Matchings in Lattice Graphs

Claire Kenyon! Dana Randall* Alistair Sinclair®
TR-93-019

March 1993

Abstract

We study the problem of counting the number of matchings of given cardinalily in a
d-dimensional rectangular lattice. This problem arises in several models in statistical
physics, including monomer-dimer systems and cell-cluster theory. A classical algorithm
due to Fisher, Kasteleyn and Temperley counts perfect matchings exactly in two di-
mensions, but is not applicable in higher dimensions and does not allow one to count
matchings of arbitrary cardinality. In this paper, we present the first efficient approzi-
mation algorithms for counting matchings of arbitrary cardinality in (i) d-dimensional
“periodic” lattices (i.e., with wrap-around edges) in any fized dimension d; and (ii) two-
dimensional lattices with “fired boundary conditions” (i.e., no wrap-around edges). Our
technique generalizes to approrimately counting matchings in any bipartite graph that is
the Cayley graph of some finite group.
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1 Summary

1.1 Background and motivation

This paper is concerned with the following computational problem: given a finite lattice graph
in some fixed number of dimensions, and some number of dominoes, determine the number
of ways of placing dominoes on the edges of the graph so that no two dominoes overlap at a
vertex. Equivalently, we can think of dominoes as covering a pair of adjacent squares (cubes)
in the dual lattice.

This is a classical problem in statistical physics, first introduced by Fowler and Rushbrooke
in 1937 [3], and is the earliest example of a large class of problems concerned with computing
the number of non-overlapping arrangements of figures of various shapes on a lattice (see, e.g.,
[11, 16] for a survey). The problem arises in several physical models. For example, in two
dimensions the lattice represents the surface of a crystal and the dominoes diatomic molecules
(or dimers), and the number of domino arrangements is the number of ways in which a given
number of dimers can attach themselves onto the surface; from this information, most of the
thermodynamical properties of the system can be computed. In three dimensions, the same
problem occurs in the theory of mixtures of molecules of different sizes and in the cell-cluster
theory of the liquid state. For further background information, see [4, 11] and the references
given there.

The problem also has inherent combinatorial interest: clearly a domino arrangement is
simply a matching, so we are actually being asked for the number of matchings of specified
cardinality in the lattice graph. Counting matchings is a central problem in computer science
and has received much attention since the seminal work of Valiant [15], who proved that it is
#P-complete for general graphs. The enumeration of perfect matchings (where the dominoes
are required to completely cover the graph) is equivalent to computing the permanent of a
0-1 matrix, a long-studied problem in its own right [12]. This paper investigates the complexity
of these problems in the important special case of lattice graphs.

1.2 Previous work

We are interested in two classes of lattice graphs: the first class are graphs with fized boundary
conditions, in which the lattice is not perfectly regular but has distinguished boundary ver-
tices. Thus, we consider the d-dimensional rectangular (or cartesian) lattice L(n,d), where
the vertices are the n? integer lattice points in [1,n]?, and two points z,y are connected by an
edge iff they are unit distance apart. The second class is graphs with periodic boundary condi-
tions, in which the lattice includes wrap-around edges to make it toroidal; that is, we augment
L(n,d) with an edge between (z1,...,2;_1,7,%iy1,...,2¢) and (@1,..., 221, 1, Tig1,. .., Ta),
for each i. We will write L(n,d) for the periodic lattice.

We will always assume that n is even, so that both L(n,d) and z(n,d) always contain a
perfect matching of size m = %nd. For any graph, we let M be the set of perfect matchings
and N the set of near-perfect matchings, i.e., matchings with exactly two unmatched vertices.
We refer to the set of unmatched vertices as holes, and let A (u,v) be the set of near-perfect

matchings with holes u and ».



