
TRAINING AGENTS TO
PERFORM SEQUENTIAL BEHAVIOR*

Marco Colombetti+ Marco Dorigo#

TR-93-023

September 1993

Abstract

This paper is concerned with training an agent to perform sequential behavior. In previous work we have been
applying reinforcement learning techniques to control a reactive robot. Obviously, a pure reactive system is limited
in the kind of interactions it can learn. In particular, it can only learn what we call pseudo-sequences, that is
sequences of actions in which the transition signal is generated by the appearance of a sensorial stimulus. We discuss
the difference between pseudo-sequences and proper sequences, and the implication that these differences have on
training procedures. A result of our research is that, in case of proper sequences, for learning to be successful the
agent must have some kind of memory; moreover it is often necessary to let the trainer and the learner communicate.
We study therefore the influence of communication on the learning process. First we consider trainer-to-learner
communication introducing the concept of reinforcement sensor, which let the learning robot explicitly know
whether the last reinforcement was a reward or a punishment; we also show how the use of this sensor induces the
creation of a set of error recovery rules. Then we introduce learner-to-trainer communication, which is used to
disambiguate indeterminate training situations, that is situations in which observation alone of the learner behavior
does not provide the trainer with enough information to decide if the learner is performing a right or a wrong move.
All the design choices we make are discussed and compared by means of experiments in a simulated world.

* This work has been partly supported by the Italian National Research Council, under the "Progetto Finalizzato

Sistemi Informatici e Calcolo Parallelo", subproject 2 "Processori dedicati", and under the "Progetto Finalizzato
Robotica", subproject 2 "Tema: ALPI".

+ Progetto di Intelligenza Artificiale e Robotica, Dipartimento di Elettronica e Informazione, Politecnico di Milano,
Piazza Leonardo da Vinci, 32, 20133 Milano, Italy (e-mail: colombet@ipmel2.elet.polimi.it).

International Computer Science Institute, Berkeley, CA 94704, and Progetto di Intelligenza Artificiale e
Robotica, Dipartimento di Elettronica e Informazione, Politecnico di Milano, Piazza Leonardo da Vinci, 32,
20133 Milano, Italy (e-mail: dorigo@icsi.berkeley.edu).

2

1. Introduction

This paper is concerned with the application of evolutionary reinforcement learning to the

development of agents that act in a given environment.

Machine learning techniques have been widely adopted to shape the behavior of autonomous

agents in partially unpredictable environments. Most often, agents are viewed as reactive

systems, that is as systems whose actions are completely determined by current sensorial input.

Several works in the literature, both theoretical and experimental, show that reactive systems can

learn to carry out fairly complex tasks (see for example Mahadevan & Connell, 1992; Dorigo &

Colombetti, 1992); however, there are interesting behavioral patterns that just cannot be

exhibited by reactive systems, in that they are not determined by current perceptions alone.

An important class of non-reactive tasks is the class of sequential behavior patterns, that is

behaviors in which the decision of what action to perform at time t is influenced by the actions

performed in the past. The problem of learning sequential behavior has been tackled by Singh

(1992) in the context of Q-learning. In this paper, we present a different approach to the problem

of learning sequential behavior patterns, viewed as the result of coordinating separately learned

basic behaviors (Colombetti & Dorigo, 1992).

The work presented here is part of a wider research effort aimed at developing agents capable

of complex behavior through both explicit design and machine learning. In our research, which

has a strong experimental orientation, we use ALECSYS, a software tool designed by Dorigo

(1992). ALECSYS allows one to implement an agent as a network of interconnected modules,

each of which is a learning classifier system (Booker, Goldberg & Holland, 1989). The system,

which runs in parallel on a network of transputers, has been connected to both simulated agents

and physical robots. The behavior of agents implemented through ALECSYS is shaped through a

supervised reinforcement scheme, that is through reinforcements provided by an external trainer

observing the agent’s behavior.

Our general methodology is the following. First, we define an environment, an agent, and a

target behavior pattern that we want the agent to exhibit in the environment. Then we design a

sensorimotor interface and a modular control architecture for the agent; typically, we use a

hierarchical architecture where lower level modules are in charge of implementing basic reactive

responses, and higher level modules are in charge of coordinating such responses to execute the

overall task. We also design a training policy, i.e. a strategy to train the agent, and implement the

trainer as a computer program in charge of giving reinforcements to the agent. Finally, we plan

and execute a number of experiments to see whether the target behavior emerges, and to analyze

the effect of different design choices on the agent’s performance.

3

In this paper we present the results of a research aimed at developing sequential behavior in a

simulated agent. In particular, we concentrate on the problem of coordinating previously learned

basic behaviors in such a way that a sequential behavior pattern will emerge. In Section 2, we

define some technical terminology and situate the problem of sequential behavior in the context

of a general approach to the development of autonomous agents. Section 3 briefly describes

ALECSYS. In Section 4 we define the agents, the environment and the behavior patterns on which

we have carried out our experimentation, and specify our experimental plan. In Section 5 we

describe the two different training strategies which we used in our experiments. In Section 6, we

report the results of a number of simple experiments. Concluding remarks are given in Section 7.

2. Reactive and dynamic behavior

As we have already pointed out, the simplest class of agents is that of reactive systems, i.e. agents

which react to their current perceptions (Wilson, 1990; Littman, 1992). In a reactive system, the

action a(t) produced at time t is a function of the sensorial input s(t) at time t:

a(t) = f(s(t)).

As argued by Whitehead & Lin (1993), reactive systems are perfectly adequate to Markov

environments, i.e. when:

• The greedy control strategy is globally optimal. This means that choosing the locally optimal

action in each environmental situation leads to a course of actions that is globally optimal.

• The agent has complete knowledge of both the effects and the costs (or gains) of each possible

action in each possible environmental situation.

In this case, there are well-known learning schemes, like Q-learning (Watkins, 1989; 1992), that

are demonstrably able to discover the optimal control strategy through experience. In other

words, a learning reactive agent can improve its performance so that it asymptotically converges

to the optimal control strategy.

Although fairly complex behaviors can be carried out in Markov environments, very often an

agent cannot be assumed to have complete knowledge about the effects and/or the costs of its

own actions. Non-Markov situations are basically of two different types:

• Hidden-state environments. A hidden state is a part of the environmental situation that is not

accessible to the agent, but is relevant to the effects and/or to the costs of actions. If the

environment includes hidden states, a reactive agent cannot choose an optimal action; for

example, a reactive agent cannot decide an optimal movement to reach an object that it does

not see.

