On Deterministic Approximation

of DNF

Michael Luby* Boban Velickovi¢!
TR-93-009

March 1993

The best throw of the die is to throw the die away
Chinese fortune cookie

Abstract

We develop efficient deterministic algorithms for approximating the fraction of
truth assignments that satisfy a disjunctive normal form formula. Although the
algorithms themselves are deterministic, their analysis is probabilistic and uses the
notion of limited independence between random variables.

*International Computer Science Institute, 1947 Center Street, Berkeley, California 94704 and Computer
Science Department, UC Berkeley, research partially supported by NSF operating grant CCR-9016468 and
by grant No. 89-00312 from the United States-Israel Binational Science Foundation (BSF), Jerusalem,
Israel.

"Department of Mathematics, U.C. Berkeley, research partially supported by NSF, research partially
done while visiting the International Computer Science Institute

i

1 Introduction

Throughout this paper, let F' denote a formula in disjunctive normal form (DNF') on n
variables with m clauses of length at most ¢, and let Pr[F] denote the probability that a
random, independent and uniformly chosen truth assignment to the variables satisfies F.
We use nm throughout as the size of the description of F. The problem of computing
Pr[F] exactly is known to be #P-complete [18, Valiant]. On the other hand, for many
applications a good estimate of Pr[F] is all that is needed.

Let us say that Y is an e-approzimation of Pr[F]if |Y — Pr[F]| < €, and that Y is an
e-relative approzimation of Pr[F] if |Y — Pr[F]| < e Pr[F]. There is a trivial probabilistic
algorithm which on input F, € > 0, and § > 0, computes an e-approximation Y of Pr[F]
with probability at least 1 — §. The algorithm simply chooses N = O(In(1/6)/€*) random
truth assignments and sets Y to the fraction of these assignments that satisfy F. The
drawback of this algorithm is that it requires a source of truly random bits, which seems
hard to come by in practice. Even if there were such a source, there is still a chance that the
output of the algorithm has error greater than €, and there seems to be no way of checking
when this occurs. These difficulties motivate the goal of trying to find a deterministic
polynomial time algorithm for approximating Pr[F].

Towards this goal, [21, Yao] shows that if there are pseudo-random generators then any
problem in RP can be approximated in subexponential time, and [5, Boppana, Hirschfeld]
extends this result to show that any problem in BPP can be approximated in subexpo-
nential time. All other previous work on deterministic DNF approximation that does not
rely on any unproven conjectures is based on lower bounds on the computational power of
constant depth unbounded fan-in boolean circuits (the complexity class AC?) for comput-
ing parity (see [8, Furst Saxe Sipser], [2, Ajtai], [21, Yao], [9, Hastad]). A DNF formula
is the special case when the depth of the circuit is two. [3, Ajtai Wigderson| describe a
deterministic algorithm which given as input a constant depth circuit of size n and € > 0
runs in time 277 and produces an e-approximation of the probability that the output
of the circuit is 1 when the input is randomly chosen. They also provide a polynomial
time approximation algorithm for the DNF problem when the length of each clause is
bounded by a constant. [16, Nisan Wigderson] improve this by giving an algorithm that
has running time 2log“(n/€) where ¢ is a constant that depends on the depth, and for the
DNF problem c¢ is approximately 12. An observation of [14, Luby Velickovi¢ Wigderson|
improves their analysis to yield ¢ = 4 for the DNF problem.

[3, Ajtai Wigderson] describe a polynomial time approximation algorithm for the DNF
problem when { is a constant. On the other hand, for an e-approximation we may assume
without loss of generality that ¢ is at most log(m/e), since by discarding from F all longer
clauses we obtain a new formula G such that | Pr[F] — Pr[G]| < e.

This paper introduces several ideas which can be combined with known results to
obtain approximation algorithms for the DNF problem. The first idea is that of sunflower

reduction in a way similar to the way that [17, Razborov] uses it to prove exponential
lower bounds for the size of the smallest monotone circuit for finding the biggest clique
in a graph. Given a DNF formula F we look for a large collection of clauses which form
a sunflower, i.e., the intersection of any two distinct clauses in this collection is the same.
Then, we replace all the clauses in this collection by their common pairwise intersection,
thus obtaining another formula which has probability of being satisfied close to that of
F. We then repeat this procedure until no large sunflowers can be found, obtaining a
new formula F’. A theorem of Erdds-Rado [6] implies that at the end of this procedure
there are not too many clauses in F’. Because F”’ is so small, it turns out to be easier to
approximate Pr[F’], and because of the properties of the reduction this approximation is
also a good approximation of Pr[F]. This reduction can be combined with the algorithm
from [16, Nisan Wigderson] (using the improvement based on an observation from [14,
Luby Velickovi¢ Wigderson]) to produce a polynomial time e-approximation for Pr[F]
when ¢ = O(log'/®(nm)) and € is not too small.

The second approach relies on special constructions of small probability distributions.
Given a distribution D let Prp[F] denote the probability that F' is satisfied by a truth
assignment chosen according to D. Our goal is to find a distribution D with small sample
space such that Prp[F] is close to Pr[F]. Then, Prp[F] can be calculated by exhaustive
consideration of the points in the space. An easy counting argument shows that such a
distribution exists. Our results can be viewed as progress towards finding a polynomial
time construction of such a distribution.

Recall that a probability distribution D on the truth assignments is k-wise independent
if any variable is equally likely to be 0 or 1 independently of the value of any other k£ — 1
variables. We show that if ¢ is bounded by a constant and & = clog(1/¢) for some constant
¢ then for any probability distribution D which is k-wise independent Prp[F] is a good
approximation of Pr[F]. Our proof works if D is only k-wise almost independent in a
certain technical sense. This combined with the results of [15, Naor Naor| and [1, Alon
Goldreich Hastad Peralta], which produce such distributions with small sample spaces,
yields a polynomial time approximation algorithm for Pr[F] if ¢ is bounded by a constant,
a result previously obtained by [3, Ajtai Wigderson] by different means.

