On Removing Randomness from a
Parallel Algorithm for
Minimum Cuts

(Extended Abstract)

Michael Luby * Joseph Naor | Moni Naor*
TR-93-007
February 1993

Abstract
The weighted minimum cut problem in a graph is a fundamental problem in com-
binatorial optimization. Recently, Karger suggested a randomized parallel algorithm
for this problem. We show that a similar algorithm can be implemented using only
O(log? n) random bits. We also show that our result holds for computing minimum
weight k-cuts, where £ is fixed.

*ICSI, UC Berkeley. E-mail: luby@icsi.berkeley.edu. Research supported in part by NSF Grant CCR-
9016468 and grant No. 89-00312 from the United States-Israel Binational Science Foundation (BSF),
Jerusalem, Israel

tComputer Science Department, Technion University. E-mail: naor@cs.technion.ac.il. Part of this work
was done while the author was visiting the International Computer Science Institute at Berkeley, CA.

{Department of
Applied Mathematics, Weizmann Institute of Science. E-mail: naor@wisdom.weizmann.ac.il. This work
was done while the author was at the IBM Almaden Research Center.

i

1 Introduction

The minimum cut problem is the following: partition the vertices of a graph into two disjoint
sets so as to minimize the number of edges in the cut, i.e., edges adjacent to vertices that are
in different sets. The graph may be weighted, in which case we want to minimize the weight
of the edges in the cut. This problem has received much attention in the literature in the
last 40 years. It is a fundamental problem in combinatorial optimization and has numerous
applications, e.g., network design and reliability, sequencing and scheduling, location theory,
partitioning problems, and heuristics for solving integer programming problems. (See [PQ]).
The parallel complexity, however, remained unresolved. Recently, Karger [Ka] proposed a
randomized algorithm for computing the minimum cut in a graph. This placed the problem
in the complexity class RNC.

Let G = (V, F) be a graph (or multigraph) where |V| = n and || = m. The purpose of
this paper is to show that a randomized parallel algorithm for computing the minimum cut
(which is similar to Karger’s algorithm), can be implemented using only O(log?® n) random
bits. This is in contrast to Karger’s algorithm which requires a polynomial (in n) number of
random bits. We view our algorithm as a step towards obtaining a deterministic algorithm
for the problem. Alternatively, one can view random bits as a resource (such as time and
space), to be used as sparingly as possible, and our result reduces the use of this resource
over the algorithm suggested by Karger [Ka]. Reducing the number of random bits needed
in computation is a line that has been explored by many researchers in recent years.

1.1 Previous work

The straightforward way to find the minimum cut in a graph is by comparing all {s,t}-
minimum cuts for all possible choices of vertices s and ¢. (In an {s,¢}-cut we require that
s and ¢ be in different sets). Each {s,¢}-minimum cut can be found by computing the
maximum flow from s to t. In a classic paper, Gomory and Hu [GH1] have shown that
the minimum cut can be determined by computing an equivalent flow-tree which requires
considering only n — 1 {s,¢} minimum cuts chosen appropriately. Recently, Hao and Orlin
[HO] have shown how to pipeline the computation of the n — 1 minimum cuts so that the
total running time is no more than a single maximum flow computation. The running
time of the current best algorithm for maximum flow is slightly more than O(mn). This
was first achieved by Goldberg and Tarjan [GT] and the complexity of their algorithm is
O(mnlog(n*/m). Their result was later improved by [Al, CH, CHM, KRT, PW]

For many years, since the paper of Gomory and Hu appeared, the only approach to the
minimum cut problem was via maximum flows. This has changed in the last years, and
several papers have shown that a minimum cut can be solved more efficiently than maxi-
mum flow. Nagamochi and Ibaraki [NI] gave an algorithm that runs in O(mn + n?logn)
time, and this is currently the best deterministic algorithm. Very recently, Karger and
Stein [KS] suggested a sequential version of Karger’s parallel algorithm that runs in time
O(n?polylog(n)), and finds the minimum cut with probability 1— m. In the unweighted
case, there are several efficient algorithms for computing the minimum cut. An O(mn) al-
gorithm was discovered by Podderyugin [Po], and independently by Matula [Ma]. Recently,
Gabow [Ga] showed how to compute the minimum cut in O(¢nlog(n®/m)), where ¢ denotes

the cardinality of the minimum cut.