A beautiful classical result due to Fisher, Kasteleyn and Temperley [1, 9, 14] provides an
analytic (closed-form) expression for the number of perfect matchings in the two-dimensional
lattice L(n,2), for any n. This is actually based on a more general result which shows that
the number of perfect matchings in any planar graph can be computed in polynomial time by
evaluating a suitable determinant. In fact, the technique extends to counting perfect matchings
in any family of graphs with fixed genus [10]. Thus, in particular, the periodic two-dimensional
lattice i(n, 2), which has genus 1 for all n, can also be handled.

However, the technique breaks down completely in three or more dimensions, about which
very little is known. Moreover, it yields no information about the number of matchings of
cardinality smaller than m, even in the planar case. In fact, in both of these cases the problem
is known to be #P-complete for general graphs: counting perfect matchings in a graph [15],
and matchings of specified cardinality in a planar graph [5] are both #P-complete problems.
Thus it is extremely unlikely that the Fisher, Kasteleyn and Temperley technique for fixed
genus graphs can be extended to answer these questions for all lattices.

In recent years, there have been considerable advances in the design of efficient approzima-
tion algorithms for counting matchings. A widely accepted notion of efficient approximability
for combinatorial enumeration problems is the existence of a fully-polynomial randomized ap-
proximation scheme (see, e.g., [8, 13]). The definition is as follows:

Definition. A fully-polynomial randomized approzimation scheme (fpras) for a non-negative
real-valued function f is a probabilistic algorithm which, on input z and € > 0, outputs a
number f(z) such that Pr{f(z)(1+ ¢)™' < f(z) < f(z)(1+¢)} > 1 -6, and runs in time

polynomial in |z|, ¢!, and 1gé~!. O

Jerrum and Sinclair [6] showed the existence of a fpras for counting matchings of any
cardinality up to (1 — a)k (for constant 0 < a < 1) in arbitrary graphs containing a
k-matching. For larger matchings (including perfect matchings), an extra condition is required:
there exists a fpras for counting matchings of every cardinality in any family of 2m-vertex

graphs satisfying
|
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for some fixed polynomial ¢. This condition expresses the fact that the number of near-perfect
matchings should not exceed the number of perfect matchings by too much. (Note that in any
graph with 2m vertices, |N| > m|M]|, since the removal of any edge from a perfect matching
yields a unique near-perfect matching.)

Condition (1) is known to hold for all dense graphs, all graphs with sufficiently good expan-
sion properties, and almost every random bipartite graph in the B(n,p) model for any density p
above the threshold value for existence of a perfect matching [6]. However, these results shed
no light on the special case of lattice graphs since (1) is not known to hold for them (even in two
dimensions). Moreover, the technique used to establish (1) in the above cases is not applicable
here since it involves constructing short augmenting paths for near-perfect matchings; such
paths do not exist in lattice graphs, which have large diameter. Our work consists in exhibiting
a new technique that allows condition (1) to be verified for the lattices we are interested in.



1.3 Results

The main contribution of this paper is to establish the existence of polynomial time approxi-
mation algorithms for counting arrangements of any given number of dominoes (i.e., matchings
of any given cardinality) in periodic lattices of any dimension. More precisely, we prove the
following result:

Theorem 1 There exisls a fpras for counling malchings of any cardinalily in the
d-dimensional periodic lattice L(n,d) for any fized dimension d.

This theorem extends previously known results in two ways. First, and most significantly,
we are now able to count perfect matchings in lattices of dimension greater than two. This
of course includes the three-dimensional case, which is of greatest physical interest. Second,
we are able to count matchings with any specified number of holes, a problem which was not
approachable by the results of Fisher, Kasteleyn and Temperley, even in two dimensions.

In the planar case we can also handle lattices with fixed boundaries, as the following theorem
states.

Theorem 2 There exists a fpras for counting matchings of any cardinality in the two-
dimensional lattice with fized boundaries L(n,2).

