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Abstract

We apply the Expectation Maximization (EM) algorithm to an assignment problem where
in addition to binary assignment variables analog parameters must be estimated. As an
example, we use the problem of part labelling in the context of model based object recogni-
tion where models are stored in from of a compositional hierarchy. This problem has been
formulated previously as a graph matching problem and stated in terms of minimizing an
objective function that a recurrent neural network solves [11, 12, 5, 8, 22]. Mjolsness [9, 10]
has introduced a stochastic visual grammar as a model for this problem; there the matching
problem arises from an index renumbering operation via a permutation matrix. The opti-
mization problem w.r.t the match variables is difficult and Mean Field Annealing techniques
are used to solve it. Here we propose to model the part labelling problem in terms of a mix-
ture of distributions, each describing the parameters of a part. Under this model, the match
variables correspond to the a posteriori estimates of the mixture coefficients. The parts in
the input image are unlabelled, this problem can be stated as missing data problem and
the EM algorithm can be used to recover the labels and estimate parameters. The resulting
update equations are identical to the Elastic Net equations; however, the update dynamics

differ.
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Figure 1: Illustration of the 2-level model for dot configurations.

1 Stochastic Visual Grammars for Object Recognition

We apply the Ezpectation Mazimization (EM) algorithm to an assignment problem where in ad-
dition to binary assignment variables analog parameters must be estimated and show the close
relationship to methods based on the Mean Field approximation.

The general form of this weighted match problem can be formulated as the minimization of
an objective function E(M,p) = >_,; m;jw;;j(p), where the {m;;} are binary match variables and
{w;;(p)} are weights dependent on parameters p.

As an example, we use the problem of part labelling in the context of model based object
recognition where models are stored in from of a compositional hierarchy. This problem has been
formulated previously as a graph matching problem and stated in terms of minimizing an objective
function that a recurrent neural network solves [11, 12, 5, 8, 22]. Mjolsness [9, 10] has introduced
a stochastic visual grammar as a forward (generative) model that describes how an object is build
up from parts. The description mirrors the representation in form of a compositional hierarchy; at
each stage the description becomes more detailed as more parts are added. The stochastic model
assigns a probability distribution at each stage of that process. Thus at each level of the hierarchy
a more detailed description of parts in terms of their subparts is given by specifying a probability
distribution for the coordinates of the subparts. The goal is to derive a joint probability distribution
for an instance of an object and its parts as it appears in the scene. This gives the probability
of observing such an object prior to the arrival of the data. The problem can then be stated as
Bayesian inference problem [9]. The optimization problem w.r.t the match variables is difficult and
Mean Field Annealing techniques are used to solve it.

1.1 Example: Stochastic Model for Dot Configurations

The model places the dot-cluster center x assuming a uniform distribution. While placing the
parts (i.e. individual dots) Gaussian distributed noise with mean 0 and variance o? is added to the
position coordinates d; to capture the notion of natural variation of the objects shape (see figure 1).
The probability for the dot parameters is given by
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P({xi}|x) = ( ! >2n o™ 707 2o X (x4di)? (1)

with {x;} denoting the set of parts {x1,X2,...,X;,...,X,}, and for simplicity, the noise variance
for all parts is assumed equal.



An important step in modeling the visual data the system receives as input is the unordering of
parts, i.e. their identity, known up to this point, is lost. For the recognition or inference problem
the dots observed in the image are unlabeled and the recovery of the labels is an intrinsic part of
the recognition problem. Previous work by Mjolsness [10, 9] models the unordering of parts via a
index permutation (renumbering). For example, let the parts in the model description be numbered
{z1, 9,23} and the parts observed in the image as {z,, 2y, z.}. Then, z, could correspond to either
x1 or zg9 or z3. The renumbering is accomplished via multiplication with a permutation matrix M,
a binary matrix for which M;; € {0,1}, >, M;; = 1 and }°; M;; = 1. This matrix permutes the
indices of the parts. For the example above, My, = 1 would let 1 appear in the image as z,.

