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Abstract

Forthcoming massively parallel systems are distributed memory architectures. They
consist of several hundreds to thousands of autonomous processing nodes intercon-
nected by a high-speed network. A major challenge in operating system design for
massively parallel architectures is to design a structure that reduces system bootstrap
time, avoids bottlenecks in serving system calls, promotes fault tolerance, is dynam-
ically alterable, and application-oriented. In addition to that, system-wide message
passing is demanded to be of very low latency and very high efficiency. State of the art
parallel operating systems design must obey the maxim not to punish an application
by unneeded system functions. This requires to design a parallel operating system as
a family of program modules, with parallel applications being an integral part of that
family, and motivates object orientation to achieve an efficient implementation.
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1 Introduction

Compared to the classical operating systems area the design and development of parallel
operating systems is a quite new discipline. At the end of the eighties, this discipline became
important with the breakthrough of parallel computer systems based on distributed memory
architectures. In the nineties, it will be even more important in the realm of massively
parallel systems. Massively parallel systems consist of hundreds or thousands of processing
nodes. Recent studies [8] already present the vision of millions of cooperating nodes. The
preferred paradigm to construct parallel machines of that scale relies on distributed memory.
At the hardware level, the view of a common global memory is sacrificed. This view will be
re-introduced, if at all, by software virtualizing the physically distributed memory space. A
very high-speed message passing network then serves as the “backbone” to interconnect the
nodes. Every node operates more or less autonomously. A Multiple-Instruction/Multiple-
Data (M1MD) operation principle is established. In the following, the focus is on the logical
design of parallel operating systems for these MiMD computer architectures.

Traditionally, parallel applications call for extremely high performance of both hard-
ware and software. Very low communication latency and, thus, very high communication
performance are still the predominant user requirements that must be fulfilled by parallel
operating systems for MIMD computer architectures. While in the past shared memory
architectures did play the major role, it is very well accepted now that innovative parallel
computers will be tightly-coupled distributed systems. In order to improve programmabil-
ity and, thus, not only user acceptance but also maintainability and applicability, trans-
parency [14] cannot be sacrificed. Transparency, however, can be achieved only at the cost
of efficiency. Transparency in the context discussed here means to hide from parallel ap-
plications problems coming up with distributed systems. Efficiency means to reduce the
message startup time for a given application to an absolute minimum. The former implies
system software overhead, whereas the latter demands to generally avoid this overhead. A
“vicious circle” parallel operating systems are assigned to break up.

As a solution to this problem, two major aspects will be discussed in the following in-
vestigations. Firstly, the design of a parallel operating system should lead to a program
family [25] and, secondly, the implementation should follow the paradigm of object orien-
tation [32]. The goal is to try to answer the question of whether distributed (microkernel-
based) operating systems are suited for distributed memory parallel computers or specific
system software structures are required. If there is the need for specific system software
structures, the questioning of how much these structures differ from, or will have in common
with, distributed (microkernel-based) operating systems is investigated.

The outline of the paper is as follows. Section 2 briefly discusses the characteristics of
parallel operating systems. In Section 3 the functional decomposition made in design process
of the PEACE [29] parallel operating system is considered. PEACE will serve as a case study
system. Following that, Section 4 explains various system configurations emerging from
problem-oriented arrangements of the PEACE building blocks. Conclusions are presented in
Section 5.



2 Parallel Operating Systems

Almost any new (commercial) operating system that appears at the market is based on the
microkernel architecture [10]. The most recent example of this fact is Winpows-NTTM [6].
At first sight, this seems to suggest exploiting a microkernel as the common platform on
top of which the parallel operating system should be built. It is quite feasible to even
port microkernel-based UNixT™ systems onto distributed memory parallel computers [34],
with every node executing the microkernel, a subset of system servers, and at least one
application task. But the question comes up whether this really is the right approach.
Adopting portable operating systems to parallel machines and providing specific, portable
operating system support for parallel computing on these machines are two different matters.

The purpose of this section is to show that a microkernel-based architecture is not the
ultima ratio for building parallel operating systems. First, a briefl survey of the current
state of the art of parallel operating systems takes place. After that, the two most crucial
design constraints are discussed. These constraints give the arguments to seek for a platform
different than a microkernel. Finally, the design principles standing behind the alternative
approach are presented.

2.1 State of the Art

For many years, parallel programming was closely related to parallel computing in a shared
memory mulliprocessor system environment. This understanding was also a dominating
issue in operating systems development over the past decade. Multiprocessor operating
systems such as Mach [33] emerged. But even with these specifically designed operating
systems scalability problems arose when the number of processors significantly increased [2].
In many cases these problems were due to an inappropriate kernel structure.

In shared memory systems, the granularity of program units that can be executed in
parallel is determined by the performance of the process model. The most important aspect
hereby is the overhead for process creation, synchronization, and switching. Crucial points
always are the vertical interactions between the (non-privileged) application process and
the (privileged) operating system kernel. These interactions are extremely heavyweight
when compared to local program activities. Most recently, approaches have been made
aimed at reducing kernel interactions in the course of context switches to an absolute min-
imum [18]. However, completely bypassing the kernel is not feasible. Both, monolithic
and microkernel-based operating system architectures have in common that user and kernel
space are physically isolated from each other. The separation is necessary in traditional
multi-tasking and timesharing systems. But it is not a predominant requirement in the
context of (massively) parallel computing.

A well-known fact is that shared memory computer architectures are no longer able to
keep pace with the dramatically increasing performance requirements of parallel applica-
tions. Well established computer manufacturers identified this problem and decided to go
the alternative way also, namely to refer to distributed memory architectures. Faced with
this situation, parallel operating system design must not place the focus on “old-fashioned”
shared memory computer architectures—although the design must not completely ignore
these architectures.



A parallel operating system still must take care for the management of a (possibly)
very large number of nodes, be able to tolerate node failures, provide I/O services, enable
virtualization of nodes by implementing a proper process and address space model, and
ease the programming of parallel applications. A site-transparent execution of application
tasks must be supported, such that (static/dynamic) load balancing becomes feasible. This
calls for access transparency, e.g. on files, I/O devices and other system services, but also
on application processes. Bootstrapping the system and network-wide loading of processes
must be supported. In this context, one of the major problems will be to synchronize
global system activities and to detect the minimal functioning of the system. Centralized
approaches are to be rejected as they will not only raise fault-tolerance problems but also
result in a serious performance bottleneck. Last but not least, traditional system services
are required such as process, memory, and address space management. Thus, parallel
operating systems are requested to provide many services distributed operating systems
typically provide. However, they should provide these services only on eztant-on-use basis
and not at all times as this will imply a potential performance bottleneck and an increase
of system complexity.

The major difference to distributed (microkernel-based) operating systems is that quite
a large number of applications accommodate their degree of parallelism to the degree of
parallelism provided by the hardware. Hence, the operating system is not in all cases re-
quired to multiplex a single node between several tasks or even threads of control. Standard
distributed operating systems, however, are supposed to do so. Of course are multi-tasking
operating system kernels able to process “well-shaped” parallel applications whose tasks can
be mapped in one-to-one correspondence with the nodes. In particular, this also holds for
microkernel-based systems. However, all the microkernels presently available at the market
fail to efficiently support the above mentioned type of parallel application [28]. The main
problem is the artificial boundary between user and kernel. This boundary is due to the
microkernel approach and not necessarily demanded by the parallel application. Even if the
hardware supports direct network access from user mode and, thus, allows to bypass the
kernel when global communication has to take place, yet overloading processing nodes with
unneeded system functions does not only waste local memory resources! but also limits
scalability in general.

