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Abstract

We consider the target-reaching problem in plane scenes for a point robot which
has a tactile sensor and can locate the target ray. It might have a compass, too, but
it is not able to perceive the coordinates of its position nor to measure distances.
The complexity of an algorithm is measured by the number of straight moves until
reaching the target, as a function of the number of vertices of the (polygonal) scene.

It is shown how the target point can be reached by exhaustive search without
using a compass, with the complexity exp(O(n?)). Using a compass, there is a target—
reaching algorithm, based on rotation counting, with the complexity O(n?).

The decision problem, to recognize if the target cannot be reached because it
belongs to an obstacle, cannot be solved by our type of robot. If the behaviour of
a robot without compass is periodic in a homogeneous environment, it cannot solve
the target-reaching problem.
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1 Introduction

Problems of algorithmic motion planning or navigation in environments with obstacles
have been studied in several variants and contexts. Especially this has been done within
the framework of computational geometry, for surveys see [Y] and [HA]. In most of these
papers the off-line point of view is taken, i.e. the robots completely know (a map of) the
scene in which they have to work.

During the last five years, the interest in on-line algorithms of motion planning has
grown, as the papers [BBFY] , [BRS] , [K], [LS] , [PY] and their references show. Here
the robot knows only that part of the scene which has been perceptible up to the current
step. But it is usually supposed that it can perceive the coordinates of its current position,
sometimes also of the visible parts of the obstacles.

What is a minimum equipment which enables a point robot to reach a fixed target
point in a plane scene with finitely many polygonal obstacles, whenever this is topologically
possible? At least, it should have a tactile sensor such that it can notice that it touches
some obstacle and can follow the boundary of a touched obstacle.

We will show how the task can be solved by exhaustive search if, in addition, the robot
is able to locate and to follow (as long as it does not meet an obstacle) the target ray
connecting the current position with the target. To perform our exhaustive search, the
robot needs the computational ability to generate a universal infinite sequence of move
instructions from a suitable three—letter alphabet. This is a sequence containing every
finite word as a substring. So it is extremely non—periodic. On the other hand, we know
that a robot without compass with a periodic behaviour in a homogeneous environment
cannot solve the target-reaching problem. The worst case complexity of the exhaustive
search is exp(O(n?)).

If, moreover, the robot is equipped with a compass allowing to measure the angle between
the target ray and the positive z—axis, and the angle of any currently touched edge of an
obstacle, then there is a target—finding procedure with the complexity O(n?). That is based
on the method of rotation counting. But even such a robot is not able to recognize if the
task is topologically unsolvable, i.e. if the target is included in some obstacle.

The size of a scene is the number n of vertices of obstracles. Depending on this size,
the complexity measure used here counts the number of steps performed by the robot until
the target is reached. One step corresponds to a move between consecutive breakpoints of
the searching procedure, which are caused either by reaching some obstacle in following
the target ray, or by reaching a vertex of the scene in following the boundary of a touched
obstacle.

In contrast to on—line motion planning procedures in computational geometry, our algo-
rithms don’t suppose that the robot is able to perceive the coordinates of its position or to
measure distances of points or lengths of paths in the scene. We will even see that the task
becomes nearly trivial under those suppositions. Therefore, our point of view corresponds
more to labyrinth theory than to computational geometry. Indeed, most of the techniques
used in the present paper come from the automaton—oriented labyrinth research presented
in the monograph [H]. Especially the method of rotation counting (regular swinging) is
essentially used in [A] already, where it really shows the power of the compass, whereas the
search procedure in [BK] is also based on rudiments of length measuring.



The present paper is organized as follows. After introducing the basic notations in
Section 2, we show how the problems can easily be solved by a robot which perceives the
coordinates of its position. In Section 3, the unsolvability of the decision problem by our
restricted type of automaton is proved. Moreover, we will see that a robot without com-
pass cannot solve the target-reaching problem if it behaves periodically in a homogeneous
environment. Section 4 descibes the solution of this problem via exhaustive search, without
using a compass. Sections 5 and 6 presents the main results of the paper. They lead to
an efficient target-reaching algorithm. We close with a discussion of the results and open
problems.



2 Basic Concepts

By a finite family of obstacles, we understand a finite sequence
P=(pi:1<i<m),

m € N, of oriented, simply closed polygonal paths p; in the Euclidean plane R?, such that
the interior of every p; lies on the left—-hand side of the path. Every p; is determined by
a finite sequence (Py,..., Py, Pr4+1 = P1), ki > 3, of vertices P;,1 < j < k;, where the
edges (or sides) P;Pjyq, for 1 < j < k;, have no further common points. More precisely, if
P; Pj+1 NP, Pj,11 # 0 for 1 < j; < jo < kj, then j; = j; + 1, and Pj, is the only common
point of these straight line segments. Recall that, by Jordan’s curve theorem, the interior

of p; is a simply connected, open region in the plane, and p; is its oriented boundary. In
the sequel, we will sometimes identify p; with its carrier set Uf‘zl P;Pji1. Let O; denote
the interior of p;, it will be referred to as the i—th obstacle.

We will suppose that the closures O; U p;, for 1 < i < m, are pairwise disjoint, i.e. the
obstacles do neither join nor touch each other.

A scene is a triple

S§=(P,T,5),

where P is a finite family of obstacles, T € R? is the target, and S € R2\ U, 0; , S # T,
is the starting point, see Figure 1 for an illustration.

Figure 1:

Our basic task is to establish (eflicient) algorithms by which an autonomous robot,
starting from the point S in an arbitrary scene §, is able to reach the target T, whenever
this is topologocally possible, i.e. if T ¢ (2, O;. Besides this targel-reaching problem,
the decision problem will be considered, too. Here, in every scene S, the robot has to halt
after some finite time with the result “target not reachable” (in a suitably encoded form,
maybe by the internal state) if and only if the target-reaching task cannot be solved because



The robot is geometrically represented by a point. We suppose that it is equipped with
a tactile sensor which detects if it reaches the target T or the boundary of some obstacle.
It is not able to perceive the coordinates of its position, but, in any position P # T, it can

locate the targel ray PT, this is the ray starting in P and going through 7.