First a permutation matrix M is chosen with probability P(M). The final joint probability
distribution becomes [10, 9]

P(M,{x,},x) = CP(M) 6_(# P Mij|xj_(x+di)|2) )

where ¢ indexes the unscrambled model parts and j indexes the parts observed in the image (note
that the model parts {z;} have been integrated out). The recognition problem is stated in terms
of finding the labelling (as represented by M) and the object position x. From Bayes theorem,

P({x;}x,M)P(x, M)
P({x;})
x  P({x;}|x,M)P(x,M)
= P({x;},x,M) (3)

P(x, M|{x;})

and recognition reduces to finding the most probable values for x and M given the data:

arérl\r/l[ax P({x;},x, M) (4)

Solving the inference problem involves finding the MAP estimate and is equivalent to a minimization
problem, i.e. it is sufficient to minimize the exponent in equation (2) with respect to the unknown
variables M and x, subject to the constraint that M is a permutation matrix.

2 Neural Network based on the Mean Field Approximation

The maximization problem (4) has been implemented using a recurrent neural network to solve
the optimization problem (see Mjolsness [9, 10]). The most straightforward implementation via
a Hopfield network [6, 7] easily gets stuck in local minima of the objective function. Recently,
results from statistical physics have been successfully applied to the problem of optimizing objective
functions with neural networks [1, 15]. The Mean Field Approzimation and deterministic simulated
annealing allow the design of neural networks that can avoid spurious local minima. The governing
probability distribution is assumed Gibbsian. The sum in the partition function Z runs over all
possible configurations that are accessible to the system.

In the original formulation, constraints must be are added to the objective functions in form
of penalty terms, that discourage certain configurations. For example, the match matrix is must
be a permutation matrix for the solution to be interpretable in the context of object recognition.



However, in the neural network implementation as Hopfield match network nodes are represented
by individual neurons. Thus, the minimization cannot be carried out just over the space of all
permutation matrices, but the ensemble of neurons can represent any arbitrary matrix. Constraints
must be added to enforce a solution that corresponds to a permutation matrix.

The Mean Field formulation allows for such constraints to be embedded in the network architec-
ture and thus to be enforced exactly. This can be done by restricting the summation in the partition
function to include only those configurations that obey the constraints. Additional penalty terms
then are no longer necessary. Unfortunately, it is not possible to express all constraints in that way.
The permutation matrix constraints, for example, can only be incorporated in part; either the row
or the column constraint. The remaining constraint can be implemented via a penalty term (or is
sometimes ignored since solutions that conform to one constraint but not the other are deemed of
high cost and therefore most likely avoided by the network).

These methods have been described by Amit et al [2, 1], Peterson and Soederberg [14, 15],
Simic [18, 17] and Yuille [23].

2.1 Saddle Point Approximation

The Mean Field trick employed here consists of rewriting the sum in the partition function as an
integral and evaluating the integral at the saddlepoint, at which point, certain constraint terms can
be evaluated [2, 1, 14, 15, 18, 17].

The probability distribution is of the form

P(M, x, {x}) = e FMx 06D (5)

where E(M,x,{x;}) is the exponent from equation (2), T = 1/ denotes the computational “tem-
perature” and the partition function is

Z= Y HHMxs) (6)
(). (M}

(the summation ranges over all states accessible to the system; strictly speaking, the summation
over x should be replaced by an integral for real-valued parameters).
The effective energy after applying the saddle point approximation is

Eg(M,U,x,{x;}) = EM,x,{x;})— 1/52“2‘;'77%‘]' + 1/ﬁZlogZe“” (7)

where u;; are additional variables introduced by the approximation. The saddlepoint can be found

by evaluating 8Eeﬂ(lvla’lt\';[’x’{xj}) =0 and aEeﬂ(Még-’x’{xj}) = 0 and the fixed point equations for the
u;; and m;; become
etis
with
IEM, x, {x,}) 1 2
vy = PN 5 L k) (9



and x is found from

0Fes(M, U, x {x]}
o Zme —(x+d)| = (10)

These equations are used to update M, U and x concurrently and deterministic annealing is used
by gradually lowering the temperature 7.