4

• Sequential behavior. Suppose that at time t an agent has to choose an action as a function of

the action performed at time t–1. A reactive agent can perform an optimal choice only if the

action performed at time t–1 has some characteristic and observable effect at time t , that is

only if the agent can infer which action it performed at time t–1 by inspecting the environment

at time t. For example, suppose that the agent has to put an object in a given position, and then

to remove the object. If the agent is able to perceive that the object is in the given position, it

will be able to appropriately sequence the placing and the removing actions. However, a

reactive agent will be unable to act properly at time t if:

· the effects of the action performed at time t–1 cannot be perceived by the agent at time t

(this is a subcase of the hidden-state problem); or:

· no effect of the action performed at time t–1 persists in the environment at time t.

To develop an agent able to deal with non-Markov environments, one must go beyond the simple

reactive model. We say that an agent is dynamic if the action a(t) it performs at time t depends

not only on its current sensorial input s(t), but also on its state x(t) at time t ; in turn, such state

and the current sensorial input determine the state at time t+11:

a(t) = f(s(t),x(t)); (1)

x(t+1) = g(s(t),x(t)).

In this way, the current action can depend on the past history.

Agent’s states can be called internal states, to distinguish them from the states of the

environment. They are often regarded as memories of the agent's past, or as representations of the

environment; however, in spite of their rather intuitive meaning, terms like memory or

representation can easily be used in a confusing way. Take for example the packing task

proposed by Lin & Mitchell (1992) as an example of non-Markov problem:

“Consider a packing task which involves 4 steps: open a box, put a gift into it, close it, and seal it.

An agent driven only by its current visual percepts cannot accomplish this task, because when

facing a closed box the agent does not know if the gift is already in the box and therefore cannot

decide whether to seal or open the box.”

It seems that the agent needs to remember that it has already put a gift into the box. In fact, the

agent must be able to assume one of two distinct internal states, say 0 and 1, so that its controller

can choose different actions when the agent is facing a closed box. We can associate state 0 to

1 In automata theory, this definition corresponds to a class of automata known as Mealy machines (McCluskey,
1986).

5

“the box is empty”, and state 1 to “the gift is in the box”. Clearly, the state must switch from 0 to

1 when the agent puts the gift into the box. But now, the agent's state can be regarded:

• as a memory of the past action “put the gift into the box;” or:

• as a representation of the hidden environmental state “the gift is in the box.”

Probably, the choice of one of these views is a matter of personal taste. But consider a different

problem. There are two distinct objects in the environment, say A and B. The agent has to reach

A, touch it, then reach B, touch it, then reach A again, touch it, and so on. In this case, provided

that touching an object does not leave any sign on it, there is no hidden state in the environment

to discriminate the situations in which the agent should reach A from the ones in which it should

reach B. We say that the environment is forgetful, in that it does not keep track of the past actions

of the agent. Again, the agent must be able to assume two distinct internal states, 0 and 1, so that

its task is to reach A when in state 0, and to reach B when in state 1. Such internal states cannot

be viewed as representations of hidden environmental states, because these do not exist.

However, we still have two possible interpretations:

• internal states are memories of past actions: 0 means that B has been touched, and 1 means

that A has been touched;

• internal states are goals, determining the agent's current task: state 0 means that the current

task is to reach A, state 1 means that the current task is to reach B.

The conclusion we draw is that terms like memory, representation and goal, which are very

commonly used for example in artificial intelligence, often involve a subjective interpretation of

what is going on in an artificial agent. The term internal state, borrowed from systems theory,

seems to be neutral in this respect, and it describes more faithfully what is actually going on in

the agent.

In this paper, we are concerned with internal states that keep track of past actions, so that the

agent's behavior can follow a sequential pattern. In particular, we are interested in dynamic

agents possessing internal states by design, and learning to use them to produce sequential

behavior. The idea is that the dynamics of the agent’s state will act as a kind of action plan, able

to enforce the correct sequencing of actions. However, this intuitive idea must be taken with

some care.

Let us observe that not all behavior patterns that at first sight appear to be the based on an

action plan are necessarily dynamic. Consider for example an example of hoarding behavior: an

agent leaves its nest, chases and grasps a prey, brings it to its nest, goes out for a new prey, etc.

This apparently dynamic behavior can be produced by a reactive system, whose stimulus-

6

response associations are described by the following production rules (where only the most

specific production whose conditions are satisfied is assumed to fire at each cycle):

Rule 1: → move randomly.

Rule 2: not grasped & prey ahead → move ahead.

Rule 3: not grasped & prey at contact→ grasp.

Rule 4: grasped & nest ahead → move ahead.

Rule 5: grasped & in nest → drop.

In fact, we ran several experiments showing that a reactive agent implemented with ALECSYS can

easily learn to perform similar tasks.

It is interesting to see why the behavior pattern described above, while merely reactive,

appears as sequential to an external observer. In fact, if instead of the agent’s behavior we

consider the behavior of the global dynamic system constituted by the agent and the

environment, the task is actually dynamic. The relevant states are the states of the environment,

which keeps track of the effects of the agent’s moves; for example, the effects of a grasping

action are stored by the environment in the form of a grasped prey, which can then be perceived

by the agent. In the following, we shall call pseudo-sequences those tasks performed by a

reactive agent that are sequential in virtue of the dynamic nature of the environment, and we shall

reserve the term proper sequence for tasks that can be executed only by dynamic agents, in virtue

of their internal states.

Let us rephrase the above considerations. As it has already been suggested in the literature

(see for example Rosenschein & Kaelbling, 1986; Beer, 1993), the agent and the environment

can be viewed as a global system, made up by two coupled subsystems. For the interactions of

the two subsystems to be sequential, at least one of them must be properly dynamic, in the sense

that its actions depend on the subsystem’s state. The two subsystems are not equivalent, however,

because while the agent can be shaped to produce a given target behavior, the dynamics of the

environment is taken as given, and cannot be trained. It is therefore interesting to see whether the

only subsystem that can be trained, that is the agent, can contribute to a sequential interaction

with states of its own: this is what we called a proper sequence.

In this paper, instead of experimenting with sequences of single actions, we have focused on

tasks made up of a sequence of phases, where a phase is a subtask which may involve an

arbitrary number of single actions. Again, the problem to be solved is: how can we train an agent

to switch from the current phase to the next one on the basis of both the current sensory input and

knowledge of the current phase?