Correspondingly, the robot can move along the straight line PHT, both in the direction to
T and away from 7', until reaching 7" or a boundary of an obstacle, and it can move along
the boundary of a touched obstacle, both in the positive and in the negative orientation, up
to the next vertex of this boundary. More precisely, the breakpoints of the robot’s move are

given by the moments in which it reaches T" or an obstacle in moving along ]?T, or in which
it reaches a vertex in moving along a boundary. Additionally, let the starting position in §
create a breakpoint. In these breakpoints, depending on its internal state and the signals
percepted by its sensor, it has to determine the next direction of move which will be straight
up to the next breakpoint.

We hope that this informal description sufficietly characterizes the type of robot we
want to deal with. So we omit further details. Concerning the internal states, i.e. the
storage, and the computational ability, no restriction is made at this time.

We will say that the robot is equipped with a compass if it can additionally measure the

angle between the positive z—axis and the target ray PT, in any position P, and the angle
of a currently touched edge of an obstacle. Then it should be able to store (finitely many)
values of angles and to compare them with the currently measured angles. This means,
there are created further breakpoints of move which correspond to those moments in which
a percepted angle takes one of the stored values. For example, a robot with a compass can

store the angle of the ray ST, at the starting point 5. This causes a breakpoint of move
whenever the current position belongs to the straight line ST.

Following [BRS], we measure the size of a scene by the number of vertices of the ob-
stacles. Therefore, we say that the complezity of a target-reaching or decision algorithm
is (bounded by) some function f: N — N if, in any scene with just n vertices, it either
halts never or halts after at most f(n) steps of working, i.e. after reaching at most f(n)+1
breakpoints of move.

Figure 2:




One easily shows that complexity bounds for our target-reaching algorithms must at
least linearly increase. Indeed, Figure 2 shows how to construct a scene with n 3-vertex
obstacles such that every target-reaching algorithm for a robot with a tactile sensor, target—
ray location and compass only, needs more than 2n straight line moves from S to 7.

As a further interesting illustration, we remark that a robot with a compass and with the
additional ability to know the coordinates of its current position (at least in the breakpoints
of move), to store some of these values and to compare them with the current ones, is able
to solve both the target-reaching and the decision problem in linear complexity O(n). A
corresponding algorithm is due to [LS], the correctness and the estimation of complexity
can easiliy be verified. We sketch here a slightly modified version, for a scene S. Figure 3
illustrates its work if the target ist reachable:

1. Move straightly in the direction of the target T until reaching T or touching an
obstacle.

2. If T is reached, then halt (“target reached”).
If an obstacle ist touched, then go around its boundary p and determine (the coordi-
nates of) that point P € p N ST which has the minimal distance to 7. Move to P
(along p).

3. If the target ray at P points into the touched obstacle, then halt with “target not
reachable”. (Indeed, in this case the currently touched obstacle includes 7'.)
Otherwise, goto 1.

Figure 3:

In [BRS], it is shown how to construct a (6 -k + 4)-vertex scene with only one obstacle,
for any k£ > 2, such that every on-line algorithm (even if it perceives the currently visible
part of the scene) needs more than 3 - (k — 2) steps up to reaching the target. In [PY] it is



proved that the competitive ratio of the number of steps done by an on-line algorithm to
the number of steps of a shortest path connecting the starting point with the target cannot
be bounded by a constant.

Finally, we remark that every robot which solves the decision problem and percepts
obstacles only by a tactile sensor, also solves the target-reaching problem. Indeed, let the
robot halt with the result “target not reachable” in every scene where the target belongs
to some obstacle. Assume that it does not reach the target in some scene S where this is
topologically possible. Then it does never enter a certain e-—neighbourhood of the target.
By adding an obstacle that includes the target and is contained in this e-—neighbourhood,
one obtains a scene &’ in which the target is not reachable, but the robot behaves like in
the original one, i.e. it does not remark this unreachability.



3 Two Trap Constructions

First we show that robots, which are not able to perceive the coordinates of their position,
cannot solve the decision problem.

Theorem 3.1 There is no robot in the sense of Section 2 (with a tactile sensor, targel-ray
location, and compass) which solves the decision problem, i.e. which, put in an arbitrary
scene, halts with the result “target not reachable” after finitely many steps if and only if the
target is topologically not reachable.

The basic idea of the proof is well-known from labyrinth theory: A compass automaton
without the ability of length measuring cannot distinguish between a rectangle and a suffi-
ciently deep rectangular spiral. We will put the target in the centre of the figure. To ensure
that the robot does not remark any difference if the object is deformed into a spiral, we
start already with the suitably shaped polygon shown in Figure 4 a). Here let the slanted
lines belong to the pair of straight lines having the slopes 1 resp. —1 and crossing each
other in the target 7.

More precisely, we assume that there is a robot of the type described above which solves
the decision problem, and we put it into the scene shown in Figure 4 a). If this robot

would move away from 7" on the straight line PHT7 in some position P, it would never halt.
Therefore, it must move along the boundary of the given obstacle, and it halts after a
certain number k of breakpoints with the result “target not reachable”.

But then it would behave analogously in the scene sketched in Figure 4 b), where the
sloped lines have the same property as obove. Now the obstacle is a sufficiently deep “spiral”
such that the robot does not reach an end piece, in k steps. Hence, it would also halt after k
breakpoints with the same result “target not reachable”, i.e. it would not solve the decision
problem. O

Because of Theorem 3.1, we restrict ourselves to the target-reaching problem in the
sequel.

In the remaining part of this section, robots without compass are considered. They
have tactile sensors and can locate the target rays only. We will show that such robots are
not able to solve the target-reaching problem if their behaviour in certain homogeneous
environments becomes periodic. Especially, this holds for finite automata, but also for
l—counter and even for pushdown automata.