In the parallel context, Goldschlager, Shaw and Staples [GSS] proved that for a given pair
of vertices, s and ¢, finding the minimum {s, ¢} cut is P-complete. Karp, Upfal and Wigder-
son [KUW], and Mulmuley, Vazirani and Vazirami [MVV] placed the maximum matching
problem in RNC. This implies, using a standard reduction of flow to matching, that the un-
weighted minimum cut problem is also in RNC. As mentioned earlier, very recently, Karger
[Ka] showed that the minimum cut can be computed in RNC in the weighted case as well.
The running time is O(log®) time and the number of processors is O(n%log® n). (See [KS]).

1.2 Our results

The basic operation in our algorithm is that of contraction: when an edge is contracted, the
two vertices adjacent to it are contracted and the set of edges connecting the two vertices
is deleted; the set of edges leaving the contracted vertex is the union of the set of edges
leaving each of the two vertices. Edges are never merged. The following proposition is easy
to verify.

Proposition 1.1 Let G = (V, E) be an unweighted multigraph, and let e € E be an edge
such that there exists a minimum cut C, where e ¢ C. Suppose edge e is contracted. Then,
cut C remains a minimum cut in G.

In Karger’s algorithm, we repeatedly choose an edge in random and contract it, until only
two vertices remain. (This process can be simulated in NC). Karger proved that with
probability at least 1/n2, the cut defined by the remaining edges is a minimum cut.

Our algorithm is divided into stages. At a given stage we contract each edge with prob-
ability which is proportional to its weight divided by the weight of the minimum cut. The
random choices are pairwise independent. We show that with probability greater than a
constant, when a stage finishes, the weight of the minimum cut does not change, and the
number of vertices decreases by a constant. This implies that after O(logn) stages, the
algorithm terminates with a minimum cut with probability which is at least polynomially
small. Each stage in the algorithm can be implemented using O(logn) random bits; inde-
pendence, however, is required between stages and the total number of random bits needed
is O(log® n). We use the standard method of two point sampling [CG] to amplify the proba-
bility of success to a constant with only a constant factor increase in the number of random
bits. The precise time and processor bounds are determined in Section 4.3.

We also consider multiway cuts, or k-cuts. Here we are required to partition the vertices
into k disjoint sets so as to minimize the number of edges in the cut, i.e., edges adjacent to
vertices that are in different sets. If the graph is weighted, we want to minimize the weight
of the edges in the cut. This problem is NP-complete for arbitrary k& [GJ]. Hochbaum and
Goldschmidt [GH2] have shown that for fixed %k, the minimum k-cut can be computed in
polynomial time. It follows from Karger’s results [Ka] that this problem is also in RNC. We
show that for fixed k we can compute in RNC a minimum weight k-cut using only O(log® n)
random bits.

The paper is organized as follows. In Section 2, the algorithm for computing the mini-
mum cut is introduced and analyzed. In Section 3, multiway cuts are considered. In Section
4 we consider implementation issues.

2 The basic algorithm and its analysis

Let G = (V, F) be a multigraph where the number of vertices is denoted by n. We assume
that: (i) The weight of the minimum cut, denoted by ¢, is known. (ii) If G is weighted, then
each edge e, which has weight w, < £, is replaced by w, multiple edges. If w, > £, then e
is contracted before running the algorithm. Clearly, e does not participate in the minimum
cut. We justify our assumptions in Section 4.

