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Abstract
We extend the recent approach of Papadimitrou and Yannakakis that relates the
approximation properties of optimization problems to their logical representation.

Our work builds on results by Kolaitis and Thakur who sytematically studied the
expressibility classes MAX ¥, and MAX II,, of maximization problems and showed
that they form a short hierarchy of four levels. The two lowest levels, MAX ¥y and
MAX 3¥; coincide with the classes MAX SNP and MAX NP of Papadimitriou and
Yannakakis; they contain only problems that are approximable in polynomial time
up to a constant factor and thus provide a logical criterion for approximability. How-
ever, there are computationally very easy maximization problems, such as MAXIMUM
CONNECTED COMPONENT (MCC) that fail to satisfy this criterion.

We modify these classes by allowing the formulae to contain predicates that are
definable in least fixpoint logic. In addition, we maximize not only over relations
but also over constants. We call the extended classes MaX XFF and Max IIFY. The
proof of Papadimitriou and Yannakakis can be extended to MAX X'P to show that
all problems in this class are approximable. Some problems, such as MCC, descend
from the highest level in the original hierarchy to the lowest level MAX X5F in the
new hierarchy. Thus our extended class MAX %P provides a more powerful sufficient
criterion for approximability than the original class MAX ¥;.

*Mathematisches Institut, Universitit Basel, Rheinsprung 21, CH-4051 Basel, Switzerland,
graedel@urz.unibas.ch
'EECS Department, University of Michigan, Ann Arbor MI 48109-2122, U.S.A., kjc@eecs.umich.edu



We separate the extended classes and prove that a number of important problems
do not belong to MaX XFP. These include MAX CLIQUE, MAX INDEPENDENT SET,
V-C DIMENSION and MAX COMMON INDUCED SUBGRAPH.

To do this we introduce a new method that characterizes rates of growth of average
optimal solution sizes. For instance, it is known that the expected size of a maximal
clique in a random graph grows logarithmically with respect to the cardinality of the
graph. We show that no problem in MAX ' can have this property, thus proving
that MaX CLIQUE is not in MAX P, This technique is related to limit laws for
various logics and to the probabilistic method from combinatorics. We believe that
this method may be of independent interest.

In contrast to the recent results on the non-approximability of many maximization
problems, among them MAX CLIQUE, our results do not depend on any unproved
hypothesis from complexity theory, such as P # NP.
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1 Introduction

Although the notion of NP-completeness was defined in terms of decision problems, the
prime motivation for its study and development was the apparent intractability of a large
family of combinatorial optimization problems. NP-completeness of a decision problem rules
out the possibility finding an optimal solution of the corresponding optimization problem in
polynomial time unless P = NP. It does not exclude, however, the possibility that there are
efficient algorithms which produce approzimate solutions. In fact, for many optimization
problems with NP-complete decision problems, there are simple and efficient algorithms
that produce solutions differing from optimal solutions by at most a constant factor. For
some problems, there even exist so-called polynomial-time approzimation schemes (PTAs),
which produce approximate solutions to any desired degree of accuracy. For other problems,
notably the Traveling Salesperson Problem, there do not exist efficient approximations
unless P = NP (see [10]). Until now the “structural” reasons for the different approximation
properties of NP optimization problems have not been sufficiently understood.

Papadimitriou and Yannakakis [21] provided a new perspective by relating the approx-
imation properties of optimization problems to their logical representation. Exploiting
Fagin’s characterization of NP by existential second order logic [9], they defined two classes
of optimization problems, MAX SNP and MAX Np, and showed that all problems in these
classes are approximable in polynomial time up to a constant factor. They also identified
a host of problems that are complete for MAX SNP with respect to so-called L-reductions,
which preserve polynomial-time approximation schemes. Very recently, the classes MaXx
SNp and MAX NP have received a lot of attention due to results by Arora et al. [2] showing
that problems which are hard for MAX SNP cannot have a Pras, unless P = NP.

We present the syntactic criterion of Papadimitriou and Yannakakis in the more general
form and notation provided by Kolaitis and Thakur [15].