The claim for finite automata can be obtained from Budach’s result [B] that no finite
automaton can escape from all two—dimensional mazes, see also [H]. The self-contained
proof of the general result is rather lengthy and will be sketched here only. The reader, who
is preferably interested in target-reaching algorithms, should skip to the next section.

The homogeneous environments we will consider here are grids composed of so—called
X—fragments. These consist of five corridors labelled by the letters a, b, ¢, d, m, as shown
in Figure 5 a). By some additional requirements, we secure that the behaviour of a robot
without compass does neither depend on the lengths of the corridors nor on the angles in
which they join each other. We hope, the meaning of this statement becomes clear in the
course of the proof sketch, without a precise definition of the concept of behaviour of a
robot.
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More precisely, in composing scenes of X—fragments, we suppose the following conditions.

e The four thick lines in Figure 5 a) represent straight boundary segments parallel to

their target rays. This means, they are parts of the straight lines PT, where T is the
target of the scene, and P an arbitrary point of the corresponding boundary segment.

e The thin lines represent straight boundary segments of the scene which are not parallel
to the target rays of their points. Let the two sides of the corridors b, m resp. d be
parallel to each other.

e The target rays of the two dotted points have the same directions as the corresponding
thick line segments on the opposite sides of the corridor m. Especially, no target ray
from the corridor ¢ meets the corridor a.

e The maximal width of the corridors is very small compared with the minimal length
of the boundary segments of the scene. ( For a better presentation, this condition has
not been taken into account in drawing Figure 5 a). )

To simplify the drawings and explanations, in the sequel we represent the corridors by
thick line segments and label the openings by letters from the alphabet A = {a,b,c,d}, as
shown in Figure 5 b). Furthermore, we also use the simple scheme from Figure 5 c) to
represent an arbitrary X-fragment, arranged like in the Figures 5 a), b).

Given a robot with a tactile sensor and target-ray location only, we consider its be-
haviour within the half-edge—labelled infinite regular grid Gx consisting of X—fragments
which are linked as shown in Figure 5 d). Let the starting point be arbitrarily fixed within
the corresponding fragment. Then the path of the robot in Gx can uniquely be described
by a finite or infinite sequence over the alphabet A,

fe A U AY.

S is the sequence of the labels of the openings of the X—fragments through which they are
left by the robot in walking in Gx. It is finite if and only if the robot finally remains within
some X—fragment.

We will say that the robot’s behaviour in a homogeneous environment is periodic if the
sequence [ corresponding to its path in Gx is finite or finally periodic, i.e. it has the form

fIU’O'uwv

for some words ug,u € A*. !

For example, if the robot is a finite automaton, it fulfills this condition. But also a
1-counter automaton or even a pushdown automaton with tactile sensor and target-ray
location only, have a periodic behaviour in a homogeneous environment.

What does it mean that a robot with tactile sensor and target-ray location is a pushdown
automaton? In any breakpoint, with some position P in the scene, the input information

'Instead of the grid Gx, one could equivalently use any 4-regular graph composed of X-fragments in
such a way that a—corridors are linked with c—corridors, and b— with d—corridors. This would not change
the sequence f.
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of the robot says whether P = T (target) or P € p; for some boundary p;, and which

—

direction from P along the straight line ST is blocked by an obstacle. This can be coded
by a letter from a finite input alphabet. Depending on this input and the internal state,
the robot enters a new internal state and chooses a straight move. These reactions can
be determined by a state—transition function and an output function. The latter gives the
move instruction which can be coded in a finite alphabet, too. So the robot is represented
as a discrete, deterministic automaton, and it is straightforward to specify the restrictions
for the state set and for the functions in the case of a (deterministic) pushdown automaton.
For robots with a compass, this would be more complicated, since the values of angles in
polygonal scenes form an infinite set.

Lemma 3.1 If a robot with a tactile sensor and target—ray location, but without compass,
1s a pushdown automaton, ils behaviour in a homogeneous environment is periodic.
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This follows since the behaviour of a pushdown automaton working in scenes, in the
infinite grid Gx can be simulated by a pushdown automaton working in certain 4-regular
graphs whose half-edges are labelled by letters from the alphabet A (in a bijective manner,
for every vertex). The concept of automaton working in half-edge-labelled graphs (compass
labyrinths) is straigtforwardly defined, for details see [H]. An automaton in such a regular
graph is working autonomously, since it always gets the same input information. And it
is well-known that an autonomously working (deterministic) pushdown automaton always
generates a finally periodic output sequence. O

Theorem 3.2 If the behaviour of a robot with a tactile sensor and target-ray location,
but without a compass, is periodic in a homogeneous environment, it does not solve the
target—reaching problem.

For such a robot, respectively for its sequence f, one can construct a trap. This is a
scene consisting of X—fragments, essentially. They are linked and the boundaries are closed

(this means their pieces are completed to simply closed paths) in such a way that the target
is topologically reachable, but the robot walks along a cyclic path never reaching the target.

Figure 6:

b)

The construction of a trap uses standard techniques of labyrinth theory. If the sequence f
determines a path which enters only a certain finite part of the grid Gx, the trap corresponds
to that part. The boundaries are closed in the simplest way, each separately. The target
can be located outside the convex hull of all boundary points.

11



Now let the sequence f determine a path which visits infinitely many vertices of the
grid. Then we consider two vertices X; and X5 in the grid, with a distance > 3, which
correspond to the same position in the period w of f. This means, starting from X, one
reaches X, by walking a path corresponding to some @* with k& > 1,4 = wuy - uy, where
uy - ug = uw. Then we cut a suitable strip containing X; and X; out of the grid and paste
its ends together in a loop around the target of the scene by identifying X; with X;5. Now
the walk according to f becomes cyclic on this strip if the starting point is suitably chosen.
The boundaries of the scene are simply closed like above.

