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Abstract

With this paper we present a Multivalued Evolutionary Algorithm (MEA) which is
inspired by fuzzy set theory. The genetic representation and encoding is done in such a
way that no inferences can be drawn from phenotype to genotype. This representation
influences the used genetic operators. The basic operators of the algorithm will be
explained and comparisons for global optimization problems with recently published
results will be presented.
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1 Introduction

The evolution of a population including genetic laws can be perhaps sketched by
Figure 1. This figure reflects the generation of new individuals as replicating units of a
population by genetic operators like recombination, crossing—over, inversion, deletion
including erroneous replication due to mutations. By these operators one gets the
genotype of an individual. Even these operators are subject to influences from the
environment, especially with respect to mutations by e.g. radiation. The genotype
will then be expressed via several stages also influenced by the environment, e.g. by
metabolic processes, to a structural phenotype. This intermediate stage goes through
an individual adaptation process to be a mature phenotype. All these different levels
of development from a genotype to a mature phenotype may be determined as a
developmental process corresponding to Figure 2. Once more it should be emphasized
that the necessary transformations are all subject to environmental influences. This
phenotype represents a number of attributes which are aggregated to a fitness value.
Here fitness is also determined by the environment which on the other hand generates
selection processes over the fitness values. These selection schemes include e.g. intra—
and inter—specific cooperation and competition, mating success, figure of merit for
offspring production etc.
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Figure 1: General Evolution Scheme

The modeling of the developmental process can be done on different levels and with
different goals. For the structuring of artificial neural networks we used e.g. generative
grammars [18], especially Lindenmayer-Systems [6]. Here we want to model such a



developmental process as a multivalued decision process, closely related to fuzzy set
theory [19], [5], to emphasize the complexity of development from genotype to a
mature phenotype. Generic to the incorporation of individual development into an
overall evolution process is the impossibility of drawing inferences from phenotype to
genotype, i.e. the mapping from genotype to phenotype is not isomorphic. The MEA
follows this line of consideration.
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Figure 2: General Developmental Scheme

The proposed MEA is by no means an absolutely new algorithm. As it will be clear
by the subsequent sections most of the genetic operators are inspired by Evolution
Strategies [9], [10], [11], [12] and Genetic Algorithms [4], [2] and [3]. Especially the
mutation operator was adapted from the Breeder Genetic Algorithm (BGA) [8] and
extended to a more global orientation. Parts of the algorithm were first proposed in

[16].

2 Representation

Let us assume that there is a fitness function f(z), dependent on the phenotypic
features z; € G; C R,t = 1,...,n in the feasible region (G;. The phenotypic features
can be scaled to z4 on the unit interval

si Gy — (0,1). (1)
Every scaled phenotypic feature should be influenced by a number of genes a;;,1 =
l,..n,5 = 1,....,m. The a;; are from the unit interval a;; € (0,1). Furthermore we

have a mapping function ¢ such that

g9:(0,1)" —(0,1) (2)



which maps the gene values to the scaled phenotypic features. The mapping ¢
may be any meaningful coding function as e.g.

1o .
Toi = Gy 2 i (3)
=1

well known from Genetic Algorithms. This coding function will be used in the
subsequent sections.

This representation implies a number of consequences. For m = 1 this representa-
tion corresponds to the representation used in Evolution Strategies, it is a one—to—one
mapping. For m > 1 the mapping is no longer isomorphic. More than one gene con-
figuration may lead to the same phenotypic feature. As we will see it influences the
functioning of the used genetic operators.

3 Selection

The used truncation selection corresponds to the (u+X)-selection in Evolution Strate-
gies where p is the number of individuals in the parent population and A the number
of offspring produced by these parents. The selection intensity is then given by the
equation

¢(z)
- )
1 —®(z)
where ¢(z) is the probability density function and ®(z) the probability distribution

function of the normalized and standardized normal distribution. Typical values are
given in Table 1. where T' = (1 — ®(z)) corresponds to the percentage rate of the

1

selected best individuals to form the new parent population.

T8 % |50 % |40 % (28 % [ 20 % | 10 % | 1 %
I]034 | 08 | 097 | 1.2 1.4 | 1.76 | 2.66

Tab. 1. Selection intensity for N — oo, N population size

Because this is a very powerful measure for the selection pressure as it was shown
in [8] we will use it in the following.

4 Mutation

For mutations we adopted and extended the BGA mutation scheme. With the prob-
ability p,, a phenotypic feature x; will be selected and mutated corresponding to



where A; will be distributed at random over the gene values such that
aij := aij + Ay (6)
and

A= g(Air, o, Ain) (7)

in accordance with the coding hold. The mutation range A; will be set usually to
the value 0.1 - ;. Thus, mutations act in the same way as for the BGA.