The main contribution of this paper consists of the coloring algorithm. A proper k-
coloring of F is a coloring of the variables of F using at most k colors such that no clause
of F' contains two variables of the same color. Forall i € {1,...,k}, let D; be a probability
distribution on the variables in color class ¢ such that there is [-wise independence between
the variables, and let D = X;c(1 . 1D be the product distribution defining a distribution
on all variables of . We prove that | Prp[F] — Pr[F]| < k/2!. This suggests the following
approximation algorithm for Pr[F]. Given a proper coloring of F, for all ¢ € {1,...,k}
we can explicitly construct sample space S; for distribution D; and let the sample space
for D be S = X;eq1,. 135 Given 5, we can compute Prp[F] exactly. This yields an
algorithm with running time dominated by X;c(y . 19| for approximating Pr[#]. The

running time of the algorithm depends in an exponential way on the value of k. In general
we may not be able to find a proper k-coloring for F where k is small. Instead, we find
a proper coloring for a subformula G of F' such that Pr[G] is close to Pr[F]. This general
approach is used to design deterministic algorithm that on input F and e produces an
e-relative approximation of Pr[F] in polynomial time for fixed € and ¢ = logl_o(l)(nm).
For fixed € and unrestricted clause length the running time the algorithm produces an
e-approximation in time polynomial in nm and log!* W (nm) For o fixed e this algorithm
is faster than the algorithm in [16, Nisan Wigderson], but, unlike [16, Nisan Wigderson],

the running time grows exponentially with 1/e.

The paper is organized as follows. In Section 2 we present a reduction procedure
implicit in [10, Karp Luby] which converts an absolute error approximation algorithm to
a relative error approximation algorithm. This is important since in applications one is
mainly interested in obtaining a relativized approximation of the probability that a formula
is satisfied and this is typically very small. In Section 3 we review some constructions of
small probability distributions with limited independence between the random variables
which will be used in subsequent sections. Section 4 contains a review of the algorithm
of [16, Nisan Wigderson] and then presents the sunflower reduction algorithm. These
two algorithms are then combined to obtain the algorithm described above. In Section 5
we develop a simple version of the coloring algorithm that illustrates the basic ideas
used in the more refined (and faster) algorithm presented in Section 6. In Section 7 we
generalize the coloring algorithm to the case when the variables are independently but not
necessarily uniformly distributed. In Section 8 we make some conclusions and pose some
open problems.

2 Absolute versus Relative Error

For practical reasons, it is sometimes important to obtain more than an absolute error
approximation. For example, the failure probability of some networks can be expressed
as Pr[F] and typically Pr[F] is very small. Thus, an estimate Y is more useful if YV is
an e-relative error approximation of Pr[F], i.e., if |Y — Pr[F]| < e Pr[F]. This raises the
general question of whether or not an eflicient approximation algorithm can be converted
into an efficient relative error approximation algorithm. In general this seems unlikely.
For example, in terms of absolute error there is no difference between the DNF problem
and the CNF problem, in the sense that an approximation algorithm for one can easily
be changed to work for the other. On the other hand, there is no efficient relative error
approximation algorithm for the CNF problem that is deterministic unless P = NP or
that is probabilistic unless RP = NP.

[10, Karp Luby], [11, Karp Luby Madras] provide probabilistic algorithms which, given
a DNF formula F, € > 0 and § > 0, compute Y that is an e-relative error approximation of
Pr[F] with probability at least 1 — . The running time of these algorithms is polynomial

in nm, 1/e and log(1/6). As described below, their work can be used to reduce the
problem of finding an e-relative error approximation of Pr[F] to the problem of finding an
€/m-approximation of Pr[F].

Given a deterministic approximation algorithm A we define a deterministic relative
error approximation algorithm R as follows. On input F and € > 0, R first derives DNF
formulas Fi,..., F,,, where F; is the formula obtained by setting all the literals in C; to
true and taking the disjunction of the first ¢ — 1 original clauses reduced according to this
partial truth assignment. For each ¢ € {1,...,m}, R makes a call to the algorithm A with
input F; and €/m, and A returns Y;. R then outputs

Y= Y PrC(1-Y)).

te{l,...,m}

Y; is within €/m of the conditional probability that at least one of the first ¢ — 1 clauses is
true given that C; is true, and thus Pr[C;](1 — Y;) is within € Pr[C;]/m of the probability
that C; is the first clause to be satisfied. If, for each ¢, Y; contained no error, then Y would
be equal to Pr[F]. Hence,

Y — PrfF]| <

: Z Pr[Cy].

€
m
te{l,...,m}

But, 31, my Pr[Ci]/ Pr[F] < m and thus Y is within € Pr[F] of Pr[F], as desired.

3 Constructions of Small Probability Spaces

Let D be a probability distribution. We say that P-valued random variables

{z1,...,2,}

over D are k-wise e-dependent (see [19, Vazirani|, [15, Naor Naor]) provided for any subset

I of {1,...,n} of size at most k£ and for every assignment o : [— P,
| P\ (2 = 0(0)] -] Brles = o)) < e
el el

If ¢ = 0 then the random variables are k-wise independent.

We now review some known constructions of probability distributions with the above
properties with small sample spaces. We start with multi-valued variables that are k-wise
independent and uniformly distributed. Suppose [and k are integers and let G F'[2!] be the
field with 2 elements. We identify elements of GF[2] with I-bit strings. Let the sample
space be the set of all polynomials over G F[2'] of degree at most k — 1. We define random
variables {z1,..., 25} as follows. Let z; be p(¢) where p is a uniformly chosen polynomial
from the sample space.

Lemma 1 {z1,...,25} as described above are k-wise independent and uniformly dis-
tributed over GF[2". The size of the sample space is 2¥'. The sample space can be con-
structed in time polynomial in its size.

We can modify this construction to obtain {0, 1}-valued random variables

{ylv .- '7y121}
as follows. If ¢ = ul 4+ b, where 0 < u < 20— Tland 1<b<1let y; be the b-th bit of z,.

Lemma 2 {y1,...,y5} as described above are k-wise independent and uniformly dis-
tributed over {0,1}. The size of the sample space is 2¥'. The sample space can be con-
structed in lime polynomial in its size.

Given values v = {v1,...,vy}, where v; € {0,...,2'}, one can use the same sample
space to define a distribution on {0, 1}-valued random variables {z1,...,25} as z; = 1 if
x; < v; and 0 otherwise.

Lemma 3 {z,...,25} as described above are k-wise independent and non-uniformly dis-
tributed as follows: Pr(z; = 1] = v;/2!. The size of the sample space is 2%'. The sample
space can be constructed in time polynomial in its size.