7

One important thing to be decided is when the phase transition should occur. The most

obvious assumption is that a transition signal is produced by the trainer or by the environment,

and is perceived by the agent. Clearly, if we want to experiment on the agent’s capacity to

produce proper behavioral sequences, the transition signal must not itself convey information

about which should be the next phase.

3. The learning system

ALECSYS is a tool to develop learning agents. Using ALECSYS, the learning “brain” of an agent

can be designed as the composition of many learning behavioral modules. Some of these

modules, which we call basic behaviors, are directly connected with sensorial and actuatorial

routines, and their task is to learn responses to external stimuli. In some architectural

organizations, namely in hierarchical architectures, we define a second kind of modules, called

coordination behaviors, whose main task is to learn to coordinate other behaviors. Coordination

modules are connected to lower-level modules, both basic and coordination ones, and can either

choose which of the actions proposed by connected modules should be given priority, or

compose such actions into a complex behavioral response.

There are different ways in which behavioral modules can be put together to build a learning

system. In a recent study we have investigated a number of them (Dorigo & Colombetti, 1992),

which we briefly summarize below.

• Monolithic architecture. In this architecture (see Figure 1) there is only one learning module

which is in charge of learning all the behaviors necessary to accomplish the task. It is the most

straightforward way of building a learning system, but it is not very efficient. In fact, it was

the inefficiency of this approach which first motivated distributed architectures.

• Distributed architectures. In these architectures the system designer first analyzes the learning

agent task and then splits it up into simpler tasks. Each of these tasks is then implemented as a

monolithic architecture. Usually the simpler tasks identified by the system designer have an

intuitive correspondence with the notion of atomic behavioral module, that is of a behavioral

module which cannot be reasonably further decomposed. After atomic behavioral units are

identified they must be interconnected to build the complete learning system; this can result in

two different kind of architectural organizations, which are listed in the following.

· Flat architectures. In flat architectures all the behavioral modules are basic behaviors, that

is they are directly interfaced with the environment. In case two or more behavioral modules

produce homogeneous responses (e.g., they control the same movement actuators) their

8

actions are composed by an appropriate composition module (see Figure 2a); otherwise they

just send their responses to the appropriate actuators (see Figure 2b).

· Hierarchical architectures. In this case a hierarchy of behavioral modules is used to build

the learning system. Beside basic behaviors, which directly connect the system to the

external world, there are coordination behaviors, which are in charge of coordinating basic

and other coordination modules. Figure 3 shows an example of a possible architecture of an

agent implemented using ALECSYS. In this case we have three basic behaviors and two

coordination behaviors. C1 is in charge of coordinating B1 and B2, while C2’s task is to

coordinate C1 and B3. For example C2 could decide that whenever C1 and B3 are

proposing some action, C1 should have priority. In turn, C1 could learn to compose the

actions proposed by B1 and B2 into an intermediate action. Say B1 proposed a movement in

direction –10˚ and B2 a movement in direction +30˚; then C1 could have learnt to mediate

the two proposals in a +20˚ movement (other solutions are possible in which the two

proposed actions are given different weights).

environment

LCS

Figure 1. Monolithic architecture.

 +

 environment

LCS LCS

 environment

LCS LCS

a b
Figure 2. Flat architectures.

C2

B3B2B1

C1

environment

Figure 3. An example of hierarchical architecture obtainable with ALECSYS.

9

In ALECSYS, every single module is an enhanced version (see Dorigo, 1993) of a learning

classifier system (CS) as proposed for example by Booker, Goldberg & Holland (1989). CSs are

a rather complex paradigm for reinforcement learning. Functionally, they can be split in three

components. The first one, called the performance system, is a kind of parallel production

system; its role is to map input sensations into output actions. In the current version of ALECSYS,

the performance system is a reactive system, in that internal messages are not allowed and

therefore the system cannot remember past actions.

The second and third components, the credit apportionment and the rule discovery

components respectively, are the learning components of a CS. The task of the credit

apportionment subsystem is to evaluate rules in the rule base so that useful rules are ranked

higher than less useful ones. For each rule a variable, called strength, measures the usefulness of

the rule as evaluated by the credit apportionment subsystem. Strength is changed by means of

redistribution of reinforcements received by the CS as feedback for actions performed. The

algorithm we used is an extended version of the bucket brigade (Holland, 1986) which has been

presented in details elsewhere (Dorigo, 1993). Since reinforcements are received at each step

from an external trainer, ALECSYS is a supervised reinforcement learning system.

The third components is the rule discovery subsystem, which in ALECSYS is implemented by

means of a genetic algorithm (GA). Genetic algorithms are a kind of evolutionary algorithm first

proposed by Holland (1975). They work applying so-called genetic operators to a population of

individuals which code solutions to a given problem. In the context of machine learning, most of

the time individuals are rules and genetic operators mutate and recombine rules to produce new,

hopefully more useful, ones. New rules, which overwrite low strength rules in the population, are

tested and retained in case they demonstrate their utility to the learning system performance.

The main strengths of GAs are that:

• They can be easily implemented on a parallel computer (e.g., see Spiessens & Manderick,

1991).

• They are very efficient in recombining rule components, favoring the reproduction, and

therefore the survival, of those components which are more often contained in rules with a

higher than average strength. It has been proven that the number of structures which are

processed by the GA at every cycle is much greater than the number of individuals in the

population (Booker, Goldberg & Holland, 1989; Bertoni & Dorigo, 1993).

• They seem to be only slightly sensitive to the precision with which the usefulness of

individuals, i.e. their strength, is evaluated. This is important because strength, which is

evaluated by the bucket brigade, is only a rough indicator of good performance.

10

In ALECSYS, the GA is called when the apportionment of credit system has reached a steady

state, i.e. when the strengths of rules in the population tend to be stationary (this property is

monitored at runtime). It works applying in sequence the crossover and the mutation operators

(Goldberg, 1989) and returning the modified population (Figure 4). More details about the actual

implementation can be found in (Dorigo, 1993).

function GA(Pop);

 Pop <- Crossover(Pop);

 Pop <- Mutate(Pop);

return

Figure 4. The genetic algorithm.

4. Experimental settings

When planning an experiment, the environment, the agent, and the target behavior must be

designed together. Such entities are introduced here separately for descriptive convenience only.

4.1 Environment

What is a good experimental setting to show that proper sequences can emerge? Clearly, one in

which: (i) agent-environment interactions are sequential, and (ii) the sequential nature of the

interactions is not due to states of the environment. Indeed, under these conditions we have the

guarantee that the relevant states are those of the agent. Therefore, we have carried out our initial

experiments on sequential behavior in forgetful environments, that is in environments that keep

no track of the effects of the agent’s move.

