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Abstract

This paper is concerned with training an agent to perform sequential behavior. In previous work we have been
applying reinforcement learning techniques to control a reactive robot. Obviously, a pure reactive system is limited
in the kind of interactions it can learn. In particular, it can only learn what we call pseudo-sequences, that is
sequences of actions in which the transition signal is generated by the appearance of a sensorial stimulus. We discu
the difference between pseudo-sequences and proper sequences, and the implication that these differences have
training procedures. A result of our research is that, in case of proper sequences, for learning to be successful th
agent must have some kind of memory; moreover it is often necessary to let the trainer and the learner communicate
We study therefore the influence of communication on the learning process. First we consider trainer-to-learner
communication introducing the concept of reinforcement sensor, which let the learning robot explicitly know
whether the last reinforcement was a reward or a punishment; we also show how the use of this sensor induces tt
creation of a set of error recovamles. Then we introduce learner-to-trainer communication, which is used to
disambiguate indeterminate training situations, that is situations in which observation alone of the learner behavior
does not provide the trainer with enough information to decide if the learner is performing a right or a wrong move.
All the design choices we make are discussed and compared by means of experiments in a simulated world.
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1. Introduction

This paper is concerned with the application of evolutionary reinforcement learning to the
development of agents that act in a given environment.

Machine learning techniques have been widely adopted to shape the behavior of autonomou
agents in partially unpredictable environments. Most often, agents are viewedctise
systemsthat is as systems whose actions are completely determined by current sensorial input
Several works in the literature, both theoretical and experimental, show that reactive systems ca
learn to carry out fairly complex tasks (see for example Mahadevan & Connell, 1992; Dorigo &
Colombetti, 1992); however, there are interesting behavioral patterns that just cannot be
exhibited by reactive systems, in that they are not determined by current perceptions alone.

An important class of non-reactive tasks is the claseqtiential behavior patternghat is
behaviors in which the decision of what action to perform at timenfluenced by the actions
performed in the past. The problem of learning sequential behavior has been tackled by Singf
(1992) in the context of Q-learning. In this paper, we present a different approach to the problem
of learning sequential behavior patterns, viewed as the result of coordinating separately learnet
basic behaviors (Colombetti & Dorigo, 1992).

The work presented here is part of a wider research effort aimed at developing agents capabl
of complex behavior through both explicit design and machine learning. In our research, which
has a strong experimental orientation, we AS€CSYS a software tool designed by Dorigo
(1992). ALECsYsallows one to implement an agent as a network of interconnected modules,
each of which is a learning classifier system (Booker, Goldberg & Holland, 1989). The system,
which runs in parallel on a network of transputers, has been connected to both simulated agent
and physical robots. The behavior of agents implemented thrdugbsysis shaped through a
supervised reinforcement scheme, that is through reinforcements provided by an external traine
observing the agent’s behavior.

Our general methodology is the following. First, we define an environment, an agent, and a
target behavior pattern that we want the agent to exhibit in the environment. Then we design &
sensorimotor interface and a modular control architecture for the agent; typically, we use a
hierarchical architecture where lower level modules are in charge of implementing basic reactive
responses, and higher level modules are in charge of coordinating such responses to execute t
overall task. We also design a training policy, i.e. a strategy to train the agent, and implement the
trainer as a computer program in charge of giving reinforcements to the agent. Finally, we plan
and execute a number of experiments to see whether the target behavior emerges, and to analy
the effect of different design choices on the agent’s performance.



In this paper we present the results of a research aimed at developing sequential behavior in
simulated agent. In particular, we concentrate on the problem of coordinating previously learned
basic behaviors in such a way that a sequential behavior pattern will emerge. In Section 2, we
define some technical terminology and situate the problem of sequential behavior in the contexi
of a general approach to the development of autonomous agents. Section 3dbgefiges
ALECSYS In Section 4 we define the agents, the environment and the behavior patterns on which
we have carried out our experimentation, and specify our experimental plan. In Section 5 we
describe the two different training strategies which we used in our experiments. In Section 6, we
report the results of a number of simple experiments. Concluding remarks are given in Section 7.

2. Reactive and dynamic behavior

As we have already pointed out, the simplest class of agents is tlkactVe systems.e. agents
which react to their current perceptions (Wilson, 1990; Littman, 1992). In a reactive system, the
action af) produced at timeis a function of the sensorial input)séit timet:

at) = f(s0).

As argued by Whitehead & Lin (1993), reactive systems are perfectly adequderkov
environmentsi.e. when:

» Thegreedy control strategys globally optimal. This means that choosing the locally optimal
action in each environmental situation leads to a course of actions that is globally optimal.

» The agent hasomplete knowledgef both the effects and the costs (or gains) of each possible
action in each possible environmental situation.

In this case, there are well-known learning schemes, like Q-learning (Watkins, 1989; 1992), that
are demonstrably able to discover the optimal control strategy through experience. In other
words, a learning reactive agent can improve its performance so that it asymptotically converges
to the optimal control strategy.

Although fairly complex behaviors can be carried out in Markov environments, very often an
agent cannot be assumed to have complete knowledge about the effects and/or the costs of i
own actions. Non-Markov situations are basically of two different types:

» Hidden-state environmenta hidden statds a part of the environmental situation that is not
accessible to the agent, but is relevant to the effects and/or to the costs of actions. If the
environment includes hidden states, a reactive agent cannot choose an optimal action; fo
example, a reactive agent cannot decide an optimal movement to reach an object that it doe
not see.