2.2 Elastic Net

If the network contains both real-valued variables and binary match variables and the problem
would be simplified if the match variables could be eliminated entirely (the term “Elastic Net” was
introduced by Durbin and Wilshaw [4] to distinguish their formulation of the Traveling Salesman
problem from one using explicit assignment variables).

Yuille [23] has shown how to derive the elastic net formulation from the one containing match
variables by means of summing over all possible assignments in the partition function (or equiva-
lently computing the marginal distribution). Again, the partition function is modified to restrict
the space of possible solutions to the ones satisfying the column (or row) constraint for the permu-
tation matrix. Unfortunately, summing over all permutation matrices does not lead to a simplified
expression for Z [23]. Instead the summation is performed over a superset, the set of matrices
satisfying only the row constraint (}°; M;; = 1):

7 = Z Z e—ﬁE(M,x,xj)
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with
eff( {X]} = -1/ Zlog (Z e—ﬁﬁlxj—(x-l—di)lz) (12)
7 7

E.¢(x,{x;}) must be minimized with respect to x, i.e. the solution for z is found from

OFess(x b O l) N
0x - ZZ 02 - ﬁlx;—(x-l—dz)m bej = (x+ i)l = 0 (13)
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for example via gradient decent.

Note that integrating over the assignment variables M resulted in an equation for x similar
to the one obtained from the saddle point approximation but with the solution for M substituted
in (compare equations (8)-(10)). There, M is explicitly represented as a variable and at each
intermediate stage, the current values m;; are found by computing u;; and passing it trough the
softmaz transfer function (9). These values are then used to update the position coordinates
x. In the Elastic Net formulation, M is no longer represented as variable but the corresponding
expression appears directly in the equation for updating x. In both cases, deterministic annealing
is performed by slowly decreasing 7' = 1/ (but only down to 1 to preserve the ratio of possibly
different variances for different parts of the object [9]).

3 Mixture Model for Labelling Data

An alternative to the index permutation is to model the unordering step by describing the distri-
bution of parameters of parts in form of a mixture density.

Mixture models have been used in the context for learning (see for example Nowlan [13]). There,
the task is to estimate the parameters of the mixture density from data. Ultimately, the goal in the
context of the object recognition problem is to learn the model base, its structure and parameters,
from data. The mixture formulation is attractive since in its most general form does not assume
the data is already labeled. If the structure, i.e. the part hierarchy of the objects in the model
data base is predetermined, the use of labeled data simplifies the training procedure considerably.
However, even though is seems reasonable that the data is labeled at higher levels in the hierarchy
(i.e. the label for an entire object is known), determining the structure of the data base at the
part level can be part of the learning algorithm. Such an algorithm should learn from data, which
substructures (i.e. “parts”) should be allocated for the object to best recognize it. For example,
this could mean to find prominent features that are unique to a particular model or features that
maximally discriminate between multiple stored models. Then, the training data derived from the
image must be unlabeled simply because the part nodes in the model data base do not exist yet.

In this report, the recognition problem is stated in terms of estimating parameters of a mixture
distribution and solved using the EM algorithm. The close relationship to the Mean Field methods
described above is pointed out. Thus, the recognition and learning problem can be stated in the
same framework, but in each case, a different set of variables must be computed.

3.1 A Mixture Density Model for Dot Configurations

The general form of a mixture density p(z) is
p(z,0) =" gipi(z,6;) (14)

where the mixture coefficients g; > 0 obey >, ¢; = 1 and the p;(z,6;) are themselves density
functions with parameters ;. The parameters O represent the union of all parameters 8; of the
component densities. The coeflicients g; can also be interpreted as the prior probability that an
observation & comes from p;(z).



The probability density for the dot parameters can be viewed as a mixture density. From the
joint distribution in equation (1), the probability for generating part ¢ with parameters z; is given

by

1 23,2 [x;—(x+d;)|?
€ 2
V21o;

with parameters 6; = (d;, 0,x) and as mixture model

Pi(x0;) =

(15)

L |x;—(x+d;)|?