For all these reasons discussed above and due to the lack of properly designed parallel
operating systems, parallel computer manufacturers developed their own system software
platforms. These platforms, however, cannot always be regarded as operating system but
rather runtime environment. They were specifically developed for a certain distributed
memory parallel computer, having a certain set of applications in mind. Examples are
CS/Tools [21], PARIX [26], and UBIK [30]. Except the former mentioned one, these all
are systems developed for Transputer-based architectures. The iPSC/2 hypercube with

!Virtual memory on the processing nodes is in almost every case sacrificed, not only for technical reasons.
Data parallel programming of distributed memory machines typically makes very large local address spaces
superfluous. Moreover, an “unlimited” local address space is in contradiction to the MIMD principle, namely
to avoid the von Neumann bottleneck to the memory. Note that traditional virtual memory has only little
in common with virtual shared memory [19]. The latter was not introduced to solve the problem of memory
over-allocation, but rather to present a view of a global, common address space that is physically distributed.
In particular, for performance reasons, this view can (and should) be implemented without relying on paging
but on compiler and runtime system support.



its 128 nodes is controlled by NX/2, a parallel operating system providing virtual shared
memory [20]. The operating system for the CM-5 [5], called CMosT, is a SunOS variant.
This variant, however, is only executed on the control processors. Processing nodes are run
by a runtime executive and, normally, will be subjected to single-tasking mode of operation.
Nevertheless, there is also support for multi-tasking. But this means that the control
processor, i.e., CMosT, preempts all tasks belonging to the same application remotely “at
the same time”. Multi-tasking is not an autonomous feature of the processing nodes?.

These systems have two things in common: highly efficient network-wide communication
and poor functionality. They all suffer from a design concept that makes it impossible to
scale up with the manifold demands of parallel applications. Similarly, state of the art
distributed (microkernel-based) operating systems suffer from a design concept that makes
it impossible to scale down kernel functionality accordingly. This is where an innovative
parallel operating system has its niche. The design is required to support scalability in the
two directions. Functional enrichment must be possible. The design of parallel operating
systems is assigned to provide a framework for the composition of application-oriented
parallel computing platforms.

2.2 Design Constraints

Parallel computing defines its own “book of rules”. No matter which principle is used
for designing a parallel operating system, the resulting implementation must never hide
performance. Omne of the most crucial performance limiting factors is embodied by the
communication system and addresses the message startup time problem. Another important
factor is the complexity and, thus, immense difficulty of programming massively parallel
systems. This calls for new programming models and still involves large efforts in theory,
language design, and compilation techniques. It is well known, that programming theses
systems must be “liberated from the von Neumann style” [1], but there still are no satisfying
programming models available. Compared to that, the operating system can only provide a
very modest contribution to cope with the complexity of a machine consisting of thousands
of interconnected nodes.

2.2.1 Message Startup Time

The communication performance problem in massively parallel computer architectures is
dominated by the message startup time. Basically, the message startup time determines
how many processor cycles are lost to local application program processing by performing
remote interprocess communication. The loss of “number crunching” power caused thereby
is not only due to the communication protocol overhead but also a question of the actual
operating mode of the node [28]. A single-tasking mode of operation, e.g., does not imply
any form of address space isolation. There is no need to protect either the tasks (since
there is only one per node) or the kernel (since it only has to keep track of the resources
of a single task): neither horizontal nor vertical (address space) isolation is required. Thus,
the kernel is nothing but a communication library, sharing with the application task the

?This somewhat strange scheduling strategy is the result of providing direct user-level access onto the
network hardware interface. However, the problem is not in granting the access but the lack of a properly
designed hardware interface that supports multi-tasking on the node and enables user-level access.



same address space. Of course, this is inconceivable if a multi-tasking mode of operation is
demanded by the application and, hence, must be supported on the node.

The choice of the proper operating mode depends on constraints defined by the applica-
tion and the kernel architecture. There are a number of parallel applications that scale very
well with the actual number of nodes. These applications call for single-tasking support on
the nodes. The microkernel architecture promotes the encapsulation of system services by
user-mode tasks. This approach demands multi-tasking support on the nodes even if only
a single application task must be locally processed. In this case, the microkernel does not
work for but against the parallel application if the (parallel) operating system was assigned
to reduce the message startup time to an absolute minimum.

The message startup time mainly is determined by the communication latency of a sin-
gle network-wide message passing operation. Latency is caused by all “vertical activities”
needed at the source and destination node to send, receive, and deliver a message request
(and not the message contents) to a process and all “horizontal activities” between the
nodes to execute the communication protocol. That is to say, communication latency is the
product of node latency and network latency. In massively parallel systems, node latency
primarily is due to software overhead, i.e., the message passing kernel, whereas network
latency depends on the hardware, i.e., the interconnection network. With the scalar per-
formance of a 40 M1ps processor (Risc technology) in mind, communication latency must
be below 10 psec. As discussed in [22], only then a balanced ratio between the per-node
computing power and network performance is achieved.

2.2.2 System Complexity

Programming and management of thousands of interconnected nodes is a non-trivial task—
and it does not get better with millions of nodes. It is not only the problem of keeping
track of all node resources and to associate nodes with application tasks. This still assumes
that a proper programming model exists, enabling to generate that many tasks or threads
of control. Also bootstrapping an operating system enters completely new dimensions.
Getting an operating system instantaneously loaded over all the nodes is not only utopia
but will also significantly slow down system startup time. In addition to the difficulties
arising from the complexity of the computer architecture, the main software problem is the
complexity of the operating system and the procedure that must be executed during the
initialization process.

Basing on a dynamically alterable operating system, bootstrapping only must take care
of the absolute minimal subset of system functions that need to be operable at any time.
In addition to that, relying on incremental loading features, the consequence will be to
solely bootstrap a single node and to continue bootstrapping of other nodes on demand.
The nodes (and so are operating system services) must only be in operation when they are
needed by some application. In final consequence the application always takes responsibility
(i.e., is the reason) for node bootstrapping. It turns out that, on the basis of the adequate
operating system structure, the majority of nodes of a massively parallel system must not
be bootstrapped at all—incremental loading encompasses incremental bootstrapping. In
such a context, garbage collection becomes indispensible as well. Just as system functions
are loaded on demand, namely when invoked for the first time, they must also be deleted



automatically when their presence is no longer required.

These considerations lead to a situation in which emphasis for the system design must
rest on the ability of being almost arbitrarily configurable. It thus tenders to model operat-
ing system services by (“medium-grained”) objects and trying to reduce the configuration
problem to the question of how to generally map objects onto a parallel machine. Program-
ming massively parallel systems then mainly becomes a configuration problem. This is true
for both the user application and the parallel operating system. In order to ease config-
uration, an object model must found the basis of programming. In this sense, massively
parallel systems and distributed systems share a very common basis. Approaches stemming
from the distributed systems area [15] become transferable to the area of massively parallel
systems to aid the mapping of at least the operating system. Thus, the least minimum
requirement in the development of parallel operating systems is to design a structure that
eases configuration. The operating system must show an actual representation that logically
consists of a number of “transient objects”.

2.3 Design Principles

A solution to the problems discussed in the previous sections is to understand a parallel
operating system as a program family and to use object orientation as fundamental imple-
mentation discipline. The former concept (program families) helps to prevent to design
a monolithic system organization and the latter concept (object orientation) enables the
efficient implementation of a highly modular system structure.

2.3.1 Program Families

The program family concept distinguishes between a minimal subsetl of system functions®
and minimal system extensions. It does not prescribe any particular implementation tech-
nique. The minimal subset of system functions defines a platform of fundamental abstrac-
tions serving to implement minimal system extensions. These extensions then are made on
the basis of an incremental system design [13], with each new level being a new minimal
basis, i.e., virtual machine, for additional higher-level system extensions. A true application-
oriented system evolves, since extensions are only made on demand, namely when needed
to implement a specific system feature that supports a specific application. Design deci-
sions are postponed as far as possible. In this process, system construction takes place
bottom-up, but is controlled in a top-down (application-driven) fashion.

In its last consequence, applications get to be the final system extensions. The tradi-
tional boundary between application and operating system becomes indistinct. The oper-
ating system extends into the application, and vice versa. An incremental system design
also promotes a dynamically alterable system structure. This approach, thus, is the key to
success to overcome the bootstrap problem discussed earlier.

2.3.2 Object Orientation

Applying the family concept in the software design process leads to a highly modular struc-
ture. New system features are added to a given subset of system functions. Because of the

*The term “minimal basis” is used as synonym too.



strong analogy between the notions “program family” and “object orientation”, it is almost
natural to construct program families by using an object-oriented framework [4]. Both ap-
proaches are in a certain sense dual to each other. The minimal subset of system functions
in the program family concept has its counterpart in the superclass of the object-oriented
approach. Minimal system extensions then are introduced by means of subclassing. Inheri-
tance and polymorphism are the proper mechanism to allow that different implementations
of the same interface may coexist at the same time. Code reuse is significantly enhanced,
increasing the commonalities of different family members:

“We consider a set of programs to be a program family if they have so much in
common that it pays to study their common aspects before looking at the aspects
that differentiate them” [25].

