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Abstract

We study the problem of optimal recovery in the case of a nonsymmetric
convex class of functions. In particular we show that adaptive methods
may be much better than nonadaptive methods.

We define certain Gelfand-type widths that are useful for nonsymmetric
classes and prove relations to optimal error bounds for adaptive and
nonadaptive methods, respectively.
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Abstract. We study the problem of optimal recovery in the case of a nonsymmetric
convex class of functions. In particular we show that adaptive methods may be much
better than nonadaptive methods.

We define certain Gelfand-type widths that are useful for nonsymmetric classes and
prove relations to optimal error bounds for adaptive and nonadaptive methods, re-
spectively.

1. Introduction

No approximation scheme can be good for every function f on some domain. We
need some a priori information about f of the form f € F. Usually one assumes that
f 1s an element of a certain Banach space X and so might have certain smoothness
properties. Then it is our task, for example, to find a good approximation of the
linear operator S : X — G such that

1S(f) = > Li(£) - gille < ea- |1 Fllx
=1

holds with as small ¢, as possible. Here the L; are linear functionals, L; : X — R,
for example function values or Fourier coefficients. This means that we make a worst
case analysis on the symmetric and convex set

F={feX[|flx <1}

This approach is the usual one in numerical analysis, at least if the solution operator
is linear. Also most of the known results on optimal recovery and closely related prob-
lems on n-widths usually are studied under the assumption that the set F' of problem
elements is convex and symmetric. In many cases, however, we have a different type
of a priori information. We give some examples.

Sometimes we know that f is positive because, for example, f is a certain density
function. In this case we should consider sets of the type

F={feX||flx <1, f>0

Observe that such a set is still convex, but not symmetric. In other cases we might
know in advance that f is a monotone or convex function. This also leads us to study
convex classes of functions that are nonsymmetric. The geometric extra-information,



given by positivity, monotonicity, or convexity, is very important in some cases. It
often helps to find an effective numerical method, even if the problem is ill-posed
without this information.

Therefore it is usually not a good idea to just ignore the additional information about
f. However, it may seem that it is still enough to study symmetric and convex sets
— at least modulo some minor details. Let us again consider the case where we want
to approximate a linear operator S on F. By taking F' — F, defined by

F—F:{fl_f2|f17f26F}7

we clearly get a symmetric set and for each convex set F' we get the error estimate

max max max

(1.1) inf AP (S,) <inf AFTF(S,) < 4inf AL (Sn).
Here the maximal error (over F or over F — F') is defined in the usual way and the
infimum runs through all methods of the form

(1.2) Sn(f) = ¢(Ls(f), ..., Ln(f))

with nonadaptively chosen linear functionals L;, see Proposition 3. In the symmetric
case we know that such nonadaptive methods are almost optimal in the class of all
adaptive methods that use n linear functionals.

So we know that optimal error bounds for £ and for F'— F differ at most by a factor 4
in the case of nonadaptive methods and adaption does not help (up to a factor of 2)
for F' — F. Therefore we can get much better error bounds on F only if we allow
adaptive methods. We will see later that for some linear problems S : X — G and
convex F' C X adaptive methods actually are much better than nonadaptive ones.
This also proves that an inequality such as (1.1) does not hold if we allow adaptive
methods.

We give some remarks to the literature. In the linear theory, i.e., under the assumption
that F'is symmetric and convex, the close connection between optimal recovery and
n-widths or s-numbers is well known, see Mathé (1990), Micchelli and Rivlin (1977,
1985), Novak (1988), Pinkus (1986), Traub and Wozniakowski (1980), and Traub,
Wasilkowski and Wozniakowski (1988). Useful surveys on n-widths are Pietsch (1987)
and Pinkus (1985).

