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Abstract

We study optimal stochastic (or Monte Carlo) quadrature formulas for
convex functions. While nonadaptive Monte Carlo methods are not bet-
ter than deterministic methods we prove that adaptive Monte Carlo
methods are much better.
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1. Introduction and Result

For each (finite) quadrature formula, the error in the class of convex functions on,
e.g., [0,1] is not uniformly bounded. For the study of optimal quadrature formulas
we therefore have to restrict the class of convex functions somehow. The classes

Fuo= (£:10.1] = R | f convex, f4(0) > u, f'(1) < v},
where v > u, were studied by Glinkin (1984), Zwick (1988), and Novak (1993). The

following is known for these classes.
Fact 1. Let n € Nand t; = (2:—1)/(2n). Then the affine and nonadaptive formula

1) @nlf) = 1o (=) + = D fin)

is optimal even in the class of adaptive formulas of the form

Qn(f) = o(f(t1),. .-, f(tn)).

By adaptive we mean that the knot ¢; may depend on the ‘already known’ function
values, i.e., t; = t;(f(t1),..., f(ti—1)). The maximal error of @,, on the class F,, is
given by

v—u

AmaX(Qn) = 167



This result has two drawbacks:

1) The optimal formula (1) depends on the class which might be unknown to us.
It would be better to have an ‘almost optimal’ formula which is independent of the
parameters u and v. It is easy to show that the linear formula @, (f) = % o ft)
is almost optimal for all u and v.

2) There are convex functions whose one-sided derivatives are not bounded, hence
we would prefer larger classes without smoothness assumptions.

Both these drawbacks are resolved by results of Brafl (1982) who studied the classes
Fy ={f:[0,1] = R | f convex, | flloc <1}
and

Fi = {f:10,1] = R f convex, max{|f(0)|, |f(1/2)], |F(D]} < 1}

and proved the following.
Fact 2. Let ¢, be defined by

o = 2(n2 + 2n + 1)_1 if n is odd and
e 2(n2 + 2n + 2)_1 if n is even.

Then the linear formula

(2)

Cp - EQif’iZCn +2if(1 —1%¢c,)) + 2£(1/2) if nis odd and
o) (Zi20 2if(i2en) + 2 ( ) + 2£(1/2)

Cn - < ?:1 Qif(izcn) + 2u0f(1 — ‘i2Cn)) if n is even

is optimal for F and also for FY in the class of all nonadaptive quadrature formulas.

In both cases the maximal error of the optimal formula is given by

(3) Amax(@n) = cn.
L]

We want to make some comments concerning these results:

1) Though adaptive formulas might be slightly better than nonadaptive formulas
for F) or fl it follows from the proofs for the classes F,, that n™2 is also the optimal
order of convergence for adaptive formulas.

2) The class F} seems to be a more natural class compared to F. Tt is, however,
much simpler to check the membership f € F than to check f e Fi.

3) F1 (and also ﬁl) is indeed a very general class of convex functions. If f is any
convex function on [0, 1], then we have f- | f||z! € Fi such that error estimates on F}
easily can be used. Hence, if Q,(af) = a@Qn(f) for all @ > 0, the order O(Apax(Qn))
of the error does not only hold for f € Fj, but may also be extended to all convex
functions on [0, 1]. The algorithm mentioned in our Theorem below has this property.



4) We should stress that the analysis and the results for the classes Fy, and Fj (or
Fy) are quite different. In particular, it is easy to see that for the class Fy we have

1

AlQn) 2 5~

for all methods using the equidistant knots which are optimal for each F,,.

2 even for very

5) The optimal formula of Brafl leads to an error of the order n
smooth functions, i.e., even for f = 1. It is known that the Gaussian formula leads
to an error O(n™F) for each C*-function. Therefore it would be interesting to know
whether the Gaussian formula also gives the optimal O(n~?) error for arbitrary, i.e.,
nonsmooth, convex functions. This problem was posed by Brafl in 1981 and solved

by Forster and Petras (1990) who even studied the slightly bigger class
Fy={f:[0.1] = R | f convex, f(0) —2f(1/2) + f(1) <4},
Here the constant 4 is chosen in order to have
FLCF CF,.

The class Fy also can be compared with the F,,, we have

(4) F,, C Fy iff v—u <8,
Fact 3. The maximal error of the n-point Gaussian formula on the class F; is less
than %, see Petras (1993b).

]

We do not mention more of the known results concerning (deterministic) quadrature
formulas, the interested reader should consult the survey Petras (1993a).

]

In this paper we mainly are interested in stochastic or Monte Carlo methods. We
do not repeat known results about stochastic methods for other function classes,
see Novak (1988, 1992) and Traub, Wasilkowski, Wozniakowski (1988). We present

results for methods of the form

Qu(f) = ¢“(f(#),- -+, F(E7));

i.e., the knots ¢¥ are random variables (which can be chosen nonadaptively or adap-
tively) and also the ¢ is randomly chosen. Then, as usual, the error of Q% is defined
in a ‘worst case stochastic sense’,

Amar(QS —mey/f B dt — Q(f)]).

feFr



The following is mentioned in Novak (1993) without a full proof of the upper bound.
We remark that the proof of our Theorem also contains this upper bound.