Our environment is basically an empty space containing two objects, that we respectively call

A and B (Figure 5). The distance between A and B, which lie on a bidimensional plane in which

the agent can move freely, is approximately 100 forward steps of the agent. In some of the

experiments, both objects emit a signal when the agent enters a circular area of predefined

radium around the object (shown by the dashed circles in the figure).

11

A

B

Figure 5. The environment for sequential behavior.

4.2 The agent’s “body”

The agent is a simulation of a simple mobile robot, which is intended to play the role of an

artificial organism, and is thus called the Animat (see Wilson, 1987). The Animat's sensors are

two on/off eyes with limited visual field of 180° and an on/off microphone. The eyes are able to

detect the presence of an object in their visual fields, and can discriminate between the two

objects A and B. The visual fields of the two eyes overlap by 90°, so that the total angle covered

by the two eyes is 270°, and is partitioned in three areas of 90° each (see Figure 5).

The Animat's actuators are two independent wheels that can either stay still, move one or two

steps forward, or one step backward.

4.3 Target behavior

The target behavior is the following: the Animat should approach object A, then approach object

B, then approach object A, and so on. (A more complex target behavior has been adopted in the

experiment reported in Section 7.) This target sequence can be represented by the regular

expression {αβ}*, where we denote by α the behavioral phase in which the Animat should

approach object A, and by β the behavioral phase in which the Animat should approach object B.

We assume that the transition from one phase to the next should occur when the Animat’s

microphone senses a sound, which acts as a transition signal. This signal tells the Animat that it

is time to switch to the next phase, but does not tell it which phase should be the next.

Concerning the production of the transition signal, there are basically two possibilities:

• external-based transition: the transition signal is produced by an external source (e.g., the

trainer) independently of the current interaction between the agent and its environment;

• result-based transition: the transition signal is produced when a given situation occurs as a

result of the agent’s behavior; for example, a transition signal is generated when the Animat

12

has come close enough to an object.

The choice between these two variants corresponds to two different intuitive conceptions of the

overall task. If we choose external-based transitions, what we actually want from the Animat is

that it learns to switch phase each time we tell it to. Instead, if we choose result-based transitions,

we want the Animat to achieve a given result, and then to switch to the next phase. In fact,

suppose that the transition signal is generated when the agent reaches a given threshold distance

from A or from B. This means that we want the agent to reach object A, then to reach object B,

and so on. As we shall see, the different conception of the task underlying this choice influences

the way in which the Animat can be trained.

It would be easy to turn the environment described above into a Markov environment, so that

a reactive agent could learn the target behavior. For example, we could assume that A and B are

two lights, which are alternatively switched on and off, exactly one light being on at each

moment. In this case, a reactive Animat could learn to approach the only visible light, and a

pseudo-sequential behavior would emerge as an effect of the dynamic nature of the environment.

4.4 The agent’s controller and sensorimotor interfaces

For the {αβ}* behavior we implemented two agents with different control architectures. We used

a monolithic architecture, and a two-level hierarchical architecture (see Section 3). In this paper

we report the experiments performed with the latter, which gave better results.

The two-level hierarchical architecture was organized as follows. Basic modules consisted of

two independent CSs, that we shall call CSα and CSβ, respectively in charge of learning the two

basic behaviors α and β. The coordinator consisted of one CS, in charge of learning the

sequential coordination of the lower level modules.

The input of each basic module represents the relative direction in which the relevant object is

perceived. Given that the Animat's eyes partition the environment into four angular areas, both

modules have a 2-bit sensory word as input. At any cycle, each basic module proposes a motor

action, which is represented by 4 bits coding the movement of each independent wheel.

Coordination is achieved by choosing for execution exactly one of the actions proposed by the

lower level modules. This choice is based on the value of a 1-bit word, that represents the internal

state of the agent, and that we therefore call the state word. The effect of the state word is

hardwired: when its value is 0, the action proposed by CSα is executed; when the value is 1, it is

CSβ that wins.

The coordinator receives as input the current value of the state word, and 1 bit representing the

state of the microphone; this bit is set to 1 at the rising edge of the transition signal, and is equal

to 0 otherwise. The possible actions for the coordinator are: (i) set the state word to 0, and (ii) set

13

the state word to 1. The task that the coordinator has to learn is to maintain the same phase if no

transition signal is perceived, and to switch phase each time a transition signal is perceived.

The basic controller architecture is described in Figure 6. Viewed as a dynamic system, it is a

Mealy machine (see Equations 1, Section 2), in that at each cycle t, the sensory input at t and the

value of the state word at t jointly determine both the action performed at t and the value of the

state word at t+1.

state word

α β

coordinator

transition position position action
 signal of A of B

CS CS

Figure 6. Controller architecture of the Animat.

4.5 Experimental design

For each experiment reported in this paper we ran twelve independent trials, starting from

random initial conditions. Each trial included:

• a basic learning session of 4,000 cycles, in which the two basic behaviors α and β were

learned;

• a coordinator learning session of 12,000 cycles, in which learning of basic behaviors was

switched off and only the coordinator was allowed to learn;

• a test session of 4,000 cycles, where all learning was switched off and the performance of the

agent was evaluated.

In the learning sessions, the agent’s performance Plearn(t) at cycle t was computed for each

trial as:

Plearn(t) =
Number of correct actions performed from cycle 1 to cycle t

t

where an action is considered as correct if it is positively reinforced. The graph of Plearn(t) for a

single trial is called a learning curve. In the test session, the agent’s performance Ptest is

14

measured for each trial as a single number:

Ptest =
Number of correct actions performed in the test session

4000

 For each experiment we shall show the coordinator learning curve of a single, typical trial, and

report the mean and standard deviation of the twelve Ptest values for: (i) the two basic behaviors

(α and β); and (ii) the two coordinator’s tasks (maintain and switch). It is important to remark

that the performance of the coordinator is judged from the overall behavior of the agent. That is,

the only information available to evaluate such performance is whether the agent is actually

approaching A or approaching B; no direct access to the coordinator’s state word is allowed.

Instead, to evaluate the performance of the basic behaviors it is also necessary to know at each

cycle whether the action performed was suggested by CSα or by CSβ; this fact is established by

directly inspecting the internal state of the agent.