The idea of relaxing the requirement from perfect k-wise independent to approximately
k-wise independent distributions and the initial work on explicit constructions of small
sample spaces that meet these relaxed requirements is due to [15, Naor Naor]. If {0, 1}-
valued random variables are uniformly distributed we say that they are k-wise e-biased if
for any subset I of {1,...,n} of size at most k&,

%I’[@iepfi = 0] — 1/2| <e

[15, Naor Naor| present, for given n and €, an explicit construction of a probability distri-
bution D on {0,1}-valued random variables {z1,...,,} which are n-wise e-biased where
the size of the sample space of D is polynomial in n/e. They combine this with the
construction for k-wise independent {0, 1}-valued uniformly distributed random variables
described above, yielding a probability distribution on {0,1}-valued random variables
{z1,...,2,} which are k-wise e-biased, and the size of the sample space is polynomial in
log(n), k and 1/e. Notice that if a distribution is k-wise e-biased then it is k-wise €2*
dependent. This immediately yields the following lemma.

Lemma 4 There is an explicit construction of a sample space where random variables
{z1,...,2,} are k-wise e-dependent {0, 1}-valued uniformly distributed. The size of the
sample space is polynomial in log(n), 2% and 1/e. The sample space can be constructed in
time polynomial in its size.

Simpler constructions have subsequently been found by [1, Alon Goldreich Hastad
Peralta]. We review one of their constructions, which is based on a result of [20, Weil]
on character sums over finite fields. Suppose n is a positive integer and let p > n be
a prime. Let D be the uniform distribution on Z,. Let (%) denote the Jacobi symbol.

Given a random element = € Z,, define the random variables {z1,...,2,}, by z; = (IT?H)
ifze+e<pand z; = <“’+p++1) if x +1¢ > p. Then, z; has equal probability of being 1 or -1.
Mapping -1 to 1 and 1 to 0, we obtain {0,1}-valued random variables which are e-biased
for € = n/./p.

The following lemma, due to [7, Even Goldreich Luby Nisan Velickovi¢], generalizes
this to non-uniformly distributed random variables.

Lemma 5 Given values {vy,...,v,}, where v; € [0, 1], there is an explicit construction of
a sample space where {0,1}-valued random variables {x1,...,2,} are k-wise e-dependent
and non-uniformly distributed as follows: | Pr[z; = 1] — v;| < €. The size of the sample
space is polynomial in log(n), 2% and 1/e. The sample space can be constructed in time
polynomial in its size.

4 Sunflower Reduction Algorithm

If we want to approximate Pr[F] to within an additive error €, we can start by discarding
all clauses of size greater than log(2m/e€) and the probability of the resulting formula being
satisfied is within €/2 of Pr[F]. We now describe a slight modification of the algorithm
from [16, Nisan Wigderson] due to [14, Luby Velickovi¢ Wigderson]. The algorithm takes
as input a DNF formula F with m clauses on n variables and ¢ > 0 and outputs an
e-approximation of Pr[F]. By the above remark we may assume that all the clauses in
F have length at most log(m/€). Set | = log(2(nm)/€), 1 = ¢11%, and ¢ = c3l* for some
constants ¢; and ¢y and, using Lemma 1 from Section 3, find a probability distribution D
with sample space of size (nr)?' and nr random variables which are 2/-wise independent
and uniformly distributed over {1,...,¢}. Break the random variables into n blocks with
r variables each and denote the variables in the i-th block by {y!,...,y.}. Let & be the
product of D and the uniform distribution on {0,1}-strings of length ¢. Define n random
variables on & as follows. Given a random string ¢ of length ¢ and a setting of the random
variables y;, for 1 <t <mand 1< j<r the ¢-th random variable is defined by:

z; = EB?ZU(?/;')-

By modifying the original analysis of [16, Nisan Wigderson] it is shown in [14, Luby
Velickovi¢ Wigderson] that Prg[F] is within € of Pr[F]. The size of the sample space of £
is 200g" ((nm)/c)) Computing the average over all sample points of & we obtain the desired
approximation.

We now show that the above algorithm can be transformed to a polynomial time e-
approximation algorithm for a DNF formula F whose clauses are not too long. To achieve
this we first describe a reduction algorithm which transforms F to a DNF formula G such
that Pr[G] is close to Pr[F] and such that G has substantially fewer clauses than F. The
idea of the reduction algorithms is to repeatedly find large “sunflowers” of clauses and to
discard all but their common center until no more large “sunflowers” can be found.

A family of sets S is called a sunflower if there is a set C', called the center, such that
for every A,B € Sif A# B then AN B = C. The following theorem was proved by [6,
Erdés Rado]. We reproduce the proof for completeness and future reference.

Theorem 1 Lett and m be positive inlegers, and let F be a family of sels such thatl every
element of F has size al most t and |F| > t!(m — 1)'. Then, F contains a sunflower of
size m.

PROOF: The statement is proved by induction on {. For ¢t = 1 it is trivial. For the
inductive step, given F let § be a maximal disjoint subfamily of F. If § has size at least
m we are done. Otherwise, the union of § has size at most (m — 1){ and intersects every
member of F. By the pigeon hole principle there is an 7 € |JS such that the family
G ={F\{i}:i€ F € F} has size bigger than (¢ — 1)!(m — 1)!=1. Since every member
of G has size at most { — 1, by the inductive hypothesis G contains a sunflower § of size
at least m with center S. Then, the family {F U {i} : F € S8} is a sunflower with center
SuU{i}. |

It is clear that the above argument produces an efficient algorithm for finding the
required sunflower.

Theorem 2 There is an algorithm which given a DNF formula F with m clauses of size
at most t, and € > 0 produces another DNF formula G with at most t![2"In(m/€)]* clauses
such that | Pr[G] — Pr[F]| < €. In addition, the clauses of G also have size at most t. The
running time of the algorithm is polynomial in nm, and 1/e.

PROOF: For a clause C' let the domain of C' be the set of variables such that either they
or their negation appear in C'. The algorithm finds a collection § of clauses of F of size
[2!1n(m/€)] such that their domains form a sunflower with center S. If |S| = ¢ then it
finds a clause C' on the variables in 5 such that the set R of clauses in § which extend C'
has size at least [2!~%In(m/€)]. Then, in F), it replaces all clauses in R by a single clause
C', thus obtaining a new formula F;. Note that, given that C' is satisfied, the probability
that none of the clauses in R is satisfied is at most (1 — 2¢=1)27' (/) < ¢/m. Moreover,
if a clause in R is satisfied then so is C'. Thus, | Pr[F}] — Pr[F]]| < ¢/m. The algorithm
then repeats this procedure until no sufficiently large sunflowers can be found. Since there

are m clauses to start with this can happen at most m times. Thus, if the last formula is
Fy then | Pr[#]] — Pr[F]| < e. The algorithm then returns G = F. |

This algorithm together with the algorithm from [16, Nisan Wigderson] described above
can be combined to give the following.