In the nonsymmetric case not so much is known. Some of the known n-widths can
also be defined in the nonsymmetric case, but there is no theory of diameters in
connection with optimal recovery, in particular when also adaptive methods are al-
lowed. Some special problems, however, are studied in the literature. The problem
of optimal numerical integration of monotone functions was studied by Kiefer (1957)
and Novak (1992). The knots ¢; may be chosen adaptively, i.e., sequentially. Kiefer
proved that the best method is given by the trapezoidal rule. Hence we have an affine
and nonadaptive algorithm which is optimal. Observe that adaption does not help



in this case. This is also known for arbitrary linear S : F — R in the case that F
is convex and symmetric, see Bakhvalov (1971). In the present paper we study the
question whether adaption can help if F' is only convex. Also in some other papers lin-
ear problems (such as integration or optimal reconstruction in Lo,-norm) have been
studied for certain nonsymmetric convex classes of monotone or convex functions. We
mention the papers Brafl (1982), Glinkin (1983, 1984), Gorenflo and Vessella (1991),
Novak (1993), Petras (1993), and Sonnevend (1983).

Different nonsymmetric extremal problems in approximation theory were investigated
by Babenko (1983, 1992), Gal and Micchelli (1980), Ioffe and Tikhomirov (1968),
Korneichuk (1991), Magaril-Ilyayev and Osipenko (1991), Sukharev (1986), and Sun
(1993). We are mainly interested in the following question, where the worst case
setting is studied for linear problems: Can adaption help (much) on a convex class of
functions? Much is known about linear problems

S: X =Y,

when studied on a symmetric and convex set F' C X in the worst case. A slight
superiority of adaptive methods can be proven in some cases even if F' is symmetric,
see Kon and Novak (1989, 1990). It is well known, however, that adaption cannot
help much in that case. Although adaptive methods are widely used, most theoretical
results show that adaption does not help under various conditions.

It is known, however, that there are examples with a convex and nonsymmetric set F',
where adaption helps a lot, see Novak (1993) and Section 4. In this paper we define
certain new ‘Gelfand-type’ n-widths that turn out to be important for the study of
linear problems on convex domains. We study the connection between these n-widths
and problems of optimal recovery.

We believe that it is important to calculate the n-widths for standard classes of
nonsymmetric sets, for example sets of the type

k
{F:00,1] =R NN <130 {feci(o] s >0}

=0

This would be useful for the construction of efficient algorithms for many practical
problems.

In Section 5 we study the case, where only methods of the form

SPV(f) = ¢(f(x1), ..., f(tn))

with function values instead of general linear functionals are admissible. In this case
adaption can help even more, we present a rather extreme example. Also a recent
result of Korneichuk (1993) belongs to this section and is mentioned there.



2. Diameters for nonsymmetric sets

We want to know whether adaption can help for linear problems on a convex set of
functions. We begin slightly more general and first define certain diameters that are
interesting in the case where F' is not symmetric.

Let X be a Banach space over R and let F' C X be convex. First we assume that F
is also symmetric, 1.e., f € F implies —f € F. The Kolmogorov n-width of F in X is
given by

(2.1) d.(F) = mf sup mf lf =gl
Xn feF9eX

where the left infimum is taken over all n-dimensional subspaces X,, of X. Similarly,
the Gelfand n-width of F' is given by

(22) d"(F) =inf sup |f],

Un feFnu,
where the infimum is taken over all closed subspaces U, of X with codimension n.
These numbers measure the ‘thickness’ or ‘massivity’ of F.
In the case of arbitrary (in particular: nonsymmetric) sets I C X these definitions
seem to be not adequate. The widths should be translation-invariant, therefore the
Kolmogorov n-width (for arbitrary F' C X ) should be given by

(2.3) dn(F) = inf sup mf lf—qll
where X,, runs through all n-dimensional affine subspaces of X. For a convex and
symmetric set £ C X Eq. 2.2 can be written as

1
d"(F) = g’ iélf diam(F N U,).