Finally, to compare the mean performances of a pair of experiments we use the two-tailed t-

test, computing the probability p that the samples produced by the two experiments are drawn

from populations with the same mean performance.

5. Training policies

We view supervised reinforcement learning as a mechanism to translate a specification of the

agent's target behavior into a control program that realizes it (Dorigo & Colombetti, 1992). As

the translation process takes place in the context of agent-environment interactions, the resulting

control program is highly sensitive to features of the environment that would be very difficult to

model explicitly in a handwritten program (Dorigo & Colombetti, 1993).

As usual in the field, reinforcements are provided to our learning agent by a computer

program, that we call the reinforcement program (RP): it is the RP that embodies a specification

of the target behavior. We believe that an important quality an RP should possess is to be highly

agent independent. In other words, we want the RP to base its judgments on high-level features

of the agent’s behavior, without bothering too much about the details of such behavior. In

particular, we want the RP to be as independent as possible from internal features of the agent,

which are unobservable to an external observer. This requirement is reminiscent of the well-

known methodological principle advocated by behaviorism, which states that only observable

variables should be considered in behavior theory. In our case, there are no methodological

preoccupation of this sort, also because in principle we can observe the internal states of artificial

agents. However, the very same requirement seems to be a sensible engineering principle. In fact,

an RP which is independent of events that are internal to the agent will be more abstract, general

15

and portable to different agents; in particular, it will be less sensitive to possible degradation of

the agent’s hardware.

Let us consider the {αβ}* behavior, where:

α = approach object A;

β = approach object B.

The transitions from α to β and from β to α should occur whenever a transition signal is

perceived.

The first step is to train the Animat to perform the two basic behaviors α and β. This is a fairly

easy task, given that the basic behaviors are instances of approaching responses, that can be

produced by a simple reactive agent. The only difficulty is due to the fact that the Animat’s world

has hidden states: in fact, when an object is behind the Animat, it cannot be seen. The problem

has been solved by training each CS to turn the Animat when it does not see the relevant object.

This training technique and its results have been described elsewhere (see for example Dorigo &

Colombetti, 1992).

After the basic behaviors have been learned, the next step is to train the Animat's coordinator

to generate the target sequence. Before doing so, we have to decide how the transition signal is to

be generated. We have experimented with both external-based and result-based transitions.

5.1 External-based transitions

Let us assume that coordinator training starts with phase α. The trainer rewards the Animat if it

approaches object A, and punishes it otherwise. At random intervals, the trainer generates a

transition signal. After the first transition signal is generated, the Animat is rewarded if it

approaches object B, and punished otherwise; and so on.

Let us now suppose that in phase α , and without any transition signal, the Animat changes

behavior. Clearly, as soon as the Animat starts approaching B, the trainer will give a punishment,

because a change of phase occurred in absence of a transition signal. But then suppose that the

Animat goes on approaching B. What should the trainer do? It would be incoherent to go on

punishing the Animat, because it is now doing well: in fact, it is persisting with the same

behavior in absence of a transition signal.

On the basis of these considerations, we have applied what we call a flexible reinforcement

program (RPflex), that is:

• start with phase α;

• in phase α, reward the Animat if it approaches A, and punish it otherwise; in phase β , reward

the Animat if it approaches B, and punish it otherwise;

16

• change phase at each transition signal;

• if the Animat appears to change behavior in absence of a transition signal, punish it but change

phase;

• analogously, if the Animat appears not to change behavior in presence of a transition signal,

punish it but restore the previous phase.

The rationale of this reinforcement program is that the trainer punishes an inadequate treatment

of the transition signal, but rewards coherency of behavior. Experiments 1, 2, and 3 (next section)

have been run using RPflex.

5.2 Result-based transitions

Let us now suppose that the target sequential behavior is understood as follows: the agent should

approach and reach object A, then approach and reach object B, etc. A major difference with

respect to the previous case is that a transition signal is now generated each time the agent comes

close enough to an object (see the dashed circles in Figure 5). This calls for a different

reinforcement program. In fact, it no longer makes sense for the trainer to flexibly change phase

when the agent switches behavior: a phase is completed only when a given result is achieved, that

is when the relevant object is reached.

We have therefore used a different reinforcement program, that we call the r igid

reinforcement program (RPrig):

• start with phase α;

• in phase α, reward the Animat if it approaches A, and punish it otherwise; in phase β , reward

the Animat if it approaches B, and punish it otherwise;

• change phase at each transition signal, which is generated when the Animat gets to a

predefined distance from the relevant object.

This program embodies the idea that the target behavior involves reaching objects, not just

approaching them. However, the Animat did not learn the target behavior when trained with the

RPrig.

It is not difficult to understand why. Consider an interval [t1,t2], in which no transition signal

is produced, and assume that the Animat erroneously changes behavior at t1. With the RPrig, the

Animat will be punished until it restores the previous behavior. But this means that in the interval

[t1,t2] the Animat will be punished if it keeps the same behavior, and rewarded if it changes

behavior, even if no transition signal is perceived. From the Animat's point of view, this program

17

is incoherent: maintaining the same behavior in absence of a transition signal is sometimes

rewarded, sometimes punished. In fact, the RPrig rewards the Animat in three different cases2:

(i) when the Animat changes behavior in presence of a transition signal;

(ii) when the Animat does not change behavior in absence of a transition signal (provided its

current behavior is the right one) ;

(iii) when the Animat does change behavior in absence of a transition signal (provided its

current behavior is the wrong one).

Clearly, the problem is to make the agent distinguish between case (ii) and case (iii). To do so, it

is sufficient to know at cycle N+1 whether the action performed at cycle N was right or wrong;

and therefore, it is sufficient for the Animat to store the sign of the reinforcement received from

the RPrig at the previous cycle.

To allow the Animat to remember whether it had been rewarded or punished at the previous

cycle, we introduced a 1-bit reinforcement sensor, that is a 1-bit field in the sensory interface

telling the Animat whether the previous action had been rewarded or punished. In this way, the

agent is able to develop specific behavior rules for case (iii), different from the rules for case (ii).

Experiments 4, 5, and 6 (next section) show that the Animat is able to learn the target behavior

when trained with the RPrig, if its sensory interface includes the reinforcement sensor. We think

that the notion of reinforcement sensor is not trivial, and therefore it needs to be discussed in

some detail.