» Sequential behaviolSuppose that at tintean agent has to choose an action as a function of
the action performed at tinte1l. A reactive agent can perform an optimal choice only if the
action performed at time-1 has some characteristic and observable effect atttithat is
only if the agent can infer which action it performed at tirte by inspecting the environment
at timet. For example, suppose that the agent has to put an object in a given position, and thet
to remove the object. If the agent is able to perceive that the object is in the given position, it
will be able to appropriately sequence the placing and the removing actions. However, a
reactive agent will be unable to act properly at tiriie

- the effects of the action performed at tithd cannot be perceived by the agent at time
(this is a subcase of the hidden-state problem); or:

- no effect of the action performed at titrel persists in the environment at time

To develop an agent able to deal with non-Markov environments, one must go beyond the simple
reactive model. We say that an agendlysamicif the actiona(t) it performs at tim¢ depends

not only on its current sensorial inpgt), but also on itstate x(t) at timet; in turn, such state

and the current sensorial input determine the state at+itie

af) = f(s@).x(1); 1)
X(t+1) = g(sO).x(1).

In this way, the current action can depend on the past history.

Agent’s states can be calledternal states to distinguish them from the states of the
environment. They are often regarded as memories of the agent's past, or as representations of t
environment; however, in spite of their rather intuitive meaning, termsnlikenory or
representationcan easily be used in a confusing way. Take for example the packing task
proposed by Lin & Mitchell (1992) as an example of non-Markov problem:

“Consider a packing task which involves 4 steps: open a box, put a gift into it, close it, and seal it.
An agent driven only by its current visual percepts cannot accomplish this task, because when
facing a closed box the agent does not know if the gift is already in the box and therefore cannot
decide whether to seal or open the box.”

It seems that the agent needs to remember that it has apegdyift into the box. In fact, the
agent must be able to assume one of two distinct internal states, say 0 and 1, so that its controlle
can choose different actions when the agent is facing a closed box. We can associate state 0

1 In automata theory, this definition corresponds to a class of automata knowtealy machinegMcCluskey,
1986).



“the box is empty”, and state 1 to “the gift is in the box”. Clearly, the state must switch from 0 to
1 when the agent puts the gift into the box. But now, the agent's state can be regarded:

» as amemoryof the past action “put the gift into the box;” or:

» as arepresentatiorof the hidden environmental state “the gift is in the box.”

Probably, the choice of one of these views is a matter of personal taste. But consider a differen
problem. There are two distinct objects in the environment, say A and B. The agent has to react
A, touch it, then reach B, touch it, then reach A again, touch it, and so on. In this case, provided
that touching an object does not leave any sign on it, there is no hidden state in the environmer
to discriminate the situations in which the agent should reach A from the ones in which it should
reach B. We say that the environmerfoigjetful in that it does not keep track of the past actions

of the agent. Again, the agent must be able to assume two distinct internal states, 0 and 1, so th
its task is to reach A when in state 0, and to reach B when in state 1. Such internal states canni
be viewed as representations of hidden environmental states, because these do not exis
However, we still have two possible interpretations:

* internal states armemoriesof past actions: 0 means that B has been touched, and 1 means
that A has been touched,;

 internal states argoals determining the agent's current task: state 0 means that the current
task is to reach A, state 1 means that the current task is to reach B.

The conclusion we draw is that terms likeemoryrepresentationand goal, which are very
commonly used for example in artificial intelligence, often involve a subjective interpretation of
what is going on in an artificial agent. The temternal state borrowed from systems theory,
seems to be neutral in this respect, and it describes more faithfully what is actually going on in
the agent.

In this paper, we are concerned with internal states that keep track of past actions, so that th
agent's behavior can follow a sequential pattern. In particular, we are interested in dynamic
agents possessing internal states by design, and learning to use them to produce sequenti
behavior. The idea is that the dynamics of the agent’s state will act as a kind of action plan, able
to enforce the correct sequencing of actions. However, this intuitive idea must be taken with
some care.

Let us observe that not all behavior patterns that at first sight appear to be the based on a
action plan are necessarily dynamic. Consider for example an exanigarding behaviaran
agent leaves its nest, chases and grasps a prey, brings it to its nest, goes out for a new prey, e
This apparently dynamic behavior can be produced by a reactive system, whose stimulus



response associations are described by the following production rules (where only the mosi
specific production whose conditions are satisfied is assumed to fire at each cycle):

Rule 1: - move randomly
Rule 2: not grasped & prey ahead - move ahead
Rule 3: not grasped & prey at contact - grasp

Rule 4: grasped & nest ahead - move ahead

Rule 5: grasped & in nest - drop.

In fact, we ran several experiments showing that a reactive agent implemented mggvAacan
easily learn to perform similar tasks.

It is interesting to see why the behavior pattern described above, while merely reactive,
appears as sequential to an external observer. In fact, if instead of the agent’s behavior we
consider the behavior of the global dynamic system constitutedhéyagent and the
environmentthe task is actually dynamic. The relevant states are the states of the environment,
which keeps track of the effects of the agent’'s moves; for example, the effects of a grasping
action are stored by the environment in the form of a grasped prey, which can then be perceive:
by the agent. In the following, we shall cabeudo-sequencettose tasks performed by a
reactive agent that are sequential in virtue of the dynamic nature of the environment, and we shal
reserve the terrmproper sequencér tasks that can be executed only by dynamic agents, in virtue
of their internal states.

Let us rephrase the above considerations. As it has already been suggested in the literatut
(see for example Rosenschein & Kaelbling, 1986; Beer, 1993), the agent and the environmen
can be viewed as a global system, made up by two coupled subsystems. For the interactions «
the two subsystems to be sequential, at least one of them must be properly dynamic, in the sen:
that its actions depend on the subsystem’s state. The two subsystems are not equivalent, howevt
because while the agent can be shaped to produce a given target behavior, the dynamics of tt
environment is taken as given, and cannot be trained. It is therefore interesting to see whether th
only subsystem that can be trained, that is the agent, can contribute to a sequential interactio
with states of its own: this is what we called a proper sequence.