Of course, a complete proof of the theorem would require a detailed treatment of the
method of cutting and pasting. Also the reduction modulo trees should be mentioned and
applied. Since these techniques have extensively been used in [BK] and [H], here we close
with an example for a trap construction.

Let f = d - (abdaa)“. Figur 6 a) shows the schema of the trap which consist of five
X-fragments. The starting point lies in the lower left fragment. Figure 6 b) sketches a
corresponding scene, where the presentation of X-—fragments according to Figure 5 b) is
used. The fragment, in which the starting point lies, is marked by 5, the location of the
target is fixed. Moreover, by stars we have marked the points at which two X—fragments
are linked.

12



4 Exhaustive Search

For a scene § = (P,T,5), let
Gs = (Vs, Es)

be the following finite, directed graph.

1. The vertex set Vs consists of all vertices of the obstacles of S, of the points 7" and 5,
and of all points v for which there exists a point P, with P = § or P is a vertex of an

obstacle of §, such that the target ray P1T" at P does not point into the obstacle and
v is the first point in which the target ray starting in P meets the boundary of some
obstacle.

2. For vertices vy, vy € Vs, there is a directed edge (vq,v;) € Eg iff

(a) v1 and vy are neighbouring vertices of the same obstacle of S (i.e. vy can directly
be reached from v; by walking along that boundary); or

(b) v1 =5 or v; = P, for some vertex P of an obstacle such that the ray P71 at P
does not point into the obstacle, and v, is the first point in which the target ray
starting at v; meets the boundary of some obstacle or T'; or

(c) v1 does not belong to the vertices of obstacles of the scene, but it is an endpoint
of an edge defined by (b), and v is one of the both endpoints of the side of the
obstacle on which v lies.

Figure 7 a) shows a scene §, and Figure 7 b) sketches the graph Gs obtained from it.
Here the dots and the thick lines correspond to vertices resp. edges of the scene (these
edges can be used in both directions, in the graph), whereas the small circles and thin lines
represent those vertices and directed edges which are caused by moves along the target ray.
For a better representation, the latter vertices are shifted from their positions in the plane.

We remark that the vertices 7" and S always belong to the same component (of con-
nectedness) of the graph G if T lies outside the obstacles of the scene.

The outdegree of any vertex in G s is bounded by 3, and any path in this graph can be
thought to be controlled by some word over the alphabet

C ={b",b7,1}.
More precisely, for a vertex v € Vg, a word w € C*, and a letter ¢ € C, let
pos(v,A) = v,

and
pos(v,w-c) =
iff
1. ¢ € {b%,b7}, pos(v,w) lies on the boundary of some obstacle, and v’ is that vertex

(of the scene) which is first reached from pos(v,w) by walking along that boundary
according to the positive resp. negative orientation; or

13



Figure 7:

2. ¢ =1, pos(v,w) is a vertex of some obstacle of the scene, from which the target ray
does not point into the obstacle, and v’ is the first point in which the target ray
starting from pos(v,w) hits a boundary of an obstacle or 7’; or

3. v' = pos(v,w) in all other cases (where the move instruction ¢ cannot be applied in
the sense of 1. or 2.).

Remark that the paths in G, which are controlled by words from C*, correspond to
those walks in the scene §, which can be performed by a robot with a tactile sensor and

target-ray location if it never moves away from 7" on the straight line ST
Lemma 4.1 Lel S be a scene whose targel does not belong to an obstacle. Then, to every

vertex v € Vg, there is a control word w, € C* which leads from v to the target T, i.e.
pos(v,w,) =T.



This is shown by induction on the number of obstacles of the scene §. If there is no
obstacle, the assertion holds trivially.

We assume, it holds for all scenes with & > 0 obstacles, and consider a scene § with
k + 1 obstacles. There is a vertex P; of some obstacle, say pi, which has a minimal distance
from the target 7. Then P; = T, or the target is reachable from P; by a straight move.
Therefore, for any vertex v; which belongs to p;, there is a control word w,, leading from
vy to the target, in the graph G's. This corresponds to a walk along py, possibly followed
by a straight move to 7.

Let v be an arbitrary vertex of Ggs. If it belongs to p;, the assertion holds. Otherwise,
we consider the scene 8’ obtained from S by removing the boundary p;. Since &’ has only %
obstacles, there is a control word w!, leading from v to the target 7" in the graph Gg. If the
path controlled by w! in the graph G's never meets vertices belonging to the boundary py,
the assertion is proved. Otherwise, we obtain a control word w, by concatenating a certain
initial part of w! (up to reaching p;) with a control word leading from the entered vertex
on p; to the target. O

The length of the control word w, can be bounded by the number of vertices of the
graph G, this is at most twice the number of vertices (of obstacles) in the scene S.

Lemma 4.2 If the target is topologically reachable in a scene S, there is an S-universal
control word wg such that, for every verltex v € Vg, the path starting at v and controlled by
ws meels the target T. More precisely, pos(v,w') =T for some initial part w' of ws.

The length of ws can be bounded by the square of the number of vertices of the graph Gs.

The universal control word can be constructed by induction using Lemma 4.1. Let the
vertex set be enumerated,

VS = {’Uo,' ) '7/01}'

We define

Wy = Wy,

according to Lemma 4.1; this leads from vg to the target 7.
Assume that w; has been defined for some ¢ < [ such that it leads through 7', for every
vertex from {vo,---,v;}, taken as starting point. Let v ; = pos(v;y1,w;), and

Wil = Wi - Wyx

41

where the latter word leads from v%, to T, according to Lemma 4.1. Then w;;; leads
through 7', for every starting vertex from {vg, - -, v;, v;41}. Therefore, the word

ws = wy
has the properties claimed in the lemma. O

Theorem 4.1 The target-reaching problem can be solved by a robot with target—ray location
and tactile sensor, without using a compass, with the complexity exp(O(n?)).

15



By a universal C'-sequence, we understand an infinite sequence over the alphabet C',
fu E {b+7 b_7t}w7

such that every word w € C* is contained in f, as a substring.