The basic algorithm is divided into stages and we stop when there are only two vertices
left in the graph. At each stage we do the following:

1. Each edge chooses itself with probability 1/(c-€) where ¢ is a constant. The choices
are pairwise independent.

2. Each chosen edge contracts its endpoints.

We analyze a single stage of the algorithm, and give two different proofs (Theorems 2.2
and 2.3) that with probability greater than a constant, the number of vertices decreases by
a constant factor (in a single stage). Suppose the algorithm is run r = O(log n) stages, (or
until we are left with two vertices), each time using independent random bits. By Theorem
2.3, we stop with two vertices representing the minimum cut with probability at least 1/16”.
We summarize this in the next theorem.

Theorem 2.1 There exists a constant d such that the basic algorithm terminates with a
minimum weight cul with probability greater than 1/n%.

In Section 4 we show that the number of random bits needed to implement a stage is
O(logn). Since we require independence between stages, the total number of random bits
used by the basic algorithm is O(log? n).

For the sake of the analysis we fix a particular minimum cut C. We define the following

events: (The complement of event A is denoted by A).
o A.: The event that edge e is not chosen.

e B.: The event that edge e is chosen and none of the edges belonging to the cut C are
chosen.

e B,: The event defined by U.B., where the union is taken over all edges e ¢ C that
are adjacent to v.

2.1 The first analysis

We begin with a graph theoretic lemma.

Lemma 2.1 Let a < 1. The graph G contains al least n — % vertices, where each vertex is
adjacent to at least (1 — a)l edges that are not in the cut C.

Proof: Let U C V denote the set of vertices where each vertex is adjacent to at least af
edges in the cut C. Then,

2>|U|-a-t
and hence,
2
Ul <=
«

Since the degree of each vertex is at least £, the lemma follows. O

Lemma 2.2 For an edge e ¢ C,

Proof:

A.| - Prob [A_B] =

Prob[B.] = Prob (ﬂ Af) ﬂA_e

fec
(1 — Prob [(U A_f
fec

(1= S po]] = (1) = 5y

fec

= Prob [(ﬂ Af)
fec

) Prob [4]] > (1 ~ 3" Prob [A_f|A_e]) Prob [4] =

fec

Ac

O

Lemma 2.3 For any pair of edges e1,e5 ¢ C,

1
PI’Ob[BeJ N B62] S W

Proof:

Prob [B., N Be,] = Prob

[=+[(2)

We denote by W the subset of V' for which Lemma 2.1 holds.

A—elmA—eQﬂ Ag
fec

(A n4,) ar

) - Prob [A—elﬂA—eg] < Prob [A—elﬂA—eQ] =

Lemma 2.4 Let v € W. Then,

(1-a)(2¢c-3+a)

Prob[B,] >
rob [B,] > 5e2

Proof: For a vertex v € W, we define £, to be a subset of edges adjacent to v, that do
not belong to C, such that |E,| = {(1 — «). By the inclusion-exclusion formula,

Prob[B,] > Prob | | J Bc| > > Prob[B] — > Prob[B., NB.,]>
e€ly e€l, e1,e2 €Ly
((1—a)(e=1) [t(1-a)y 1 _(1-a)(c=1) (1-a)
2l 2 2z — c? 2c2
(1-a)(2¢c-3+a)
2c?

O

Theorem 2.2 The probability that the number of vertices at the end of a stage is less than
63n/64 and no edge belonging to the cut C is contracted is at least 21—8

Proof: We choose @ = 0.1 and ¢ = 2.9. By Lemma 2.1, |W| > n — 20; we assume that
n > 97. (If n is smaller, we can run any sequential algorithm to find the minimum cut in
the graph.) By Lemma 2.4, for v € W,

1
Prob[B,] > -
Let X, be a random variable defined to be the indicator variable of event B,. (If v ¢ W,
then X, = 0). Clearly,
20)

veV
We define the random variable Y to be the number of vertices at the end of a stage. It is

easy to see that Y <n —3" cy X,/2. Hence,

X, —-20 13
E[Y]én—E[E“L] <n-2" <y
2 14 14
By Markov’s inequality,
1
Prob[Y > AE[Y]] < 3
Setting A = 27, we get that
Prob [Y > (13_n+2> 28 n] < 2
27 28
For n > 97,

26n 56 _ 63n

27 27 - 64
Hence, we get that with probability at least
is at most Gg’f. O

28, the number of vertices at the end of a stage
2.2 The second analysis

Lemma 2.5 The probability that none of the edges in C are contracled in a stage is at least
1-1
c

Proof: We want to estimate the probability of the event ()¢ Ac.