In this paper, instead of experimenting with sequences of single actions, we have focused or
tasks made up of a sequenceptfases where a phase is a subtask which may involve an
arbitrary number of single actions. Again, the problem to be solved is: how can we train an agent
to switch from the current phase to the next one on the basis of both the current sensory input an
knowledge of the current phase?



One important thing to be decided is when the phase transition should occur. The most
obvious assumption is thatmnsition signalis produced by the trainer or by the environment,
and is perceived by the agent. Clearly, if we want to experiment on the agent’'s capacity to
produce proper behavioral sequences, the transition signal must not itself convey information
about which should be the next phase.

3. Thelearning system

ALECSYSis a tool to develop learning agents. UshigeCsYS the learning “brain” of an agent
can be designed as the composition of many learning behavioral modules. Some of these
modules, which we calbasic behaviorsare directly connected with sensorial and actuatorial
routines, and their task is to learn responses to external stimuli. In some architectural
organizations, namely in hierarchical architectures, we define a second kind of modules, called
coordination behaviorswhose main task is to learn to coordinate other behaviors. Coordination
modules are connected to lower-level modules, both basic and coordination ones, and can eithe
choose which of the actions proposed by connected modules should be given priority, or
compose such actions into a complex behavioral response.

There are different ways in which behavioral modules can be put together to build a learning
system. In a recent study we have investigated a number of them (Dorigo & Colombetti, 1992),
which we briefly summarize below.

» Monolithic architecture In this architecture (see Figure 1) there is only one learning module
which is in charge of learning all the behaviors necessary to accomplish the task. It is the mos:
straightforward way of building a learning system, but it is not very efficient. In fact, it was
the inefficiency of this approach which first motivawdidtributedarchitectures.

 Distributed architecturedsin these architectures the system designer first analyzes the learning
agent task and then splits it up into simpler tasks. Each of these tasks is then implemented as
monolithic architecture. Usually the simpler tasks identified by the system designer have an
intuitive correspondence with the notionatbmic behavioral modujehat is of a behavioral
module which cannot be reasonably further decomposed. After atomic behavioral units are
identified they must be interconnected to build the complete learning system; this can result in
two different kind of architectural organizations, which are listed in the following.

- Flat architectures|In flat architectures all the behavioral modules are basic behaviors, that
is they are directly interfaced with the environment. In case two or more behavioral modules
produce homogeneous responses (e.g., they control the same movement actuators) the



actions are composed by an appropriate composition module (see Figure 2a); otherwise the
just send their responses to the appropriate actuators (see Figure 2b).

- Hierarchical architecturesin this case a hierarchy of behavioral modules is used to build
the learning system. Beside basic behaviors, which directly connect the system to the
external world, there are coordination behaviors, which are in charge of coordinating basic
and other coordination modules. Figure 3 shows an example of a possible architecture of ar
agent implemented usingLECSYS In this case we have three basic behaviors and two
coordination behaviors. C1 is in charge of coordinating B1 and B2, while C2’s task is to
coordinate C1 and B3. For example C2 could decide that whenever C1 and B3 are
proposing some action, C1 should have priority. In turn, C1 could learn to compose the
actions proposed by B1 and B2 into an intermediate action. Say B1 proposed a movement ir
direction —10° and B2 a movement in direction +30°; then C1 could have learnt to mediate
the two proposals in a +20° movement (other solutions are possible in which the two
proposed actions are given different weights).
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Figure 1. Monolithic architecture.

— Lcs > (+) @ LCS 4 i cs LCS
| [
v LA J
envi r onnent | envi r onnent |
a b

Figure 2. Flat architectures.

—>
: ‘
Bl—CP_BZ B3
i +_‘r v T

Figure 3. An example of hierarchical architecture obtainable witlEBSYS



In ALECSYS, every single module is an enhanced version (see Dorigo, 1993) of a learning
classifier system (CS) as proposed for example by Booker, Goldberg & Holland (1989). CSs are
a rather complex paradigm for reinforcement learning. Functionally, they can be split in three
components. The first one, called therformance systenis a kind of parallelproduction
system; its role is to map input sensations into output actions. In the current versi@tsf 3,

the performance system is a reactive system, in that internal messages are not allowed an
therefore the system cannot remember past actions.

The second and third components, tredit apportionmentand the rule discovery
components respectively, are the learning components of a CS. The task of the credit
apportionment subsystem is to evaluate rules in the rule base so that useful rules are ranke
higher than less useful ones. For each rule a variable, saigatyth measures the usefulness of
the rule as evaluated by the credit apportionment subsystem. Strength is changed by means «
redistribution of reinforcements received by the CS as feedback for actions performed. The
algorithm we used is an extended version oftiheket brigadgHolland, 1986) which has been
presented in details elsewhere (Dorigo, 1993). Since reinforcements are received at each ste
from an external trainer,l&ACSYSis asupervisedeinforcement learning system.

The third components is the rule discovery subsystem, whichBT#YSis implemented by
means of a genetic algorithm (GA). Genetic algorithms are a kind of evolutionary algorithm first
proposed by Holland (1975). They work applying so-called genetic operators to a population of
individuals which code solutions to a given problem. In the context of machine learning, most of
the time individuals are rules and genetic operators mutate and recombine rules to produce new
hopefully more useful, ones. New rules, which overwrite low strength rules in the population, are
tested and retained in case they demonstrate their utility to the learning system performance.

The main strengths of GAs are that:

* They can be easily implemented on a parallel computer (e.g., see Spiessens & Manderick
1991).

» They are very efficient in recombining rule components, favoring the reproduction, and
therefore the survival, of those components which are more often contained in rules with a
higher than average strength. It has been proven that the number of structures which ar
processed by the GA at every cycle is much greater than the number of individuals in the
population (Booker, Goldberg & Holland, 1989; Bertoni & Dorigo, 1993).