PO10) = S et (16)
with g;; € {0,1} denoting which component density was chosen to place the jt* dot. The matrix
G = {g;;} again is a permutation matrix (since for the dot cluster model, each component density
is used exactly once to place one of the dots). In addition to the constrain that the column sum is
equal to 1 as required for the mixture coefficients, here, the rows must sum to 1 as well. Thus, the
mixture formulation is an alternate way to model the ignorance of the correct part assignment.

Under this model, the last two step in the stochastic grammar are combined into one. Instead
of placing labeled dots and then permuting their indices, a matrix of binary mixture coefficient g;;
is chosen (similar to choosing the permutation matrix M). Then, for each dot j to be placed in
the image, the position z; is determined from equation (16). Each dot is placed independently as
before, thus the joint distribution for the position of all image dots is

2
P({Xj},X,G) = P(G)HZQW <ﬁ) 6_#|X]‘_(X+di)|2 (17)
J k3

(P(G) is again assumed uniform over the space of permutation matrices and thus assumed a
constant it what follows).

For the recognition problem only a single exemplar is available, but each exemplar consists of
n datapoints corresponding to the parts of the object. Thus, learning the parameters 8; and G is
not meaningful. However, the n component distributions share parameters at higher levels in the
compositional hierarchy and these can be estimated. The parameters of the mixture density are
assumed known and the task is to compute the parameters of the object in the scene and label its
parts. For the dot cluster model, the single parameter is the cluster position x. The part labels
can be interpreted as the a posteriori estimate of the mixture coefficients (the estimate computed
after the data {x;} has been observed).

3.2 EM Algorithm

The observed image data consists of unlabeled dots {z;} j = 1...n. Here, the lack of labels
is treated as a missing data problem. Instead of observing the dot position and its label, only
the position is given. Thus, it is not known which density function describes the parameters of a
particular dot. In addition to the observed dot positions {z;} unobservable indicator variables m;
denoting the labels are introduced with

(18)

S 1 if z; belongs to the i"® component density p;(-)
771 0 otherwise



The complete data can be defined as pairs {(z;, m;)}. (Note that the same symbol m that was used
earlier to denote the elements of the permutation matrix M now represents the indicator variables.
In the context of the recognition problem both quantities represent the solution to the labelling
problem; however, the probabilistic interpretation is different in each case.)

An algorithm for estimating the parameters of a mixture distribution from unlabeled data is
the Ezpectation Mazimization (EM) algorithm. The EM algorithm has been described in detail by
Demster et al. [3] and Redner and Walker [16] (see also Nowlan [13]). The EM algorithm attempts
to compute the most likely values for the parameters of the component density functions and the
mixture coefficients from the observable data alone. The algorithm estimates the statistics of the
unobservable indicator variables and uses these estimates to improve the parameter estimates. If
the data were labeled, the EM algorithm would just compute the maximum likelihood estimates
for the unknown quantities. For unlabeled data, for each iteration, in a first step (the E-step) the
expected value for the indicator variables are determined from the data given that the current values
for the parameters of the density functions. Then, in a second step (the M-step) new maximum
likelihood estimates for the parameters are computed but instead of using the true coeflicients, the
estimates of the indicator variables from the E step are used. This amounts to weighting each
component density with the current estimate of the corresponding indicator variable. Note that for
the recognition problem, only the indicator variables denoting the part labels and the estimate for
x are of interest (it would not be meaningful to estimate the mixture coefficients and the offsets d;
from a single exemplar).

For the mixture density from equation (16), the log-likelihood for the complete data pairs can
be written as [3, 13]:

log P(x, M[0) = ZE my; (log Pi(x;[6;) + log P(m;i|©)) (19)
I
where
Pi(xj18) = e b (<40 (20)
and
P(m;;|0) =1/n (21)

denotes the prior density for the indicator variables before the data arrives, and is assumed uni-
form for the recognition problem. (Note that this ignores the requirement that for the problem
considered here M must be a permutation matrix, i.e. that individual rows cannot be chosen in-
dependently. This constraint could be included by constructing a prior (Gibbs) distribution from
the corresponding penalty term.)