5.3 Meaning and use of the reinforcement sensor

At each moment, the reinforcement sensor stores information about what happened in the

previous cycle, and as such contributes to the agent's dynamic behavior. Its characteristic feature

is that it stores information about the behavior of the trainer, not of the physical environment. It

may seem that such information is available to the Animat even without the reinforcement

sensor, as it is received and processed by the credit apportionment module of ALECSYS. The

point is that information about reinforcement is not available to the Animat’s controller, unless it

is coded into the sensory interface. To speak metaphorically, an agent endowed with the

reinforcement sensor not only receives reinforcements, but also perceives them.

It is interesting to see how the information stored by the reinforcement sensor is exploited by

the learning process. Let the reinforcement sensor be set to 1 if the previous action was rewarded,

and to 0 if it was punished. When trained with the RPrig, the Animat will develop behavior rules

that can manage situation (iii) above, that is rules that change phase in absence of a transition

2 Analogous cases hold for punishments.

18

signal if the reinforcement sensor is set to 0. Such rules can be viewed as error recovery rules, in

that they tell the agent what to do in order to fix a previous error in phase sequencing. Rules

matching messages with the reinforcement sensor set to 1 will be called normal rules, to

distinguish them from error recovery rules.

Without a reinforcement sensor, punishments are exploited by the system only to decrease the

strength of a rule that leads to an error (i.e., to an incorrect action). With the reinforcement

sensor, punishment are used for one extra purpose, that is to enable error recovery rule at the next

cycle. In general, as learning proceeds less and less errors are made by the Animat, and the error

recovery rules become increasingly weaker, so that sooner or later they are removed by the

genetic algorithm.

Error recovery rules presuppose a reinforcement, and thus can be used only as far as the

trainer communicates with the agent. If the trainer is switched off to test the acquired behavior,

the reinforcement sensor must be clamped to 1, so that normal rules can be activated. This means

that after we switch the trainer off, error recovery rules will remain silent; it is therefore advisable

to do so only after all recovery rules have been eliminated by the genetic algorithm.

In the experiments reported in this paper, error recovery rules were either eliminated before

we switched off the trainer, or they became so weak that they were practically no longer

activated. With more complex tasks, however, one can easily imagine that some error recovery

rules could maintain a strength high enough to survive and to contribute to the final behavior; in

similar situations, switching off the trainer would actually impoverish the final performance.

However, one could switch off the learning algorithm: the use of error recovery rules

presupposes that an external system gives positive or negative “judgments” about the Animat’s

actions, but does not require the learning algorithm to be active. After switching off learning, the

trainer actually turns into an advisor, that is an external observer in charge of telling the agent,

which is no longer learning anything, whether it is doing well or not.

We still do not know whether the use of an advisor has interesting practical applications; it

seems to us that it could be useful in situations where the environment is so unpredictable, that

even the application of the most reasonable control strategy will frequently lead to errors. In a

similar case, it would not be possible to avoid errors through further learning; error recovery

seems therefore to be an appealing alternative.

6. Experimental results

In this section we report the results of the experiments on the {αβ}* behavior. The experiments

described are the following:

19

• Experiments 1–3: sequential behavior with external-based transitions and flexible

reinforcement program.

• Experiments 4–6: sequential behavior with result-based transitions, rigid reinforcement

program and reinforcement sensor.

Experiments 1–3 and 4–6 are compared using two-tailed t-tests.

Experiment 1: External-based transitions and flexible reinforcement program

In this experiment, transition signals were produced randomly, with an average of one signal

every 50 cycles. The Animat was trained with the flexible reinforcement program, RPflex. Figure

7 shows a typical learning curve for the coordinator learning session, and reports the mean and

standard deviation of the performances obtained in the test session out of twelve trials.

It appears that the Animat learns to maintain the current phase (in absence of a transition

signal) better than to switch phase (when it perceives a transition signal). This result is easy to

interpret: as transition signals are relatively rare, the Animat learns to maintain the current phase

faster than it learns to switch phase.

As a whole, however, the performance of the coordinator is not fully satisfactory. One factor

that keeps the performance of the coordinator well below 1 is that the performances of the two

basic behaviors are not close enough to 1. In fact, during the training of the coordinator an action

may be punished even if the coordinator has acted correctly, if a wrong move is proposed by the

relevant basic CS.

0.6

0 .7

0 .8

0 .9

1

0 4 0 0 0 8 0 0 0 1 2 0 0 0

Maintain

Switch

Task α Task β

Mean 0.9155 0.8850

Std. deviation 0.0656 0.1192

Performance in test session: basic behaviors

Maintain Switch

Mean 0.9337 0.8276

Std. deviation 0.0471 0.0872

Performance in test session: coordination

Figure 7. Experiment 1: Learning sequential behavior with external-based transitions.

20

 There is however another reason why the learning of the coordination tasks is not satisfactory:

RPflex cannot teach perfect coordination because there are ambiguous situations, that is situations

where it is not clear whether the reinforcement program should reward or punish the agent. In

fact, suppose that the Animat perceives a transition signal at cycle N when it is approaching A on

a curvilinear trajectory like the one shown in Figure 8, and that at cycle N+1 it goes on following

the same trajectory. By observing this behavior, RPflex cannot know whether the Animat decided

to go on approaching A, or whether it changed phase and is now turning to approach object B. As

the agent's behavior is ambiguous, any reinforcement actually runs the risk of saying exactly the

opposite of what it is intended to.

A

B

Figure 8. An ambiguous situation.

Ambiguous situations of the type described earlier arise because the agent’s internal state is a

hidden state from the point of view of the trainer. One possible solution is to make the relevant

part of this state known to RPflex. This was implemented in the next experiment.

Experiment 2:External-based transitions, flexible reinforcement program and agent-trainer

communication

To eliminate ambiguous situations, we have simulated a communication process from the agent

to the trainer: better reinforcements can be generated if the agent communicates its state to the

reinforcement program, because situations like the one described earlier are no longer

ambiguous.

To achieve this result, we added to the Animat the ability to assume two different observable

states, that we conventionally call colors. The Animat can be either white or black, and can

assume either color as the result of an action. In turn, the trainer can observe the Animat’s color

at any time. The basic modules are now able to perform one more action, that is to set a color bit

to 0 (white) or to 1 (black). In the basic learning session, the Animat is trained not only to

21

perform the approaching behaviors α and β, but also to associate a single color to each of them.

During the coordinator learning session, RPflex exploits information about the color to

disambiguate the Animat’s internal state, using the agent’s color as a message.

As it emerges from the results of this experiment, reported in Figure 9, the coordinator’s

performance is slightly higher than in Experiment 1. However, this difference is only weakly

significant as regards the switch task (two-tailed t-test: p = 0.094), and it is not significant as

regards the maintain task (p = 0.340).