¢ BGA mutation scheme|§]

The BGA mutation operator generates at random one of the points as A

+ {2717 A,271A4, L2°A}. (8)

It is a robust mutation operators which approximates the optimum with a lim-
ited precision. The normalized expected progress is given by

1 ( ) 1
3—2 — E (9)
¢ Extended BGA mutation scheme

To have more global oriented mutations combined with the robust features of
the simple BGA mutation scheme we use also as A randomly chosen points
from

= 2 1
+{2714,2714,..2°4, (G A)+ A,E(G—AHA?---’%(G—AHA}' (10)

In this case the normalized expected progress is given by

1 () 1
6_4 — 3—2 (11)

If p,, = 1/n and f(x) is a rotation invariant unimodal function the normalized
expected progress slows down by 1/n [8] for both mutation schemes.



5 Recombination

For the mixing of the genetic material we have implemented two different recombi-
nation operators.

e Multivalued Discrete Recombination

Let = = (a11, a2, ...., U (m—1)5 apm) and y = (by1, b12, ..., by (m—1), bnm) be the par-
ent strings. Then a child z = (¢11, €12, ..., Ca(m—-1), Cum) is given by

Cij = Uy or Ci; = bi]' (12)

where either equation is used with probability 0.5. For m = 1 this corresponds to
the BGA discrete recombination, it generates corners of the hypercube spanned
by the components of  and y. For m > 1 and a;; < b;;,V:,Vy it generates
corners or discrete interior points of the hypercube. For m > 1 and q;; <
b;j, V1,V it generates corners and discrete interior and exterior points of the
hypercube.

e Multivalued intermediate recombination

cij = aij + ij(bij — aij) (13)

where «;; is selected with uniform probability from the unit interval (0,1). For
m =1 or for m > 1 and a;; < b;;,V1,Vy a point will be chosen from the interior
and the boundary of the hypercube spanned by the parents components. For
m > 1 and a;; < b;;,Ve, V) the generated points may be also outside the
hypercube.

Each recombination operator has its own problem solving properties. Multivalued
intermediate recombination with m > 1 is e.g. very useful for nonseparable optimiza-
tion problems. As proposed in [8] higher order multivalued recombination operators
will be introduced in the future.

To confirm the empirical laws concerning selection and discrete recombination
formulated in [8] for different values of m we made the same experiments with m =1

and m = 2 for the the functions fy = E |z;| and Fg(x) = n-10+ E (22—10-cos(27x;))

with —5.12 < z; < 5.12 . Though F6 is a highly multlmodal functlon it shows a
unimodal metastructure [15]. In the following gen denotes the number of generations
until convergence, 0,4, the standard deviation of gen, f.,, the number of function
evaluations, and Af the distance of the best found value to the global optimum.
Table 2. shows that the observations in [8] hold equally for m = 1 and m = 2. Higher
values of m lead to an increase in gen and therefore in f.,.; but to a better quality
approximation.



Table 3. shows the quality of solution for different population sizes N and fixed
selection intensity I = 1.2. It is remarkable that for a large population sizes N the
quality of approximation converges for different m.

F I

gen

Ogen

feval

Af

L]

2

L]

2

L]

2

1] 2

256
256

1.6
1.6

14.3
14.1

20.7
20.6

0.9
1.1

2.3
3.0

3904
3853

3559
3530

3.8
29.7

2.5
32.2

192
192

1.2
1.2

19.2
19.5

31.0
29.8

1.7
1.3

3.0
2.6

3878
3936

6144
5904

28.4

2.2
25.1

128
128

0.8
0.8

25.0
25.5

42.6
43.5

1.9
1.7

4.3
4.7

3322
3392

2581
5690

3.6
31.6

2.2
25.9

Tab. 2. Discrete recombination, n = 20, 20 runs

N

gen

Ogen

AT

feval

L]

2

L]

2

1

| 2

1
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32
128
256
512

1024

9.7
17.1
20.6
24.1
26.8

12.4
25.0
34.3
47.2
63.2

1.4
1.5
1.3
1.5
1.3

2.1
2.6
3.5
3.6
6.4

109.0
40.6
24.1
10.9

5.7

90.4
33.9
19.5
10.9

5.2

341
2317
5517

12826
28467

427
3322
9037

24653
65741

Tab. 3. Quality of solution for Fg, I = 1.2,n = 20

Table 4. shows the simulation results for constant N/I and different numbers
of variables n. We have chosen smaller population sizes then [8] because of the
observations in Table 3. The observation made in [8] concerning the quotient =
gen(2n)/gen(n) hold for different m but the quality of approximation is in any case
better for m = 2.

6 Mutation and Recombination

Within this section we compare the influence of mutation and discrete recombination
for different m on the performance of the algorithm.