Here, diam(B) means the diameter of a set B, defined by

diam(B) = sup [[f —g].
I,9€B

It is interesting to note that this definition (for symmetric sets) can be extended to
arbitrary sets in two different ways, both of them are interesting — at least if we are
thinking on applications in the field of optimal recovery. A ‘global’ variant of the
Gelfand width (for arbitrary F') is given by

1
(2.4) glob(F) = mf sup diam(F N (U, + f)),

2 Un feX
(a slightly different notion is defined in Joffe and Tikhomirov 1968) while a ‘local’
variant is given by

(2.5) diy (F)= = -sup mf diam(F N (U, + f)).

2 jex U



Both these widths are translation-invariant, we always have
(26) dl?)c(F) < dglob(F)7

if F'is convex and symmetric, then

(2.7) d"(F) = dgop(F) = dit (F).

The widths defined by Eqs. 2.3-2.5 do not increase if F' is replaced by its convex hull.
Therefore we can and will assume that F' is convex. The global and local Gelfand
widths are related to the problem of optimal recovery using nonadaptive or adaptive
methods, respectively, see Section 3. Therefore for the adaption-problem the following
question is interesting. Can the number df,.(F') be much smaller than dy),,,(F)? It is
useful to study the function

feEF— iélfdiam((U + f)NF).
A maximum f* of that function is called a worst element of F. If, in addition,
alob(F) = 1[515 diam((U + f*) N F),
then f* is called a center of F. In this case we have
dioe(F) = dgiop,(F).

If F is convex and symmetric, then 0 is a center of F'. Not every convex set has such a
center. It is interesting to know whether every convex set F' can be increased slightly
such that the bigger set has a center. We will see that this is not the case.

There are many papers and also books on n-widths. Nonsymmetric sets are rarely
studied so far, however. This seems to be related to the fact that for Kolmogorov
widths and global Gelfand widths nonsymmetric sets do not yield very interesting
results. By this we mean the following. Let F' C X be convex (and nonsymmetric).
Then the symmetric set

F-F={fi-fi|fieF}

is the smallest symmetric set that ‘contains’ F' (more exactly: F'— F contains a trans-
lation of F'). The following result says that the n-widths of F' and its symmetrization
F — F differ at most by a constant of two.

Proposition 1. Let F C X be convex. Then
do(F) < dn(F — F)<2d,(F)
and

(2.8) glob(F) < d"(F — F) < 2dg1,(F).



Proof: We only give the proof of (2.8), the inequalities for the Kolmogorov widths
are even easier to prove. Assume that U, is a closed subspace of X with codimension
n such that
6 = sup diam((F' — F)N (U, + f)).
fex

For any fixed f; € F we get

6 > sup diam((E£ — f1) N (U, + f)) = sup diam(F N (U + f)).
feEX fex

This proves dglob(F) < d"(F — F). Let U,, such that

6 = sup diam(F N (U, + f)).
fex

Each f* € (F — F)NU, can be written as f* = f; — f; with f; € F and also
fi € Uy + f. Because of the assumption we obtain ||f*|| < diam(£ N (U, + f)) < 6,
hence

diam((F — F)NU,) < 26.

Because F' — F' is symmetric we can conclude that
diam((F — F)N (U, + f)) <26

for each f and therefore dglob(F -F)< 2dglob(F)‘
[

Such a result does not hold for the local widths. The following example also shows
that the local widths can be much smaller than the global widths.

Example 1. Let X =1/, and
F={IEX|$Z‘ZO, Z$i=1}.
i=1

Then we have .
dglob(F ) = )

for every n € N and also dglob(F —-F)=d;

loc

(F — F) = 1. For the local widths of F'

however, we obtain

1 1
55 S dioc(F) < :
2n + 2 n-+1
Proof: Because of diam(F) = 1 we certainly have dg, (F) <1/2for all n € N. It
is also well known that dg,,(F' — F') = 1. Therefore we obtain dj,.(F') = 1/2 from
(2.8).