The algorithm consists of two steps. During the E-step, estimates of the indicator variables
are computed given the observed data and the current parameters. Here, these estimates are the
conditional probabilities that observation z; belongs to the i component density. Thus (via Bayes

theorem)

(mji) = p(mjilx;,0)
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pi(x;0:)
> pi(x161)

Note that due to the normalization, the sum constraint for mixture coefficients is always satisfied.
The M-step consists of computing the most likely parameter values given the estimates of the
indicator variables. Each of the component distribution contributes weighted by the estimated
mixture coefficient for each data point.
Here, we are only interested in the estimate for the cluster position X from a single image:

ZZ M -0 (23)

ox

(22)

and after substituting equations (22) and (20)

e(—1/20%) %, — (X'~ +di) 2

— ZZ 0.2 E 1/202)|x] (xt J+dk)|2

x; — (X' +d;)| =

Consecutive iterations of the algorithm proceed as follows. The current parameter estimate (%'~!

from the previous M-step) is used to compute (m?;) at iteration . Then the solution of (24), X* is

found. The algorithm alternates between the E and the M-step until the final solution is found.
The solution for the indicator variables m;; is not necessarily binary. In the context of a recog-

nition problem, an annealing temperature can be introduced (similar to the Mean Field Annealing

methods) to force a binary solution using

lim eBz; _ { 1 if z; >.-Ti Vi#yg (25)

B—oo Y, 3, eBwi 0 otherwise

3.3 Comparison to Mean Field Methods

Note that the form of the EM equations is identical to the Elastic Net equation (13). This is not
surprising since the Mean Field Approximation replaces the binary assignment coefficients with
their mean value and thus performs an operation equivalent to the E step of the EM algorithm for
binary valued assignment coeflicients.

Note however, that the probabilistic interpretation of the assignment variables m;; differs. In
the original formulation of the stochastic grammar, no probabilistic formulation for the elements
of the permutation matrix M exists; they represent a deterministic renumbering operation. They
are interpreted as random variables only trough the Mean Field method which regards them as
Markov Random Field (MRF) corresponding to the assumption that the governing distribution
is Gibbsian. In particular, each element m;; is considered a independent random variable, no
notion of a conditional density is introduced and consequently, the sum constraints are expressed
as additional terms in the distribution derived from the corresponding penalty terms.

The mixture model includes the assignment variables in the form of mixture coeflicients in the
model. Also, the model distinguishes between the prior density as specified for the generative model



and the posteriori estimates computed for the recognition problem. This becomes important in the
context of learning where the EM algorithm still would calculate the posteriori estimates (if the data
is unlabelled) but in this case these would just be auxiliary variables used in learning the mixture
coeflicients throughout the compositional hierarchy. By regarding the assignment coeflicients as
being probabilities throughout the calculation, they obey the sum constraint without the need to
introduce penalty terms (however, the row sum constraint is not automatically satisfied since it
corresponds to a correlation of mixture coefficients for different parts z; and thus is not included
in the model described here).

As a maximum likelihood technique, the EM algorithm does not include the notion of a com-
putational temperature 7. It can still beneficial to perform deterministic annealing since the
optimization problem is multi-model and only local convergence is guaranteed. Also, as mentioned
above, in the context of the recognition problem annealing can be used to force a binary solution.
It is known that the model’s coefficients are binary (as in the example used here), one can regard
this as an alternative to explicitly including a penalty term to that effect.