This theorem extends the results of Fisher, Kasteleyn and Temperley by allowing us to
count matchings with any specified number of holes. Given 2¢ fixed holes, for any constant ¢,
the Fisher, Kasteleyn and Temperley technique can be used to count the number of perfect
matchings in the graph formed by removing the holes, since this graph is still planar. When
¢ is small, we could use this method to count the total number of matchings with 2¢ holes by
considering all possible positions for the holes; but this approach fails if ¢ is allowed to grow
with n, and is inefficient even for quite small fixed values of ¢. Our results let us count the
number of matchings with holes directly, for any number of holes.

Finally, we can extend our results to any bipartite graph which is the Cayley graph of some
finite group. This includes other commonly studied lattices, such as the hexagonal lattice with
periodic boundary conditions. More precisely:

Theorem 3 There exists a fpras for counting matchings of any cardinality in any bipartite
graph which is the Cayley graph of some finite group.

The proofs of the above theorems, presented in the next two sections, are elementary and
rely on a novel translation technique: the strong symmetry properties of the lattice (and
of arbitrary Cayley graphs) allow any matching to be translated, which in turn permits the
symmetry to be broken. We conjecture that this technique may shed more light on other
quantities related to matchings on the lattice, such as the correlation between holes at two
specified vertices.



2 Rectangular Lattices

The algorithms presented in this paper all rely on the following result, which says that the
number of matchings of any cardinality can be approximated efficiently provided |A/| is not
too much larger than |M|. The approximation algorithm referred to in the theorem is based
on simulation of a rapidly mixing Markov chain whose states are matchings [6, Theorem 5.3].

Theorem 4 (Jerrum and Sinclair) There exists a fpras for counting the number of perfect
malchings, |M|, in any family of 2m-vertex graphs that satisfies |N'|/IM| < ¢q(m), for some
fized polynomial q.

The remark following this result in [6] points out that this polynomial relationship be-
tween near-perfect and perfect matchings also allows one to approximately count matchings of
arbitrary cardinality in polynomial time.

In all of the cases which follow, we consider 2m-vertex bipartite graphs where the m vertices
on one side of the bipartition are colored white and those on the other side are colored black.
Thus, in any near-perfect matching, one hole is white and the other black. (In the case of the
two-dimensional lattice, this coloring corresponds to the usual black and white coloring of the
checker-board squares which form the dual graph.)

The technique that we use in our proofs relies on the structure of the union of two matchings
in a graph. Consider the subgraph C' consisting of the union of the edges in two perfect
matchings M; and M;. If we color the edges from M; red and those from M; blue, we find
that every vertex is adjacent to exactly one red edge and one blue edge, so C' is the union
of even-length cycles, each of which alternates colors. (Some of these cycles may be trivial,
consisting of a single edge colored both red and blue.) Clearly the converse is also true, i.e.,
any covering of the graph with even-length cycles which alternate colors defines two perfect
matchings: the set of red edges and the set of blue edges.

Similarly, suppose we have two near-perfect matchings, N; with holes u and v, and Nj
with holes u' and v, where w,u',v and v’ are distinct vertices. Then in the subgraph C
defined by the union of the red edges N; and the blue edges N3, vertices u,u’,v and v’ all
have degree one and all other vertices have degree two. So C' consists of even-length alternating
cycles, plus two alternating paths whose endpoints are u,u’,v and v'. Moreover, either both
of these paths have even length or both have odd length. See figure 1.

Our proofs rely on the observation that, if ' is a neighbor of « and v’ is a neighbor of v,
then by augmenting C' with edges (u,u’) and (v,v'), we can ensure that every vertex has
degree two. When the graph is bipartite, the resulting subgraph must consist solely of even-
length cycles, and therefore the cycle containing «w and u’ must also contain v and v'. By
recoloring some of the edges on this new cycle, we can force it to alternate colors so that the
cycle cover defines two perfect matchings. This allows us to define a mapping from the set of
pairs N (u,v) X N(u', ") to the set of pairs M x M that is injective, which in turn, by virtue
of the symmetry properties of the lattice, implies that |A/| is not much larger than |M]|.