Theorem 3 There is an algorithm which on input a DNF formula F on n variables with
m clauses each of length at most t = O(log'/®(nm)) and an error parameter € such that

1/e = 90 (log!/* (rm)) produces an e-approzimation of Pr[F] in time polynomial in nm.

PROOF: First apply the sunflower reduction algorithm to F' with error parameter €/2
to obtain a formula G such that | Pr[G] — Pr[F]| < €/2 and such that the the number of
clauses in G is 1!]2! In(m/€)]* = 2°(°) each of length at most £. Next apply the algorithm
described above to produce an €/2-approximation of Pr[G] and this is an e-approximation
of Pr[F]. Since the total number of variables mentioned in G is at most [= 20(#) and
since the algorithm described above runs in time 2log* (I/ ©), the running time is as claimed.

One might think that the above algorithm can be combined with the reduction from
a relative to absolute error approximation described in Section 2 to yield an approxima-
tion algorithm with relative error at most € that under the same conditions as stated in
Theorem 3 runs in time polynomial in nm. However, in that reduction, to achieve a final
relative error of €, we needed to achieve an absolute error of €¢/m in each of the m subprob-
lems. For this error absolute error value, each subproblem takes time at least 2log* (m/€) {o
solve, and this is not polynomial in nm even for constant e.

5 The Simple Coloring Algorithm

We now develop a simple approximation algorithm for the DNF problem. Central to this
development is the notion of a proper coloring of a DNF formula. A k-coloring of a set X
is a function f: X — {1,...,k}. Given a subset A of X we say that f colors A properly if
f restricted to A is 1-1. Suppose X = {z1,...,2,} is a set of n variables and G is a DNF
formula on X with m clauses. We say f is a proper k-coloring of GG if the domain of every
clause of GG is colored properly.

Suppose we have a proper k-coloring of a formula G. Let ¢ be one of the colors and let
H be a formula in the variables with color ¢« obtained by fixing a truth assignment to all
variables with color different than ¢. The main point is that each clause of H is of length
one. We first show that if D; is a probability distribution on the variables colored ¢ with
enough independence between the variables then the probability that H is satisfied with
respect to D; is very close to the probability that H is satisfied with respect to choosing
the assignments to the variables colored ¢ randomly and completely independently. We
use this to show that Prp[G] is approximately equal to Pr[G], where D is the product
over each color class ¢ of D;. This gives us a method for approximating Pr[G]: enumerate
all the sample points in D to compute Prp[G]. Since the size of D depends exponentially

on the number of colors used, it is crucial to find a proper k-coloring of G where k is as
small as possible. Given any DNF formula F, we show how to construct a subformula
G of F together with a proper k-coloring of G such that & is small and such that Pr[G]
is approximately Pr[F]. Then, Prp[G] is a good approximation of Pr[F], and we can
calculate exactly Prp[G] by enumerating all sample points in the small distribution D.

5.1 All clauses of length one

Lemma 6 Let F' be a DNF formula on {0, 1}-valued variables {z1,...,z,} where each
clause is a single literal. Let D be any probability distribution where the variables are
k-wise 6-dependent and uniformly distributed. Then,

| Pa[F] = Pr[F]| < 27k 4 6.

Furthermore,

| Paf#] — Pr[F]] < 2(27% + &) Pr[F).

PROOF: If Fis the empty formula then Pr[F] = Prp[F] = 0. If F' contains both a literal
and its negation among its clauses then Prp[F] = Pr[F] = 1. Suppose neither of these
cases holds and that the number of literals in F'is m > 1. If m < k then, by the properties
of D, | Prp[F] — Pr[F]| < §. On the other hand, if m > k then 1 > Pr[F] > 1 — 27% and,
by the properties of D, 1 > Prp[F] > 1 — 27% — §. Thus, | Pr[F] — Prp[F]| < 27F 4+ 6.
Since Pr[F] =1 — 27" > 1/2 it also follows that | Prp[F] — Pr[F]| < 2(27% 4 6) Pr[F]. B

5.2 The coloring lemma

Let f be a k-coloring of a DNF formula G on X, and let X; be the set of variables colored
1. Let D; be a probability distribution on the variables in X; and define

& = max{| Pr[G(z)] - Pr{G(2)][},

where the maximum is over all truth assignments z to variables in X \ X; and where G(2)
is the DNF formula on X; obtained by reducing GG according to z. Let

D =Dy X---XDy.

Then, D is a probability distribution on the set of all truth assignments on X. The
following lemma is key to our approximation algorithm.

Lemma 7 |Prp[G] - Pr[G]| < Xicpn, k) -

9

PROOF: Let U; be the uniform distribution on the truth assignments to the variables
in X;, and let V; = Dy X -+ X Dy X U; X -+ X Uy, for i € {1,...,k+ 1}. Then,
Pry,[G] = Pr[G] and Pry, [G] = Prp[G]. Thus, to establish the lemma it suffices to
prove, for i € {1,...,k},

| Br{G] = Pr(c] < e (1)

Let z be any assignments to the variables in X \ X; and let G(z) be the DNF formula on
X; obtained by reducing G according to z. By definition,

| BHG(=)) - PHGG)) < e

To prove (1), let W; = Dy X -+ X D1 X Uiy1 X -+ X U W; is a probability distri-
bution on the set of all truth assignments to the variables in X \ X;. Then, Pry [G] =

E.ew, [Pry,[G(2)]] and PryiH[G] = E.ew,[Prp,[G(2)]]. Hence, | Pry,[G] — Prvi+1[G]| is at
most

Beem[| PHG()] - BHG()]] < .
This finishes the proof of (1) and the lemma. |

5.3 Finding proper colorings

Lemma 7 can be used to approximate Pr[(G] given a proper k-coloring of G, for a small
value of k. We can use one of the probability spaces described in Section 3 for each D;
and then enumerate all sample points in the resulting product probability distribution D
to calculate Prp[G]. Lemma 7 shows that Prp[G] is a good approximation of Pr[G].

In this subsection we discuss how to find proper k-colorings of a given DNF formula F
for small values of k. There is an inherent problem with this, because even if we consider
coloring only the class of DNF formula with clauses of length two then the resulting
coloring problem is the same as the coloring problem for graphs, and thus the smallest
value of k possible can be linear in the number of variables, e.g., a proper coloring of the
complete graph requires a distinct color for each vertex. Let ¢ be the length of the longest
clause in F. Let § > 0 be an error parameter and let & be ¢2/¢ rounded up to the nearest
power of two. Instead, we construct a small set C of k-colorings of F’ such that each clause
of F'is properly colored for a 1 — ¢ fraction of the colorings in C. Let Gy be the DNF
formula which contains exactly the clauses of F' colored properly with respect to f € C.
We show that Efce[Pr[Gy]] > (1 — 6) Pr[F]. From this the algorithm follows: For each
f € C, compute Prp[Gy] and then output the maximum value of this quantity.