Now we study the local widths. Consider the set
{r€lo|zi€[0,1/(n+1)]fori=1,...,n+1, andz; =0for¢ >n+1} C F.

This set is (up to translation) a (n 4 1)-dimensional ball of radius 1/(n + 1), it is
well-known that the n-width of such a set is 1/(2n 4 2). This proves that

1

dr (F) > .
loc( )—2n_|_2

Now fix a * € F. We define a permutation of N such that
Tiy 2 Ty 2 Tig = e
We define L, by
Li(y) = yi, + Yir + - + Yy
such that k is the first number with

1

Tiy + Tiy ...+ T4, S

Similarly we define
Ly(y) = Yipyr + Yir + - + ¥4,

such that [ is the first number with

$ik+1 +$12—|—+$11 Z n—_l_ly

and so on. Now we assume that y,z € F such that L;,(y) = Li(z) = L(x) for
t=1,...,n. We can conclude that

ly -2l < —
v — .
y —n+1
and this implies
1
d' (F) < .
loc( ) — n+1



Remark. We have seen that the local widths can be much smaller than the global
widths. Is there a bound on how much they can be smaller? In other words, is there
an inequality of the form

(2.9) alob(F') < cn - dig (F)

with a sequence ¢, that is independent of F'? If this is the case then of course it
would be interesting to know the best inequality of the form (2.9). Actually we
conjecture that Example 1 is the most extreme example in the sense that dglob(F) =

O(n-d}!

" (F)) is always true. This is a deep problem which is related to a conjecture of

Mityagin and Henkin (1963) which is still open. It would follow from their conjecture
that

alob(F) < (2n +2) - djg (F).

The following proposition contains a weaker result. We do not prove it here because
it is a special case of the slightly more general Proposition 4.

Proposition 2. Let F' C X be a convex set. Then

alob(F1) < 2(n + 1)? - dit..(F).

3. Diameters of mappings and optimal recovery
Now we define the widths of S|p, where S': X — Y is a continuous linear mapping
into a normed space Y. We use the following notation, namely

3.1 da(S)r) = inf sup inf [|S(f) — 4],
(3-1) (Sir) = ind ;ggglerlynll (f) =4l

where Y, runs through all n-dimensional affine subspaces of Y, for the Kolmogorov

widths. The global Gelfand width (for arbitrary £ C X ) is given by

1 . )
(3.2) dglob(5|p) =3 1[51f sup diam(S(F N (U, + f))),

while a ‘local” variant is given by

- sup inf diam(S(F N (U, + f))).

. di =
(3 3) loc(S|F) 9 fex U,

Here the infimum is taken over closed subspaces U, of X of codimension at most n.
Now a f* can be called a worst element if the supremum in (3.3) is attained for f*.
If, in addition, the local width equals the global width then f* is a ‘center’ of F' with



respect to S. This case is similar as the symmetric case insofar as adaption can help
at most by a factor of two, see Proposition 5. It is useful to define Bernstein widths,
here the definition is

bn(S|p) = sup{r | S(F) contains a (n + 1)-dimensional ball with radius r}.
Observe that in the case S = Id : X — X we obtain

sn(S|F) = sa(F),

where s,, 1s one of the widths considered here. This means that the diameters of sets
are just special cases of this more general notion.

We study the problem of optimal recovery of S(f) for f € F C X, if only (adaptive
or nonadaptive) information of the form

N(f) = (La(f), La(f), - - - s Ln(f))

is available. Each method is of the form S,, = ¢ o N with some ¢ : R" — Y and we
want to minimize the maximal error

Amax(S7V) = sup [|S(f) = STV (I
fer

In this section we assume that the L; are arbitrary linear continuous functionals
L; : X — R. In the adaptive case the choice of L; may depend on Li(f), ..., Li—1(f).
See, for example, Traub, Wasilkowski, Wozniakowski (1988) for the exact definitions
and known results. If we consider only methods S, = ¢ o N with a fixed information
mapping N, then we obtain the radius of N by

rad(N, F') = i%f Amax(¢ o N).
In connection with Proposition 1 we have the following result.