We assume that the computational power of the robot suffices to generate a universal
C-sequence f, = (cx)peN- Using the tactile sensor and the target-ray location, in any
scene §, then it can walk according to this sequence, i.e. it takes the sequence of positions
(pos(5, cocr - - - k) )reN, where S is the starting point. If it reaches the target, let the robot
halt. By Lemma 4.2, this procedure solves the target-reaching problem.

A universal C'—sequence f, is obtained by consecutively producing all words over the
alphabet ', according to the lexicographic ordering. By Lemma 4.2, for every n—vertex
graph whose target T is topologically reachable, T has been reached by the walk according
to that sequence f, when all C~words of length n? have been occurred. This is the case
after Eil 3" < n?. 3" = 390°) breakpoints of move. O

16



5 Rotation Counting — the Simple Case

Now we are going to prepare the ingredients for a target-reaching algorithm with quadratic
complexity. It is mainly based on rotation counting, a method which, for rectilinear mazes,
was already used in [A] and has been developed in detail in [H].

The rotation index rin(p) of a polygonal path p = (Py,- -, Py) gives the angle by which
the direction of move is changed in the course of running through p. More precisely,

k—2 — —
rin(p) = > a(PiPip1, Piy1 Piya),
=1

where a(ry,r2) € [—7,7)is the angle from the ray ry to rg, according to the counterclockwise
orientation of the plane.
For example,

rin( _/—~ )=0,

For a closed polygonal path p = (P, -, Px, Pey1 = P1), we also consider the closed
rotation index

rin(p) = rin(p) + a( PP, PL Py).

Theorem 5.1 (Riemann,Hopf)
For every simply closed polygonal path p, it holds

Tin(p) = 2r  if the inlerior of p lies on the lefl-hand side of the path,
MIRP) = op if the interior of p lies on the right-hand side.

Remember that, by Jordan’s curve theorem, any simply closed path dissects the rest of
the plane into two disjoint (open, simply connected) regions, the bounded interior and the
unbounded ezterior of p. Theorem 5.1 is a discrete version of the Riemann—Hopf theorem
of turning tangents which is well-known from differential geometry. An elementary proof
for the rectilinear case can be found in [H]. Here we will use it without any proof. O

A polygonal path p in S is said to be boundary—following if it is a subpath of some
boundary p; (with the same orientation). More precisely, if p; = (P, -+, Py, Poy1 = P1),
then p = (@, Piy1,- -+, Piy1,Q'), with 1 < i < k,l € N,Q € P,P4y and Q' € P11 Piqiy1,
where Pry; = P for j > 1, and Q' lies between ¢ and Q;4; if { = 0.

Let P and @ be (different) points which belong to the same boundary of the given
scene. By the bow from P to (), denoted by b(P, @), we mean that boundary—following and
loop—free path which starts in P and terminates with ) (when it is reached at the first time
in walking along the boundary, starting in P).

17



Agreement. To simplify some definitions and explanations, in the sequel we suppose
that the starting point and the target of the scene § = (P, T, 5) have the same y—coordinate,

and the z—coordinate of § is less than that of T". This means, the straight line ST is
horizontal, and 5 lies on the left of 7. Moreover, we will suppose that no vertex of the

obstacles of the family P belongs to the straight line SHT. So, whenever a boundary of an

obstacle has a common point with ST, this is a proper crossing point.

If a path ¢ = (Q1,---,Qk) with k > 3, starts and ends on the straight line S? on the
left of T, more precisely Q1,Qr €715, its target—directed rotation index is defined by

tdrin(q) = 1in(q) + (@17, Q1Q2) + A(Qr—1Qk, Q4 T).

In other words, if @, Q' EST @ on the left of )4 and Q' on the right of @, then tdrin(q) =

rin(Q, Q1,- -+, Qk, Q). Since the rays QQ1 and QkQ’ point in the same direction, we have
tdrin(q) = 7 - 27, for some integer j.

In the remaining part of this section,we restrict ourselves to simple scenes. A scene
S = (P,T,5) is said to be simple (or an s-scene) if no boundary of the family P crosses
the straight line S} on the right of T. Obviously, in simple scenes the target is always
topologically reachable.

By an s-swing in some s—scene, we understand a polygonal path ¢ = (Q1,---,Q%), with
k > 3, such that

e ¢ is boundary—following;

o it starts and ends on ST,

ie. Q1,Qr €ST;

e ¢ starts with a downward move and ends with an upward one,
i.e. the y—coordinates of ()3 and QJ;_1 are less than those of $ and T ; and

e tdrin(q) = 0.

An s—swing is said to be regular if there is no proper initial part which is an s—swing,
too.

Figure 8 illustrates the concepts introduced so far. FExamples for s—swings are the
bows b(A, B),b(A,J),b(A, H),b(C,D),b(E,F),b(G,J),b(G,H),b(I,B),b(I,J)in this sim-
ple scene. The s—swings b(A, B),b(C, D),b(E, F),b(G, J) are regular. There are only finitely
many regular s—swings, in any scene. By Theorem 5.1, it even follows that there are only
finitely many s—swings.

Lemma 5.1 Let S be a simple scene. If P € ST N p;, for some boundary p; which crosses

ST downwards at P (equivalently, the target ray points into the i-th obstacle at P), then
there is just one regular s—swing starting at P, and that is loop—free.
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Figure 8:
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Let the suppositions of the lemma be fulfilled. Since the ray PT points into the «—th

obstacle at P, but T’ does not belong to that obstacle, there is a first point ¢ on P_>T in
which the ray crosses the boundary p;. The set bow(P,Q)U QP is (the carrier of ) a simply
closed polygonal path, and by Theorem 5.1 it follows that tdrin(b(P,())) = 0. Hence, the
bow b(P,Q) is a loop—free s—swing. It has just one initial part being a regular swing, and
that is loop—free, too. O

For polygonal paths ¢ = (Q1,- -+, Q) and ¢’ = (@}, -, Q) ), we say that ¢ is concaten-
able with ¢’ if Q) lies on the right of @ and the interior of the straight line segment Q;Q’
does not contain a point of an obstacle. The latter means that

QrQ7 N (I pi) C{Qk, Q1)

=1
In this case, the polygonal path
qEBq/ = (Q17"'7Qk7Q/17"'7Q2:’)

is called the concatenation of ¢ with ¢'. If ¢ and ¢’ are s—swings, we have tdrin(¢ & ¢') = 0.
The concatenation of finitely many paths is straightforwardly defined.
By a [regular] s—wave, we mean a non—empty finite concatenation of [regular] s—swings.
The following theorem gives the basis of our target-reaching algorithm.