Definition 1.1 Recall that X, (respectively II,,) are prefix classes in first order logic, con-
sisting of formulae in prefix normal form with n alternating blocks of quantifiers beginning
with 3 (respectively V). The classes MaX X, (respectively Max II,,) consist of maximiza-
tion problems ) whose input instances are finite structures A of a fixed signature o, such
that the cost of an optimal solution of ¢) on input A is definable by an expression

oplg(4) = max|{z : A |= ¥(z, 5)}

where 9(z,5) is a Y,-formula (respectively a II,-for mula) and where $ are predicate
variables not contained in o.

Examples.

1. Max Cut (MC) is the problem of decomposing the vertex set of a given graph G
into two subsets such that the number of edges between them is maximal. It is in
Max Yg:

optuc(G) = max[{(z,y): G = Ezy A (Uz = =Uy)}].

2. MAX SAT is the problem of finding an assignment that satisfies the maximal number of
clauses in a given propositional formula in CNF. Such a formula can be represented by



a structure }' = (U; P, N) with universe U consisting of the clauses and the variables,
and with binary predicates P and N where Pzy and Nzy say that variable y occurs
positively, respectively negatively in clause z. MAX SAT is in MaAX ¥; with the
defining expression

oplo(F) = max [{z : I = (3y)((Sy A Pey) V (=5y A Nay))}].

Kolaitis and Thakur proved that MAX SAT ¢ MAX Y.

3. Max CLIQUE is the problem of finding a clique of maximal size in a graph. The size
of such a clique in G is usually denoted by w(G). Max CLIQUE is in MaX II; because

w(G) = max {z:G = Cae AN(Vy)(V2)(CyANCz) — (y =2V Eyz)}|

It follows by simple monotonicity arguments [20] that MAX CLIQUE is not in MAX Y.
Note that by very recent results in [2], there exists an ¢ > 0 such that the Max CLIQUE
problem cannot be approximated in polynomial-time within a factor of n®.

The syntactic criteria for MAX SNP and MAX NP used by Papadimitriou and Yannakakis
are those for Max Yo (where ¥(z, ) is quantifier-free) and for Max X; (where ¥(z,5) is
existential). However, two remarks about the definitions of these classes should be made.
First, the definition of MAX 3, as given above is not really sufficient to establish that all
problems in MAX ¥ are approximable up to a constant factor, at least if approximability
means — as usually understood — that we can actually find in polynomial time a nearly
optimal solution. The criterion as given by Definition 1 only allows us to determine the cost
of an optimal solution up to a constant factor. We will therefore propose a modified notion
for the logical representation of an optimization problem which requires that the formula
models (in some sense to be made precise later) all feasible solutions of the problem, and
not just the cost of an optimal one.

Second, it should be noted that in most papers the definitions of the classes MaX Snp
and MAX NP have been interpreted differently than what was originally intended in [21].
While most authors (see [11, 16, 19, 20]) understood MAX SNP, respectively MaX NP to be
precisely MAX Yo and MAX ¢, Papadimitriou and Yannakakis actually had in mind their
closures under the appropriate reductions (although they did not really make this clear;
but see the remark in [22]). In particular, these extended versions of Max SNP and MAX
NP can also contain minimization problems. Kann [13] defines yet another, intermediate
version of MAX SNP.

We think that these different classes all have their merits, but it is important not to
confuse them. The “pure” syntactic classes are interesting because they provide a logical
criterion for approximability, and provide an opportunity to prove results about optimiza-
tion problems using tools from logic (or, more precisely, finite model theory). In logic we
have lower bound techniques that have no counterpart in computational complexity theory.
In many cases these techniques (e.g. monotonicity arguments, Ehrenfeucht-Fraissé games
and limit laws) show that a problem does not satisfy a certain syntactic criterion, and thus
establish separation and hierarchy results among the syntactic classes (without referring to
unproved hypotheses from complexity theory). On the other hand, the closure classes may



be appropriate if one is interested in pure complexity results. But closing syntactic classes
under a class of reductions that are defined in terms of computational complexity, rather
than logical definability, precludes the use of the logical techniques.

This paper is about syntactic classes. One of our goals was to find a more general syntac-
tic criterion for approximability than the one provided by Papadimitriou and Yannakakis.
This is achieved using other results from finite model theory than just Fagin’s theorem, in
particular the close connection between fizpoint logic and polynomial-time computability.
To avoid confusion, we will use the names MAX Yo and MAX X, introduced by Kolaitis
and Thakur, rather than MAX SNP and Max Np.