« They seem to be only slightly sensitive to the precision with which the usefulness of
individuals, i.e. their strength, is evaluated. This is important because strength, which is
evaluated by the bucket brigade, is only a rough indicator of good performance.



In ALECSYS, the GA is called when the apportionment of credit system has reached a steady
state, i.e. when the strengths of rules in the population tend to be stationary (this property is
monitored at runtime). It works applying in sequence the crossover and the mutation operators
(Goldberg, 1989) and returning the modified population (Figure 4). More details about the actual
implementation can be found in (Dorigo, 1993).

function GA(Pop);
Pop <- Crossover(Pop);
Pop <- Mutate(Pop);
return

Figure4. The genetic algorithm.

4. Experimental settings

When planning an experiment, the environment, the agent, and the target behavior must be
designed together. Such entities are introduced here separately for descriptive convenience only.

4.1 Environment

What is a good experimental setting to show that proper sequences can emerge? Clearly, one
which: (i) agent-environment interactions are sequential, and (ii) the sequential nature of the
interactions is not due to states of the environment. Indeed, under these conditions we have th
guarantee that the relevant states are those of the agent. Therefore, we have carried out our initi
experiments on sequential behavior in forgetful environments, that is in environments that keep
no track of the effects of the agent’s move.

Our environment is basically an empty space containing two objects, that we respectively call
A and B (Figure 5). The distance between A and B, which lie on a bidimensional plane in which
the agent can move freely, is approximately 100 forward steps of the agent. In some of the
experiments, both objects emit a signal when the agent enters a circular area of predefine
radium around the object (shown by the dashed circles in the figure).
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4.2 The agent’s “body”

The agent is a simulation of a simple mobile robot, which is intended to play the role of an
artificial organism, and is thus called tA@imat(see Wilson, 1987). The Animat's sensors are
two on/off eyes with limited visual field of 18@nd an on/off microphone. The eyes are able to
detect the presence of an object in their visual fields, and can discriminate between the twc
objects A and B. The visual fields of the two eyes overlap By€iDthat the total angle covered
by the two eyes is 270and is partitioned in three areas of 8ach (see Figure 5).

The Animat's actuators are two independent wheels that can si#lyestill, move one or two
steps forward, or one step backward.

4.3 Target behavior

The target behavior is the following: the Animat should approach object A, then approach object
B, then approach object A, and so on. (A more complex target behavior has been adopted in th
experiment reported in Section 7.) This target sequence can be represented by the regule
expression §B}*, where we denote by the behavioral phase in which the Animat should
approach object A, and fythe behavioral phase in which the Animat should approach object B.
We assume that the transition from one phase to the next should occur when the Animat's
microphone senses a sound, which acts as a transition signal. This signal tells the Animat that i
is time to switch to the next phase, but does not tell it which phase should be the next.
Concerning the production of the transition signal, there are basically two possibilities:

» external-based transitianthe transition signal is produced by an external source (e.g., the
trainer) independently of the current interaction between the agent and its environment;

» result-based transitianthe transition signal is produced when a given situation occurs as a
result of the agent’s behavior; for example, a transition signal is generated when the Animat

A
O

»

B
®

Figure5. The environment for sequential behavior.
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has come close enough to an object.

The choice between these two variants corresponds to two different intuitive conceptions of the
overall task. If we choose external-based transitions, what we actually want from the Animat is
that it learns to switch phase each time we tell it to. Instead, if we choose result-based transitions
we want the Animat to achieve a given result, and then to switch to thepimese. In fact,
suppose that the transition signal is generated when the agent reaches a given threshold distan
from A or from B. This means that we want the agent to reach object A, then to reach object B,
and so on. As we shall see, the different conception of the task underlying this choice influences
the way in which the Animat can be trained.

It would be easy to turn the environment described above into a Markov environment, so that
a reactive agent could learn the target behavior. For example, we could assume that A and B ar
two lights, which are alternatively switched on and off, exactly one light being on at each
moment. In this case, a reactive Animat could learn to approach the only visible light, and a
pseudo-sequential behavior would emerge as an effect of the dynamic nature of the environment

4.4 The agent’s controller and sensorimotor interfaces

For the o 3}* behavior we implemented two agents with different control architectures. We used
a monolithic architecture, and a two-level hierarchical architecture (see Section 3). In this paper
we report the experiments performed with the latter, which gave better results.

The two-level hierarchical architecture was organized as follows. Basic modules consisted of
two independent CSs, that we shall call;Gid CS, respectively in charge of learning the two
basic behaviorsx and 3. The coordinator consisted of one CS, in charge of learning the
sequential coordination of the lower level modules.

The input of each basic module represents the relative direction in which the relevant object is
perceived. Given that the Animat's eyes partition the environment into four angular areas, both
modules have a 2-bit sensory word as input. At any cycle, each basic module proposes a motc
action, which is represented by 4 bits coding the movement of each independent wheel.

Coordination is achieved by choosing for execution exactly one of the actions proposed by the
lower level modules. This choice is based on the value of a 1-bit word, that represents the interna
state of the agent, and that we therefore callstta¢e word The effect of the state word is
hardwired: when its value is 0, the action proposed hy i€ 8xecuted; when the value is 1, it is
CSg that wins.

The coordinator receives as input the current value of the state word, and 1 bit representing th:
state of the microphone; this bit is set to 1 at the rising edge of the transition signal, and is equa
to 0 otherwise. The possible actions for the coordinator are: (i) set the state word to 0, and (ii) se
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the state word to 1. The task that the coordinator has to learn is to maintain the same phase if n
transition signal is perceived, and to switch phase each time a transition signal is perceived.

The basic controller architecture is described in Figure 6. Viewed as a dynamic system, it is a
Mealy machine (see Equations 1, Section 2), in that at eacht¢yloéesensory input atand the
value of the state word &fointly determine both the action performed @nd the value of the
state word at+1.