Theorem 5.2 A regular s—wave in a simple scene cannot be concatenable with itself.

19



Figure 8 shows that the supposition of the regularity in the theorem is essential. The
s—wave b(1, B) @ b(C,D)@ b(E, F)ad b(G, H) is concatenable with itself.

The proof of the theorem follows from the fact that, roughly speaking, in a simple scene
any two regular s—swings cannot cross each other. More precisely, let ¢ = b(Q1,Q2) and
¢ = b(Q,Q) be regular s—swings in a simple scene. If they are different, but have a
common point, one of the both, say ¢’, must start in the interior of the other one, i.e.
Q4 € b(Q1,Q2)\ {Q1,Q2} 2. But then ¢’ must terminate at a point within ¢ inclusively @,
Le. @) € b(Q1,Q2).

To prove the latter claim, remark first that

0 = tdrin(b(Q1,Q2)) = tdrin(b(Q1, Q7)) + tdrin(b(Q}, Q2)).

Moreover, tdrin(b(Q1,Q})) = j - 27, with an integer 7. Now we consider the sequence of
the target—directed rotation indices of all initial parts of b(Q)1, Q)2) which terminate with an

upward move on ST (ordered by increasing lengths of the bows). The difference between two
consecutive values of this sequence always belongs to {—2m,0,27}. Since Q) # @2, it follows
J < 0and tdrin(b(Q}, Q2) = (—7)-27. QY is the first point Q ES} with tdrin(b(Q},Q)) = 0,
along the boundary—following path starting at Q. Therefore, Q5 cannot lie before @Y, along
a boundary—following path starting at ¢);.

Assume, there would be a regular s-wave, say ¢ = (Q1,- -, Q), which is concatenable
with itself. Different s—swings of ¢ could have common points, but they cannot cross each
other. Therefore, by shifting (by sufficiently small amounts in the plane) the points in ¢
when they occur repeatedly, from ¢ = (Q1,- - -, @k, Q1) we obtain a simply closed polygonal
path ¢’ with the same closed rotation index,

rin(¢") = rin(§) = tdrin(q) = 0.
This is a contradiction to Theorem 5.1. O

Theorem 5.3 The target-reaching problem for simple scenes is solvable by a robot with a
tactile sensor, target-ray location and compass, with the complexity O(n?).

The algorithm is rather simple. Starting at some point 5, let the robot perform the
following progam. Here we simply write “regular swing” instead of “regular s—swing”,
because the concept of swing will be introduced for arbitrary scenes in the next section, in
such a way that an s—swing is a swing in an s—scene.

Program { target-reaching by regular swinging } ;
repeat from the current position P follow the target-ray
up to reaching T or a boundary of an obstacle ;
if T is reached, then halt (‘‘target reached’’) ;
if a point Q of some boundary is reached, then move
to the end of the regular swing starting at Q ;
until T is reached.

2We hope the reader will not be confused if we sometimes characterize a path as a sequence of points (its
vertices), and sometimes identify a path with its carrier set.
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It is obvious that a robot of the given type is able to perform this program. After
reaching a point on a boundary of an obstacle, the program controls a walk along a regular
s—wave up to the target T. Since there are only finitely many regular s—swings but there is
no cyclic regular s—wave by Theorem 5.2, the program always terminates.

The number of regular s—swings in the scene is bounded by the number of crossing points

of the boundaries of obstacles with the straight line S7". That is bounded by the number n
of vertices of the scene. The number of vertices of any regular s—swing is also bounded by
n, because it is loop—free. Therefore, our algorithm has a complexity of O(n?). O
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6 Rotation Counting — the General Case

Let the agreement from the previous section, that S} is horizontal and does not contain
vertices of obstacles, also hold for the not necessarily simple scenes we are going to consider
now.

Originally, the concept of swing for arbitrary scenes has been defined like that of s—
swing, with the restriction that it should both start and terminate on the left-hand side of
the target T', on the straight line SHT. Such a condition seems to be necessary in order to
secure that, from an endpoint of a regular swing, by following the target ray, one reaches
either the target or a starting point of another regular swing.

Unfortunately, with this definition of [regular] swing, the assertion of Theorem 5.2 would
not hold. As it has been pointed out by R. Klein [personal communication], there would
be cyclic regular waves in this case. Figure 9 shows an example. The polygonal path
b(A,B) @ b(C, D) would be concatenable with itself. To avoid this dilemma, in running

through the scenes, we observe the balance of the crossings of S} on the right of 7.

Figure 9:

N7 SN

\/ B S A -

As usual, § = (P, T, 5)is the given scene. By §T , we denote the open ray of all points
of ST which lie on the right of 7" (1" is excluded).

For a polygonal path ¢ (which starts and terminates on ST, but has no further vertex

— — T
on ST, let cru(q) denote the number of upward crossings with S7" . This is the number of
— T
occurrences of points P € ¢ N ST in g such that the y—coordinates are increasing in running
through P along ¢. Analogously, let crd(g) denote the number of downward crossings with
— T

-

ST in running through ¢. If ¢ starts and /or terminates on ST , the starting point and/or
the endpoint have to be counted as an upward resp. downward crossing, too.
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The crossing balance of the path ¢ is defined by
crbal(q) = cru(q) — crd(q).