Kolaitis and Thakur [15, 16] systematically investigated the logical expressibility of
optimization problems. They proved that the class MAX PB, consisting of all polynomially
bounded maximization problems, coincides with MAX IlI; and that there is proper hierarchy
of four levels.

Theorem 1.2 Max ¥y C Max Y; € Max II; € Max II; = Max PB.

It is interesting that the classes MAX II; and Max II; are separated by MaxiMmuM CON-
NECTED CoMPONENT (MCC), the problem of finding a connected component of maximal
cardinality in a graph. This optimization problem is clearly solvable in polynomial time.

Remark. Surprisingly, the situation for minimization problems is not dual to the one for
maximization problems. There is a proper hierarchy of only two levels:

MIN ¥g = MIN ¥y C Min II; = MIN PB.

Moreover, even the lowest class MIN Yo contains non-approximable problems. However,
Kolaitis and Thakur [16] did isolate a different class (called MiN F*1I;) all whose problems
are approximable. This class is a proper subclass of MIN Y.

New expressibility classes of optimization problems. In this paper we extend the
classes Max Y; and MaAX II; in several ways. Most importantly we allow the formulae to
contain relations definable in least fixpoint logic. In addition, we maximize not only over
relations but also over constants. We call the extended classes Max XY and Max IIFY.
The proof of Papadimitriou and Yannakakis can be extended to Max NP to show that
all problems in this class are approximable. Some problems, such as MCC, descend from
the highest level MaX II; in the original hierarchy to the lowest level Max XfF in the new
hierarchy. Thus our extended class Max X5 provides a more powerful sufficient criterion
for approzimability than the original class MAX Xy of [21]. However, we also prove that
even MAX E?P does not contain all approximable problems; in fact, it does not even contain
all polynomial time optimization problems. We discuss the question of how far the class
MAX ¥, can be extended while preserving approximability. For instance we show that we
cannot allow fixpoint definitions (even existential fixpoint definitions) to contain relation
variables over which we maximize.

Separation of the extended classes by the probabilistic method. We separate also
the extended classes; e.g. we prove that

Max BtV € Max B € Max P € Max 5 = Max PB.



Also, we prove that a number of important problems do not belong to Max XIF. These
include Max CLIQUE, MAX INDEPENDENT SET, V-C DIMENSION and MaXx COMMON
INDUCED SUBGRAPH.

To do this we have to use more sophisticated methods than the techniques of [20, 15]
which break down in the presence of fixpoint definitions. We use two alternative methods.

The first method, introduced in the present paper, characterizes rates of growth of
average optimal solution sizes. For instance, it is known [4] that the expected size of a
maximal clique in a random graph of cardinality n grows asymptotically like 2logn. We
show that no problem in Max XY can have this property, thus proving that Max CLIQUE
is not in Max X, This technique is related to limit laws for various logics [8, 17, 18] and
to the probabilistic method from combinatorics [1]. We believe that this method may be of
independent interest.

The second method uses special classes of structures where fixpoint logic has no more
expressive power than quantifier-free formulae. On such classes we can apply monotonicity
arguments that break down on arbitrary finite structures. With this technique we give
an alternative proof that MaX CLIQUE is not in MaxX X{F. We also show that Max
MATCHING is not expressible by existential sentences with fixpoint definitions.

2 Preliminaries

Definition 2.1 An NP optimization problem is a quadruple @ = (Ig,Fg, fg,opt) such
that

o I is the set of input instances for Q).

o Fo(I)is the set of feasible solutions for input I. Here, “feasible” means that the size
of the elements S € Fg([/) is polynomially bounded in the size of I and that the set
{(1,85):85 € Fo(I)} is recognizable in polynomial time.

o fo:{(1,5):5¢€ Fg(l)} — Nis a polynomial-time computable function, called the
cost function.

e opt € {max, min}.

For every NP optimization problem ), the following decision problem is in NP: given an
instance I of () and a natural number k, is there a solution S € Fg([I) such that fo(Z,5) > k
when opt = max, (or fo(/,5) < k, when opt = min).