Proposition 3. Assume that N : X — R" is a nonadaptive information. Then we
have

rad(N, F) <rad(N,F — F) <4rad(N, F).
Proof: This just follows from
rad(N, F) <rad(N,F — F) < diam(N, F — F) < 2diam(N, F') < 4rad(N, F),
where diam(N, F') is defined by

diam(N, F') = supdiam{Sf | Nf = y}.
y

Probably, however, the constant 4 is not optimal here.

10



The next result in particular contains Proposition 2.

Proposition 4. Let FF C X be a convex set and let S : X — Y be linear and
continuous. Then

dgion(S)p) < 2(n 4+ 1) - dit (S)p).

Proof: First we have

dgion (1) < d"(Sjp-r).

Now we use the well known duality between the Gelfand numbers and the Kolmogorov
numbers

d"(S|p-r) = dn(S|p_p)-

Now we use the inequality
dn(S|p_p) < (n+ 1)2hn(5|’F—F)

of Bauhardt (1977) which is similar as the result of Mityagin and Henkin (1963). The
hy are the so called Hilbert numbers, the smallest s-numbers, see Bauhardt (1977)
for details. We have

(n+ 1) hn(S{p_p) = (n +1)*hn(Sjp-r) < (0 + 1)*bn(S|p-r)

and

(n + 1)%bn(Spp—r) =2(n+ 1) bu(Sp) < 2(n + 1)* d1(S)r)-

Taking these inequalities together we obtain our claim. Also the Bernstein widths
usually are studied only for symmetric sets. It is easy to prove, however, that

1
ba(Sir) = 5ba(S)r-r)
for any convex set. We also have used the fact
bn(S)F) < dige(S)r)

which is easy to prove and well known, at least in the symmetric case.

11



In the following we want to compare the numbers
eﬁon(5|p) = inf Apax(Sn)

with the numbers

¢aa(Sir) = inf Amax(Sp7),

where S, runs through all nonadaptive methods and S runs through all adaptive
methods using an information N consisting of n linear functionals. We always assume
that F' is convex. First we note a connection between these error bounds and the
Gelfand-widths, we skip the simple proof.

Proposition 5. Let FF C X be a convex set and let § : X — Y be linear and
continuous. Then

1 n n n
5 . dglob(S|F) S enon(le) S ngOb(S|F)

and
1

3 ~die (Sr) < ega(S)r)-

]

Remarks.

a) Assume that F is convex and symmetric. Then the result is well known. Because

of (2.7) we have
dglob(S|F) = dlr(l)c(S|F)

in this case and it follows that adaption can help only by a factor of two,
enon(91F) < dgion (S)7) = dig (S|F) < 2e34(S|F).

See Kon, Novak (1989, 1990) and Traub, Wasilkowski, Wozniakowski (1988) for fur-
ther results.

b) In the next section we will present examples, where adaptive methods are much
better than nonadaptive ones. Observe, however, that from Propositions 4 and 5 we
easily obtain the following result which says, in a certain sense, that adaption ‘does
not help too much’. We do not know how the optimal inequality of this type looks
like. We think that this is an interesting open question.

Proposition 6. Let ' C X be a convex set and let § : X — Y be linear and
continuous. Then

enon(SiF) < 4(n +1)% elq(S)p)-

12



4. On the adaption problem

Our next example shows that adaptive methods may be much better than nonadap-
tive methods. This example was constructed to demonstrate the superiority of adap-
tive methods, we do not know, however, whether it is the ‘worst possible’ example
for nonadaptive methods. We mention that a similar example is already contained in

Novak (1993).