By a swing in a scene S, we understand a polygonal path ¢ = (Q1,---,Q%),k > 3, such
that

e ¢ is boundary—following;

e ¢starts with a point from ST \(§T U{7'}) and terminates with a point from ST \ ST
(T is excluded as starting point but could be the endpoint of a swing);

e ¢ starts with a downward move and terminates with an upward move;
e tdrin(q) = 0; and
e crbal(q) = 0.

A swing is said to be regular if there is no proper initial part which is a swing, too.

Lemma 6.1 Lel S be a scene whose larget does not belong to an obstacle. If P is a poinl

> — T >
from (ST \(ST U{T}))N p;, for some boundary p; which crosses ST downwards at P,
then there is just one reqular swing starting at P, and that is loop—free.

The proof is analoguos to that of Lemma 5.1. We conslder the ﬁrst point ) # P, in

which the ray PT crosses p;. Such a point does exist in ST \ ST since T lies in the
exterior of p;. Then b(P,Q)U QP determines a simply closed path ¢ Wlth the interior on
the left-hand side. By Theorem 5.1, it follows tdrin(b(P,Q)) =

Now we consider the sequence of the crossing points of ¢ with the ray ST ., ordered
according to their occurrences along that ray. The first of these crossing points (if there is
one) is downward, since T lies in the exterior of ¢. Then the next one must exist and is
upwards directed, and so on. So we obtain a sequence of pairs of downward and upward
crossings, and it follows crbal(b( P, Q)) =

Therefore, b( P, Q) is a loop—free swing, and it has just one initial part being a regular
swing. O

By a [regular] wave, we mean a non—empty concatenation of finitely many [regular]
swings.

Theorem 6.1 In a scene whose target does not belong to an obstacle, a reqular wave cannot
be concatenable with itself.

Unfortunately, the proof of Theorem 5.2 cannot be modified to show Theorem 6.1.
There are scenes with pairs of regular swings which cross each other. More precisely, such
pairs cause crossings of regular waves containing them. Figure 10 a) gives an example. The
regular wave b(A, B)@b(C, D) crosses itself in the common part b(A, D) of the both swings.
Nevertheless, the regular wave b(A, B) @ b(C, D) @ b(E, F), prolongated by SA and FT,
leads from S to T.
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Figure 10:
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Our proof of Theorem 6.1 works as follows. We describe a construction modifying an
arbitrary scene S, with a topologically reachable target, into a simple scene &’ such that a
regular wave concatenable with itself in & would yield a regular wave in &', i.e. a regular
s—wave, concatenable with itself. But such one cannot exist, by Theorem 5.2.

The transformation of S into S’ consists in cutting the boundaries, in all points where
T

they cross the ray ST , and pasting the free pieces together in a suitable way. The links
between two upper resp. lower free pieces are described by U—pairs resp. N—pairs of crossing
points.

(A, B) is called a U—pazr il A,B € ST N p;, for some boundary p; of the given scene

S, such that p; crosses ST downward in A but upward in B, and b(A, B) is the shortest
boundary—following path ¢ starting in A such that crbal(¢) = 0. Remember that A and B
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have to be considered as crossing points too, hence A# B.
Analogously, (A,B)isanN-pairif A,B € ST N p;, for some boundary p; which crosses

ST upwards in A and downwards in B, and b(A, B) is the shortest bow starting at A with
the crossing balance equal to 0.

— T
Lemma 6.2 If the target T does not belong to an obstacle, every crossing point P € ST
N U~ pi belongs to just one U-pair and just one N—pair.

From the definition it follows immediately that any point can belong to at most one U—
— T

pair and at most one N—pair. Let P be a point in which p; crosses the ray ST downwards.
Since the interior of p; lies on the left of the path and is bounded, there is a point on the
— T T

right of P in which p; crosses ST upwards. If @) denotes the first such point along S_>T ,
b(P,Q)U QP determines a simply closed path ¢, and like in the proof of Lemma 6.1 we see
that crbal(b(P,Q)) = 0. Therefore, there is a point @’ such that (P, Q') is a U—pair.

But 6(Q, P)U PQ determines a simply closed path too, and it holds crbal(b(Q, P)) =
Thus there is a N—-pair (Q", P).

The proof for an upward crossing point P is analogous. O (lemma)

Lemma 6.3 Let (A1, B1) and (Az, By) be two U-pairs or N-pairs, but both of the same
type. Then As lies between A1 and By if and only if By does.

This nesting property of U-pairs resp. N—pairs is fundamental for the pasting procedure
in the proof of the theorem.

The proof of the lemma is by induction on the number of further crossing points along
the bow b( Ay, By). We consider the U—case only.

If there are no such further crossing points, the assertion of the lemma holds, for all U-
pairs (Ay, By). Indeed, in this case b( Ay, By) U By A; determines a simply closed polygonal
path. By Jordan’s curve theorem, if Ay € A; By \{A1,B1}, then B, € A; By \{A1, B1}, and
conversely. Moreover, also the bows b( A3, By) do not contain further crossing points.

Suppose that the assertion holds if there are at most k crossing points along the bow
b(A1, By). Assume that we have a U-pair (A, By) with £+ 1 > 0 further crossing points on
the bow now. We consider the first point P along b(A;, By) which belongs to a downward
crossing such that the next crossing point ¢ marks an upward crossing. Then (P, Q) is a
U-pair without further crossing points on b( P, Q). Therefore, all U-pairs with elements on
P(Q are completely contained in P(Q) and either nested or independent, mutually.