The intuition for this choice of k is that for each particular clause, in a randomly
chosen k-coloring of the variables the clause is properly colored with probability at least

1—4.

10

Lemma 8 If f is a randomly chosen k-coloring of the variables where the choices of the
colors for variables is pairwise independent, then the probability any particular clause is
properly colored is at least 1 — 6.

PROOF: The probability that a particular pair of variables receive the same color is
1/k < 26/t%. Since there are at most (é) pairs of variables in the clause, the probability
that some pair receives the same color is at most §. |

We say a set of colorings C is é-good if each particular clause is properly colored in at
least a 1 —§ fraction of the colorings. By Lemma 8 and using Lemma 1 given in Section 3,
we can construct a §-good set of colorings of size O(max{n,t/(26)}?%).

We now present a different way of obtaining in polynomial time a set of size s =
[log(m)/8] of k-colorings which is 58-good. We use the algorithm described in the following
lemma as a subroutine in our overall algorithm to achieve this goal.

Lemma 9 There is a polynomial lime algorithm which given a positive weight w; for
each clause C;, produces a k-coloring f such that the sum of the weights of clauses colored

properly by [is al least (1 = 6)3 icq1,. my W;-

PROOF: Consider a greedy algorithm which colors the variables consecutively in the
following way. At stage ¢ the variable z; is colored in such a way that the total weight
z; of the clauses that become colored improperly at stage ¢ is the least possible. If u; is
the total weight of the clauses that contain z; then z; is at most w;t/k. Let z be the total
weight of the clauses that are colored improperly. Then:

z = E z < —- E w; < — - Z w; <6 E wj.

1e{1,...,n} te{1,...,n} Jje{1,...m} Jje{1,...,m}

t2

T o~

Lemma 10 Let 6 < 1/4. There is an algorithm that on input a DNF formula F produces
a set of 56-good k-colorings of size s.

PROOF: The overall algorithm is obtained as follows. Initially all the clause weights are
set to 1/m, and then we apply the algorithm described in Lemma 9 repeatedly s times
to produce the set of k-colorings. After each call the weight of all the clauses not colored
properly at that stage is multiplied by 2 and the weight of each clause colored properly
is multiplied by (1 — 28)/(1 — §). Let a; be the sum of the weights of the clauses after ¢
k-colorings have been produced. By Lemma 9 and the way the weights are adjusted after
each coloring is produced,
1—26

11

Thus, for all ¢, a; < ag = 1. Note that because § < 1/2 all clause weights remain positive.
Thus, at any point in time, the weight of a particular clause is at most 1. If a clause
is colored properly by [of the colorings and colored improperly by the remaining s — [
colorings then the weight of the clause at the termination of the algorithm is at least

1y <1 - 26)5

m 1-6/
Since this quantity is at most 1, it follows that I < slog((1—6)/(1—26))+log(m). Using
the fact that In(z) < z — 1 for all positive z, it follows that [< slog(e)d/(1—26)+ log(m)

and, since log(e) < 2, and since § < 1/4 implies that 1/(1 —2¢) < 2, it follows that this is
at most 465 +log(m). Because (465 +1log(m))/s < 58, the set of k-colorings is 56-good. M

Let C be a family of é-good colorings. Given f € C let Gy be the DNF formula
obtained by taking the disjunction of the clauses in F which are properly colored by f.
Then, Pr[Gy] is at most Pr[F]. We shall need the following.

Lemma 11 Egcc[Pr[Gy]] > (1 - 6) Pr[F].

PROOF: Let 7 be the set of all truth assignments which satisfy F. Then, Escc[Pr[Gy]]
is equal to)~ 7 Pr[r]Efec[T satisfies Gf] which is at least Pr[F](1 — §). |

5.4 The algorithm

Theorem 4 There is a deterministic algorithm which on input a DNF formula F on n
variables with m clauses, and € > 0, § > 0 produces an estimate Y such that

(1=0)Pr[F]—e<Y < Pr[F]+e

The running time of the algorithm is polynomial in nm and

(10g(nm))10g2(m/6)/6
de '

PROOF: Let ¢t = [log(2m/e)], k = [2t*/6], p = £ and | = [log(1/p)]. Let X be the set

of variables. Let GG be the subformula of F” obtained by taking the disjunction of all clauses
in F' of length at most ¢. Then, | Pr[G]—Pr[F]| < €/2. Let C be a §-good set of k-colorings
for G constructed as described just after Lemma 8. If f € C then Pr[Gy] < Pr[G] < Pr[F],
and Lemma 11 guarantees that there is an f in C such that

P1[G;] > (1 — §) P1[G] > (1 — &) Pr[F] — ¢/2.

The algorithm proceeds as follows. Given f in C let XZ-f be the set of variables in X which
are colored 7 by f. Let sz be an [-wise p-dependent probability distribution on the truth

12

assignments to the variables in Xif as described in Lemma 4 of Section 3 which has size
s which is polynomial in 2!, 1/p and log(n). Let D = [Leqi,.5 sz be the probability
distribution on total truth assignments with sample space size s*. Lemma 6 and Lemma 7
together imply that

|P1{G] ~ PG < K27 4) < /2.

Thus, the algorithm simply queries each sample point of D/ and computes Y; as the
fraction of sample points which satisfy Gy. To compute the estimate Y the algorithm
repeats this procedure for each f € C and outputs Y = max{Ys: f € C}.

The total running time of the algorithm, which includes constructing the sample space
and computing the fraction of truth assignments that satisfy the formula, is as claimed in
the statement of the theorem. |

For a fixed value of §, the running time is polynomial in nm and

bl

<log(nm)) log®(m/e)

€

and for fixed values for both € and § the running time is polynomial in nm and

log(nm)log2 (m),

We now present a relative error version of Lemma 7. For this presentation, we assume
the notation established just before the statement of Lemma 7.