Table 5. shows the results for Fs and Table 6. for Fy. The observation made by [§]
for m = 1 has to be emphasized once more also in the case m > 1: Recombination
and mutation (r&m) does in any case better then a single genetic operator
(recombination r or mutation m).



N N I gen Ogen Af quotient
1 ‘ 2 1 ‘ 2 1 ‘ 2 1 ‘ 2
20128 | 1.6 | 11.5 | 15.2 | 0.9 | 2.3 58.0 44.6
40 | 128 | 1.6 | 15.2 | 19.3 | 0.9 | 2.2 | 154.8 | 140.0 | 1.32 | 1.27
80| 128 | 1.6 | 21.0 | 24.2 | 1.2 | 2.1 | 402.3 | 370.5 | 1.38 | 1.25
160 | 128 | 1.6 | 27.8 | 29.1 | 1.6 | 3.7 | 1047.0 | 996.5 | 1.32 | 1.20
20 64 | 1.2 139|174 |14]23 68.4 57.9
40 | 64 | 1.2 [ 18.7 1229 | 1.4 |24 | 189.2 | 152.7 |1.34 | 1.32
80| 64 | 1.2 247294 |1.6 |22 505.7| 410.2 | 1.32 | 1.28
160 | 64 | 1.2 | 32.2 | 379 | 1.7 | 3.5 | 1267.8 | 995.9 | 1.30 | 1.29
20 3210.8|16.3 226 |1.6]3.4 95.9 66.7
40 | 32 10.820.5|28.6 | 1.7]29| 253.6 | 1829 |1.26 | 1.27
80| 3210.829.1 3332446 6394 | 485.1 | 1.42 | 1.16
160 | 32 (0.8 |35.3 | 40.0 | 2.6 | 4.8 | 1566.1 | 1204.6 | 1.21 | 1.20
Tab. 4. Quality of solution for Fg for constant N/I
N op gen Ogen Af feval
1 ‘ 2 1 ‘ 2 1 ‘ 2 1 ‘ 2
20 r 6.1 6.6 | 1.4 | 1.6 172.02400 | 130.13200 141 152
20 m | 539.3 | 505.2 | 34.9 | 39.8 0.00009 0.00009 | 10806 | 10124
20 | r&m | 410.5 | 369.6 | 42.6 | 49.3 0.00009 0.00009 | 8229 | 7412
256 r| 17.0 | 258 | 1.2 3.9| 25.38160 6.59073 | 4595 | 6848
256 m | 289.8 | 271.5 | 16.9 | 11.9 0.00009 0.00009 | 74445 | 69760
256 | r&m | 101.4 | 118.0 | 5.9 | 8.0 0.00009 0.00009 | 26214 | 30451

But it interesting to notice that for both functions for a small population size the
performance for m = 2 is slightly better than for m = 1. The opposite is true for

Tab. 5. Recombination, mutation, and both applied to Fg, I = 1.4

large population sizes. This conforms with the observations from Table 3.

N op gen Ogen Af feval

1] 2] 1] 2 ] 2 N
20 r 5.7 6.6 | 1.1 | 1.4 |20.7992 | 14.6232 133 152
20 m | 539.4 | 502.8 | 22.7 | 28.1 | 0.0005 | 0.0005 | 10808 | 10075
20 | r&m | 381.6 | 356.2 | 33.0 | 40.4 | 0.0005 | 0.0005 | 7651 | 7143
256 r| 172 265 | 1.3 27| 28789 | 2.0811 | 4659 | 7027
256 m | 2923 | 2783 | 8.7 | 87| 0.0005| 0.0005 | 75072 | 71488
256 | r&m | 104.5 | 108.0 | 3.2 | 4.0 | 0.0005 | 0.0005 | 27008 | 27891

Tab. 6. Recombination, mutation, and both applied to Fy, I = 1.4




7 Performance

For the performance evaluation of the MEA we use the functions Fg — Fy already
used in [7], [15], and [17]. They are usual test functions in global optimization [14].
Function Fy was proposed in [1]. So we are using the same test bed as in [8] for
comparison. The test functions are listed in Table 7. For F; we used the extended
BGA mutation scheme and for Fg multivalued intermediate recombination. The ter-
mination criterion was used as in [15] and [8]. We stopped the computation if one of
the expressions |f* — | < e-|f*et| or f* — fPest| < ¢, with f* the global optimum,
was true.

It is interesting that all test functions have been solved with a constant population
size. The results of the MEA are within the performance range of the BGA. For F5
we got better results with even a constant population size. The number of function
evaluations scales almost exactly with n - In(n) even for F.