Then the bow b( P, Q) and all bows b(P', Q') belonging to U—pairs (P’, Q") lying on PQ
can be “lifted”. More precisely, these bows together with sufficiently small surrounding
pieces of the corresponding boundaries are replaced by straight line segments above S?
such that no crossings are caused. This modification of the scene does not change the
arrangement of the other crossing points. So the number of further crossing points along
b(A1, By) has been decreased, and the supposition of induction applies. O (lemma)

Lemma 6.4 Let (A, B) be a U-pair or a N-pair, and q be the simply closed polygonal path
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determined by b(A, B)U BA (with the orientation of the bow). Then it holds

2r if (A, B) is a U-pair and A lies on the left of B,
— or (A, B) is a N-pair and A lies on the right of B,
rin(q) = =27 if (A, B) is a U-pair and A lies on the right of B,
or (A, B) is a N—pair and A lies on the left of B.

This can be proved analogously to Lemma 6.3, by induction on the number of further
crossing points along b(A, B). The initial step of induction, where b(A, B) contains no
further crossing points, follows from Theorem 5.1 (Riemann-Hopf). The induction step is
easier than for Lemma 6.3, because we only have to consider the bow b( A, B) and no other
boundary pieces of the scene. We omit the details. O (lemma)

Now we can prove the theorem according to the idea sketched already. Let be given a
scene S whose target does not belong to an obstacle. The scene S’ is obtained from S by
removmg sufficiently small segments of the boundaries around the crossing points with the

ray ST The free pieces are pastet together by straight line segments corresponding to the
U—pairs and N—pairs.

More precisely, for every U-pair (A, B), the free pieces of the boundary at points A
and B are connected by a straight line segment lying above (and parallel to) the straight

line ST'. If another U-pair (A’, B') is nested in (A, B), its connecting straight line segment
must lie above that of (A, B). So it is secured that no crossing points between the parts
of boundaries are caused. Analogously, the free ends corresponding to a N-—pair (A, B)

are connected by a straight line segment lying (in a sufficiently small distance) below ST,
such that every segment corresponding to another N-pair which is nested in (A, B) is lower
located. We also omit the formal details of this construction. For an illustration, the reader
is referred to Figure 10, where a) shows a scene S and b) the modified scene S'.

In this way, from & we obtain a simple scene §’. Assume that there would be a regular
wave

w=s1 @By, [>1,

concatenable with itself in the scene §. In the new scene §’, from the regular swings
si,1 < 7 < I, we obtain regular swings s}, each with the same starting and terminating
point as its preimage s;. Indeed, if the starting point A of a bow b(A, B), for some U-pair
or N—pair (A, B), belongs to a regular swing s;, then also the whole bow must be contained
in that swing. The same holds for the endpoint B of such a bow. Thus the replacements
of the bows by straight line segments do not influence the starting or terminating points of
the swings. Moreover, by Lemma 6.4, the rotation indices of the swings (and of their initial

— — T
parts terminating on ST \ ST ) are not changed.
As a regular wave in a simple scene,

’U)/:Si@"'@sg

would be a regular s—wave, and concatenable with itself. This is a contradiction to Theorem
5.2 . O (theorem)
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Theorem 6.2 The targel-reaching problem (for arbitrary scenes whose targets do not be-

long to obstacles) is solvable by a robot with a tactile sensor, target-ray location and compass,
with the complezity O(n?).

This can be shown using the program given in the proof of Theorem 5.3. The correctness
and complexity estimation follow like in that proof, using Lemma 6.1 and Theorem 6.1. O
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7 Discussion

We have studied the target-reaching abilities of point robots equipped with tactile sensors,
with facilities for target-ray localization and, possibly, with compasses.

If no compass is available, the behaviour of a target-reaching procedure cannot be
periodic in homogeneous environments. On the other hand, the exhaustive search, as an
extremely non—periodic procedure, solves that problem by trying blindly all possible ways in
an arbitrary scene. These results concern the program complexity of robots. With respect
to our step-number complexity, we only have the upper bound exp(O(n?)) by exhaustive
search, but no non—trivial lower bound. Can the target-reaching problem be solved with a
subexponential complexity, without using a compass?

Also for a robot with compass, some questions remain open. Does there exist a target—
reaching algorithm with a complexity below O(n?), perhaps for interesting special classes
of scenes? What about the simple scenes in the sense of Section 5, for example? We remark
that, for scenes with only one obstacle, there is a linear target-reaching algorithm, even
without using a compass.

In [BK] also the wall problem has been considered. Here the target is a straight line, let’s
say in north—south direction, on the right of the starting point and the obstacles. In this
case, the target ray perceptible by the robot is perpendicular to the target wall. It is not
hard to modify the exhaustive search correspondingly. Moreover, now the rotation—counting
method correponds straightforwardly to the regular-swinging method used to escape from
(rectilinear) two—dimensional mazes, see [A], [H]. So, for the wall problem, we obtain results
which are analogous to those for the target—point task.

More important is the problem to reach a target point in an included scene (P,T,5,p).
Here let (P,T,5) be a scene in the usual sense, and P is a simply closed polygonal path
including this scene. This means, the interior of p lies on the right—hand side of the path
and contains the points S and 7T and all obstacles. Now the rotation—counting method

cannot immediately be applied, since for a downward crossing point P € p N ST, on the
left of 7', there is not necessarily a (regular) swing starting in P.

On the other hand, an included scene naturally determines a finite, connected, plane
graph such that the robot can implement graph—searching algorithms. And for finite, con-
nected, (rectlinearly) embedded graphs there is a searching algorithm based on rotation
counting, see [H]. Unfortunately, it is not immediately applicable to our problem since it
uses a pebble, i.e. a marker for vertices of the graph. But there is another consolation:
For the practically essential case, where the interior of p forms a convex set in the plane,
the program from Section 5 works correctly. More generally, the program is successful if p

crosses the straight line SHT in two points only. Indeed, in this case a regular wave starting
from § never hits the boundary p.

The concept of step—number complexity used in this paper allows a rather simple evalu-
ation of the algorithms presented here. A more detailed view could consider the lengths of
paths. Moreover, the competitive ratio, as mentioned in Section 2, should be investigated,
even if it cannot be bounded by a constant. In [BRS], a corresponding “figure of merit” for
a robot has been proposed.
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