Experiment 3:External-based transitions, flexible reinforcement program and transfer of

behavior

Another interesting solution to the problem of ambiguous situations is based on the notion of

behavior transfer. The idea is that the {αβ}* behavior is based on two components: the ability to

perform the basic behaviors α and β , and the ability to coordinate them in order to achieve the

required sequence. While the basic behaviors are strongly linked to the environment, the

coordination task is abstract enough to be learned in an environment, and then transferred to

another one. Therefore, we proceeded as follows:

0.6

0 .7

0 .8

0 .9

1

0 4 0 0 0 8 0 0 0 1 2 0 0 0

Maintain

Switch

Task α Task β

Mean 0.8893 0.9442

Std. deviation 0.0650 0.0509

Performance in test session: basic behaviors

Maintain Switch

Mean 0.9493 0.8876

Std. deviation 0.0290 0.0809

Performance in test session: coordination

Figure 9. Experiment 2: External-based transitions and agent-trainer communication.

22

A B

Figure 10. The 1D environment.

• The Animat learned the complete {αβ}* behavior in a simpler environment, where the

ambiguity problem did not arise.

• Then, the Animat was then trained to perform the two basic behaviors in the target

environment.

• Finally, the coordinator rules learned in the simpler environment were copied into the

coordinator for the target task. To this purpose, we selected the rules that had the highest

performance in the simpler environment; therefore, all twelve experiments in the target

environment were run with the same coordinator.

The simpler, non ambiguous environment used for coordination training is sketched in Figure 10.

It is a 1D counterpart of the target environment: the Animat can only move to the left or to the

right on a fixed rail. At each instant, the Animat is either approaching A or approaching B: no

ambiguous situations arise.

As reported in Figure 11, the performance achieved in the 1D environment was almost perfect,

due to the simplicity of the task. Figure 12 shows the results obtained by transferring the

coordinator to an Animat that had previously learned the basic behaviors in the 2D environment.

23

0.6

0 .7

0 .8

0 .9

1

0 4 0 0 0 8 0 0 0 1 2 0 0 0

Maintain

Switch

Task α Task β

Mean 0.9999 0.9999

Std. deviation 0.0003 0.0002

Performance in test session: basic behaviors

Maintain Switch

Mean 0.9996 0.9963

Std. deviation 0.0012 0.0066

Performance in test session: coordination

Figure 11. Experiment 3: External-based transitions in the 1D environment.

Task α Task β

Mean 0.9646 0.9649

Std. deviation 0.0367 0.0315

Performance in test session: basic behaviors

Maintain Switch

Mean 0.9615 0.9501

Std. deviation 0.0286 0.0364

Performance in test session: coordination

Figure 12. Experiment 3: Transferring the external-based coordinator from the 1D to the 2D environment.

As it can be seen, there was an improvement in the coordinator’s performance with respect to

Experiment 1, weakly significant for the maintain task (p = 0.095) and highly significant for the

switch task (p = 0.0002), and also a significant improvement with respect to Experiment 2 as

regards the switch task (p = 0.023), but not as regards the maintain task (p = 0.310). As a whole,

the transfer of the coordinator gave the best results.

Experiment 4: Result-based transitions and rigid reinforcement program with reinforcement

sensor

This experiment was run with result-based transitions: that is, the transition signal was generated

each time the Animat reached an object. The target behavior was therefore conceived as: reach

object A, then reach object B, and so on. Coherently with this view of the target behavior, we

adopted the rigid reinforcement program, RPrig (see Section 5.2); the Animat was therefore

endowed with the 1-bit reinforcement sensor.

The results, reported in Figure 13, show that the target behavior was learnt; however, the

performance of the switch task was rather poor.

24

Experiment 5:Result-based transitions, rigid reinforcement program and agent-trainer

communication with reinforcement sensor

This experiment is the result-based analogous of Experiment 2: the Animat was trained to assume

a color, thus revealing its internal state. The results are reported in Figure 14. Communication

significantly improved the performance of both the maintain (p = 0.016) and the switch task

(p = 0.002).

0.6

0 .7

0 .8

0 .9

1

0 4 0 0 0 8 0 0 0 1 2 0 0 0

Maintain

Switch

Task α Task β

Mean 0.9451 0.9743

Std. deviation 0.0426 0.0400

Performance in test session: basic behaviors

Maintain Switch

Mean 0.9313 0.7166

Std. deviation 0.0528 0.1559

Performance in test session: coordination

Figure 13. Experiment 4: Learning result-based transitions.

0.6

0 .7

0 .8

0 .9

1

0 4 0 0 0 8 0 0 0 1 2 0 0 0

Maintain

Switch

Task α Task β

Mean 0.9838 0.9879

Std. deviation 0.0201 0.0144

Performance in test session: basic behaviors

Maintain Switch

Mean 0.9789 0.8885

Std. deviation 0.0350 0.0788

Performance in test session: coordination

Figure 14. Experiment 5: result-based transitions and agent-trainer communication.

25

Experiment 6: Result-based transitions, rigid reinforcement program and transfer of behavior

This experiment is the result-based analogue of Experiment 3. Figure 15 shows the results

obtained in the 1D environment, an d Figure 16 gives the performances of the Animat in the 2D

environment, after transferring the best coordinator obtained in the 1D environment. The final

performances were significantly better than in Experiment 4, both for the maintain (p = 0.0009)

and for the switch task (p = 0.0001). In relation with Experiment 5, the improvement of the

switch task was weakly significant (p = 0.095), while it was not significant for the maintain task

(p = 0.2818).

0.6

0 .7

0 .8

0 .9

1

0 4 0 0 0 8 0 0 0 1 2 0 0 0

Maintain

Switch

Task α Task β

Mean 0.9999 0.9999

Std. deviation 0.0002 0.0001

Performance in test session: basic behaviors

Maintain Switch

Mean 0.9903 0.9670

Std. deviation 0.0317 0.0565

Performance in test session: coordination

Figure 15. Experiment 6: Result-based transitions in the 1D environment.

Task α Task β

Mean 0.9935 0.9895

Std. deviation 0.0067 0.0112

Performance in test session: basic behaviors

Maintain Switch

Mean 0.9903 0.9372

Std. deviation 0.0078 0.0559

Performance in test session: coordination

Figure 16. Experiment 6: Transferring the result-based coordinator from the 1D to the 2D environment.

