then
(oc) w'(® =
m(@m) =w J(2m+1) =1
and
1 ifj=m

(B) m(2m) = (5)(2m+ D= { 0 otherwise.

ProOF. Using basic binomial coefficient identities, we have

w®@Em) = Y EDENZNETY = > EDRENN ()

k k<2m
= 2 CDEREICD) = (0T ) = 0
k<2m
Notethat B (2m) = 2(*™ 27 ") + (*™27") = (777 + (*™.%%). Let m > j. Then
wfim@m) = 3 ENEEEZ () () = 1 DRI G
k
= 1+ ) EDEESIOET) = D ) = 0
k<2m-—1
and
WEm) = T+ DR = o= 1
The identities for w}%)(2m + 1) and w/(¥)(2m + 1) are established in the same way. O

Lemma8 Letn,r € Nandb € Nj. Then

c(™(b) Z 2Ty (xn41) r+1\<1)(b)

PROOF. We use the notation from the proof of Theorem 6. For each0 < 1 < rtheset Q (11) consists of the
single element  + 1\ (1). Note that 8,,.4\(1y = T and (0, 1) is an active pair of r + 1\ (1). Furthermore,
T+ 1\ (1) constists of one active sequence of length 1. Hence, by (28) and Lemma 7,
[r/2] [r/2]
Ky(m)= Y > 8qwifi(@)c§(b) = Z WP (2m) CEP)\ oy (0) = CEP 5y (B)
m=j geQ™

and likewise by (29)

Ka;(r) = w;(&m(zm-i_ 1) C&\(zm_m)(b) = Cg\(zj_m)(b)-
m=j
Hence
Lr/2] - L5 .
ClD() = D "2To00) Cii 2y (0) + D 2T2541(x) Cih (25419 (D)
j=0 j=0
= > 2Tilxn1) € (D)
1=0
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4 Number of Real Zeros of Sparse Polynomials

One of the basic results in the theory of orthogonal polynomialsis that the zeros of these polynomials are
all real, smple and lie in the interval of orthogonality. By Theorem 2 the sign of the coefficients of the
T -representation of P74 equals sgn(a), hence, P75 does not vanish when the indeterminates take values
in either (—oo, —1] or [1, 00). Furthermore, the standard VVandermonde matrix is nonsingular for distinct
indeterminates. We conclude

Theorem 9 The generalized Vandermonde matrix over 7 is nonsingular provided that the indeterminates
take distinct values from either (—oo, —1] or [1, c0).

As an application, we answer the question posed by Lakshman and Saunders [5] about the relationship of the
number of real roots of a polynomial and its sparsity with respect to the Chebyshev basis.

Theorem 10 The number of real zeros of a nonvanishing polynomial in the interval [1, co) (or (—oo, —1])
does not exceed its sparsity with respectto 7.

PROOF. Let f # 0 be an m-sparse polynomia with 7 -representation
f(x) =Y ciTa,(x)
i=1

witha = (a1,...,am) € N§*. Assume that there exists distinct x1,...,xm € [1,00) such that f(x;) = 0
fori=1,...,m. Then

Ta](X]) . Tam(X1) Cq 0

Ta,(xm) o Ta,.(xm) Cm 0
Note that the left-hand side matrix is nonsingular by Theorem 9. Therefore, (c1,...,cm) = 0and f = 0,
contradicting the assumption. O

5 VC Dimension of Sparse Polynomials

Givenaset X and afinite subset S, acollection C of subsets of X shatters S if for every subset T of S thereis
ac € Cwith T = c N S. The Vapnik-Chervonenkis dimension of the class C is the largest (possible infinite)
integer d such that someset S C X of cardinality d is shattered by C. If the VC dimension of C isfinite, C is
caled aVC class.

This notation was introduced by Vapnik and Chervonenkis[9] to give sufficient conditions on a class C of
events so that the relative frequency of an event in the class converges to its probability. Recently, the VC
dimension proved to be useful in the field of uniform and distribution-free learnability. In fact, it turns out
that the VC classes are exactly the concept classes which are learnable in Valiant's so-called PAC model of
learning [8] (cmp. [2] for this relationship aswell as for bounds on the sample complexity in terms of the VC
dimension).

Let F be a collection of real-valued functions on a set X. Let pos(y — F) denote the collection of all sets
pos(y — f) = {x € X|y —f(x) > 0} for f € F. Weidentify the VC dimension of F with the VC dimension
of pos(y — F).

Wenocur and Dudley [10] proved that for vector spaces F of real-valued functions the VC dimension of
pos(y — F) coincides with the vector space dimension of F. The VC dimension of general collections of
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real-valued functions might therefore be thought of as a measure of the degree of freedom in the absence of
an underlying vector space structure.

Let P+ C R[x] denote the set of univariate polynomials with t-sparse ®-representation. A labeling of a
finiteset S C R? isamapping o : S — {0,1}. A polynomial f € Ps ; issaid to satisfy thelabeling o on S if
o((x,y)) =1 <y > f(x) for every (x,y) € S. Hence, theset S is shattered by Ps . if thereisasatisfying
fo € Ps « for every labeling o of S. For afixed set S of cardinality d we may identify the set of all labelings
of S with {0, 1}4.

In [4] Karpinski and Werther prove linear bounds on the VC dimension of sparse polynomials over the
standard power basis. In this section we extend their result to sparse polynomials over the Chebyshev basis.