Let optg(1) := optsery (1) Jfo(1,5). An NP optimization problem is said to be polyno-
mially bounded if there exists a polynomial p such that optg(I) < p(|I|) for all instances
I. We denote by Max PB (MiN PB) the set of all polynomially bounded maximization
(minimization) problems.

Approximation. The performance ratio of a feasible solution S for an instance I of @ is
defined as R(I,S) := optg(I)/ fo(1,5) if @ is a maximization problem and as R(/,S5) :=
Jo(1,5)/opto(I) if () is a minimization problem.



Definition 2.2 We say that an NP optimization problem @) is approzimable up to a constant
factor if there exists a constant ¢ > 0 and a polynomial-time algorithm II which produces,
for every instance I of (), a feasible solution II(/) with performance ratio R(I,1I(I)) < .
APX is the class of all NP optimization problems that are approximable up to a constant
factor.

A weaker notion of approximability that is sometimes used requires only that the cost
of an optimal solution can be approximated; for instance, in the case of MAX CLIQUE it
would only be required that the algorithms approximates the clique number w(G'), not that
it actually finds a nearly optimal clique.

Logical representation of optimization problems. Let () be an optimization problem
whose input instances are finite structures of fixed vocabulary ¢. The definition of the
classes MAX Y, and MAX II,, as given by Kolaitis and Thakur requires only that there
is an appropriate logical definition of optg(A), the cost of an optimal solution. However,
optimization problems can be modelled by logical formulae in a much closer way.

Definition 2.3 A formula ¥(z, S) of vocabulary o U{S1,...,S,} represents Q if and only
if the following holds.

(i) For every instance A and every feasible solution Sy € Fg(A), there exists an expansion

B =(A,51,...,5:) of Asuch that
Jo(A,S0) = [{z : B = ¢(z,9)}.

(ii) Conversely, every expansion B = (A, 51,...,5,), for which the set L = {z : B |
P(z,5)} is non-empty defines a feasible solution Sy for A with fg(A,So) = |L[;
moreover, this solution can be computed in polynomial time from B.

In particular, the cost of an optimal solution for A is optg(A) = max|{z : A |= ¢(z, 9)}|.
S

In all examples that we consider, the feasible solution defined by (A4, 51,...,5,) will
either be one of the S; or the set {z : A |= ¥(z, §)} itself. Lautemann [19] has independently
considered this more detailed logical representation of optimization problems. A more
constructive alternative to Definition 1 might then be the following.

Definition 2.4 MaX XY, is the class of all maximization problems that can be represented
by Y, -formulae. The classes MaAX 1I,,, MIN %, and MIN II,, are defined analogously.

Clearly this definition is more restrictive than the one used by Kolaitis and Thakur. We
think that it is justified by the following observations. First, the more restrictive definition
is necessary to establish the result of Papadimitriou and Yannakakis that MAX ¥; C APX.
Second, on all natural examples in the literature, the two definitions make no difference.
Third, the results of Kolaitis and Thakur, in particular the fact that

Max Yo € Max ¥; € Max II; € Max Il = Max PB

remain true with the more restrictive definition. (However, the proof that Max II; =
Max PB needs some modification.)



All results presented in this paper are true for both possible choices of logical represen-
tation of optimization problems. However, if the more liberal one (modelling only the cost
of the optimal solution) is chosen, then the more liberal definition of approximability must
also be adopted.

Fixpoint logic. It is well-known that the expressive power of first-order logic is limited by
the lack of a mechanism for unbounded iteration or recursion. The most notable example
of a query that is not first-order expressible is the transitive closure (TC) of a relation.
This has motivated the study of more powerful languages that add recursion in one way or
another to first-order logic. The most prominent of these are the various forms of fizpoint
logics.

Let o be a signature, P an r-ary predicate not in o and ¥(z) be a formula of the signature
o U{P} with only positive occurrences of P and with free variables £ = #1,...,z,. Then ¢
defines for every finite o-structure A with universe |A| an operator 14 on the class of r-ary
relations over |A| by

YA P {a: (A, P) = ¥(a)}.