Prob lﬂ AE] =1- Prob [U A,

e€C e€C

Zl—EProb[A_S] 21—%
eeC

O

Lemma 2.6 If ¢ > 4, then for every four vertices vy, vy, v3,v4 € V, the probability that at
least one of {v1,ve,v3,v4} is adjacent to a chosen edge is at least %

Proof: Since the cardinality of the minimum cut is £, the degree of each vertex is at
least £. Therefore, there are at least 2¢ different edges adjacent to the set {vy,vq, vs, v4}.
Let F, denote a subset of cardinality 2¢ of the edges adjacent to these vertices. By the
inclusion-exclusion formula,

U7

e€ly

Prob > Z Prob [A_e] - Z Prob [A—elm A—ez]

e€Ey e1,e2€E,

Since the events A., where e € F,, are pairwise independent, we have that for any ey, e5 €

E,, Prob [A—el N A—@] = Prob [A—el] - Prob [A—ez)] Substituting in the above,

Prob U A,

e€ly

>

|Ev| _ |Ev|(|Ev|_1) > Z
c

2
-2 >
c-/ 2.¢2.42 - c?2 ~

3
2-c

Ife>4. 0O

Theorem 2.3 The probability that the number of vertices at the end of a stage is less than
127n /128, and that no edge belonging to C is contracted, is at least 11—6.

Proof: Partition the vertices into n/4 sets of four vertices each. Let X be a random
variable denoting the number of sets such that at least one vertex in the set is adjacent to
some chosen edge at the end of a stage. It follows from Lemma 2.6 that E[X]is at least
3.7 We also know that X < T Since,

2 "4
1 ' 1 ' 3
Prob[X>—-ﬁ] -3+Prob[Xg—-ﬁ]- > px)> 2
4dec 4] 4 4dc 4] 4c-4 8¢
We have that
Prob [X > L] > 5
16¢ 4c
By Lemma 2.5, the probability that no edge belonging to C is chosen is at least 1 — %
Hence, the probability that the two events intersect is at least % — % = ﬁ. If X > &, we

have that this many vertices have some adjacent edge chosen, and the number of vertices
at the end of the stage is at most

n 1 (1)
n——-—=nll-—
16¢ 2 32¢

Fixing ¢ to be 4 gives us the desired result. O

3 Multiway cuts

In this section we show that the algorithm presented in the previous section and its analysis
can be extended to compute minimum k-cuts where k is fixed. Recall that a k-cut is a
partition of the vertices into k disjoint sets so as to minimize the weight of the edges in the
cut. Let £ denote the weight of the minimum k-cut and assume again that ¢ is known. The
algorithm is the same as the one presented in Section 2, except that we stop when there
are k vertices left in the graph. Fix a particular minimum k-cut C. We prove that, with
probability at least a constant, the number of vertices decreases by a constant factor, and
no edge in C is chosen in a single stage.

Consider the vertices sorted by their degrees, v1,vg, ..., v,, where the degree of vertex
v; is d;, and d; < d;41. As in Section 2, we define the events A., B., and B, with respect
to the k-cut C. We generalize Lemma 2.1 for k-cuts.

Lemma 3.1 Let o < 1. The graph G contains al least n — k (1 + %) vertices, where each
vertex is adjacent to at least U_Talﬁ edges that are not in the k-cut C.