Theorem 11 TheVC dimension of P on[1,00) x R equals2t and isinfiniteon (—1,1) x R.

Theorem 11 follows from the three lemmas below. Thefirst lemmagives alower bound on the VC dimension
of sparse polynomialsover arbitrary polynomial sets.

Lemmal2 Let = {®,,} be an arbitrary polynomia set. For any t € N and b € R there exists a
set St C [b,o0) x R of size 2t that is shattered by polynomials of degree less than 2t and t-sparse $-
representation.

PROOF. We prove the statement by induction on t.

Lett = 1. Then $p(x) = c and ®; = ax + d. We may assume a > 0. It is easily verified that the set
S1={(b,&1(b) +1),(b+ %, & (b) + 3)} is shattered by the 1-sparse polynomiasfoo(x) = €1(b) + 4,
fo1(x) = ®1(b) + 2, f19(x) = ®1(x), and f11(x) = ®1(b) — 1, each of degree at most 1.
For purpose of induction let k = 2t and assume that Sy = {(xi,Ui)}i=1,...,x iS shattered by the set
Fi = {fo}oeqo,13+ Of t-sparse polynomials of degreeat most k — 1. We assume that the leading coefficients
of & and $y.41 are positive.
We construct the set S¢41 by adding aset S = {(%k+1,Ykt1)s (Xk+2,Yk+2)}, Xk < Xkg1 < Xiy2 1O
St. We will specify S such that S is shattered by a set G = {gy}yeqo,132 Of 1-sparse polynomials of
degree at most k + 1 with the following property: For each labeling oy € {0,1}* x {0, 1}? the polynomial
fe + gy satisfieso on Sy andy on S. Hence the set S¢41 = S¢ U S of size 2t + 2 is shattered by the set
Fir1 ={f+g|f€F,ge G}. Notethat each f € Fryq ist + 1-sparse and of degreeat most k + 1.
To be more precise we define

ei = min [f(xi) —yi

€kt

fori=1,...,kand
€ = IQIQIG1|9(X1) — Vi

fori=%k+ 1,k + 2. Sincedeg(f) < k, f € F; there existsaconstant c € R* such that

Vo f(x)] < @k (x)]
feF,

for x > x. Clearly, the above requirement is fulfilled if g (xi)| < e; fory € {0,1}?andi =1,...,kand
c|€I>k_1(xi)| < eifori=k+1,k+2. Let

Coo = % zmin I and Co1 = %Coo.

Now we set goo = coo Pk, go1 = co1 ®x, and g1 = 0. By definition |gy(Xi)| < ¢ fory =
(0,0),(0,1),(1,1) and i = 1,...,k. Since deg(®x) > deg(®k-1) there exists a xx4+1 € R such that
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901 (xk+1) > 3¢ |Px—1(xk+1)] @and &y (x) > |Px—1(x)| for x > xyr1. L&t Yrp1 = 2¢|Px—1(xk+1)]. We
set

Cio = min{ 1 min ci C|‘i>k_1(xk+1)| }
z gy D% [ @i ()7 Pret (xiet1)|
and g1o = c19 $x+1. Notethat |g1o(Xi)| <egfori=1,...,kand |g1o(Xk+1)| +c |‘§k—1 (Xk+1)| < Yks1-

Hence €Ex+1 >C |<1>k_1 (Xk+1 )|

Since deg(®xt1) > deg(®y) there exists a xi+2 € R such that go1(xi+2) > goo(Xk+2). L€t yrp1 =
%(goo(tz) + g10(xk+2))- Then ey > ¢|®x—1(xk+2)| and the claimed properties are established. O

The upper bound depends on the number of real roots of sparse polynomials.
Lemma 13 LetS C [1,00) x R beaset shattered by Pr¢. Then |S| < 2t.

ProoF. Let S = {(xi,ui)}i=1,....a, b < X1 < X2 < ... < xq, be a set of points shattered by Pr .
Let f1,f, € Pr, satisfy the two aternating labelings o1 = (1,0,1,0,...) and 0, = (0,1,0,1,...). Then
F = (f1 — f2) is 2t-sparse. Furthermore, F(x;) - F(xi4+1) < O0fori=1,...,d — 1, forcing F to have at least
d — 1redl rootsintheinterval (x1,xq4) C [1,00). By Theorem10,d — 1 < 2t. O

Lemma 14 Theclass Py isof infiniteVCdimensionon (—1,1) x R.

ProoF. We construct for eachm € Naset Sy, C (—1,1) x R of sizem shattered by 7 = Pr1.

Letx € (—1,1). Then T (x) = cos(n arccos(x)). Notethat T,(x) = 1 if x = cos(2:m) for somek € N and
Ta(x) < 1 otherwise.

Letp; > 2,1 =1,...,m, denote distinct prime numbers and let x; = cos(%n), i=1,...,m. For each

labeling o € {0,1}™ wedefinen, = [T, p?™. Thenforal o € {0, 1}™,

2 2k
T..(x)=1 < ;nz L forsomekeN <& pi|ns, & o(i)=1
and T _(xi) < 1if o(i) = 0. Define € > 0 such that T, _(xi) < 1 — e for all labelings o and all 1 with
o(i) = 0. Let Sy, = {(xi,1 — €)}i=1,...,m. Thenfor each o € {0,1}™, T,, satisfies 0 on Sy, i.e. the set
S isshattered by 7. O
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