Lemma 12 Pr{G|([Ties, (1 - 26) < ProlG] < Pr{@)(TTieqr,. (14 261)-

PROOF: We retain the notation established in the proof of Lemma 7. Fix z € W,
and consider the DNF formula G(z) with all clauses of length 1. Similar to the proof
of Lemma 6, if G(z) is the empty formula or G(z) is identically true then Pry,[G(2)] =
Prp,[G(z)]. Otherwise, G(z) contains m > 1 literals, and thus Pr;,[G(2)] > 1/2. This,
together with | Pry, [G(2)] — Prp,[G(2)]] < ¢ implies that

PG()](1 - 26) < Pr{G()] < PrG()](1 4 261).
This in turn implies that

l;r[G](l —2¢) < PriG] < l;r[G](l + 2¢;).

Vit1

Multiplying together the k inequalities yields the result. |

As the following theorem shows, Lemma 12 can be used to obtain a good relative
estimate of Pr[F] when the maximum clause length ¢ in F' is not too long.

13

Theorem 5 There is a deterministic algorithm which on input DNF formula F with
mazimum clause length t and 8 > 0 produces an estimate Y such thal

(1- B)PI[F] <Y < (14) Pr[F].

The running time of the algorithm is polynomial in nm and

(max{t,ﬁlogm)}) o

PROOF: The proof is analogous to the proof of Theorem 4. The differences are that
we omit the first step of that algorithm that throws away clauses that are too long, and
we use Lemma 12 in place of Lemma 7 in the analysis. To achieve total relative error
B, we set € = 6 = /3 in the proof of Theorem 4. The settings of the parameters are
k = [6t*/3] (this ensures that § = 3/3), p = 1% and [= [log(1/p)] (this ensures that
L+e=(1+227"+p)" <1+ B/3). |

The following theorem is a corollary of Theorem 5. This theorem is better than The-
orem 3 because the maximum clause length allowed is larger and because the algorithm
produces a constant relative error approximation as opposed to just an absolute error
approximation.

Theorem 6 There is a deterministic algorithm which on input DNF formula F with

mazximum clause length
i 1/2
=0 (log(nm))
loglog(nm)

and a constant § > 0 produces an estimate Y such thal
(1-B)PHF] <Y < (14 B)PrF).

The running time of the algorithm is polynomial in nm.

6 The General Coloring Algorithm

Based on the ideas developed in the previous section, we develop a more efficient algorithm
for the DNF problem. The major conceptual difference between the more efficient algo-
rithm and the algorithm already introduced is a liberalized notion of a proper coloring.
Based on this, we introduce generalizations of Lemma 6 and Lemma 8. We put together
these lemmas analogously to what we did previously, where Lemma 7 is the ingredient
used to glue them together.

A (k, ¢)-coloring for a DNF formula G is a k-coloring of the variables such that no clause
in G contains more than ¢ variables of the same color. Suppose we have a (k, ¢)-coloring

14

of a formula G. Let ¢ be one of the colors and let H be a formula in the variables with
color ¢ obtained from G by fixing a truth assignment to all variables with color different
than ¢. The main point is that each clause of H is of length at most ¢. We first show that
if D; is a probability distribution on the variables colored ¢« with enough independence
between the variables then the probability that H is satisfied with respect to D; is very
close to the probability that H is satisfied with respect to choosing the assignments to the
variables colored ¢ randomly and completely independently. We apply Lemma 7 to show
that Prp[G] is approximately equal to Pr[G], where D is the product over each color class
i of D;. This gives us a method for approximating Pr[G]: enumerate all the sample points
in D to compute Prp[G]. Since the size of D depends exponentially on &, and since the size
of the sample space of D; depends exponentially on ¢, it is crucial to choose the values of &
and ¢ carefully so as to minimize the total size of the final sample space. Given any DNF
formula F', we show how to construct a subformula G of F' together with a (k, ¢)-coloring
of G such that Pr[G] is approximately Pr[F]. Then, Prp[G] is a good approximation of
Pr[F], and we can calculate exactly Prp[G] by enumerating all sample points in the small
distribution D.

We first derive an approximation algorithm for DNF formulas in the case that the
maximum length of each clause is small. [3, Ajtai Wigderson| show that when the max-
imum clause length is constant there is an e-approximation algorithm with running time
polynomial in nm and 1/e. We present a version of their algorithm which uses distribu-
tions with limited amount of independence. A similar analysis was found independently
by Noam Nisan.

Theorem 7 Let F be a DNF formula with clauses of length at most t. Let D be an
l-wise 6-dependent distribution on {0, 1}-valued uniformly distributed random variables
{z1,...,2,}. Then,

| Pr{F] = Pr{F]| < e~ mt 4 216,

Also,
1
| Pr[F] = PrlF]| < 2t (e" w2 4+ 2'6) Pr[F).

PROOF: We assign to each node o of the full binary tree {0,1}< a literal y,. If ¢ is in
{0,1}=! let 2z, be the partial assignment to the variables appearing on the path from the
root to o such that if ¢ < |o| then y,|; is made true by z, iff o(¢) = 1. The assignment
is done recursively as follows. Suppose o € {0,1}<'is a node which has not yet been
assigned a literal but all of its ancestors have been assigned a literal. If ¢ is the root or
the last bit of ¢ is 0 and if there is a clause C' which is not made false by z,, then set
Yo = G0y Yoo1 = G1,--.,Y,~1k—1 = Ak—1, Where ag,...,ap_1 are the literals in €' which do
not appear along the path to o and where 17 is the string of j 1’s. If no such clause exists,
then z, falsifies all clauses in F, in which case the assignment of literals to o and all of its
descendants is made arbitrarily, consistent with the rule that no path contains two literals

15

associated with the same variable. Similarly, if the last bit of ¢ is 1, then the assignment
to o is made arbitrarily subject to the rule that no path contains two literals associated
with the same variable.

For o € {0,1}' let S, be the set of all total assignments which extend z,. Then, the
S, for o € {0,1}!, form a partition of the set of all total truth assignments and each
set has size 27!, We label ¢ TRUE if all assignments in S, satisfy F, FALSE if all the
assignments on S, do not satisfy F, and % otherwise. Let Ay be the set of all o € {0,1}!
labeled TRUE and let A; be the set of all o € {0,1}' labeled either TRUE or . For
i €40,1} let T; = U{S, : 0 € A;}. Then, every assignment in T satisfies F, and every
assignment that satisfies F' is in 7%, and thus Pr[Tp] < Pr[#] < Pr[T}]. Note that if a
string o € {0,1} contains at least ¢ consecutive 1’s then it cannot be labeled *. The

i
percentage of strings that do not contain ¢ consecutive 1’s is at most (1 —1/21)/ < e” 7,
i
Thus, Pr[T}] — Pr[1p] < e %f.