Proof: We first show that,
k—1
(<> d;
=1

This follows by considering the k-cut obtained by placing each of the vertices v;, 1 < ¢ <
k — 1, in a separate component, and placing the remaining vertices, v, ..., v, in the kth
component. The cardinality of this k-cut is Efz_ll d;. Hence, for all 7, k <1 <mn,

Let U C V denote the set of vertices where each vertex is adjacent to at least al/(k — 1)
edges in the k-cut C. Then,

a-f
20> |U| - —
> o] &
and hence,
2k
U] < —
«

Since, for all ¢, k < i < n, d; > {/k, the graph contains at least n — k (1 + %) vertices,

where each vertex is adjacent to at least (1;04) -{ edges that are not in the k-cut C. O
Notice that Lemmas 2.2 and 2.3 hold for k-cuts too. That is,

Lemma 3.2 For an edge e ¢ C,
c—1

c2(

Prob[B] >
Lemma 3.3 For any pair of edges e1,e5 ¢ C,

1
PI’Ob[Bel N Be2] S W

However, Lemma 2.4 has to be slightly modified. We denote by W the subset of V for
which Lemma 3.1 holds.

Lemma 3.4 LetveW.

(1-a)2kc—2k-1+4 a)
2¢2k?

Prob[B,] >

Proof: For a vertex v € W, we define F, to be a subset of edges adjacent to v, that do
not belong to C, such that |E,| = {(1 — a)/k. By the inclusion-exclusion formula,

Prob[B,] > Prob | |) Bc| > > Prob[B] — > Prob[B., NB.,]>
e€ly e€l, e1,e2 €Ly
1—a
((1-a)(c—1) (=) 1 J-a)e-1 (1-a)
kc2d 2 2z — kc? 2c2k2
(1—a)2kc—2k—-1+4 a)
2c2k2

O

Theorem 3.1 The probability that the number of vertices at the end of a stage is less than

n(2222kk__12) and that no edge belonging to C is conlracted is at least 2;—]9

Proof: Let X, be a random variable defined to be the indicator variable of event B,.
(If v ¢ W, then X, = 0). The probability that event B, occurs is maximized when
c=(2k+1—a)/k. Choosing a = 0.1, we get that for v € W,

0.9
Prob[B,] > —
roblB) 2 TS

By Lemma 3.1,
|W| Zn—k(l—l—z) =n-21k
!

(We assume that n > 98k. Otherwise, we can run any sequential algorithm to find the
minimum k-cut in the graph.) Hence,

. 9(n — 21k)
E Xy > —"
lz] — 40k + 18

veV

We define the random variable Y as the number of vertices at the end of a stage. It is easy
to see that Y <n -3 -y X, /2. Thus,

BV Sn—E[ZUEVXU] L, Y21k (k-1

2 80k + 36 11k

By Markov’s inequality,
ProblY > AE[Y]] <

> =

Setting A = 2221351, we get that

n(11k — 1) 22k 22k — 1
Prob|Y > [————=+2] - <
o [_< 11k +) 22k—1]_ 22k
For n > 98k,
n(22k — 2) 44k < n(40k — 1)
22k — 1 22k -1~ 40k
Hence, with probability at least Qé—k, the number of vertices at the end of a stage is at most
n(40k=1)
0k

4 Implementation

We now justify the assumptions made in Section 2. Also, there are a few implementation
details that need to be taken care of. By Theorem 2.1, the probability of success of the basic
algorithm is Q(1/n?), where d is a constant. We run O(n?) copies of the basic algorithm
simultaneously to increase the probability of success to 1/2 and henceforth refer to these
simultaneous runs as the algorithm.

The implementation issues for multiway cuts are similar and are therefore omitted from
this abstract.

4.1 Finding the weight of the minimum cut

In the algorithm, we assumed that £, the cardinality, or weight, of the minimum cut, is
known. In the unweighted case, £ is upper bounded by the minimum degree. In the
weighted case, however, the feasible range of £ is much larger. We find the value of £ up to
a multiplicative factor of 2. This is sufficient for us, since it may change the probability of
success of a single stage of the basic algorithm by at most a constant factor.