The important difference between the EM algorithm and the Mean Field networks is that
while in the later, the calculation of parameters estimates and assignment coefficients proceed
concurrently, the EM algorithm alternates between the E-step and the M-step. That is, given
the correct estimate of the parameters, new estimates for the assignment coefficients are computed
using (22). Then, holding these estimates constant, new estimates for the parameters of the density
functions are computed. Switching back to the E-step, the estimates for the assignment coeflicients
are not updated starting from their old value, but computed anew based on the new parameters
estimates from the previous M-step. Thus, while the form of the Mean Field equations is identical to
the EM equations, each iteration of the EM algorithm involves completely solving the optimization
problem of estimating x. While the Mean Field methods update M and x concurrently, with the
EM algorithm, new estimates for M are computed only after the values for the parameters x have
converged at each intermediate stage.

The optimization problem with respect to the assignment variables is difficult due to many
local minima but the optimization with respect to the parameters is quadratic (for the Gaussian
distributions used here) and thus much easier to solve. By solving this easier problem at each stage
and then computing new estimates for the assignment coefficients, the EM algorithm can compute
these based on a more accurate estimates of the parameters.

An approximation to the behavior of the EM algorithm would be to update the assignment
variables more slowly by using a larger time constant for their dynamics. Since the optimization
problem for the parameters is easier, presumably a solution can be found faster than for the
assignment coeflicients. Assuming some continuity in the space of solutions, by updating the
assignment coefficients more slowly than the parameters, the later can track the solution. On the
other hand, the assignment coeflicients avoid local minima by allowing the parameters to stay close
to their optimal value.

In the context of the mixture density model and the EM algorithm, the Bootstrap method
described by Utans and Gindi [20, 19, 21] can be interpreted as the first (or first few steps) of the
EM algorithm. There, it was proposed to improve convergence in hierarchical matching networks by
initializing the parameter estimates from a coarse scale version of the input image. In the case of a
single object, this was shown to be equivalent to computing parameter estimates via the Mean Field
equations in the limit for large temperatures. For high temperatures, the assignment coefficients
are equal to 1/n, i.e. all assignments are weighted equally. This corresponds to using the prior
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Figure 2: Performance Results comparing the EM algorithm (solid line) to a Hopfield type match network. The
performance of the EM algorithm is comparable to the that of the Elastic Net for this problem. The success rate
indicates the rate at which the network converged to the correct solutions. oF denotes the noise variance at the
intermediate level of the model and o3 the noise variance at the lowest level. Only one set of 10 experiments (for each
variance value tested) was used for the graph but in all simulations performed the EM algorithm proved to converge
more robustly.

probabilities for the assignment coeflicients as the values to use in the first M-step to compute
initial parameter estimates. Then, using these estimates, the assignment coefficients are updated
(corresponding to the second E-step). However, both are updated concurrently after initialization.

As a final comment, while the mixture formulation appears more consistent by including the
assignment coefficients in the probabilistic framework from the beginning, methods based on the
Mean Field approximation can be more flexible for solving constrained optimization problems in
general. In the general case, where the constraints do not directly correspond to a sum constraint,
a formulation in terms of conditional densities will not preserve that constraint. The Mean Field
methods, by treating the binary variables as independent random variables and only later incor-
porate constraints be means of modifying the partition function in the Gibbs distribution, can
potentially deal with other constrains as well. Also, since the way the partition function is mod-
ified is at the will of the network designer, more that one way can exist to incorporate a given
constraint, allowing a choice that best maps the constraint onto a neural network architecture (i.e.
choosing the functional form that is optimized most easily).

3.4 Simulation Results

The EM algorithm has been implemented for a 3-level hierarchical model for dot configurations
(see [9]). In an intermediate step, dot cluster centers x. are placed, the final dot position are taken
relative to these centers. The parameters to be estimated are x and the {x.}. Figure 2 compares
the performance of the algorithm to a Hopfield match network as the noise variance is increased
(c# denotes the noise variance at the intermediate level of the model and ¢ the noise variance at
the lowest level). For the simulation, 02 = 20%; the noise variance was identical for all parts.

The performance of the EM algorithm is comparable to the that of the Elastic Net for this
problem. The network computed the correct solution more reliably for large noise variances. In
such cases the performance of the Hopfield match network deteriorates rapidly.
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