For the development of parallel operating systems it is sensible to chose, above all,
the program family concept as fundamental design principle. Object orientation should
primarily be used as implementation and not as design instrument. Inheritance makes it
much easier to implement and maintain an incremental system design, but is not mandatory
for it.

3 Functional Decomposition

The maxim for the design and development of operating systems for distributed memory
parallel computers is to reduce the number of site-dependent components to an absolute min-
imum. Hereby, a site denotes either of cluster, node, processor, or address space. Whether
or not a system component is sharing with other system components a specific site should
be a matter of configuration and not implementation. A highly modular system structure
is required. This structure must enable, but not enforce, the decoupling of functional units
such that a high degree of decentralization becomes possible. In order to design a structure
that meets the needs of (massively) parallel systems, the following three aspects give some
directions:

o The hardware architecture relies on a message passing system. This requires some
kind of message passing kernel acting as a software backplane to interconnect all the
entities (i.e., user and/or system tasks) that are going to be executed by the parallel
machine.

o The parallel machine is of limited scalabilily. Applications that were designed to
operate in an environment with a larger (or even unlimited) number of nodes must
be supported by a parallel computing platform virtually offering any degree of paral-
lelism. Instead of dealing with physical processors (or nodes), precautions for a virtual
processor model must be made.

o The computing platform is a functionally dedicated system. Not all nodes are equipped
with the same set of peripherals and are executing the same software. Most of the
nodes are used for number crunching purposes and not every node is directly connected
to a mass storage device, for example.



This suggests a system organization, in which each aspect is covered by a separate
building block, leading to three major subsystems. Two basic rules motivate this step.
The first rule is that splitting up a system into subsystems leads to a general division
of complexity and, thus, makes the problem of constructing a parallel operating system
more understandable and manageable. The second rule is that a modular structure of well-
defined subsystems reduces the number of node-bounded system components to an absolute
minimum.

With these aspects in mind, since entities must be able to cooperate with each other, the
software backplane has to act as minimal subset of system functions. Providing the notion
of virtual processors is been done by introducing minimal extensions to the minimal basis,
since not every application will acquire more nodes than are physically available. Similarly,
services that depend on the availability of specific devices are qualified as system extensions.
The same holds for services that are only used in the context of specific applications.

3.1 Macrostructure

Every family member is constructed from three major building blocks (Figure 1). These
building blocks are the nucleus, the kernel, and Posk, the Parallel Operating System FEzx-
tenston. In addition to the system components, the application is considered as the fourth
integral part of this architecture. The application largely determines the complexity of a
family member and the distribution of the building blocks over the nodes of the parallel
machine.

user mode

application

P {arallel}
O {perating}
S {ystem}
E {xtension}

nucleus kernel

supervisor mode

Figure 1: Building blocks

The nucleus implements system-wide interprocess communication and provides a run-
time executive for the processing of threads. It acts as minimal basis and is part of the



kernel domain, with the kernel being a multi-threaded system component that encapsulates
minimal nucleus extensions. These extensions implement device abstractions, dynamic cre-
ation and destruction of process objects, the association of process objects with naming
domains and address spaces, and the propagation of exceptional events (traps, interrupts).
Application-oriented services such as naming, process and memory management, file han-
dling, I/0, load balancing, and (inter-) networking to provide some host access are per-
formed by PosE.

Kernel and PoOSE services are built by active objects implemented by lightweight pro-
cesses. In contrast, the nucleus is an ensemble of passive objects that schedule active objects.
Each service that is provided by both Posk and kernel is implemented by an entity that
may consist of several active objects, enabling concurrent service processing. An entity
provides a common execution domain for active objects and defines the unit of distribution,
while an active object is the unit of execution.

Nucleus and kernel constitute the kernel entity. This entity defines an abstract processor
for the execution of possibly multi-threaded tasks. The sole purpose of the kernel entity is
to provide hardware abstractions that make (parallel) applications and PosE independent
from the physical characteristics of a given processing node. This also includes providing
the concept of “logical nodes”.

3.2 Extensibility and Configurability

Entities are system extensions. They are loaded on demand and (in most cases) can be
arbitrarily distributed over the nodes of the parallel machine. The need for having a specific
entity running on a particular node is expressed either by the application or by a system
administrator. In the former case, the entity gets to be loaded when the service it represents
is called for the first time. The entity vanishes when this service is no longer needed. This
may happen, for instance, upon termination of the application entity that demanded the
service. Note that in this model, application entities are not distinguished from system
entities. In other words, provided that the application is properly structured, incremental
loading of parallel applications is free of charge.

In the system administrator case, an initial configuration description specifies which
entity must be initially loaded (i.e., bootstrapped). This procedure loads “opaque” enti-
ties from some bootstrap device (usually, disk or network) and stores them into the local
memories of the nodes. With understanding parallel programs as a group of such related
entities, bootstrapping also can be applied to get applications running. The purest form of
batch processing is achieved.

Either way, POSE is a dynamically alterable building block. The design specifies that
PosE alters its shape with respect to the applications that are to be executed by the parallel
machine. Thus, applications determine the actual complexity of the parallel operating
system. In final consequence, they are responsible for bringing (i.e., bootstrapping) the
operating system on the machine.

Incrementally loading the operating system does not mean to place POSE entities onto
the node where the demanding application task is residing. Since these entities are qualified
as site-independent, they can be loaded on any appropriate node. In order to achieve
an “optimal” mapping, expressing some nearest neighbor relationship between the entity



and either of higher-level application or lower-level hardware/software component may be
sensible. This is where the configuration aspect comes in. The entity is to be attributed
properly and the attributes must be interpreted by some low-level load balancing service.

3.3 User and Supervisor Mode

Logically, application and POSE are assumed to be executed in the non-priviledged pro-
cessing mode (user mode) of the underlying processor. In contrast, nucleus and kernel
are assigned for execution in privileged mode (supervisor mode). Thus, the logical design
defines an artificial boundary to isolate these two components from other entities. This
does not mean that the actual system representation always must show for isolated system
components. Rather, the purpose of introducing the boundary is to guarantee downward
scalability.

The system design must be complete for being able to later integrate the version of a
system component of significantly lesser (i.e., scaled-down) functionality. Therefore, it is of
importance to clearly identify those components that, under certain circumstances, must
be executed in privileged mode and others that can be executed in non-privileged mode.
Note that supervisor mode components also constitute the set of (logically) node-bounded
entities. The complexity of this set has significant impact on how long it takes getting the
parallel machine started. By designing a system structure that exhibits a fluent boundary
between user and supervisor mode the number of node-bounded entities becomes dependent
on the application that must be supported.

This design especially promotes address space sharing between all entities of the same
node, provided that the structure of the application allows to do so. In a single-tasking
mode of operation, e.g., application, PoOSE, kernel, and nucleus all may execute within
a single address space. However, it must be clear that only in the presence of secure
programming languages and in the absence of temporary node failures the model of a single
address space can be considered as being safe. Nevertheless, this model still is applicable for
mature applications—and, of course, for mature system components—to prevent per-node
overhead in crossing subsystem boundaries. As a consequence, since it is not possible to
safely protect user domains, the entire parallel machine then must be operated in batch
mode.

3.4 Functional Hierarchy

The functional hierarchy defined between POSE, the kernel, and the nucleus makes possi-
ble a very high degree of decentralization (Figure 2). All components are encapsulated by
(active/passive) objects, which requires object invocation schemes to request service exe-
cution. Well-defined interfaces enforce a clean separation of all building blocks. Different
styles of calling sequences, to pass the interface, then basically distinguish between single
and multiple address space system configurations.

3.4.1 Invocation Schemes

Nucleus services are made available to the application and PoOsE via Nearby Object Invo-
cation (Not). The logical design assumes a separation of the nucleus from the application
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Figure 2: Problem-oriented invocation schemes

(and Posg), which calls for the use of traps to invoke the nucleus and for address space
isolation. This is the place where cross domain calls may happen. The nucleus is “nearby”
the using entity. It shares with the entity the same node, but not necessarily the same
address space segment. Since kernel and nucleus together reside in the same address space,
the kernel performs Local Object Invocation (Lo1) to request nucleus services.