4.5 Experimental design

For each experiment reported in this paper we ran twelve independent trials, starting from
random initial conditions. Each trial included:

» abasic learning sessionf 4,000 cycles, in which the two basic behaviorand 3 were
learned;

» acoordinator learning sessioaf 12,000 cycles, in which learning of basic behaviors was
switched off and only the coordinator was allowed to learn;

» atest sessionf 4,000 cycles, where all learning was switched off and the performance of the
agent was evaluated.

In the learning sessions, the agent’s performanggnR) at cyclet was computed for each
trial as:

Number of correct actions performed from cyclelto cyclet
t

Plearn(t) =

where an action is considered as correct if it is positively reinforced. The graplagft)Hor a
single trial is called dearning curve In the test session, the agent’s performange: B

< coordi nat or

E

CSq CcSp

- —

transition posi tion posi tion action
si gnal of A of B

Figure 6. Controller architecture of the Animat.
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measured for each trial as a single number:

Number of correct actions performed in the test session
4000

Prest=

For each experiment we shall show the coordinator learning curve of a single, typical trial, and
report the mean and standard deviation of the twelwg \Ralues for: (i) the two basic behaviors
(o andp); and (ii) the two coordinator’s taske@intainandswitch). It is important to remark
that the performance of the coordinator is judged from the overall behavior of the agent. That is,
the only information available to evaluate such performance is whether the agent is actually
approaching A or approaching B; no direct access to the coordinator’s state word is allowed.
Instead, to evaluate the performance of the basic behaviors it is also necessary to know at eac
cycle whether the action performed was suggested gyo€By C$; this fact is established by
directly inspecting the internal state of the agent.

Finally, to compare the mean performances of a pair of experiments we use the two-tailed t
test, computing the probability p that the samples produced by the two experiments are drawr
from populations with the same mean performance.

5. Training policies

We view supervised reinforcement learning as a mechanism to translate a specification of the
agent's target behavior into a control program that realizes it (Dorigo & Colombetti, 1992). As
the translation process takes place in the context of agent-environment interactions, the resultini
control program is highly sensitive to features of the environment that would be very difficult to
model explicitly in a handwritten program (Dorigo & Colombetti, 1993).

As usual in the field, reinforcements are provided to our learning agent by a computer
program, that we call theeinforcement prograniRP): it is the RP that embodies a specification
of the target behavior. We believe that an important quality an RP should possess is to be highl
agent independentn other words, we want the RP to base its judgments on high-level features
of the agent’s behavior, without bothering too much about the details of such behavior. In
particular, we want the RP to be as independent as possible from internal features of the agen
which are unobservable to an external observer. This requirement is reminiscent of the well
known methodological principle advocated by behaviorism, which states that only observable
variables should be considered in behavior theory. In our case, there are no methodologica
preoccupation of this sort, also because in principleaveobserve the internal states of artificial
agents. However, the very same requirement seems to be a sensible engineering principle. In fac
an RP which is independent of events that are internal to the agent will be more abstract, gener
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and portable to different agents; in particular, it will be less sensitive to possible degradation of
the agent’s hardware.
Let us consider thed3}* behavior, where:

approach object A,

a
B

The transitions from to B and fromf to a should occur whenever a transition signal is

approach object B.

perceived.

The first step is to train the Animat to perform the two basic behaviarslf3. This is a fairly
easy task, given that the basic behaviors are instances of approaching responses, that can
produced by a simple reactive agent. The only difficulty is due to the fact that the Animat’s world
has hidden states: in fact, when an object is behind the Animat, it cannot be seen. The probler
has been solved by training each CS to turn the Animat when it does not see the relevant objec
This training technique and its results have been described elsewhere (see for example Dorigo ¢
Colombetti, 1992).

After the basic behaviors have been learned, the next step is to train the Animat's coordinato
to generate the target sequence. Before doing so, we have to decide how the transition signal is-
be generated. We have experimented with both external-based and result-based transitions.

5.1 External-based transitions

Let us assume that coordinator training starts with pbagée trainer rewards the Animat if it
approaches object A, and punishes it otherwise. At random intervals, the trainer generates
transition signal. After the first transition signal is generated, the Animat is rewarded if it
approaches object B, and punished otherwise; and so on.

Let us now suppose that in phasgand without any transition signal, the Animat changes
behavior. Clearly, as soon as the Animat starts approaching B, the trainer will give a punishment,
because a change of phase occurred in absence of a transition signal. But then suppose that t
Animat goes on approaching B. What should the trainer do? It would be incoherent to go on
punishing the Animat, because it is now doing well: in fact, it is persisting with the same
behavior in absence of a transition signal.

On the basis of these considerations, we have applied what wefleadibde reinforcement
program (RPyex), that is:

 start with phase;

» in phasex, reward the Animat if it approaches A, and punish it otherwise; in hasevard
the Animat if it approaches B, and punish it otherwise;
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» change phase at each transition signal;

« if the Animat appears to change behavior in absence of a transition signal, punish it but change
phase;

» analogously, if the Animat appears not to change behavior in presence of a transition signal,
punish it but restore the previous phase.

The rationale of this reinforcement program is that the trainer punishes an inadequate treatmer
of the transition signal, but rewards coherency of behavior. Experiments 1, 2, and 3 (next section
have been run using R&.

5.2 Result-based transitions

Let us now suppose that the target sequential behavior is understood as follows: the agent shou
approach and reach object A, then approach and reach object B, etc. A major difference with
respect to the previous case is that a transition signal is now generated each time the agent com
close enough to an object (see the dashed circles in Figure 5). This calls for a different
reinforcement program. In fact, it no longer makes sense for the trainer to flexibly change phase
when the agent switches behavior: a phase is completed only when a given result is achieved, thi
is when the relevant object is reached.
We have therefore used a different reinforcement program, that we caligte

reinforcement prograntRPrig):

 start with phase;

* in phasex, reward the Animat if it approaches A, and punish it otherwise; in fhassvard
the Animat if it approaches B, and punish it otherwise;

» change phase at each transition signal, which is generated when the Animat gets to ¢
predefined distance from the relevant object.