We now recall the statement of the first theorem before proving it:

Theorem 1 There exisls a fpras for counling malchings of any cardinalily in the
d-dimensional periodic lattice L(n,d) for any fized dimension d.
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Figure 1: The union of two near-perfect matchings.

Proof. Let M and A be the sets of perfect and near-perfect matchings respectively in i(n, d).
By Theorem 4, it suffices to show that |[N|/|M]| < ¢(m) for some polynomial ¢, where m =
%nd is the number of edges in a perfect matching. First we fix two holes, v and v. Let «’ be
the neighbor one to the right of u, i.e., v’ = v+ (1,0,...,0) mod n. Similarly, let »' be the
neighbor one to the right of v.

We proceed to construct an injection ¢ from N(u,v) x N (', v") into M x M. To do this,
let Ny € N(u,v) and Ny € N(u',v'), and consider the subgraph C of L(n,d) defined by the
union of red edges Ny, blue edges Ny and special edges (u,u’) and (v,v"). If we color the
special edges red, then w' and v’ are each adjacent to two red edges, and every other vertex
is adjacent to one edge of each color; if we now flip the colors of the edges along one of the
paths from u’ to v', every vertex will be adjacent to exactly one edge of each color. To avoid
ambiguity, we choose the path from «’ to v’ which does not pass through «. As we saw earlier,
the sets of colored edges now define two perfect matchings. See figure 2.

—e *~— Lo d *—— —e *"—=e Loy J *—
@&-TU’ SRR _¢> TR RS
JEEEPYYY PP P A — 800000 90s0s0— Qessce—

Figure 2: Mapping two near-perfect matchings to two perfect matchings.

We need to check that this map ¢ is injective: given any pair of perfect matchings (My, Ms)
in the image of the map, we show that we can uniquely reconstruct the pair of near-perfect



matchings, one with holes « and v and the other with holes u’ and v’, that are mapped by ¢
to (My, M3). Note that the union of any pair of matchings in the image of ¢ always contains
an alternating cycle that includes the edges (u,u’) and (v,v"). Now color the edges of the
matching containing (u,u’) red, and the edges of the other matching blue. By flipping the
colors of the edges along the path from u' to v’ (again choosing the path which avoids w, for
consistency), we make u’ adjacent to two red edges. Since u' and v’ are the holes of some
near-perfect matching, they lie on opposite sides of the bipartition and any path between them
must have odd length. Therefore, after the flipping operation v’ must be adjacent to two red
edges as well, while all other vertices are still adjacent to one edge of each color. If we now
remove the edges (u,u’) and (v,v), the colored edges must correspond to the two near-perfect
matchings that are mapped by ¢ to (My, Ms).

The above construction demonstrates that |[A(u,v)| |V (v, v")| < |[M]2. To finish the proof,
we use the structure of the lattice E(n,d): in a periodic lattice, the operation of shifting a
matching one position to the right is a bijection between the sets A(u,v) and N(u',v"), so
N (u,v)] = |N(«,v")]. Thus the above relationship gives |N(u,v)|* < |M]?, which implies
|V (u,v)] < |M]|. Summing over all choices of a black vertex u and a white vertex v, we find
that |[V] < n??|M|/4. The proof is completed by appealing to Theorem 4. O

Remark. It should be clear from the above proof that Theorem 1 generalizes to “hybrid” lat-
tices that have fixed boundary conditions in some dimensions provided there exists at least one
dimension in which the lattice has periodic boundary conditions. It also holds in more general
bipartite rectangular lattices of size n; X ng X ... X ng with periodic boundary conditions (i.e.,
for any dimension 7 in which the boundary is periodic, n; must be even). O

The following theorem extends the above technique to handle two-dimensional lattices with
fixed boundaries. We again show that in these lattices the number of near-perfect matchings
cannot be too large compared to the number of perfect matchings.

Theorem 2 There exists a fpras for counting matchings of any cardinality in the two-
dimensional lattice with fized boundaries L(n,2).