Kernel services are made available via Remote Object Invocation (Ro1). The Rol scheme
always implies context switching, but not necessarily address space switching [24]. A sep-
arate thread of control is used to execute the requested method (i.e., service). In contrast
to that, Nort logically implies the activation/deactivation of the nucleus address space via
local system call traps. The implementation of Rot takes advantage of the network-wide
message passing services provided by the nucleus and, thus, is logically based on Noi. How-
ever, since nucleus and kernel together define a single program, nucleus primitives invoked
by the kernel to either issue or accept RoI requests hence will not be activated via Noi but
Lor.

Services of POSE are requested via Lol and Ro1. The former scheme is used to interact
with the PoSE passive objects (i.e., runtime system library) whereas the latter is used
to interact with the POSE active objects. In certain situations the PosEk library directly
transforms the issued Lol into one or more RoOI requests to the kernel. The POSE service
then is not provided by an active POSE object but entirely on a library basis.

3.4.2 Actual Structure

From the design point of view neither the kernel nor POSE need to be present on every node,
but only the nucleus. In a specific configuration, the majority of the nodes of a massively
parallel machine is equipped with the nucleus only. Some nodes are supported by the kernel
and a few nodes are allocated to Posg. All nodes can be used for application processing,
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but they are all not obliged to be shared between user tasks and system tasks.

The functional hierarchy of the three building blocks expresses the logical design of
PEACE but not necessarily the physical representation. The building blocks have been
designed by considering the various schemes of object invocation (Figure 2). However, it
depends on the actual operating system family member whether these schemes become
effective as specified by the design or can be replaced by a more simple and eflicient alter-
native.

Although the functional hierarchy assumes Noi for the interaction between application
(Posk) and nucleus, the Lot scheme is used for those members of the kernel family which
place their focus on performance. The entrance to the nucleus is represented as an abstract
data type with two implementations. The first implementation sacrifices vertical and hor-
izontal isolation. Thus, there is neither a separation between user and supervisor mode of
operation (vertical isolation) nor a separation between competing tasks (horizontal isola-
tion). In this case Nol actually means Lol. The second implementation assumes complete
(i.e., vertical and horizontal) isolation and requires a trap-based activation of the nucleus.
Not1 then becomes a cross domain call. Both variants basically distinguish between single-
tasking (no isolation) and multi-tasking (isolation) mode of operation. They implement
different members of the kernel family.

A single-tasking mode of operation implies that only a single address space is supported
on the node. As was pointed out above, NoI then takes the form of Lol. This also means
that all interactions with the local residing kernel happen via Loi too. Thus, instead of
Rol, as specified by the design (see also Figure 2), the more efficient alternative is applied
in that case. Note that this configuration sacrifices the address space boundary between
higher-level entities and the nucleus. Since the nucleus is part of the kernel address space,
sacrificing nucleus isolation also implies sacrificing kernel isolation. As the kernel “uses”[25]
the nucleus, and thus depends on its correctness, it makes little sense to isolate the kernel
in this situation. Nevertheless, kernel services still can and must be provided via Rol. In
other words, there are different invocation schemes existent at the same time to interact
with the kernel: L10 is employed by co-located entities whereas Ro1 serves to execute kernel
requests issued by remote residing (user/system) entities.

3.5 Microstructure

The minimal subset of system functions defined so far is a compromise between scaling
transparency and efficiency. In fact, the compromise was made only with respect to the
interface specification of the abstract data type representing this subset. The internal
behavior of the abstract data type is manifold and basically distinguishes between single
and multi-tasking mode of operations. That subset defines a “minimal but perfect basis”
for distributed memory parallel applications.

Offering dedicated single-tasking and multi-tasking kernel implementations enables the
user to deal with the tradeoff between performance and functionality on an individual basis.
Parallel applications whose tasks can be mapped in one-to-one correspondence with the
nodes are not punished by multi-tasking overhead, as these applications will be supported
by a single-tasking kernel. Experiences show that this overhead takes up to 74 % of the
message startup time when executing a user-level send-receive-reply sequence [28]. Note, a
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state of the art microkernel however supports only multi-tasking and, thus, unnecessarily
drains computing power from a single-tasking application.

The minimal subset of system functions is represented by a kernel family that imple-
ments four different operation modes (Figure 3). Each operation mode is represented by a
subfamily. The entire family tree shows different nucleus versions, with the root (top) being
the most simple and the leaf (bottom) being the most complex instance. As functionality
and complexity increases, node and, thus, communication latency increases.

single-user/single-tasking

networ k communication

!

thread scheduling

!

nucleus separation

kernel isolation | | task scheduling

| multi-user/ L single-user/
. single-tasking P multi-tasking

network integrity i | task isolation

security

multi-user/multi-tasking

Figure 3: Nucleus family tree

This organization of the nucleus (i.e., the kernel entity) is one of the major differences to
state of the art microkernel designs. The kernel entity defined is no single microkernel, but
a “microkernel family”. It can be adapted to the individual needs of parallel and distributed
applications by providing family members that exhibit different system characteristics re-
garding functionality and performance.

3.5.1 Single-User/Single-Tasking

The root of the family tree shows three different nucleus instances supporting single-
user /single-tasking mode of operation, with tasks possibly being multi-threaded. This oper-
ation mode allows only one user application at a time and merely supports the processing of
one task per node. A single address space model is implemented. Consequently, the entire
parallel machine is subjected to batch processing. This enables the most efficient execution
of the parallel program and at the same time leads to the most ineflicient utilization of the
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parallel machine, since the machine cannot be shared between a number of applications.
Processing of non-dynamic parallel applications is readily supported by the nelwork
communication instance. At this stage, thread dispatching is non-preemptive and com-
pletely under the control of the application task. This nucleus representation is extremely
lightweight and supports the notion of featherweight processes. Featherweight processes are
a scaled-down version of lightweight processes. Each of them implement the purest form of
a unit of execution, without consideration of any protection and security measures.
Thread preemption is the minimal extension to network communication. This means
thread scheduling on a timer basis, actually introducing a second scheduling level. This
level implements CpuU protection [27], since a single thread (or task) is no longer able to
seize the processor. The additional level knows the bundle as scheduling unit. A bundle
consists of one or more threads, with non-preemptive scheduling of threads of the same bun-
dle. Preemptive scheduling only happens between bundles. Bundles are thus autonomous
scheduling units and are given a limited time quantum during which execution proceeds
without scheduler intervention. As a consequence, threads execute no longer under the con-
trol of the application task but the system (i.e., nucleus). This enables to safely integrate
kernel-level lightweight processes that implement the service access point for Roi. These
threads then are combined into a kernel bundle, while all other threads form the application
bundle. By that means, kernel service processing works independently from the processing
of the application task. It ensures that remotely requested services are processed latest when
the thread scheduler gains control and selects a clerk [24] for execution—provided that the
application task sharing with the kernel entity the same address space is “well-behaved”?.
The next nucleus instance does not really introduce additional functionality, but provides
the platform for multi-tasking and/or multi-user mode of operations. These operation
modes call for isolation and protection measures. Thus, the nucleus separation instance
introduces as minimal extensions to thread scheduling Nor and Ro1 patterns in order to
request services from the nucleus and the kernel, respectively. This kernel family member
provides a nucleus trap interface. Higher-level entities are physically uncoupled from nucleus
code. Since every nucleus and kernel instance takes the form of an abstract data type, these
entities are also logically uncoupled from kernel-level data. This supports dynamically
changing the operating mode of a node by replacing the actual kernel entity by a different
implementation. However, note that only code separation is supported, but not memory
protection. As a consequence, the passing of complex data structures between the kernel
entity and higher-level entities is straightforward and involves no MMU programming,.