Since P occurs only positively in 4, this operator is monotone, i.e. ¢ C P implies that
YA(Q) C A(P). Therefore this operator has a least fized point which may be constructed
inductively beginning with the empty relation. Set ¥’ := @ and W/t := 4(¥7). At some
stage 7, this process reaches a stable predicate W' = Ut which is the least fized point of v
on A, and denoted by ¥, Since ¥¢ C Wit the least fixed point is reached in a polynomial
number of iterations, with respect to the cardinality of A.

The fixed point logic (FO 4+ LFP) is defined by adding to the syntax of first order logic
the least fized point formation rule: if ¥(Z) is a formula of the signature o U {P} with the
properties stated above and « is an r-tuple of terms, then

[LFPP@ ¢](@)
is a formula of vocabulary ¢ (to be interpreted as ¥ (u)).

Example. Here is a fixpoint formula that defines the transitive closure of the binary
predicate F:
TC(u,v) = [LFPr 4, (z =y) V (I2)(Ezz A Tzy)|(u,v).

On the class of all finite structures, (FO 4+ LFP) has strictly more expressive power than
first-order logic — it can express the transitive closure — but is strictly weaker than PTiME-
computability. However, Immerman [12] and Vardi [23] proved that on ordered structures
the situation is different. There (FO 4+ LFP) characterizes precisely the queries that are
computable in polynomial time. On the other hand, on very simple classes of structures,
such as structures with empty signatures (i.e. sets), (FO + LFP) collapses to first-order
logic.

3 Optimization problems definable by fixpoint logic

The fact that the problem MaxiMum CONNECTED CoMPONENT (MCC) appears only in
the highest level MAX II; of the expressibility hierarchy suggests that we do not yet have



the “right” definitions. After all, MCC is computationally a very simple problem, and it
appears high in the expressibility hierarchy just because first-order logic cannot express the
transitive closure.

It is possible that there will always remain a certain “mismatch” between computational
complexity and logical expressibility. But this mismatch is certainly not as big as the
difference between first-order logic and PTiME. If we base our definitions on fixpoint logic
(or other logical systems that allow recursion) rather than first-order logic, we obtain a
closer relationship between logical and computational complexity.

Definition 3.1 Let ) be a maximization problem whose instances are finite structures
over a fixed vocabulary 0. We say that ) belongs to the class MaAx EfP if there exists
a Y;-formula ¢(z,¢, S, P) of vocabulary o U {S5,¢} (where S and ¢ are tuples of predicate
symbols and constants that do not occur in o) such that

e P = Py,..., P are global predicates on o-structures that are definable in fixpoint
logic.

e the formula ¥(7,¢, S, P) represents ) (in the sense of Definition 2, with the obvious
modifications). In particular, optg(A) = rr;aﬁfo : A= Y(z,¢, 8, P)}.
,C
The classes MAX HfP, Min EFP and MIN HFP are defined in an analogous way.
We insist that the fixpoint-predicates must not depend on the relations S over which
we maximize; we therefore call them predefined fizpoint predicates. (We will discuss this
condition as well as the adequacy of our definitions and possible alternatives below).

The results of Kolaitis and Thakur [15] translate to these extended classes and prove

Proposition 3.2 (i) Max B§F € Max SiF € Max 98P = Max II§Y € Max 1P =
Max PB.
(ii) Min B§F = Miv ©FP € Miv 5P = Miv 15 = Min PB.

In this paper we will concentrate mainly on maximization problems. The increased
expressive power provided by the fixpoint predicates has the effect that some problems
occur in lower levels in the new hierarchy than they did in the original one.

Example. The problem MaxiMmuM CONNECTED COMPONENT belongs to Max XEF. Its
optimum on a graph G = (V, F) is definable by

optmec(G) = mgLX|{x :G = [TC El(e,z)}.

Thus MCC descends from the highest level (Max 1l3) of the original hierarchy to the
lowest level (Max XE¥) of the new hierarchy. This is interesting because, as we will see
in a moment, also the extended class Max Xt (and therefore Max SEF) too) contains
only problems in APX. Thus our approach provides a more powerful syntactic criterion for
approximability than the original class Max Y;. However, we will show that Max Xi'F
does not capture all polynomial-time solvable maximization problems. Let us consider to
what extent our definitions are adequate and discuss some alternatives.