This program embodies the idea that the target behavior involves reaching objects, not just
approaching them. However, the Aninaid notlearn the target behavior when trained with the
RPrig.

It is not difficult to understand why. Consider an intervalt§, in which no transition signal
is produced, and assume that the Animat erroneously changes behayviwvitit the RRig, the
Animat will be punished until it restores the previous behavior. But this means that in the interval
[t1,t2] the Animat will be punished if it keeps the same behavior, and rewarded if it changes
behavior, even if no transition signal is perceived. From the Animat's point of view, this program
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IS incoherent: maintaining the same behavior in absence of a transition signal is sometimes
rewarded, sometimes punished. In fact, thgRBwards the Animat in three diffent case%

()  when the Animat changes behavior in presence of a transition signal,

(i)  when the Animatloes notthange behavior in absence of a transition signal (provided its
current behavior is the right one) ;

(i) when the Animaidoeschange behavior in absence of a transition signal (provided its
current behavior is the wrong one).

Clearly, the problem is to make the agent distinguish between case (ii) and case (iii). To do so, il
is sufficient to know at cycl&l+1 whether the action performed at cyBlevas right or wrong;

and therefore, it is sufficient for the Animat to store the sign of the reinforcement received from
the RRyg at the previous cycle.

To allow the Animat to remember whether it had been rewarded or punished at the previous
cycle, we introduced a 1-breinforcement senspthat is a 1-bit field in the sensory interface
telling the Animat whether the previous action had been rewarded or punished. In this way, the
agent is able to develop specific behavior rules for case (iii), different from the rules for case (ii).
Experiments 4, 5, and 6 (next section) show that the Animat is able to learn the target behaviol
when trained with the Rfg, if its sensory interface includes the reinforcement sensor. We think
that the notion of reinforcement sensor is not trivial, and therefore it needs to be discussed ir
some detail.

5.3 Meaning and use of the reinforcement sensor

At each moment, the reinforcement sensor stores information about what happened in the
previous cycle, and as such contributes to the agent's dynamic behavior. Its characteristic featur
is that it stores information about the behavior of the trainer, not of the physical environment. It
may seem that such information is available to the Animat even without the reinforcement
sensor, as it is received and processed by the credit apportionment modukecsivA The

point is that information about reinforcement is not available to the Animat’s controller, unless it

is coded into the sensory interface. To speak metaphorically, an agent endowed with the
reinforcement sensor not onlgceivegeinforcements, but algeerceiveghem.

It is interesting to see how the information stored by the reinforcement sensor is exploited by
the learning process. Let the reinforcement sensor be set to 1 if the previous action was rewarde
and to O if it was punished. When trained with theigzEhe Animat will develop behavior rules
that can manage situation (iii) above, that is rules that change phase in absence of a transitio

2 Analogous cases hold for punishments.
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signal if the reinforcement sensor is set to 0. Such rules can be vieegdragcovery rulesin

that they tell the agent what to do in order to fix a previous error in phase sequencing. Rules
matching messages with the reinforcement sensor set to 1 will be oalledhl rules to
distinguish them from error recovery rules.

Without a reinforcement sensor, punishments are exploited by the system only to decrease th
strength of a rule that leads to an error (i.e., to an incorrect action). With the reinforcement
sensor, punishment are used for one extra purpose, that is to enable error recovery rule at the ne
cycle. In general, as learning proceeds less and less errors are made by the Animat, and the err
recovery rules become increasingly weaker, so that sooner or later they are removed by the
genetic algorithm.

Error recovery rules presuppose a reinforcement, and thus can be used only as far as th
trainer communicates with the agent. If the trainer is switched off to test the acquired behavior,
the reinforcement sensor must be clamped to 1, so that normal rules can be activated. This meai
that after we switch the trainer off, error recovery rules will remain silent; it is therefore advisable
to do so only after all recovery rules have been eliminated by the genetic algorithm.

In the experiments reported in this paper, error recovery rules were either eliminated before
we switched off the trainer, or they became so weak that they were practically no longer
activated. With more complex tasks, however, one can easily imagine that some error recovery
rules could maintain a strength high enough to survive and to contribute to the final behavior; in
similar situations, switching off the trainer would actually impoverish the final performance.
However, one could switch off the learning algorithm: the use of error recovery rules
presupposes that an external system gives positive or negative “judgments” about the Animat’s
actions, but does not require the learning algorithm to be active. After switching off learning, the
trainer actually turns into aadvisor, that is an external observer in charge of telling the agent,
which is no longer learning anything, whether it is doing well or not.

We still do not know whether the use of an advisor has interesting practical applications; it
seems to us that it could be useful in situations where the environment is so unpredictable, tha
even the application of the most reasonable control strategy will frequently lead to errors. In a
similar case, it would not be possible to avoid errors through further learning; error recovery
seems therefore to be an appealing alternative.

6. Experimental results

In this section we report the results of the experiments onotfg ehavior. The experiments
described are the following:
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 Experiments 1-3: sequential behavior with external-based transitions and flexible
reinforcement program.

» Experiments 4-6: sequential behavior with result-based transitions, rigid reinforcement
program and reinforcement sensor.

Experiments 1-3 and 4-6 are compared using two-tailed t-tests.

Experiment 1: External-based transitions and flexible reinforcement program

In this experiment, transition signals were produced randomly, with an average of one signal
every 50 cycles. The Animat was trained with the flexible reinforcement progray.Frgure

7 shows a typical learning curve for the coordinator learning session, and reports the mean an
standard deviation of the performances obtained in the test session out of twelve trials.