Proof. We will prove the theorem for the slightly more general case of ny X ng lattices with
fixed boundaries, where n; is even. Let 7 be a map which shifts the lattice L(n,2) one position
to the right in Z?; that is, for a vertex w = (wy, wz), define 7(w) = (w1 + 1, wy). We extend
this map to matchings in the natural way: if N is a matching, then 7(N) € [2,n; + 1] X [1, ng]
is defined by (7(z),7(y)) € 7(N) iff (z,y) € N.

Let M and A be the sets of perfect and near-perfect matchings respectively in the lat-
tice L(n,2). Asin the last proof, we will fix holes u and v and show that |A(u,v)| < |[M]|. We
again define an injection ¢ : N(u,v) X N(u,v) — M x M as follows. Let Ny, Ny € N (u,v)
be two near-perfect matchings. Consider the subgraph C' obtained by taking the union
of Ni with a shifted version of Ny and adding the two special edges as before, i.e.,
C = Ny UT(N2) U {(u,u),(v,v")}, where v’ = 7(u) and v' = 7(v). Then all the vertices
in the leftmost column 1 and the rightmost column n 4+ 1 have degree one in ', and all other



vertices have degree two. Thus C' is the union of even-length cycles and paths with each end-
point in either the first or (n 4 1)st column (see figure 3). Color the edges from N; red and
the edges from N3 blue.
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Figure 3: Union of N7 and 7(Ns).

We will argue that, because the two-dimensional lattice is planar, any path or cycle which
passes through « and «' must also pass through v and ©’. This is immediate if « and ' lie
on a cycle, so we focus on the case where « and u’ lie on a path. The proof is by contradiction,
and there are two cases to consider (see figure 4).
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Figure 4: Proof of Theorem 2.

First, suppose that we have a path P from the first column to the (n + 1)st column which
passes through « and u’, and not through » and »'. Without loss of generality we can assume
that v and v’ lie below P. Then P starts with a red edge, ends with a blue edge, and has one
special edge, so it has odd length. It follows that if P starts at a black vertex then it ends at a
white vertex, and conversely. Therefore, the number of vertices in the first column above P has
opposite parity to the number of vertices in the (n + 1)st column above P. (Since n is even,
corresponding vertices in each of these columns fall on the same side of the black-and-white



bipartition.) But consider the set of all vertices that lie above the path P. There must be
an even number of these vertices lying in the first through nth columns, since these vertices
are matched in Ny, and an even number lying in the second through (n + 1)st columns, since
these vertices are matched in N,. This is a contradiction.

Second, suppose that P, the path going through u and u’, starts and ends in the first
column. By interchanging the roles of u,u’ and v, v’ if necessary, we may assume without loss
of generality that v and o' lie outside the cycle defined by the path P and the first column.
Now P starts and ends with a red edge and has one special edge, so it must have even length.
If it starts at a black vertex it ends at a black vertex, and conversely, so there are an odd
number of vertices in the first column that lie between these endpoints. Let S be the set of
points that lie strictly inside the path P. Then |S5| must be even since N; matches all the
vertices in 5. But Ny matches all the vertices in S except those which lie in the first column,
a contradiction since this number is odd.

Therefore we can conclude that w, ', v, v’ all lie on the same even-length cycle or the same
path. In either case we can proceed as in the proof of Theorem 1: color the special edges red
and then flip the colors of the edges along the path between u' and v’ (in the case of a cycle,
where this is ambiguous, we always choose the path which does not pass through ). The sets
of colored edges then define two perfect matchings M; and 7(Ms).