3.5.2 Multi-User/Single-Tasking

In a distributed memory parallel machine, multi-user mode of operation is feasible even
if only a one-to-one correspondence between tasks and nodes is supported. The entire
multi-node machine can be allocated to different users at the same time. For this purpose,
different user partitions are provided, with every user application executing within a private

*With scheduling bundles of threads that reside within the same address space, in a shared-memory
multiprocessor environment, several processors then may be in charge of executing different bundles. In
this model, an application task conmsists of several bundles to take advantage of preemption and of the
shared-memory processor architecture.
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partition. Obviously, this does not require local ("on-board”) security measures to protect
the tasks from each other, but it requires to protect the network interface. By direct network
access the user task is able to intrude the network and, thus, tasks mapped to different user
partitions.

In order to provide a multi-user function, the kernel entity must be entirely isolated.
Memory protection is to be introduced as minimal extension to nucleus separation. This
results in a new family member, providing kernel isolation. Because the nucleus is part of
the kernel entity, applying memory protection to the nucleus also implies the isolation of
parts of the kernel address space. In this case, nucleus invocation, i.e., crossing the trap
interface, usually does not cause increased overhead. However, the passing of data structures
gets more heavyweight. It mainly depends on the MMU and on the (kernel) address space
model whether or not additional overhead is introduced®. Anyway, the increase of nucleus
functionality is encompassed by a potential loss of communication performance.

Once the kernel entity is protected, tasks are no longer capable to intrude lower-level
software components and, thus, bypass protection domains. However, in order to com-
municate, tasks need to know communication endpoint (i.e., thread) identifiers, and these
identifiers must be passed down to the nucleus along with a communication request. In
a multi-user configuration, tasks mapped to different user domains must therefore be pre-
vented from being able to successfully apply communication endpoint identifiers of each
others domain. This is the purpose of the minimal extension to kernel isolation, namely
network integrity.

In order to model and enforce protection domains, a capability-based approach [7] is
used. This approach grants object access only if a thread (i.e., subject) is in the possession
of that object or one of its proxies. An object must be created and bound to a system-wide
unique identifier before it can be used. It is assumed that a unique identifier cannot be
deduced [23]. In order to achieve this, the nucleus generates a random number which, com-
bined with a global hash key, is used to make identifiers system-wide unique. Note that this
procedure works autonomously and needs not be controlled by a central system component.
The creator implicitly possesses the newly created object and henceforth acts as its owner.
It is the autonomous decision of the owner to make the object either globally known, by ex-
porting its unique identifier, or even accessible, by exporting its prozy object [24]. Thus, the
access domain of an object may be extended only through the owner. As a consequence, the
nucleus must not verify that communication to an active object is allowed but only whether
this object exists—knowing the capability of this object enables communication.

3.5.3 Single-User/Multi-Tasking

The scheduling paradigm which was introduced by the thread scheduling instance does not
distinguish between multiple autonomous program entities. Merely execution of a single
application program (i.e., task) is supported. With having introduced nucleus separation,
the processing of several application programs becomes possible by slightly extending the

Usually, the address space of the currently executing thread is mapped into the kernel address space.
This enables direct access onto its user address space when the thread temporarily executes in kernel space,
unless the MMU requires, though, to explicitly classify each access as a user mode address space operation. In
that case, simple memory load/store instructions may easily expand to heavyweight read/write procedures.
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scheduling functions. The nucleus can be easily shared by a number of application tasks, as
it exploits a trap mechanism to provide a common entry point for independently generated
programs.

A taskis represented as a team of lightweight processes, with the team possibly exhibiting
several thread bundles that can be autonomously scheduled. The team owns resources such
as message buffers, memory space for stacks, process descriptors; and task scheduling then
means to additionally keep track of the resources owned in order to select the next task
ready to run. A scheduling discipline may be favorable that takes care of the current load
and, thus, is trying to improve global system utilization. This further calls for minimal
scheduler extensions to those already provided by nucleus separation.

At this stage, multi-tasking can be readily supported even if private address spaces are
not provided. A private address space serves for two basic purposes. On the one hand it
implements memory protection, isolating programs from each other. On the other hand
it defines a logical address space to execute a program, enabling code/data relocation at
runtime. Being relocatable is also a property of position independent code, which then
needs to be generated by a compiler. In addition, the use of secure programming languages
supports program isolation without the necessity of address space protection hardware.

For all these reasons an intermediate step was made. This step introduces the task
scheduling instance as a platform for multi-tasking. A minimal extension to this platform is
introduced with task isolation, encorporating full address space protection. This extension
is used to generally improve system availability and in those cases where neither the pro-
gramming language nor the compiler provides adequate support for a single address space
multi-tasking mode of operation. Task isolation extends not only task scheduling but also
kernel isolation. The latter family member already provides vertical isolation to protect
the kernel entity from higher-level user entities. With task isolation, the nucleus is also
functionally enriched by measures of horizontal isolation to protect user entities from each
other.

3.5.4 Multi-User/Multi-Tasking

By combining the functions of network integrity and task isolation, a new nucleus instance
emerges. This instance introduces multi-user security. Multi-user security in a distributed
environment demands communication firewalls and protected address spaces. The former is
achieved by ensuring network integrity and the latter is achieved by enforcing task isolation.
Obviously, the peak of system functionality has been reached, however only at the cost of
system performance.

3.6 Communication System

The nucleus performs network-wide message passing between processes and address spaces
and needs a communication system for this purpose. The communication system is asked
to (1) keep track of interactions between remote residing processes (i.e., active objects),
(2) execute some sort of transport protocol, and (3) control the network hardware inter-

face. A communication system emerges that exhibits three problem-oriented protocol layers
(Figure 4).
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Figure 4: Communication system architecture

Interactions between the layers happen via downcalls and upcalls [3]. Queues are used
where possible to decouple the different flows of control. Calls in either direction are virtu-
ally asynchronous, since it depends on the actual load and on the nucleus configuration of
whether message transfer requests must be queued or can be immediately carried out. The
communication protocols implemented by these three layers are also referred to as NC?,
which stands for “Nice-Cosvy-CLUB”.

3.6.1 Inter-Nucleus Protocol

The nucleus supports network-wide communication between both processes (i.e., threads)
and address spaces (i.e., teams). Interprocess communication is synchronous and packet-
oriented whereas the communication between entire teams works segment-oriented and is
asynchronous. In order to communicate, the locality of processes (active objects) and/or
team address spaces (passive objects) must be known. This is the task of the top layer of
the communication system. It determines the correlation between active/passive objects
and the nodes where these objects are residing.

Network-wide communication between objects is supported by NICE ( Network Indepen-
dent Communication Frecutive). The NICE layer implements the inter-nucleus protocol. It
extends into a network environment local functions dealing with the control of processes
and address spaces. Network communication is not been done by NICE, but by some lower
level communication system (i.e., Cosy). Instead, state transitions of processes and ad-
dress spaces are controlled to logically enable end-to-end data transfers without the need
for intermediate buffering.
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The base function of the inter-nucleus protocol is to verify the presence of communication
endpoints. This measure is to ensure availability of address spaces that are either source
or destination of a data transfer. The basic inter-nucleus protocol primarily encapsulates
resource management strategies. It does not implement security measures. Since not in
every configuration the parallel machine is run in a multi-user mode of operation, security
is implemented as minimal extension to a minimal subset of NICE functions.

3.6.2 Transport Protocol

Data transfer is accomplished by Cosy (COmmunication SYstem). This layer encapsulates
transport protocol functions and provides an abstraction from actually given network ca-
pabilities. Depending on these capabilities, COSY is more or less complex. It provides a
protocol family and not only a single implementation for all possible system configurations.

Logically, Cosy takes responsibility for a secured data transport of arbitrarily sized
messages. However, “logical” does also mean a configuration in which Cosy is not in
charge of any network activities. That extreme situation arises when the network hardware
itself is capable of transferring message streams in a manner required by parallel applica-
tions. In those cases, CosY simply passes through all requests from and to Nick, without
interpretation.

Cosy supports the concept of virtual channels. Downcalls from NICE, that have network
relevance and thus imply a message transfer, are furnished with logical addresses of the nodes
to which these calls are directed. A logical connection between the sending and the receiving
node is established and made known by generating a virtual channel identifier. In reality, a
virtual channel is nothing but a number that is used as hash key to locate protocol objects
that manage a specific connection. Upcalls from CLUB deliver virtual channel identifiers as
part of the Cosvy packet that was just received.