Let wy,wsq, ..., w, be the sequence of edge weights in sorted order and let the set B be
defined as follows:

B={p-wll<i<m, 1<p<i}

Let w be the weight of the heaviest edge in the minimum cut and let £ denote the number
of edges in the cut. We claim that the set B contains at least one element such that the
ratio between that element and ¢ is at most 2. This follows by observing that,

Ji, 1<i<k,w-i<l{<w-(i+1)

The cardinality of the set B is O(m?). We can therefore run the algorithm simultaneously
for all the |B| possible values of £. The output is the minimum cut obtained among all
simultaneous runs of the algorithm.

4.2 The number of random bits

The next issue we elaborate on is the number of random bits used by the algorithm. In
the basic algorithm we claimed that each edge e is replaced by w. parallel edges. This is of
course impractical if we want to maintain reasonable running times. Instead, in the basic

algorithm, we choose to contract edge e with probability w./(¢f), where the choices are
pairwise independent. We claim that this can only increase the probability of success. For
an edge e, let the random variable y;, 1 < ¢ < w,, be the indicator of the event that the ¢th
parallel edge (substituted for e) is contracted by the basic algorithm in a particular stage.
By the inclusion-exclusion formula,

w w? Le w
£ _ _2 < Prob >0 < =
cl %2 — ro Lz:;y > - !

Notice that the ratio between the lower and upper bound is at most 2, if ¢ > 2. The
following two observations guarantee that Theorem 2.3 still holds with the above change in
the probability of contracting edges: (i) 1 — % remains a lower bound on the probability of
not contracting an edge belonging to the minimum cut C (Lemma 2.5); (ii) for any edge
e € F, the probability of contracting it has increased, and therefore, Lemma 2.6 is still
valid.

Another important issue is that since the probabilities may be very small, generating
the events requires too many random bits. To overcome this problem, we set a threshold

{

mndlogn

If the weight of edge e is less than A, then in the basic algorithm, the probability of
contracting e is set to zero. We claim that this cannot decrease the probability of success
by much. In our analysis of the algorithm, we defined a successful stage as one in which: (i)
An edge belonging to the minimum cut C was not contracted. (ii) The number of vertices
decreased by a constant factor. Let E' C E be the set of edges with weight less than A.
Setting the probability of contracting an edge e € E’ to zero can only help (i). As for (ii),

foree F',
1

cmn®logn

Probledge e is contracted in a stage] <

The probability that an edge belonging to E’ is contracted in any of the stages in the basic
algorithm is at most r/(cn?logn), since |E’| < m and r is the number of stages. Setting
¢ > 2r/logn guarantees that the probability of success of the basic algorithm is at least
1/2n.

The minimum weight of an edge now is A and the maximum weight is £. (Recall that
edges with weight greater than ¢ were contracted before running the algorithm). The ratio
between them is bounded by a polynomial in n and m. We set the weight of each edge
e € E— E'to be [w(e)/A]|. We conclude with the next proposition that follows from [AS,
pp. 228-232].

Proposition 4.1 The number of random bits needed to generate m {0, 1} random variables
is O(logn) if: (i) the variables are pairwise independent; (ii) the probabilily that each
variable is “17 (or “07) is not less than m.

The last issue we address is how to generate the random bits for the many simultaneous
runs of the basic algorithm. Recall that there are two reasons for simultaneous runs. The
first one is to decrease the probability of error. However, to decrease the probability of error

10

to a constant it suffices to use the method of two point sampling of Chor and Goldreich
[CG]. Generating random bits using this method guarantees that runs of the basic algorithm
are pairwise independent. The number of random bits needed for implementing two point
sampling remains O(log?n). The second reason for simultaneous runs is testing all the
values in the set B. We note that the same random bits can be used for all such runs.

4.3 Processor and time bounds

Our parallel model of computation is the CRCW PRAM. A stage in the basic algorithm can
be implemented using O(m) processors and O(logn) time, implying that the time bound
for the algorithm is O(log® n). The total number of processors is O(n?-m?-m) = O(n?-m?)
to account for all the simulataneous runs.

References

[Al] N. Alon, Generating pseudo-random permutations and maximum flow algorithms,
Information Processing Letters, Vol. 35, pp. 201-204, 1990.