Fact 4. Let Q¥ be any nonadaptive stochastic method for the integration problem
on the class F,,. Then the lower bound

1
AmaX(Qn) — 128n2(v u)

holds. Thus the (stochastic) error of nonadaptive stochastic methods can be only
slightly smaller than the worst case error of deterministic methods. Let Q¥ be any
adaptive stochastic method for the integration problem on the class F,,. Then the
lower bound

—-5/2

Amax(Q3) 2 2= (0

holds. This lower bound gives the optimal order of convergence because we can con-

—un

struct methods with
Bmax( @) = O((0 — ) n72),
L]

This fact shows that adaptive Monte Carlo methods are much better (in a stochastic
sense) than nonadaptive Monte Carlo methods, but nonadaptive Monte Carlo meth-
ods are not better than deterministic methods. This is quite different than known
results for unit balls of Holder or Sobolev spaces, but it is similar to the results of
Novak (1992) for the class of monotone functions.

Is a similar result also true if we consider one of the larger classes, say, F»? This is
exactly the question that is studied in this paper. The positive answer is contained
in our Theorem. Similarly as in the case of deterministic formulas the upper bound
cannot be proved using the known results and formulas for the classes F,.

Theorem. Counsider the class Fy. Let % be any nonadaptive stochastic method
using n knots. Then the lower bound

1
“y >
Amax( @) 2 763

holds. Thus the (stochastic) error of nonadaptive stochastic methods can be only
slightly smaller than the worst case error of deterministic methods. Let Q¥ be any
adaptive stochastic method. Then the lower bound

V2 /2

w > T

holds. This lower bound gives the optimal order of convergence because we can con-

struct methods with

Amax(Q3) = O(n™%?).

ot



Remark. Our method (Q¥),en defined in the proof gives the optimal order n=5/?
of convergence on each class of the form {f : [0,1] — R | f convex, f(0)—2f(1/2)+
f(1) £ K} for K > 0. Hence, this order of convergence holds for each convex function
on [0,1].

L]

2. Proof
The lower bounds are a simple consequence from Fact 4 and (4). A more detailed
analysis would give these lower bounds also for the class F}. Therefore the interesting

thing is whether the upper bound n=5/2

can be proved for the larger class F». We
describe an adaptive Monte Carlo method with the optimal order of convergence. Let
m € N and m > 5.

First step. Define k., = 2(m — 1)7% and

ai = (i —1)2km =1 — amy1—i, i=1,..., V”; 1J
and compute f(a;) for each ¢. This step certainly is nonadaptive and deterministic.
Second step. In each interval [a;, a;4+1] we determine the area F; between the pointwise
largest and smallest convex function (in the given interval) that fits the data at the
points a;. For this purpose, let f; be the linear interpolant of f at a; and a;41, and let
s; be its gradient. On [a;, a;41], where 2 < i < m — 2, the pointwise largest function
is f;, while the smallest function is max {fi—l,fi—i—l}- Defining d; = a;+1 — a;, the
area F; is now given by the formula

di (si41 = si)(si —sim1) _ df
2 Si+1 — Si—1 8
d2

= gl {(ai-i-? - ai)dVd(aia ai+17ai—|—2)[f]

+ (CLH_l — ai_l)dvd(ai_l,ai, ai-l-l)[f]} =: Gz(f),

where dvd(z,y, z) denotes the divided difference with nodes z, y and z. The modifi-
cations on the boundary intervals are obvious and we obtain there,

F, =

d2 d2
Fy = 51(32 - 81) = 51(613 - Gl)dVd(al,GZaGS)[f] = Gl(f)7
as well as
7,4
Fm—l = 9 (am - am—Z)dVd(am—Zaam—lvam)[f] = Gm—l(f)

Let now G be the sum of all the functionals G;. Since G vanishes for all polynomials
of degree less than or equal to 1, its second Peano kernel exists. This Peano kernel is
a polygonal line with corners

AL + & 2 +d &2, +4d2,
(0,0), (az,%), (ai,lT), (am—1, 2 g 1), (1,0),




where ¢ = 3,4,...,m—2, and it therefore lies between the x-axis and the hat function
h on [0,1], given by
13
h =— (22— (22 -1 )

By an argument used in Forster and Petras (1990, proof of Theorem 1), we see
that if the second Peano kernel of any linear functional G lies completely below the
second Peano kernel of a linear functional L, then G[f] < L[f] holds for each convex

function f on [0,1]. The second Peano kernel of L = £3(m — 1)72dvd(0, 2,1) is A

8 720
and, by definition, each function f € F; satisfies dvd(0, §,1)[f] < 8. Thus, we obtain
that

= m_lF < 713
= LR

In the case -
S T F< F <

m—1 m—1

F

we divide the interval [a;, a;4+1] in k smaller intervals of the same length. In this way
we obtain r(f) < 2m — 3 of the smaller intervals ;. This step is adaptive but still
deterministic. We do not compute any function values in this step. Observe that the
respective area of each of the smaller intervals is bounded by (ml_ig’l)g

Third step. Now we take ¢} randomly according to the normalized Lebesgue measure
in Iy; the random variables t are independent. We also define t} € Iy by the condition
that (tx+1})/2 is the midpoint of I;. We finally take the adaptive Monte Carlo method

r(f)

(5) Q=3 I s 4 ft).

2
k=1

Observe that we use m + 2r(f) function values, so we can put n = m + 4m — 6.
We have to prove that this method has an error of the order O(n=3/2) or O(m=%/?),
respectively.

The random variable

A(Ik)

2

or(w) = (f(te) + f(t1))

is an unbiased estimator of fIk f(z)dx with

~ 13
<F < —
SRS =1y

dr(w) — ] flz)dx

for all w. Here F}, is the respective area in the smaller interval. In particular, we
obtain

o’ (1) < m—1)



for the variance of ¢;. The ¢ are independent and therefore we get

& 169
A?na.x(Q;:) S Z 0-2(¢k) S (27TL - 3) ° m = O(TTL_5).
k=1

This is just what we claimed.
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