The protocol objects Cosy implements distinguish between different data transport
functions. They are tuned with respect to the given class of network, however without
having knowledge of how this network is really accessed. Access transparency in this case
is rendered possible by CLuB. Transport protocol functions for message segmenting and
reassembly, e.g., are provided when it is required by the network or even by the application.

3.6.3 Network Device Protocol

Abstraction from the physical network interface is been done by CrLuB (CLUster Bus).
The bottom layer of the communication system, thus, encapsulates the network device and
attaches the nucleus physically to the network. This layer implements the network device
driver.

CLUB provides the view of an abstract network device that may have several physical
representations. The CLUB abstraction makes Cosy independent from the network device
actually used, no matter of whether this device is a physical or a logical one. By that means,
the portability of Cosy protocols is supported. It also provides a framework for the de-
velopment of communication protocols, as it becomes possible to test new implementations
under the control of some host operating system instead of being compelled to use the bare
hardware.
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Another important aspect of CLUB is to allow coexisting COsY entities to share a single
network device. A sending Cosvy entity provides additional demultiplex information used by
the receiving CLUB instance to select the proper transport protocol entity for the incoming
message®. Which pair of Cosy entities becomes effective is an attribute of the message
sending process. In principle, CLUB performs dynamical binding of upcalls to COSY across
the network. A message object that is going to be transmitted by means of CLUB encodes
the upcall handler (i.e., method) to be used for the delivery of that object to the peer Cosy
entity—a CLUB message is some sort of “Active Message” [31].

3.7 Communication Latency

The most crucial aspect of MIMD systems is the message passing performance, in particular
the message startup time. As was mentioned earlier, the message startup time depends
on the communication latency of a network-wide message transaction. The communication
latency depends on (1) the node latency for sending and receiving a message to/from the
network and (2) the network latency for actually transferring the message to the peer node.
Node latency is mainly a software issue, whereas network latency primarily depends on
the communication hardware. Thus, in order to reduce the message startup time, the
node latency should be kept as small as possible—and this calls for a proper design and
implementation of the nucleus and the embedded communication system.

The “coarse grain” approach is to rely on a kernel family. That is to say, node latency
is reduced by letting applications only pay for the service functions really needed. This
approach is refined basing on a communication paradigm by means of which arbitrarily
sized messages are exchanged (1) in a pipelined manner and (2) directly between the address
spaces of the communicating threads without intermediate buffering. The transfer of a
memory segment basically means to send a message header immediately followed by a
message trailer. At the receiving site, the message header is used to announce the arrival
of a message segment and to enable the delivery of the incoming data to the destination
address space. The basic idea is the following;:

e overlap the header transmission with the procedure locally executed to setup the
message trailer;

e overlap the trailer transmission with the procedure remotely executed to deliver the
message segment.

Trying to overlap the above mentioned communication phases is motivated by the “short-
term buffering” capabilities of the network. Typically, there are two categories of buffers.
These are the “communication wire” and the sending and receiving Firo registers of the
network hardware interface. If DMA is exploited in the transfer procedure, an overlap may
be given only if the memory bandwidth is not fully utilized in order to send the message
out of the node. As long as the CPU can run memory cycles and/or primarily performs
code/data cache accesses, the fetch-execute-cycle is not delayed and operates with full speed.

5This feature is required if the same network is the only means by which node bootstrapping is possible.
In this case, “normal” messages must be distinguished from “bootstrap” messages.
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This makes the processing of CpuU instructions (in particular, nucleus software) appear in
parallel to the network-wide transfer of memory cells.

The scenario of trying to overlap message setup and transmission phases is illustrated
in Figure 5, which shows a fine-grain breakdown of the communication latency. Network
latency basically consists of two parts: packet latency (i.e., message header transmission) and
segment latency (i.e., message trailer transmission). It depends on the network architecture
whether both parts will accumulate to the same delay. Note that the network may be tuned
to specifically support the transfer of small and fixed size packets [5]. Node latency is the
sum of sender latency and receiver latency. The former is due to the header and trailer
setup procedure, referred to as header latency and trailer latency, respectively. The latter
is due to (1) signaling and handling a communication interrupt, (2) receiving a packet from
the network, (3) forwarding this packet to NICE, (4) verifying the destination address space
segment, and (5) accepting the message segment from the network. The last four steps
determine the delivery latency of a segment and are the most crucial factors in trying to
reduce the message startup time. In principle, these steps are performed by the portable
part of the nucleus. The first step listed relates to the non-portable nucleus part and is
highly processor-dependent. The play for tuning the receiver latency, thus, is the fraction
made up by the delivery latency.

_ header latency _,
N —1

L packet latency N
= —1
__trailer latency _, | GOeliverylatency _,
= —1 = 1
L segment latency N
= -1
L sender latency | __receiver latency |
P = =1 = =1
L network latency N
= -1

communication latency

Figure 5: Message delivery latency

Achieving message delivery on time is a question of the receiver latency. The longer the
execution path is between signaling the communication interrupt (in order to receive the
message header) and accepting the message segment, the longer the receiver latency is. The
length of this path particularly depends on the processor architecture and on the operating
mode of the receiver node. State of the art Risc processors may cause a prohibitively large
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performance decrease of interrupt-driven communication systems’. A single-tasking mode of
operation calls for significantly less nucleus functions that must be processed in the receive
procedure than a multi-tasking mode. Consequently, delivery latency of a single-tasking
node is smaller.

In order to overcome the receiver latency problem two solutions are possible. The first
solution applies a different communication pattern. This pattern, e.g., will cause the Cosy
entity at the receiver site to explicitly signal when to transfer the message trailer, which
requires to execute a handshake protocol. Similarly, the Cosy entity at the sender site only
transmits the header and then waits on the signal to start the trailer transfer. The second
solution is to still rely on the original communication pattern but introduce a delay slot
between the transfer of message header and trailer. The delay slot is computed according
to the following formula:

Tpacket = Lpacket+Ldelive7’y

Tsegment = Lt’r’ailer + Lsegment

Tdelay = Tpacket - MIAT(Tsegmentv Tpacket)

However, introducing delay slots is a meaningful undertaking only if message delivery within
a known and fixed time frame can be guaranteed. This calls for real-time capabilities of all
nucleus instances involved in network-wide high-volume data transfer. In particular, it re-
quires N C? to implement a (scaled-down) real-time communication protocol [9]. In addition
to that, the network hardware must provide guarantees for the allocation of packet transfer
slots. There must be a fixed and known (worst-case) delay from which the occurrence of
the remote communication interrupt due to a transmitted header packet can be deduced.
This delay is the packet latency.

4 System Composition

A number of problem-oriented system configurations become possible by combining the
building blocks nucleus, kernel, and POSE in a manner required by the hardware architecture
and/or demanded by the parallel application. In the following, a distinction between a
native operating system for distributed memory parallel computers and a parallel computing
platform for (high-performance) distributed systems is made. It is demonstrated that the
designed system architecture is applicable in completely different environments.

4.1 Native Operating System

A native operating system runs on the bare hardware. It is assigned to control all hardware
resources without assistance of some other operating system. Being of native type mainly is

"For example, the PEACE trap handler for the 1860 is about 2000 lines of C code and has to take into
account a number of obstacles defined by the pipeline architecture of this processor. Assuming 40 Mips
performance, a single interrupt may cause a delay of approx. 50 wsec before the first (C++) interrupt
handler statement is executed. This is about three times slower than in the case of a 2 M1Ps mc68020, which
is a Ci1sc processor. Effectively, there is a factor of 55 in interrupt handling startup time decrease, although
the 1860 has a 20 times higher scalar performance than the mc68020.
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the question of how to isolate and implement the hardware-dependent system components.
Hardware dependency also means site dependency, namely that a device driver, e.g., has
to reside on the node the device to be controlled is attached to. As discussed later on,
replacing carefully isolated components may not only imply the portage onto completely
different hardware platforms but also to transform a native operating system into a user-
level runtime executive.

There are two system components encapsulating site-dependent functions. These are
the nucleus and the kernel. The nucleus is site-dependent because it acts as the minimal
basis needed to interconnect cooperating active objects of a parallel/distributed applica-
tion. Since the nucleus supports network-wide communication and preemptive scheduling,
hardware-dependent modules are used as abstractions from a clock device and a network de-
vice. In addition to that, the nucleus shows for hardware-dependent modules that implement
processor abstractions needed to perform process switching and interrupt synchronization.