Let Prp[S,] denote the probability that a random assignment chosen according to D
is in S,. Then, by the [-wise é-dependence of D, | Prp[S,] — 1/2!| < ¢, for o € {0,1}\. On
the other hand, for 7 € {0,1}, | Prp[T;] — Pr[T}]| is equal to

_ !
Y BrS, = 3 Prls,)l < ola < o2
o€A; o€EA;

Clearly, Prp[Tp] < Prp[F] < Prp[Ti]. From this, we can conclude that
| %I’[F] — Pr[F]] < max{Pr[T}]— %r[TO], %I’[Tl] — Pr[To]}

< —] .
< Pr[Ty] — Pr[Ty) +ig3,)1(}|Pr[TZ] %I’[TZ”

< e_w% + §2¢
as desired. Because Pr[F] > 27!, we can also conclude that
| Pr[F] - P{F]| < 2 (e” w7 + 26) Pr[F).

The following corollary is due to [3, Ajtai Wigderson]. We prove it using a different
algorithm.

Corollary 13 Let t be a fixed constant. There is a deterministic algorithm which given
a DNF formula F on n variables with clauses of length at most t, and € > 0, produces an
e-relative approzimation of Pr[F] in time polynomial in nm and 1/e.

PROOF: We first show that there is an algorithm which produces an e-approximation

with the claimed running time, and then make the parameter adjustments to produce an -
relative approximation. Let [= [12¢log(2/¢)] and let § = ¢2~(+1), By Lemma 4 described

16

in Section 3, there is a probability distribution D on the set of truth assignments such
that the random variables {zy,...,2,} are [-wise §-dependent and whose sample space
has size polynomial in log(n), 2! and 1/6. Thus, the sample space is of size polynomial
in n and 1/e. The algorithm then simply queries all the assignments in the sample space
and outputs the ratio of the assignments satisfying #. By Theorem 7 this ratio is within
€ of Pr[F]. The total running time is polynomial in nm and 1/e. To obtain the e-relative
approximation, note that if F’ contains at least one clause then Pr[F] is at least 27, Thus,
if we increase | by a multiplicative factor of ¢t and decrease ¢ by a multiplicative factor of
27! the approximation has relative error at most . |

Theorem 8 There is a deterministic algorithm which given a DNF formula F on n vari-
ables with m clauses and € > 0 outputs an estimate Y such that |Pr[F] - Y| <e€. Fora

fized € the running time of the algorithm is (mlog(n))**P(O(Vloglog(m))

PROOF: The algorithm is very similar to the one described in the proof of Theorem 4.
We only indicate the differences. As described in the introduction to this section we shall
use the concept of a (k, ¢)-coloring of a DNF formula.

Let F be a given DNF formula on n variables and m clauses, and suppose we are
given € > 0. We may assume that € < 1/4. Let X denote the set of variables of F. Set
t = [log(#2)] and let G be the formula obtained from F by deleting the clauses of length

at least . Then | Pr[G] — Pr[F]| < 5. We shall in fact produce an §-approximation to
Pr[G].

Let ¢ = [og(t)w and let k = [12°T1/€]. Consider now a randomly chosen k-coloring
[of the variables of G where each color is chosen equally likely and the choice of colors
is c-wise independent. For any given clause of G the probability that there are ¢ variables
from this clause which receive the same color is at most

t) 1 e o
cl kel < fe—1 < 2 :

For sufficiently large ¢ this quantity is less than 7. Let us say that f c-properly colors a
clause if there are no ¢ variables appearing in this clause which receive the same color.
As in Section 5.3 we produce an efficiently constructible set C of k-colorings of size O(n°)
such that every clause of G is ¢-properly colored by at least 1 — ¢/4 fraction of members
of C. For f € C let GGy denote the disjunction of the clauses of G which are c-properly

colored by f. As before, using Lemma 11 we can show that there is an f in C such that

Pr[Gy] > (1 — €/4) Pr[G] — €/2 > Pr[F] — 3¢/4.

Let = [log(2£)]c2¢ and let § = €(8k2')~. Given a coloring f € C let XZf be the set of
variables which are colored 7 by f. Let sz be an [-wise §-dependent probability distribution

17

on the truth assignments to the variables in Xif as constructed in Lemma 4. The size of
the sample space of sz is polynomial in log(n), 2! and 1/6. For a truth assignment z to
the variables in X \ Xif let G¢(z) be the formula obtained by reducing G5 according to z.
Then the clauses of Gf(z) have size at most ¢. Therefore by Theorem 7 for every such z
| Pr{G(2)] - PrlG(z)]| < e737 4218 < =
D!

7

Let now Df = Xi€{17...7k}D{. Then by Lemma 7 we have that |Pr{)[Gf] — Pr[Gy]| < €/4.
The size of the sample space of D is (%)0(’4)_ For a constant e this is (m log(n))*P(O(Vloglog(m)))

The approximation algorithm is now the following. For each f € C the algorithm
computes Yy as the fraction of sample points of D7 which satisfy G y. The algorithm then
outputs Y = max{Yy : f € C}. It follows then that | Pr[F] — Y| < e. The running time of
the algorithm is proportional to the sum of the sizes of the D/ and is therefore as claimed
in the statement of the theorem. |

Note that this argument yields, for any constant € > 0, a deterministic polynomial time
algorithm for finding an e-relative approximation to Pr[F] for DNF formulas F’ which have
clauses of length at most

log(mn)

= log' M (mn).
exp (O (og log(mn))) ¢ (o)

7 General Distributions

In this section we consider the case when we want to approximate the probability that a
DNF F formula is satisfied when the distribution on the input variables are not necessarily
uniformly distributed. By considering the k-th term of the inclusion-exclusion formula, [7,
Even Goldreich Luby Nisan Velickovic] proved the following generalization of Lemma 6.

Lemma 14 Let F' be a DNF formula on {0, 1}-valued variables {z1,...,x,} where each
clause is a single literal. Lelt 'V be a probabilily distribution such that the random variables
are completely independent but not necessarily uniformly distributed and let D be k-wise
independent distribution such that for each i, Pry[z; = 1] = Prp[z; = 1]. Then, | Prp[F]—
Pry[F]| < 27%%) . Even stronger, | Prp[F] — Pry[F]| < 27%%) pry[F].

Consider the general DNF approximation problem when probabilities pq,...,p, are
specified for the variables z1,...,z, along with F as part of the input to the problem.
The problem is to approximate Pr[F], where Pr[F] is the probability that F' is satisfied
by a random independently chosen setting of the variables, where Pr[z; = 1] = p;.