Maximization over constants. Does maximization over constants really give more
power? We prove that it does up to the level MAX EII:P, but that for Max HlfP and
Max II5F, we can do without it.

First of all, maximization over constants avoids trivialities. For instance, Kann [13])
observed that the proof showing that MAX CLIQUE is not in MAX 3; applies even to graphs
whose degree bounded by a constant d, although the problem becomes trivially solvable in
polynomial time. With constants the optimum for Max CLIQUE(d) can be defined (even
without fixpoint predicates) by

Cgla;)c(d |{.T -G |: \Z/w = C; A Zé\j(ECiCj V C; = C])}|

Thus, Max CrLiQue(d) € Max YEP — Max X;. But even in the presence of fixpoint
predicates, constants make a difference, as the following proposition shows.

Proposition 3.3 Max CoNNECTED COMPONENT is not expressible in Max XYY without
mazimization over constants.

Proor. Let G, be the graph with n vertices and no edges. Obviously, optpcc(Gr) = 1
for all n. Moreover, for every fixpoint-definable predicate P, there exists a natural number
ng such that P is in fact Y-definable on {G,, : n > ng}. Therefore, if MCC is expressible in
Max EF without constants, then there is an existential formula ¥(z, ) (without fixpoint
predicates), such that for all n > ng

optmec(Gr) = mgXHf 1Gy | 9(z,9)} = 1.

Choose a tuple @ € G, and predicates S such that G,, = (@, S). Note that G, consists
of two disjoint copies of G.,; let §* be the union of the two copies of S. Existential sentences
are preserved by extensions, so there exist at least two tuples @, satisfying G, = ¥(u, 5*).
This contradicts the fact that optpmec(Gr) = 1. [ |

Another simple problem that requires maximization over constants is the maximal degree

A(G) of a graph, defined by

A(G) = mthl{.f :G E Ecx}l.

Similar monotonicity arguments as above show that A(G) is not definable in Max %P
without maximization over constants.

Proposition 3.4 Every problem in MAX IIFY or Max 1I5Y can be expressed without maz-
imization over constants.

Proor. Constants can be replaced by monadic predicates at the expense of a X-
subformula. An expression

oplg(A) = max|{z : A |= ¢(z,¢, 9)}]

Cy



can be translated into

oplg(A) = I%angf t A = (Ju)(Vo) /\(Civi = v = u;) A(F, 4, 9)}.

K3

The proof of Kolaitis and Thakur [15] that MAX Y, = MAX II; and MAX Y3 = Max 1,
applies also to this case and allows us to eliminate the leading existential quantifiers. [ |

Fixpoint definitions over the new predicates. To strengthen our classes we could
modify the definition of MAX EFP so that the fixpoint predicates might depend also on the
predicates S over which we maximize. In fact, one could propose classes of all maximization
problems ) such that

opl(A) = max|{z : A - (. 5))]

where 9(z,5) is a formula of (FO + LFP), possibly with restrictions on the quantifier
structure. If we stipulate that ¢ (z,S) has the form [LFPg; ¢](#) with ¢ quantifier-free
then we will remain inside MAX 3y because fixpoints over quantifier-free formulae are again
Yg-definable. The next stronger possible class, motivated by the existential nature of the
class Max X is the class Max Erp defined as above with the condition that ¢(z,5) =
[LFP R ¢](u) where ¢ is existential. In particular ¢(z, S) is a formula in ezistential fizpoint
logic [3] or, equivalently, a query in Datalog(-), i.e. Datalog with negations over the EDB-
predicates [14]. However, this class is already too expressive.

Proposition 3.5 If P # NP, then Max E¥p contains non-approzimable problems.

Proor. We consider the following variant of circuit satisfiability. A circuit is described
by a finite structure C' = (V, E, I, out) where (V, E) is a directed acyclic graph, I C V is
the set of sources (vertices with no incoming edges) describing the input nodes, every node
in V — I has fan-in two, and out is a sink (no outgoing edges). Every non-input node is
considered as a NAND-gate and out is the output node. Every subset 5 C [ defines an
assignment to the input nodes, and therefore a value fc(S5) € {0, 1}, the value computed
by C for input §.
Now the circuit-satisfiability problem is

Circulr-SaT := {C : (35 C 1) fe(S5) = 1}.