Function Constraints
Fs(z) =n 10 + é(;cf — 10 - cos(27z;)) —5.12 < 2; < 5.12
Folz) = é —z;sin(y/|zi)) ~500 < z; < 500
Fy(z) = é 22 /4000 — }i cos(x; /\/7) + 1 —600 < z; < 600

Fy(z) = =20 exp(—O.QM%éjl z?) — exp(%éjl cos(27x;))+ —-30 < z; <30

+20+e¢
Tab. 7. Test Examples
Rastrigin’s Function Fg Schwefel’s Function F%
n N feval n N feval
[T 2] BGA [T 2] BGA

20 ] 20 4234 3610 3608 20 | 20 3630 4599 | 16100
100 | 20 | 26949 | 27592 | 25040 || 100 | 20 | 25158 | 26840 | 92000
200 | 20 | 66954 | 65077 | 52948 || 200 | 20 | 69420 | 75771 | 248000
400 | 20 | 132744 | 136638 | 112634 || 400 | 20 | 150880 | 161236 | 699803

1000 | 20 | 380068 | 411208 | 337570 || 1000 | 20 | 319300 | 341232

Tab. 7. € =9.0-107! for Fg, e = 5.0- 1072 for F%
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Griewangk’s Function Fg Ackley’s Function Fy

n N feval n N feval
T 3] BGA T 2] BGA
20 | 500 | — 23625 66000 30| 20| 15110 | 14064 | 19420
100 | 500 | ——— | 337925 | 361722 100 | 20 | 55582 | 51415 | 53860
200 | 500 | ——— | 805950 | 748300 200 | 20 | 119542 | 106578 | 107800
400 | 500 | — | 1676000 | 1630000 400 | 20 | 245924 | 228020 | 220820
1000 | 20 | 672132 | 623190 | 548306

Tab. 8. ¢ = 1072 for Fy, e = 1073 for F,

In [13] a recent comparison of global optimization methods was done. They wrote
"From the test results of each method on a series of test functions, it appears that these
methods out—perform other commonly used methods of global optimization’. They did
not consider Evolutionary Algorithms.

Function Constraints

fap(z) = {1 + (21 + z2 + 1)*
(19 — 14zy + 327 — 1day + 62172 + 323)} —10.0 < z; <10.0
{30 + (221 — 3x,)?
(18 — 32zy + 1227 + 48z — 36z129 + 2723)}

fBr(z) = a(xg — bx + cxy — d)* + e(1 — f)cos(zy) + € -5 <z <10
with a = 1,b=5.1/(47?%),c = 5/, 0<z, <15
d=6,e=10,f=1/(8x)

fer(z) = (4 — 2.1z} + 21/3)2} + x129 + (—4 + 423) 23 —3<z, <3
5 5

fsua(x)={Y rtcos((¢ 4 1)ay +¢)}H{ Y tcos((i + 1)zy 4+ 2)} —-10<z; <10
i=1 =1

fEa = —cos(xy) - cos(zz)/ exp((z1 — 7)* + (22 — 7)?) —100 < z; <100

Tab. 9. Test Examples Bayesian/Sampling-methods

They used different methods and wrote ‘Perttunen’s method, Zilinskas’ method
and Shaltenis’ method required an excessive amount of CPU time to run (in some
cases exceeding 1 h on a VAX 8650)°. The test functions had 2 and 4 dimensions.
The 2-dimensional functions are listed in Table 9.



Table 10. shows the results for the different methods compared to the results of
the MEA with multivalued intermediate recombination. For fz4 we used also the
extended BGA mutation scheme.

No one of the global optimization methods converged uniformly in all cases. The
methods of Zilinskas and Shaltenis were discarded because of the high CPU require-
ments. The MEA out-performed all methods almost uniformly.

feval
ST M| P[] T[] C] A
GP | 30 | 248 || > 1000 | > 1000 | <200 | < 500 | > 1000 | > 1000
CH | 30 | 158 <500 | <500 <200 | <500 (> 1000 | > 1000
BR | 30 | 216 < 500 | > 1000 | <200 | <500 | > 1000 | > 1000
SH | 30 | 339 || > 1000 | > 1000 | < 500 | > 1000 | > 1000 | > 1000
EA |30 | 512 || <1000 | > 1000 1 > 1000 | > 1000 | > 1000

F N feval

Tab. 10. € = 1073,1 = 1.4, 20 runs, f* , solutions with B/S—methods S: Stuckman,
M: Mockus, P: Perttunen, T: Torn, C: Monte Carlo, A: Simulated Annealing, ** no
evaluation due to extreme CPU requirements

8 Conclusions

The MEA is a very robust optimization algorithm. In some cases it has a better
performance than the BGA. In any case it out-performed methods from global opti-
mization not based on evolution paradigms. It scales like n - In(n) for n up to 1000.
Future research will be the inclusion of higher order recombination schemes and the
implementation of distributed population models [8], [17].
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