The kernel is site-dependent because it encapsulates additional device driver functions
used to support specific application and/or system configurations. Examples are the Mmu
driver and the disk driver, the former necessary to implement multiple address spaces or
virtually shared memory and the latter required for file handling purposes. In addition to
these hardware-dependent features, the kernel also is assigned to implement a dynamical
process model. This calls for process management functions that are not necessarily hard-
ware but site-dependent. Process creation, e.g., means allocation of a process control block
on a specific node and this can be done only by kernel modules residing on that node.

Posk is classified as site-independent and, thus, hardware-independent in terms of porta-
bility. Although providing memory management and file handling functions, e.g., POSE is
hardware-independent since it bases on hardware abstractions introduced by the kernel.
Both examples depend on abstractions from low-level hardware capabilities and are not re-
quired to be co-located with the hardware devices that effectively carry out the management
functions, namely to setup some address space segment or read/write a disk block.

For the reasons mentioned above, POSE is arbitrarily distributable across the parallel
machine. Since the presence of the kernel is only required in the context of specific applica-
tion or system structures, nodes may also be equipped with the nucleus solely. This leads to
a number of possible node configurations as illustrated in Figure 6 (shaded boxes intimate
the application building block).

4.1.1 User-Specific Nodes

A user-specific node is equipped with a minimal subset of system functions only. Focus
is on application processing and this means to entirely sacrifice on Posk. That is to say,
PoOSE services are provided elsewhere, but never on a user-specific node. These services are
requested on RoI basis and, therefore, transparently accessible from remote.

With this background, only nucleus and kernel are provided as local system support.
However, the kernel is required only under the following circumstances:

e the node has globally accessible devices attached to,
e the node is to be managed/controlled from remote, and/or

e the application calls for scaling transparency.
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Figure 6: Operating mode variety

In the first case, the device driver simply exhibits a Rolinterface. The second case works
similar and, for instance, enables remote residing system components to force a “warm
startup” and to construct/destruct active objects and/or address spaces. The third case
assumes support for dynamical process management to enable many-to-one correspondence
between application tasks and nodes.

Applications that scale well with the actual number of available nodes only call for a
single-tasking mode of operation. In this mode, a further distinction is made between con-
figurations supporting statical threads and dynamical threads. In the statical case, multiple
threads of control are established as a “side-effect” of bootstrapping. These threads then
exist as long as the node is executing the single application task. As a consequence, only
the nucleus is required for application processing. In the dynamical case, multiple threads
of control are dynamically created and destroyed. This feature is provided by the kernel.
The nucleus remains unchanged and the kernel adds minimal nucleus extensions used for
thread management.

The main characteristic of the statical and dynamical threads model, however, is the
single address space on a node. Thus, nucleus and kernel take the form of a runtime library
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that is directly linked to the application task. All local system functions are requested
on a Lol basis. The kernel additionally offers a Rol interface to remote residing system
components. This single address space approach reduces the message startup time to an
absolute minimum, since protection domains are not implemented and, therefore, must not
be bridged in the course of processing communication primitives. The single address space,
thus, is the most important prerequisite to make lightweight processes even featherweight.

Scaling transparency calls for multi-tasking mode of operation. This implies multiple
address spaces per node. A further refinement leads to the distinction between statical tasks
and dynamical tasks. This is a similar distinction as the one made in the case of single
address spaces. A library implementation of nucleus and kernel, as in the single address
space variant, is no longer feasible. Rather, the kernel family member providing nucleus
separation (refer to Section 3.5) is to be used as minimal basis on that node.

4.1.2 System-Specific Nodes

A system-specific node is used as server station and provides globally accessible operating
system services. These nodes provide services that either have been off-loaded from user-
specific nodes or are required to control devices. That is to say, system-specific nodes may
host site-dependent as well as site-independent services.

One scenario in establishing a system-specific node is to have only nucleus and kernel
running, with the kernel encapsulating one or more node-specific device drivers. In this
case, a device server node is configured. This node provides remote device access on Rol
basis. The nucleus is used to enable cooperation with the device driver (an active object)
residing on that node. A typical example is to introduce a disk node. The main purpose
of the kernel-level disk driver then is to implement disk block caching on that node and
to provide cache read and write operations via RoI. In this case, file system functions are
provided elsewhere and may even be available on a library basis, only. Since RoI is used
to interact with the device, applications are unaware of the fact that disk I/O is not really
performed by a user-specific node, for instance. This also is true with file management
functions taking the form of a user-level library, thus hiding the disk driver (i.e., cache)
interface.

The disk driver example explained above may cause problems with several application
tasks going to access the same disk partition, i.e., file. In order to prevent data inconsisten-
cies, a file cache consistency protocol is to be executed. This can be readily achieved on a
library basis as well. Another and more straightforward approach, however, is to add a file
manager to the device server node. This introduces a system server node that does not only
make devices globally accessible but is also assigned to provide general (site-independent)
operating system services.

File management is only one example to establish a system server node. Naming, pro-
cess management, address space management, paging (e.g., in a virtually shared mem-
ory context), trap handling, incremental loading, load balancing, networking are further
examples—and the list could be continued. That is to say, almost any POSE service is
a candidate for being off-loaded from user-specific nodes and, thus, establishing a system
server node. All these services are provided on ROI basis and are therefore accessible cross-
ing node boundaries.
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The device server configuration also implies a single address space model. Solely the
kernel entity (i.e., nucleus and kernel) is executed on the node. In the system server case,
address space isolation may be required. However, whether or not this really needs to
be done depends on the number and type of POSE services being executed by the node.
Separation between user and supervisor mode could be an issue, just as address space
protection. Logically, a system server node implies a multi address space model.

4.1.3 Non-Specific Nodes

A non-specific node executes user as well as system tasks. That is to say, in addition
to nucleus and kernel, non-specific nodes also exhibit the Posk and application building
block. With PoOSE being executed in user mode, a configuration emerges that compares to
a typical microkernel organization. In this case, nucleus and kernel provide a (supervisor
mode) platform on top of which microkernel-based user and system applications can be
processed. For obvious reasons, vertical and horizontal isolation measures are required.
That is to say, the kernel entity needs to be isolated from higher-level (user and PosE)
tasks and the tasks need to be isolated from each other. A distinction between user and
supervisor mode of execution is demanded.

The second configuration of a non-specific node is to have only application tasks exe-
cuting in user mode. PosE, kernel, and nucleus then will be subjected to supervisor mode
execution. In addition to that, operating system services are provided by passive objects.
This leads to a traditional monolith, i.e., a procedure-based operating system in which all
service functions are mapped into the same (supervisor mode) address space. Both, the
Rol1 paradigm used to interact with Pose and/or kernel and the Noi paradigm used to
interact with the nucleus are of procedure-based nature anyway. It merely is a question of
how these calling principles are carried out by an actual system representation.

The duality of process-oriented and procedure-oriented operating system structures [16]
makes possible to present a design that can be implemented either way. However, having a
process-oriented implementation (by means of active objects) in mind is the right approach
in order to prevent possible performance bottlenecks. It is important to clearly identify
system components that are possibly associated with an autonomous thread of control,
protected by a separate address space, executed on a different node, and, therefore, accessed
via Ro1. On this basis, it becomes a matter of configuration to generate an actual system
representation that really exhibits active objects as service providing entities. The other
way round, namely assuming that all components will share the same address space, may
end up into a highly inefficient implementation if decentralization needs to be achieved in
a later development phase. This even may hold although, from the software technical point
of view, either representation is possible.

4.1.4 Configuration Interplay

All configurations discussed above are able to coexist. The nucleus is used as common
communication platform. Since POSE and kernel services are provided by means of Rol,
user-specific nodes are able to request services executed by either system or non-specific
nodes. Vice versa, system-specific nodes are used to manage the parallel machine in terms
of a processor bank, allocating user-specific nodes for the processing of parallel applications.
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Whether or not user-specific nodes can be run by a combination of the configurations
shown in Figure 6 (and explained above) actually depends on the application. For example,
a load balancer (residing on a system server node) may decide to allocate as many tasks as
possible in one-to-one correspondence with the nodes. If the number of tasks exceeds the
number of available nodes, some and not all of the nodes need to be driven in multi-tasking
mode of operation. This assumes that the number of tasks is already known at loading
time. A configuration description (in the sense of a batch job specification) can be used
to instruct the load balancer accordingly. That way, parallel applications are tried to be
mapped onto a multi-node machine with the goal of keeping the message startup time for
the majority of tasks as small as possible. Note, one-to-one correspondence between tasks
and nodes also implies a single address space model and, thus, results in a low message
startup time.