Furthermore, given any two matchings in the image of the map ¢ we can uniquely recon-
struct the pair of near-perfect matchings which are their preimage, so ¢ is injective. To see
this, note that any element in the image of ¢ consists of two perfect matchings M; and M,
such that M; U 7(M3) contains a cycle or path which passes through all of u, ', v, v, and from
here we can reconstruct Ny with holes w and v and 7(N3) with holes ' and v’ by reversing
the color flipping operation as in the proof of Theorem 1. Thus we have [N (u,v)| < |M], and
summing over choices of u,v we get |V| < n¥nZ|M|/4. Combining this result with Theorem 4,
we see that there exists a fpras for counting matchings of any cardinality in L(n,2). O

3 Other Lattices

The following theorem extends the techniques from the last section to handle other lattices.
More precisely, we can, in polynomial time, approximately count the number of matchings of
any size in any 2m-vertex bipartite graph which is the Cayley graph of some finite group. Recall
that the Cayley graph of a group G with a given set of generators is defined by identifying
vertices with words in G and connecting vertices  and y by an edge in the graph if, for some
generator ¢ of G, xa = y. This class of graphs includes any finite hexagonal lattice which
has periodic boundaries around some fundamental domain. One group which generates this
lattice is (a,b,c | a%,b%, ¢%, (abc)?, (ab)’, (be)t, (ca)t), for any integer i, where a, b and c are
the generators and the words which follow are relators equivalent to the identity in the group.
See figure 5.

Theorem 3 There exists a fpras for counting the number of matchings of any cardinality in
any bipartite graph which is the Cayley graph of some finite group.



Figure 5: Proof of Theorem 3 for the hexagonal lattice
(@,b,c| a® b c? (abe)?, (ab)*, (be)*, (ca)?)

Proof. Given a group G, we consider its Cayley graph, which we assume to be bipartite. We
will show that there cannot be many more near-perfect matchings than perfect matchings in the
graph and then appeal again to Theorem 4. Choose a vertex and label it with e, the identity
element of G'. This determines a label in G for every vertex in the graph, corresponding to
the product of the labels along any path leading to it from the identity vertex.

Fix a pair of holes u and v in the graph. Let v’ = ua be the neighbor of u defined by some
fixed generator a. Let ¢ = vu'~! be the word in G which maps «’ to v by multiplication
on the left. Then, since any action on the graph preserves neighbors, ou is a neighbor of ».
Moreover, since the group is finite, there exists some k& such that ¢* = e. We will show that
|N(u,v)| < |M] by exhibiting an injection ¢ from the cartesian product [I%, [V (o'~ u, o'~ 1v)]
into MF*.

We define the map ¢ in k — 1 stages. Let N; € N(oi"tu,0'"1v),for 1 < i < k, be a set of
near-perfect matchings. Stage one maps the pair (Ny, N3) into (My, N}), where My is a perfect
matching and NJ is an “auxiliary” near-perfect matching. In stage 7, for 2 < j < k-2, we
map the pair (N}, N;y1) into (M, N7,,), where NI is the auxiliary near-perfect matching
from the previous stage. The (k — 1)st stage maps (N/_;, Ni) into the final pair of perfect
matchings (Myg_1, My).

In the first stage we consider the subgraph C7; = Ny U Ny U{(owu,v)}. We color the edges
from Nq U {(ou,v)} red and those from N, blue. Then all vertices have degree two except
u and owv, each of which has degree one, and v is the only vertex that has two edges of the
same color incident to it. By flipping the colors of the edges along the portion of the path from
v to ov, we can force the path from u to ov to have alternating colors. Because the graph
is bipartite, the two vertices of degree one, u and owv, will both be adjacent to a blue edge.



Thus the blue edges form a perfect matching, M;, and the red edges form the first auxiliary
near-perfect matching, N}, with holes u and ov.

At the beginning of stage j in this mapping, we have already mapped
152y V(o' tu, 0"~ 1)] into M1 X N (u, 097 0) X TTi 1 [N (0" u, 077 10)]. Stage j itself
will consist of an injection from N (u, 0/ ~1v) x N(0/u,0/v) into M x N (u,0v). In particular,
we will map the pair (N}, Nj11) to (M, N, ,), as follows.