Example 2. Let X =1, and

(o)
F={reX|z; >0, Zél?z <1, xp > ok, Tk > Tok+1}-
=1

Let e’ be the sequence defined by e} = &;5. For m € N we obtain
¢'/meF —F, i=1,...,2m° L

Now we use a known result (see Pinkus 1985) on the Gelfand-numbers of the octa-
hedron O, = {z € R" | }_ |z;| < 1} in l-norm, namely

d"(O4n) = 1/ /1.

Therefore for m € N we conclude

From this we easily derive the lower bound

C
dyop(F) <xd"(F—F) > —
glob( ) ( )— \/ﬁlogn

for the global Gelfand width of F. Now we prove that the local widths of F' are much
smaller. Let x € F'. We define ¢; by

¢ty = min{e | 2; = maxa;},
and for k£ > 1 we define
i = min{s | z; = max{z; | j # t1,...,%k—1}-
Now consider the space U,,, given by
Uy={eeX |z, =0, k=1,...,n}.

It is easy to see that diam(F N (U, + z)) <1/(n + 1) and therefore we have

1
2n+2°

dioo(F) <

13



Assume now that we want to reconstruct @ € F in [-norm using (adaptively or
nonadaptively) linear functionals as information. That is S = Id. For the error of
optimal nonadaptive methods we have the lower bound

c
P (S p)=dh, (F) > ——.

enon( |F) glob( ) = \/ﬁlogn

Now we describe an adaptive method which is much better. For simplicity we assume
here that n is odd. By é; we mean the functional é;(z) = z;. First we describe the

functionals L; which are of the form L; = ¢;,. Take Ly = é;. Suppose that L;(z) = z,
are already computed for 1 < i < 2k — 1. Define

J = {J € {117"'7121‘7_1} | 2J € {Zlv"'712k—1}}

and

J*=min{j e J|z; = I]IléL}(l‘j}.
Take Loy = 625+ and Lag41 = 02;+41. We consider the adaptive information
Np(z) = (Li(x),...,Ly(x)).

From the definition of N,, follows that

Nn(”c) = ($11,...,$1n)

with pairwise different [;. The number n is odd, say n = 2m + 1. Then we already
have picked up the largest (m + 1) coordinates of x. Since x € F, we conclude that

rr < 1/(m+2)

for all £ which do not coincide with one of the /;. Hence we can reconstruct z from
the information N, up to an error of 1/(2m +4) = 1/(n + 3), i.e., we have found a
method with

Amax(S21) < 1/(n +3).

]

Example 1, continuation. In Proposition 5 we only got a one-sided estimate of
the error of optimal adaptive methods through the local widths. Can we also proof
an upper bound for the error of optimal adaptive methods through the local widths?
To answer this question it is enough to study S = Id : F — [, where F is as in

Example 1. We claim that
n 1
ead(S|F) = 5

holds for all n. This means that we have an example with e4(S|r) < n - dj; .(S)F).

14



Proof: Because of diam(F) =1 it is enough to show that e};(S|r) > 1/2. Assume
that N : F — R" is some adaptive information. We have to prove that

sup diam{z € F | N(z) =y} = 1.
yeR™
Let
N(z) =(Li(z),...,Lp(x)),

where L; dependson Ly(z),...,L;—1(x). The L; also can be considered as functionals
on ¢, the space of convergent sequences, and therefore are of the form

Li(z) = Za;:ﬂj (for z € F)

J=1
with (a; )jen € l;. Now let j; be an index such that
|a}1| > |a}| for all j.

We can assume that a;& =1 and get

(4.1) Li(z) = + Za}xj

J#n

with |a}| <1 for all j. Assume that L;(z) = é for some small positive §. Because of
(a} )j € [; we can find two different indices ky and [; such that |ai1| < 6 and |a}1| < 0.
Now we define z,y € F by Li(xz) = L1(y) = ¢ and z has nonzero coordinates j; and
kq, while y has nonzero coordinates j; and [3. Observe that x and y are uniquely
determined, in particular we have

Ll(x) =zj + a}clxkl =6
and therefore z;, < 26 and zy, > 1 — 26, hence
|z —y|| > 1—26.