Since a Boolean formula is a special case of a circuit, it is clear that CIRCUIT-SAT generalizes
SAT and is therefore NP-complete.

On the other hand, we can construct a formula ¢(9) in existential fixpoint logic such
that

CE$(8) < fo(S) = 1.

We can assume that we have two distinct constants 0 and 1 available. Then

P(9) = [LFPp s ¢(S5, B, z,1)](out, 1)



where (5, B, z,t) is the disjunction of the subformulae

Te ANSzAhe=1

Iz A=SzANi=0

i =1A(Jy)(Eyz A By0)

i =0A(Jy)(3z)(Eyz AN Ezz A Byl A Bz1)

Note that ¢(S, B, z,7) inductively defines the predicate Bzt saying that the value computed
by C at node z is 1.
We now can define a problem ) € Max Erp by

opla(C) = max [{z : C | ¥(5)}].

Note that z does not occur freely in %, so oplg(C) = |V| if €' € CircuIT-SAT and
optg(C) = 0 otherwise. Therefore, if () were approximable up to any constant ¢ > 0,
then the corresponding approximation algorithm would solve the CiRCUIT-SAT problem,
and it would follow that P = NP. [

Maximization over total orderings. Papadimitriou and Yannakakis [21] proposed an-
other direction for generalization: to maximize over total orderings. A natural problem
expressible in this way is MAX SUBDAG: given a digraph G, find an acyclic subgraph of G
with maximal number of edges. The expression defining the optimum for this problem is

oplg(G) = m<ax|{(x,y) G = FEeyhz <y}

This suggests the following definition.

Definition 3.6 For every class M, as defined in Definitions 2 or 3, let M (<) defined in the
same way as M, except that some of relations over which we optimize are binary predicates
<1,<2,..., which do not run over all binary predicates, but only over total orderings of the
given structure. We write the defining expression of an optimization problem in M (<) on
an input structure A as

oplg(A) = opt |{z: A | (2,¢,<, 5, P)}.
5,c

Al

As remarked in [21] this feature does not destroy approximability: Max XiF C APX.
(We prove a more general fact below.)
Note that for classes MaX 1I; and above, maximization over orderings does not increase

the expressive power, because total orderings are axiomatizable by IIi-formulae. Thus
Max II;(<) = Max II; and Max II§P(<) = Max TIEP, etc.

Maximization over general classes of relations. How far can we generalize the idea
of the previous paragraph? Instead of just maximizing over orderings, we could maximize
over any specified class of predicates. Let C = Cy, .. .,Cq where each C; is a class of relations
of some fixed arity r;. We now maximize over tuples S = Si,..., 5, of relations, subject to

10



the condition that §; € C;. The expression defining the cost of an optimal solution then has
the form
Oth(A) = opt H{z: A ¢(z,¢.5, P)}.
SeC,c

For any class M of Definitions 2 or 3, and any C, this defines a new class M(C). The
classes M (<) are special cases.

In view of our goal to find a good criterion for approximability, we ask what condition C
must satisfy so that problems in Max XIF(C) be approximable. We give such a condition
here, and prove a general form of the Theorem of Papadimitriou and Yannakakis.

Definition 3.7 For every n € N, let C(n) be a class of relations of fixed arity r over n and
let C = U, C(n). We say that C is well-behaved if for every k € N there exists a number
e(k) > 0 such that for all » and for any set of conditions aq,...,a; of the form S(u) or
=(Su), (where uw are r-tuples over n) the probability that a; A --- A ay is satisfied by a
randomly chosen relation S € C(n), is computable in polynomial time, and is either 0 or at

least e(k).

Examples.
o The class of all r-ary relations is well-behaved with (k) = 27*.

o If we fix, in a consistent manner, an ordering on k pairs of elements then there are
at least n!/(2k)! ways to extend this to a total ordering. Thus, the class of all total
orderings is also well-behaved with e(k) = ((2k)!)~"

e The class of unary functions, represented by binary relations, is not well-behaved. If
we fix one value f(u) = v, then the probability that a function on n satisfies this
condition is 1/n.

o The class & = [J&(n) of equivalence relations is not well-behaved. An equivalence
relation on n satisfies a condition w ~ v with probability |E(n — 1)|/|E(n)|. The
asymptotic estimate for |£(n)| (called the n-th Bell number) developed in [7] proves
that his quotient tends to 0 as n goes to infinity.