If we consider the subgraph C; = N/ U N;;; U {(0?u, 077 v)}, we get an odd-length path
from u to o/v. By flipping the colors of the edges along the portion of the path from o7~ 'v
to o/v, we get a perfect matching, M;, and a near-perfect matching, ]’-_H, with holes u
and o/v.

At the (k — 1)st stage the mapping terminates. Here, we are mapping Ni_, € N (u,c* %)
and Ny € N(oFlu,0F1v). But v = ou’, so o 'v = ofu' = o, since oF is the group
identity. Therefore, the subgraph N} _, U Ny U {(¢* tu, 0" 2v), (u,u')} consists only of even-
length cycles. By flipping colors along one of the paths from o*~%v to u’ (choosing the path
which passes through u, to avoid ambiguity), we get even cycles with alternating colors: again
this follows because the Cayley graph is bipartite. The two sets of colored edges now define
the final two perfect matchings My_1 and My.

Given the labels of the holes u and v, the vertex u’ = wa is uniquely determined, as is
the word 0 = vu'~! and its inverse. We can then invert the map ¢ by working backwards in
stages, each stage being similar to the proof of Theorem 1. This shows that ¢ is injective, and
therefore TI5, |N (0" u, o' 10)| < |M|".

The last step is to see that, for any word o, translation by o' is a bijection between
matchings A(u,v) and matchings N (o'u,o'v). More precisely, we extend o' to matchings by
defining (o'z,c'y) € o'(N) iff (z,y) € N, where N € N (u,v). This is valid since if = and
y are neighbors in the Cayley graph then there is some generator b such that y = zb, so o'z
and o'y = o'zb are also neighbors. And, since u and v are unmatched in N, o'u and o'v are
the unmatched vertices in o¢(N), so o'(N) € NM(otu,o'v). Thus [N(u,v)| = |M(otu,o'v)|
for any i. Combining this with the fact that ¢ is injective, we see that [N (u,v)* < |[M]*.
Hence |N(u,v)| < | M|, which implies that |A| < n?|M|, where n is the size of the Cayley
graph. 0

4 Open Problems

We have used simple techniques to show that the number of near-perfect matchings is polyno-
mially related to the number of perfect matchings in any bipartite Cayley graph. Can similar
techniques be used to show that the same relationship holds if we relax the bipartite condition
and consider arbitrary Cayley graphs? This would allow us to handle several other lattices of
interest in statistical physics, such as the triangular lattice and the face- and body-centered
cubic lattices.

Our method also breaks down in the case of lattices with fixed boundary condition in
dimensions higher than two. Techniques similar to those we have presented can be used to
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reduce the question of relating the number of near-perfect matchings to perfect matchings to
that of showing the local property that the number of matchings with fixed holes « and v is
polynomially related to the number of matchings with holes «’ and »’, where ' is a neighbor
of u and v’ is a neighbor of v. However, we have been unable to use this observation to obtain
a proof for fixed boundary conditions in the general case.

It is not clear how the positions of the two holes v and v affect the number of near-perfect
matchings in a lattice graph, a quantity which is also studied in the context of monomer-
dimer systems [2]. We conjecture that the injections we have established between near-perfect
matchings with fixed holes and perfect matchings might shed light on this correlation.

Finally, and somewhat speculatively, we conjecture that condition (1) on the ratio of the
number of near-perfect matchings to the number of perfect matchings suggests a promising
approach to designing a fpras for the permanent in the general case. It is already known that
almost every graph satisfies (1) for a certain fixed polynomial ¢, and that the condition can be
efficiently tested for an arbitrary graph [6]. Perhaps any graph that does not satisfy (1) can be
efficiently decomposed in such a way that the resulting components satisfy (1), and hence fall
within the scope of Theorem 4; this idea was used in [7] to obtain an approximation scheme for
the general permanent whose running time, though still exponential, improves substantially on
naive deterministic methods. We hope that the methods of the present paper will contribute
to a better understanding of condition (1) for general graphs.
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