Under the condition that Li(z) = 6 is fixed we get a certain L. We can assume
that this linear functional is of the form z +— Z;’il a?xj with aj = 0, because if
a?l # 0 then we can consider Ly + oL instead of the original L, without changing
the information operator essentially. By multiplying with a constant we even can
assume that
Ly(z) =), + Z G?CC]‘
J¢{i1.52}

15



with |a%| <1 for all j. Again we assume that Ly(x) = ¢ and consider the respective
L3. So we can assume that

Li(z) = La(z) = ... = Ly(z) = 6,

where Ly, is the information in the case Li(z) = ... = Ly_1(x) = 6, and each Ly is
of the form

Lip(z)=zj, + Z aij

jg{jla"'ajk—l}

with pairwise different j; and |af| <1 for all j and k. We prove that

diam{z € F | Li(z) = ... = Ly(x) =6}
tends to 1 as 6 tends to zero. Let k,, and [,, be two different indices such that the
coordinates a};n and afn are small for all : = 1,...,n, i.e.,
|a2n|<6 and |afn|<6 fori=1,...,n.

We consider z,y € F with
Li(z)=...=Lp(zx)=Li(y)=... = Ly(y) =6

and x has nonzero coordinates ji,...,J, and k,, while y has nonzero coordinates
Jis---,Jn and [,. Because of L,(z) = 6 and « € F we obtain z;, < 26. Using
L,,—1(z) = 6 we get a similar upper bound for z;, _, and so on. Finally we obtain a
lower bound for xj, and this also is a lower bound for ||z — y|| which can be made

arbitrarily close to one.

]

5. The case of restricted information

In many practical cases, X is a Banach space of functions and only certain linear
functionals are available as information. Here we only consider the case that all
functionals

b, feX— flz)eR

are continuous and form the set of available functionals, i.e, each L; is of the form
L; = é;,. Hence we study methods of the form

(5.1) SEVF) = ¢(f(21),- .., f(tn))

and define the error bounds

Enon(S1) = inf Amax(Sa)

non

16



and

ELa(Sir) = inf Amax(S3%),

where the infimum runs through all nonadaptive or adaptive methods of the form
(5.1), respectively. Here we only give some examples and therefore we do not define
any new n-widths with a restriction to the type of admisssible subspaces.

The numbers €}, (S|r) can be estimated from above by the Kolmogorov widths
dn(F), even if S is nonlinear, see Novak (1986, 1988). The estimate for the case of a
linear functional was also found by Belinskii (1991).

The following example shows that adaptive methods may be exponentially better

than nonadaptive ones. In particular, the analog of Proposition 6 is wrong.

]

Example 3. Again we consider S = Id : F' — [, with

O
F={reX|z; >0, Z”L‘z <1, xp > T2k, Tk > Tok+1},
=1

but now we only allow methods of the form (5.1). We already proved that

1

€ad(S)F) < T3

and it is not difficult to see that the nonadaptive information
Np(z) = (z1,22,...,240)

is optimal among all nonadaptive information operators. It follows, in particular, that

1

non

]

Example 4. We just mention the following example from Korneichuk (1993). It is
not as axtreme as the last example. It is, however, closer to the standard classes of
approximation theory. Consider the reconstruction problem S = Id : F — Ly([0,1])
for

F={f:10,1] - [0,1] | f monotone and |f(z) — f(y)| < |a — y|°}

with 0 < @ < 1. This problem can be solved adaptively using the bisection method,
while nonadaptive methods are worse. Korneichuk (1993) proved, more exactly, that

é41711011(5|F) xn"¢ while égd(S|F) =n~! 10g n.
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