It appears that the Animat learns to maintain the current phase (in absence of a transitior
signal) better than to switch phase (when it perceives a transition signal). This result is easy tc
interpret: as transition signals are relatively rare, the Animat learns to maintain the current phase
faster than it learns to switch phase.

As a whole, however, the performance of the coordinator is not fully satisfactory. One factor
that keeps the performance of the coordinator well below 1 is that the performances of the two
basic behaviors are not close enough to 1. In fact, during the training of the coordinator an actior
may be punished even if the coordinator has acted correctly, if a wrong move is proposed by the
relevant basic CS.

1 Task a Task B
fJ\w Mean 0.9155 0.8850
0-9 1 Std. deviation 0.0656 0.1192

Performance in test session: basic behaviors

0.8 A -
- L . -
. .~ Maintain Switch
0.7 1 Maintain Mean 0.9337 | 0.8276
I 77T Switch Std. deviation | 0.0471 0.0872
0.6 3

4000

8000

12000

Performance in test session: coordination

Figure 7. Experiment 1: Learning sequential behavior with external-based transitions.
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There is however another reason why the learning of the coordination tasks is not satisfactory
RPjex cannot teach perfect coordination because there are ambiguous situations, that is situatior
where it is not clear whether the reinforcement program should reward or punish the agent. In
fact, suppose that the Animat perceives a transition signal atNydheen it is approaching A on
a curvilinear trajectory like the one shown in Figure 8, and that at bitdddt goes on following
the same trajectory. By observing this behaviorgdgeannot know whether the Animat decided
to go on approaching A, or whether it changed phase and is now turning to approach object B. A«
the agent's behavior is ambiguous, any reinforcement actually runs the risk of saying exactly the
opposite of what it is intended to.

Ambiguous situations of the type described earlier arise because the agent’s internal state is
hidden state from the point of view of the trainer. One possible solution is to make the relevant
part of this state known to RE. This was implemented in the next experiment.

Experiment 2External-based transitions, flexible reinforcement program and agent-trainer
communication

To eliminate ambiguous situations, we have simulated a communication process from the agen
to the trainer: better reinforcements can be generated if the agent communicates its state to tr
reinforcement program, because situations like the one described earlier are no longet
ambiguous.

To achieve this result, we added to the Animat the ability to assume two different observable
states, that we conventionally calblors. The Animat can be eithavhite or black, and can
assume either color as the result of an action. In turn, the trainer can observe the Animat’s colo
at any time. The basic modules are now able to perform one more action, that is to set a color bi
to O (white) or to 1 (black). In the basic learning session, the Animat is trained not only to

/
QOw

Figure 8. An ambiguous situation.
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perform the approaching behaviarsand 3, but also to associate a single color to each of them.
During the coordinator learning session, s exploits information about the color to
disambiguate the Animat’s internal state, using the agent’s color as a message.

As it emerges from the results of this experiment, reported in Figure 9, the coordinator’s
performance is slightly higher than in Experiment 1. However, this difference is only weakly
significant as regards the switch task (two-tailed t-test: p = 0.094), and it is not significant as
regards the maintain task (p = 0.340).

Experiment 3:External-based transitions, flexible reinforcement program and transfer of
behavior

Another interesting solution to the problem of ambiguous situations is based on the notion of
behavior transfer The idea is that theo{3}* behavior is based on two components: the ability to
perform the basic behaviossand3, and the ability to coordinate them in order to achieve the
required sequence. While the basic behaviors are strongly linked to the environment, the
coordination task is abstract enough to be learned in an environment, and then transferred t
another one. Therefore, we proceeded as follows:

Task a Task B
0.9 1 Mean 0.8893 0.9442
P Std. deviation | 0.0650 | 0.0509
0.8 Performance in test session: basic behaviors
I"
J" Maintain
0.7 J el Maintain Switch
. A 1 .
Switch Mean 09493 | 0.8876
0.6 Std. deviation 0.0290 0.0809

4000

8000

12000

Performance in test session: coordination

Figure 9. Experiment 2: External-based transitions and agent-trainer communication.
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| ¢

Figure 10. The 1D environment.

« The Animat learned the completei§}* behavior in a simpler environment, where the
ambiguity problem did not arise.

 Then, the Animat was then trained to perform the two basic behaviors in the target
environment.

* Finally, the coordinator rules learned in the simpler environment were copied into the
coordinator for the target task. To this purpose, we selected the rules that had the highes
performance in the simpler environment; therefore, all twelve experiments in the target
environment were run with the same coordinator.

The simpler, non ambiguous environment used for coordination training is sketched in Figure 10.
It is a 1D counterpart of the target environment: the Animat can only move to the left or to the
right on a fixed rail. At each instant, the Animat is either approaching A or approaching B: no
ambiguous situations arise.

As reported in Figure 11, the performance achieved in the 1D environment was almost perfect,
due to the simplicity of the task. Figure 12 shows the results obtained by transferring the
coordinator to an Animat that had previously learned the basic behaviors in the 2D environment.
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o /’::'__ ....... N Task o Task B
oo __,N/! Mean 0.9999 | 0.9999
_:"‘ Std. deviation | 0.0003 | 0.0002

08 i Performance in test session: basic behaviors
o] : Maintain Maintain | Switch
77T Switeh Mean 0.9996 | 0.9963
06 . . . Std. deviation 0.0012 0.0066

0 4000 8000 12000 Performance in test session: coordination
Figure 11. Experiment 3: External-based transitions in the 1D environment.

Task a Task B Maintain Switch
Mean 0.9646 0.9649 Mean 0.9615 0.9501
Std. deviation 0.0367 0.0315 Std. deviation 0.0286 0.0364

Performance in test session: basic behaviors Performance in test session: coordination

Figure 12. Experiment 3: Transferring the external-based coordinator from the 1D to the 2D environment.