4.2 Parallel Computing Platform

The previous subsection discussed a system configuration that was classified by a monolithic
representation of PosEk, kernel, and nucleus. All three building blocks share the same
address space and will be subjected to supervisor mode of execution. The other view,
however, may also be sensible, namely to let the building blocks execute in user mode. In
this configuration, a so-called “guest level” implementation of the native operating system
on top of some other (host) operating system emerges. In fact, if the designer decides to
construct a highly portable and configurable operating system, a guest level implementation
is feasible in almost every case. It is mainly a question of how to isolate hardware-dependent
system components—and this, at all, is the key question in order to achieve portability.

A guest level implementation of a parallel operating system is not only sensible but also
mandatory at all. Consider the case in which a parallel machine is attached to some host
computer on top of which a quite different operating system is likely to be executed. In that
case, software packages need to be available for not only interconnecting the two different
hardware components but also coping with the heterogeneity issues raised by two different
operating systems. Three approaches for host interconnection can be distinguished. These
approaches differ in the way a parallel application is going to be mapped onto the entire
hardware complex. They also exhibit different techniques to physically interconnect both
host and parallel computer.

4.2.1 Asymmetrical Coupling

A straightforward way to achieve the host coupling is to mainly provide utility programs
that help users to utilize the parallel machine for their own purposes. These programs run
under control of the host operating system. They are started by some sort of command
interpreter. The entire complex defines a hosted system (Figure 7).

The parallel operating system then has to exhibit (1) a communication service that relies
on protocols dictated by the host operating system and (2) service functions implementing
the bridge to the host-resident utility programs. For example, in the UNix case Tcp/Ip
needs to be run by some node of the parallel machine. Typically, the coupling is implemented
by a system-specific node. This node also may be assigned to execute software that enables
the interaction with the utilities controlling the parallel machine. In that scenario, the host
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Figure 7: Hosted system

computer acts as frontend only. Application tasks are only executed by the multi-node
machine.

Although straightforward and undoubtedly applicable, the pure frontend approach has
its limits for quite a reasonable number of (distributed memory) parallel applications. Many
of these applications distinguish between a host task and a node task. There will be one
host task only, but a number of node tasks. The host task typically creates the node tasks,
distributes initial parameters, and awaits final results that have been jointly computed
by these subtasks. Node tasks actually represent the computational aspect of the parallel
application, while the host task corresponds to the management aspect. This is also referred
to as “host/node programming”. In fact, the parallel program is to be distributed not only
over the nodes of the parallel machine, but also over the host.

4.2.2 Logically Symmetrical Coupling

In order to overcome the limits given with an asymmetrical coupling between host and
parallel computer, a host task must be supported by the same software platform used to
process node tasks. This can be achieved by following up two ideas:

e make changes in the host operating system, i.e., add new kernel functions that mirror
those provided on the nodes;

o let the kernel unchanged and provide a user-level software package that simulates the
nodes of a parallel machine.

Following an approach that relies on host operating system kernel changes to achieve
the interconnection extremely limits applicability and availability of the parallel machine.
Even in the kernelized approach an efficient coupling is not guaranteed. For these reasons,
the more promising way is to entirely rely on user-level software packages.

This is where the guest level implementation of a parallel operating system demonstrates
its full power. In is not only a means by which parallel computing is made feasible by
relying on local area network technology, for instance. Rather, this implementation defines
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an abstract parallel machine, hiding from the application the different hardware subsystems.
Basically, a self-hosted system emerges as shown in Figure 8.

application
gu(gg/t_\ (I:eE\;eI ROI PEACE parallel computer
ROl PEACE
host 3 : \ ,
(UNIX) jTCP/IP gateway NC probcaensksor
workstation | TtTriitririeimereeeereseeeeooeiooiin

Figure 8: Self-hosted system

The tasks of the parallel application all see the same abstractions. The host task is
able to cooperate with the node tasks on RoI1 basis. In particular, the host task can
directly exploit the services provided by the parallel operating system. Vice versa, the
parallel operating system is enabled to take advantage from the services provided by the
host operating system. The host-residing part of the guest level implementation takes care
for the mappings.

Nevertheless, the coupling between host and parallel machine is only logically symmet-
rical. This is because the interconnection still bases on two different networking schemes.
The host is reachable via standard technology, such as Ethernet or Fppi and Tcp/Ip. The
nodes of the parallel machine are networked by means of a problem-oriented communication
system, e.g. the NC? suite. As consequence of these quite different networking techniques,
a system-specific node as gateway still is indispensable. The gateway function then is to
translate Tcp/IP messages into N C? messages, and vice versa.

4.2.3 Physically Symmetrical Coupling

The gateway node of the parallel machine may easily become a serious bottleneck if large
traffic is encountered. For example, this is the case when only the host provides special
output devices in order to adequately display the results of a parallel computation. A typical
device is the graphics display. Such a display usually is shared by a number of different
applications and not necessarily been used by parallel applications only. Its proximity to
the host, thus, is quite reasonable.

Overcoming the potential I/O bottleneck defined by the gateway node, however, has
far-reaching consequences. First, additional hardware support is required, namely to di-
rectly attach the host computer to the network that interconnects the nodes of the parallel
machine. Second, standard communication protocols as used by the host operating system
for LAN environments must be sacrificed.
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Figure 9: Self-hosted integrated system

This approach leads to a fully integrated system (Figure 9). It does not require to
re-implement (or even port) parts of the parallel operating system, excepted the Cosy pro-
tocols. The guest level implementation still may be a user-level software package. However,
instead of accessing Tcp/IP sockets, e.g., raw network device access is required. The guest
level then must have been extended by the same CosY implementation that is actually been
used by the native nuclei.

5 Conclusion

A massively parallel computer, by its nature, is a tightly-coupled distributed system. Parallel
applications being run by this machine, thus, are specific types of distributed applications.
These applications demand system-wide message passing with very low latency and very
high efficiency. It is this performance issue which, from the operating system design point of
view, is one of the most significant characteristics to distinguish a parallel application from a
distributed application. Distributed operating systems, even those basing on a microkernel,
are by far too overhead-prone. Rather, specifically designed parallel operating systems are
required, which also show for distributed operating systems characteristics.

The major goal in parallel operating system design, therefore, is to combine transparency
with efficiency. Transparency means to hide from parallel applications typical problems
coming up with distributed systems—but without enforcing transparency in all cases. This
requires to provide almost every system service a distributed operating system provides—
but not necessarily providing these services at all times. Efficiency means to reduce the
message startup time for a given application to an absolute minimum. Message passing is a
fundamental system capability to support inter-node communication in massively parallel
systems and, hence, must be provided by a proper platform—but without all applications
being obliged to use the same platform. Thus, system services are to be provided on extant-
on-use basis.

State of the art parallel operating systems design must obey the maxim not to punish
applications by unneeded system functions which are unexploited but still “used”[25]. This
includes the entire spectrum of computer resources, ranging from memory space to processor
cycles. An open, application-oriented operating system structure is required, with the
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application and not the operating system deciding which functions must be supported and
which must not. An approach should be followed in which an operating system is being
understood as a family of program modules and not as a monolith of more or less related
components. In such a context, the parallel application is an integral part of a family of
parallel operating systems and object orientation then is the natural choice to design and
develop such a family. Thus, an application becomes the final system extension.

The paper presented rationale and concepts of the design of parallel operating systems
for distributed memory MiMD machines. PEACE was used as a case study system to exem-
plify the design concepts. The PEACE system is running as UNIX guest level on a cluster
of workstations and as native operating system on a 16 node (32 processor, i860) MANNA
system [12], 64 node (T800) Transputer system, and 320 node (mc68020) SUPRENUM sys-
tem [11]. It provides a common, object-oriented and scalable “software backplane” for
parallel computing [17].
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