We conclude this set of experiments with Figure 17, summarizing the results of the t-tests for all

relevant pairs of experiments.

26

Exp. 1

Exp. 2 Exp. 3

Exp. 4

Exp. 5 Exp. 6

0.340
0.094

0.095
0.0002

0.310
0.023

0.016
0.002

0.0009
0.0001

0.282
0.095

Figure 17. Result of t-tests for the maintaining (above) and switching (below) tasks. Significant probability levels
are in bold. Arrows indicate the direction of increasing value of the experimental mean; e.g. the mean of Exp.1 is

lower of both the mean of Exp.2 and Exp.3.

7. Conclusions

In this paper we have presented an approach to training an agent which learns proper behavioral

sequences. Many other researchers have tackled the problem of learning sequences of actions in

the realm of classifier systems (e.g., Riolo, 1989). Our work differentiate itself in that the

building blocks of our sequences are elementary behaviors instead of simple actions.

We have discussed at length the difference between pseudo- and proper sequences, and we

have shown that ALECSYS, our CS-based learning system, can learn proper sequences (pseudo-

sequences were discussed in previous work, see Dorigo & Colombetti, 1992).

An important aspect of our research is the attention we pose on the interplay among the

learner, the trainer, and the environment. We show that, when considering proper sequences,

there are at least two kinds of transition signals which can cause a change to the next phase of the

sequence: external-based transitions and result-based transitions. To each of these transition

modalities corresponds a training policy, the flexible and the rigid training policies respectively.

These policies require the introduction of communication features into our system:

• trainer-to-learner communication (through a reinforcement sensor, which makes explicitly

available to the learner information about the quality of its behavior);

• learner-to-trainer communication (to let the learner know what is the current state of the

learner).

Most interesting, the use of the reinforcement sensor introduces into the rule set a new kind of

rules, called error recovery rules, which are activated only in case of punishment. These rules

tend to disappear as learning goes on and performance improves.

27

Finally, we have shown that the coordination task, at least in the context of our experiments, is

abstract enough that it can be learned in a simple situation, and then transferred into a more

demanding one.

References

Beer, R. D., 1993. A dynamical systems perspective on autonomous agents. Submitted to

Artificial Intelligence.

Bertoni, A., & M. Dorigo, 1993. Implicit Parallelism in Genetic Algorithms. Artificial

Intelligence, 61, 2, 307–314.

Booker, L., D. E. Goldberg & J. H. Holland, 1989. Classifier Systems and Genetic Algorithms.

Artificial Intelligence, 40, 1-3, 235–282.

Colombetti, M., & M. Dorigo, 1992. Learning to control an autonomous robot by distributed

genetic algorithms. Proceedings of "From Animals To Animats,” 2nd International

Conference on Simulation of Adaptive Behavior (SAB92), Honolulu, Hawaii, MIT Press, 305–

312.

Dorigo, M., 1992. Alecsys and the AutonoMouse: Learning to Control a Real Robot by

Distributed Classifier Systems. Technical Report No.92-011, Politecnico di Milano, Italy. (To

appear in Machine Learning).

Dorigo, M., 1993. Genetic and non-genetic operators in ALECSYS. Evolutionary Computation, 1,

2, 149–162, MIT Press.

Dorigo M. & M. Colombetti, 1992. Robot Shaping: Developing Situated Agents through

Learning. Technical Report No. 92-040, International Computer Science Institute, Berkeley,

CA. (Submitted to Artificial Intelligence, August 1992).

Dorigo M. & M. Colombetti, 1993. Design and development of autonomous robots by

reinforcement learning (in preparation).

Goldberg, D.E., 1989. Genetic Algorithms in Search, Optimization and Machine Learning,

Addison-Wesley.

Holland, J. H., 1975. Adaptation in natural and artificial systems, The University of Michigan

Press, Ann Arbor, Michigan.

Holland, J. H., 1986. Escaping Brittleness: The Possibilities of General Purpose Learning

Algorithms Applied to Parallel Rule-based Systems, in R.S.Michalski, J.G.Carbonell, &

T.M.Mitchell (Eds.), Machine Learning II , Morgan Kaufmann.

28

Lin, L.-J., & T. M. Mitchell, 1992. Memory approaches to reinforcement learning in non-

Markovian domains. Technical Report CMU-CS-92-138, School of Computer Science,

Carnagie Mellon University, Pittsburgh, PA.

Littman, M.L., 1992. An optimization-based categorization of reinforcement learning

environments. Proceedings of "From Animals To Animats", 2nd International Conference on

Simulation of Adaptive Behavior (SAB92), Honolulu, Hawaii, MIT Press, 262–270.

Mahadevan, S., & J. Connell, 1992. Automatic programming of behavior-based robots using

reinforcement learning, Artificial Intelligence, 55, 2, 311–365.

McCluskey, E.J., 1986. Logic Design Principles. Prentice-Hall.

Riolo R.L., 1989. The emergence of coupled sequences of classifiers. Proceedings of the Third

International Conference on Genetic Algorithms, J.D. Schaffer (Ed.), Morgan Kaufmann,

256–264.

Rosenschein, S. J., & L. P. Kaelbling, 1986. The synthesis of digital machines with provable

epistemic properties. In J. Halpern, ed., Proceedings of the 1986 Conference on Theoretical

Aspects of Reasoning about Knowledge, Morgan Kaufmann, Los Altos, CA, 83–98.

Singh, S. P., 1992. Transfer of learning by composing solutions of elemental sequential tasks.

Machine Learning, 8, 3-4, 323–339.

Spiessens, P., & B. Manderick, 1991. A massively parallel genetic algorithm: Implementation

and first analysis. Proceedings of the Fourth International Conference on Genetic Algorithms,

Morkan Kaufmann, 279–286.

Watkins, C.J.C.H., 1989. Learning with delayed rewards. Ph. D. dissertation, Psychology

Department, University of Cambridge, England.

Watkins, C.J.C.H., & P. Dayan, 1992. Technical Note: Q-learning. Machine Learning, 8, 3-4,

279–292.

Whitehead, S. D., & L. J. Lin, 1993. Reinforcement learning in non-Markov environments.

Submitted to Artificial Intelligence.

Wilson, S., 1987. Classifier systems and the Animat problem. Machine Learning, 2, 3, 199–228.

Wilson, S., 1990. The Animat path to AI. Proceedings of "From Animals To Animats,” 1st

International Conference on the Simulation of Adaptive Behavior (SAB90), Cambridge, MA,

MIT Press, 15–21.