[AS] N. Alon and J. Spencer, The probabilistic method, John Wiley and Sons Inc.,
New York, 1992.

[CG] B. Chor and O. Goldreich, On the power of two point sampling, Journal of Com-
plexity, Vol. 5, pp. 96-106, 1989.

[CH] J. Cheriyan and T. Hagerup, A randomized maximum flow algorithm, Proceedings
of the 29th Annual IEEE Symposium on Foundations of Computer Science, 1988,
pp- 118-123.

[CHM] J. Cheriyan, T. Hagerup and S. N. Maheshwari, Can a maximum flow be computed
in o(mn) time?, Proceedings of International Colloquium on Automata, Languages
and Programming, 1990.

[Ga] H. N. Gabow, Applications of a Poset Representation to Edge Connectivity and
Graph Rigidity, Proceedings of the 32nd Annual IEEE Symposium on Foundations
of Computer Science, San Juan, Puerto Rico, 1991, pp. 812-821.

[GH1] R.E. Gomory, T.C. Hu, Multi-Terminal Network Flows, Siam J. Appl. Math., Vol.
9, pp. 551-560, 1961.

[GH2] 0. Goldschmidt and D. S. Hochbaum, Polynomial algorithm for the k-cut problem,
Proceedings of the 29th Annual IEEE Symposium on Foundations of Computer
Science, 1988, pp. 444-451.

[GJ] M. R. Garey and D. S. Johnson, Computers and intractability - a guide to
the theory of NP-completeness, W. H. Freeman, San Francisco, 1979.

[GSS] L. Goldschlager, R. Shaw and J. Staples, The maximum flow problem is log space
complete for P, Theoretical Computer Science, Vol. 21, pp. 105-111, 1982.

11

[GT]

[HO]

[KUW]

A. Goldberg and R. E. Tarjan, A new approach to the maximum flow problem,
Journal of the ACM, Vol. 35, pp. 921-940, 1988.

J. Hao and J. B. Orlin, A faster algorithm for finding the minimum cut in a graph,
Proceedings of the 3rd Annual ACM-SIAM Symposium on Discrete Algorithms,
1992, pp. 165-174.

D. R. Karger, Global min-cuts in RNC, and other ramifications of a simple min-
cut algorithm, Proceedings of the 4th Annual ACM-STAM Symposium on Discrete
Algorithms, 1993.

V. King, S. Rao and R. Tarjan, A faster deterministic maximum flow algorithm,
Proceedings of the 3rd Annual ACM-SIAM Symposium on Discrete Algorithms,
1992, pp. 157-164.

D. R. Karger and C. Stein, An O~(n2) algorithm for minimum cuts, To appear in:
Proceeding of the 25th ACM Annual Symposium on Theory of Computing, 1993.

R. M. Karp, E. Upfal and A. Wigderson, Constructing a perfect matching is in
random NC, Combinatorica, Vol. 6, pp. 35-48, 1986.

D. W. Matula, Determining the edge connectivity in O(nm), Proceedings of the
28th IEEE Symposium on the Foundations of Computer Science, Los Angeles, CA,
1987, pp. 249-251.

K. Mulmuley, U. V. Vazirani and V. V. Vazirani, Matching is as easy as matrix
inversion, Combinatorica, Vol. 7, pp. 105-113 (1987).

H. Nagamochi and T. Ibaraki, Computing edge-connectivity in multigraphs and
capacitated graphs, Siam Journal on Discrete Math, Vol. 5, pp. 54-66 (1992).

V.D. Podderyugin, An Algorithm for Finding the Edge Connectivity of Graphs,
Vopr. Kibern., No. 2, 136, 1973.

J. C. Picard and M. Querayne, Selected applications of minimum cuts in networks,
INFOR, Vol. 20, pp. 394-422, 1982.

S. Phillips and J. Westbrook, Online load balancing and network flow, To appear
in: Proceeding of the 25th ACM Annual Symposium on Theory of Computing,
1993.

12