As it can be seen, there was an improvement in the coordinator’s performance with respect tc
Experiment 1, weakly significant for the maintain task (p = 0.095) and highly significant for the
switch task (p = 0.0002), and also a significant improvement with respect to Experiment 2 as
regards the switch task (p = 0.023), but not as regards the maintain task (p = 0.310). As a whole
the transfer of the coordinator gave the best results.

Experiment 4: Result-based transitions and rigid reinforcement program with reinforcement
sensor

This experiment was run with result-based transitions: that is, the transition signal was generatet
each time the Animat reached an object. The target behavior was therefore conceived as: reac
object A, then reach object B, and so on. Coherently with this view of the target behavior, we
adopted the rigid reinforcement program, (fgRsee Section 5.2); the Animat was therefore
endowed with the 1-bit reinforcement sensor.

The results, reported in Figure 13, show that the target behavior was learnt; however, the
performance of the switch task was rather poor.
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Experiment 5:Result-based transitions, rigid reinforcement program and agent-trainer
communication with reinforcement sensor

This experiment is the result-based analogous of Experiment 2: the Animat was trained to assum
a color, thus revealing its internal state. The results are reported in Figure 14. Communication
significantly improved the performance of both the maintain (p = 0.016) and the switch task

(p = 0.002).

1 -
Task a Task B
e
| 4 — M 0.9451 0.9743
. .\ _— ean
\\ Std. deviation 0.0426 0.0400
0. Maintain Performance in test session: basic behaviors
[ I L CECE Switch
|
oA
AT A N . Maintain Switch
0.7 1 :: : 'I o, _ l' L
oV - Mean 0.9313 | 0.7166
- i Std. deviation 0.0528 | 0.1559
0 4000 8000 12000 Performance in test session: coordination

Figure 13. Experiment 4: Learning result-based transitions.

0.8 A ’
'I
l" ) )
o K Maintain Maintain |  Switch
R TTTTTTT Switch Mean 0.9789 0.8885
i Std. deviation | 0.0350 | 0.0788
0.6 - r r ,
0 4000 8000 12000 Performance in test session: coordination

Task a Task B
Mean 0.9838 0.9879
Std. deviation 0.0201 0.0144

Performance in test session: basic behaviors

Figure 14. Experiment 5: result-based transitions and agent-trainer communication.
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Experiment 6: Result-based transitions, rigid reinforcement program and transfer of behavior

This experiment is the result-based analogue of Experiment 3. Figure 15 shows the results
obtained in the 1D environment, an d Figure 16 gives the performances of the Animat in the 2D
environment, after transferring the best coordinator obtained in the 1D environment. The final
performances were significantly better than in Experiment 4, both for the maintain (p = 0.0009)
and for the switch task (p = 0.0001). In relation with Experiment 5, the improvement of the
switch task was weakly significant (p = 0.095), while it was not significant for the maintain task
(p = 0.2818).

L Task a Task B
Vel i [ Mean 0.9999 | 0.9999
0ol R i Std. deviation | 0.0002 | 0.0001
Performance in test session: basic behaviors
0.8 - i
Maintain Switch
. Maintain
0.7 H Mean 0.9903 0.9670
i ------- Switch
nr Std. deviation 0.0317 0.0565
0.6 “‘ T . Performance in test session: coordination
0 4000 8000 12000
Figure 15. Experiment 6: Result-based transitions in the 1D environment.
Task a Task B Maintain Switch
Mean 0.9935 0.9895 Mean 0.9903 0.9372
Std. deviation 0.0067 0.0112 Std. deviation 0.0078 0.0559

Performance in test session: basic behaviors

Performance in test session: coordination

Figure 16. Experiment 6: Transferring the result-based coordinator from the 1D to the 2D environment.

We conclude this set of experiments with Figure 17, summarizing the results of the t-tests for all
relevant pairs of experiments.
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Exp. 1 Exp. 4

/\ /\

0.340 0.095 0.016 0.0009
0.094 0.0002 0.002 0.0001
p/ 0.310 \>1 p/ 0.282 \I
Exp. 2 0.023 Exp. 3 Exp. 5 0.095 Exp. 6

Figure 17. Result of t-tests for the maintaining (above) and switching (below) tasks. Significant probability levels
are in bold. Arrows indicate the direction of increasing value of the experimental mean; e.g. the mean of Exp.1 is
lower of both the mean of Exp.2 and Exp.3.

7. Conclusions

In this paper we have presented an approach to training an agent which learns proper behavior:
sequences. Many other researchers have tackled the problem of learning sequences of actions
the realm of classifier systems (e.g., Riolo, 1989). Our work differentiate itself in that the
building blocks of our sequences are elementary behaviors instead of simple actions.

We have discussed at length the difference between pseudo- and proper sequences, and \
have shown thaALECSYS our CS-based learning system, can learn proper sequences {pseudo
sequences were discussed in previous work, see Dorigo & Colombetti, 1992).

An important aspect of our research is the attention we pose on the interplay among the
learner, the trainer, and the environment. We show that, when considering proper sequences
there are at least two kinds of transition signals which can cause a change to the next phase of t
sequence: external-based transitions and result-based transitions. To each of these transitic
modalities corresponds a training policy, the flexible and the rigid training policies respectively.
These policies require the introduction of communication features into our system:

 trainer-to-learner communication (through a reinforcement sensor, which makes explicitly
available to the learner information about the quality of its behavior);

» learner-to-trainer communication (to let the learner know what is the current state of the
learner).
Most interesting, the use of the reinforcement sensor introduces into the rule set a new kind of
rules, called error recovery rules, which are activated only in case of punishment. These rules
tend to disappear as learning goes on and performance improves.
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Finally, we have shown that the coordination task, at least in the context of our experiments, is
abstract enough that it can be learned in a simple situation, and then transferred into a mor:
demanding one.
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