18

An interesting version of the problem with respect to applications is when, for each 1,
p; is not too large, i.e., p; < %, and F is monotone, i.e., no variable appears negated in
any clause. A typical example is when the variables correspond to individual components
of a complex system, a variable taking on the value 1 indicates that the corresponding
component fails, clauses correspond to minimal groups of components whose collective
failure makes the entire system fail and thus truth assignments that satisfy the DNF
formula correspond to failure states of the system (see e.g., [11, Karp Luby Madras]).
Usually, the individual components are fairly reliable, in which case the failure probability

p; of component ¢ is small.

For this version of the problem, Lemma 14 can be used in place of Lemma 6 (Theo-
rem 7, respectively) to derive a deterministic approximation algorithm using the methods
developed in Section 5 (Section 6, respectively) with basically the same (slightly worse)
running times as for the previously developed algorithms.

Another interesting version of the problem is when the maximum length of any clause
in F'is O(log(mmn)); for this version essentially the same results as described in the previous
paragraph can be obtained.

8 Conclusions and Open Problems

One obvious open problem is to develop a polynomial time approximation algorithm for
DNF with no restrictions on the length of the clauses. One possible approach to this goal,
which was one of the motivations for the work presented in this paper, was the following
conjecture. There is a constant ¢ such that if £ = clog(m/¢) and D is k-wise independent
then | Prp[F] — Pr[F]| < e. Conjectures similar to this have also been made in [12, Linial
Nisan]. If this conjecture were true in a slightly weaker form, i.e., if it were true with
respect to distributions that are “almost” independent in the sense of [15, Naor Naor],
this would immediately imply yield a desired algorithm: construct D and compute Prp[F]
in polynomial time, and this is provably a good approximation of Pr[F].

Subsequently to our work Yishay Mansour found the following counterexample to this
conjecture. Consider the following function defined on n boolean valued random variables
{z1,...,2,}. Let | = log(n) and k = log(1/¢). Partition the first [k random variables
into k blocks of [variables each, and let the function F be the disjunction over all blocks
i € {1,...,k} of the parity of the bits in the i** block, i.e., F takes on value 1 if there
is at least one block whose parity is 1. Note that F' can be written as a DNF formula
with m = nlog(1/¢) clauses. Furthermore, Pr[F] = 1 — (1/2)* = 1 — . Let D be the
uniform distribution on all {0, 1}-assignments to random variables {z1,...,x,} for which
the parity of the first [k variables is equal to 1. It is easy to see that {zq,...,2,} are
(lk—1)-wise independent in D. On the other hand, since each setting under this restriction
makes the parity of at least one of the blocks equal to 1, it follows that Prp[F] = 1, and
thus | Pr[F] — Prp[F]| = €. Thus, there is a distribution D where the error is € even when

19

the random variables are Q(log(1/¢)log(m))-independent, contradicting the conjecture.
This still leaves open the existence of other polynomial time constructible distributions
which approximate well the DNF problem.

We point out that the coloring algorithm presented above can also be used as a prob-

abilistic procedure for estimating Pr[F] using a total number of random bits which is
substantially less than n.

9

Acknowledgments

We thank Oded Goldreich and Noam Nisan for their contributions to this work. We
thank Yishay Mansour for contributing the counterexample presented in Section 8 and
other useful remarks.

References

[1]

Alon, N., Goldreich, O., Hastad, J., Peralta, R., “Simple constructions of almost
k-wise independent random variables”, FOCS' 90.

Ajtai, M., “S"1-Formulae on Finite Structures”, Annals of Pure and Applied Logic,
24, 1983, pp. 1-48.

Ajtai, M., Wigderson, A., “Deterministic Simulation of Probabilistic constant depth
circuits”, FOCS 85.

Alon, N., L. Babai, A. Itai, “A Fast and Simple Randomized Parallel Algorithm for
the Maximal Independent Set Problem”, Journal of Algorithms, 7, pp. 567-583, 1986.

Boppana, R., Hirschfeld, R., “Pseudo-random generators and complexity classes”, S.
Micali, ed., Advances in Computer Research, vol. 5, pp. 1-26, JAI Press, 1989.

Erdés, P., Rado, R, “Intersection theorems for systems of sets”, Journal of the London
Math. Society, vol.35, pp.85-90.

Even, G., Goldreich, O., Luby, M., Nisan, N., Velickovi¢, B., “Approximations of
General Independent Distributions”, 24** STOC, 1992.

Furst, M., Saxe, J., Sipser, M., “Parity, Circuits and the Polynomial Time Hierarchy”,
FOCS 81.

Hastad, J., “Computational limitations for small depth circuits”, Ph.D. thesis, M.L.T.
press, 1986.

20

[10] Karp, R., Luby, M., “Monte-Carlo algorithms for enumeration and reliability prob-
lems”, STOC 83.

[11] Karp., R., Luby, M., Madras, N., “Monte-Carlo Approximation Algorithms for Enu-
meration Problems,” J. of Algorithms, Vol. 10, No. 3, Sept. 1989, pp. 429-448.

[12] Linial, N., Nisan, N., “Approximate Inclusion-Exclusion”, STOC 90.

[13] Luby, M., “A Simple Parallel Algorithm for the Maximal Independent Set Problem”,
STOC 85, pp. 1-10, SIAM J. Computing, Vol. 15, No. 4, November 1986, pp. 1036-
1053.

[14] Luby, M., Velickovi¢, B., Wigderson, A., “On Deterministic Approximate Counting
of Solutions to Polynomials”, paper in preparation.

[15] Naor, M., Naor, S., “Small Bias Probability Spaces: Efficient Constructions and
Applications”, STOC 90.

[16] Nisan, N., Wigderson, A., “Hardness vs. Randomness”, FOCS 88, pp. 2-11.

[17] Razborov, A., “Lower bounds on the monotone complexity of some Boolean func-
tions,” Doklady Akademii Nauk SSSR 281:4, 1985, pp. 798-801, (in Russian). English
translation in Soviet Mathematics Doklady 31, 354-357.

[18] Valiant, L. G., “The complexity of computing the permanent”, Theoretical Computer
Science, 1979, No. 8, pp 189-201.

[19] Vazirani, U., “Randomness, adversaries and computation”, Ph.D. thesis, UC Berke-
ley, 1986.

[20] Weil, A., “Sur les courbes algébriques et les variétés qui s’en déduisent”, Actualités
Sci. Ind. No. 1041, 1948.

[21] Yao, A., “Separating the Polynomial-Time Hierarchy by Oracles”, FOCS 85, pp. 1-10.

21