A tuple C of well-behaved classes is again well-behaved, in the sense that the probability
that any k& atomic formulae S;(u) or =.5;(u) are satisfied has the properties required by
Definition 3.

Theorem 3.8 If C is well-behaved then every mazimization problem in MAX EfP(é) s
approzimable up to a constant factor.

Proor. Let ) be a maximization problem, such that for all input structures A € Ig

optq(A) = max {z : A |= (39)¥(z,9,¢, 5, P)}
SeC,c

where ¢ is a quantifier-free formula with predefined fixpoint predicates P. Fix an input
structure A of cardinality n. The fixpoint predicates can be evaluated in polynomial time,
so we may assume that they are part of the input, and not worry about them anymore.

11



Moreover, there are only polynomially many possible tuples ¢, so we can compute the
optimum for each of them separately; thus we can assume that the value of ¢ is fixed. To
enhance readability we drop P and ¢ and write ¥(z, 7, 5) in the sequel.

We consider the class C(n) as a probability space Q with uniform distribution. Define
the random variable X4 on Q by

XA(8) = [{u: A £ (3y)d(u,g, ).

Obviously optg(A) = max(X4) > E(X#) where E(X4) is the expected value of X4.
Note that X4 can be written as the sum of the indicator random variables

XA(5) = { 1 if A= (39)9(a, 3, 5)
0 otherwise
By linearity of expectation E(X4) = Y, E(X2). In this sum we can discard those Xz
which are identically 0, so let

B :={u: X240} ={a: A= (39)¢(a,7,5) for some S € C(n)}
Now
E(XA = Y E(X$) <|BY.
ueBA
Fix @ € BA. There exist predicates 5* € Q and a tuple v such that A |= ¥(u,v,5%).
This formula depends only a fixed number ay,...,a; of S-atoms, and every tuple 5§ € Q
respecting the values of ay, ..., ay, on S* will also satisfy ¥(%, v, S). Since C is well-behaved,

the probability that a randomly chosen S has this property is at least ¢(k). Thus, E(X2) >
e(k) for every w € B4, This implies

[BA] > max(X4) > B(X4) > (k)| BA
and, in particular, E(X4) > ¢(k)optg(A).
It remains to prove that an assignment S* € Q with X4(S*) > E(X#) can be found in

polynomial time. Enumerate all atoms S;(u) as a1, ..., a,,. Clearly m is a polynomial in
n. We determine truth-values for aq, ..., a,, as follows.
Suppose values for ay,...,a; are already computed, and let §; be the conjunction of

those a; and - (for j < 7) that have been set to TRUE. Now we define a;41 to be TRUE if
E(XA(B: Aaig1)) > B(XA(B; A =aipr))

and FALSE otherwise. Note that these conditional expectations can be computed in poly-

nomial time, by the same arguments as in the first part of this proof and because C is
well-behaved. At the end, 3,, determines relations 5, so E(X4|3,,) = X4(5*). Note that

E(XAB3:) = Plaip|B)E(XA(Bi A ais1)) + P(maip1|8) E(XA(8i A ~aig1))
< E(XHBis1)

where P(a;41|8;) is the conditional probability that a;y; holds, given that 3; is TRUE. In
particular

E(X") = E(X*|6o) < E(X[Bn) = X(5%).
This technique for “derandomizing” a probabilistic argument is well known. Alon and
Spencer [1] call it the method of conditional expectations. [ |
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4 Probabilistic methods

Let () be an optimization problem whose input instances are finite structures over a fixed
vocabulary 0. We now consider the behaviour of optg(A) on a randomly chosen o-structures
A. Fix n and let © be the probability space of all o-structures over universe n, with uniform
distribution; then oplg is a random variable on (} whose expected value is denoted by
E(optg).

We will establish a probabilistic (necessary) criterion for membership in Max %P, In
fact it holds for any class MAX EfP(é) provided that C is Yj-axiomatizable. In particular,
our criterion applies to MAX X1F (<), since linear orderings are in fact 1l;-axiomatizable.

Theorem 4.1 (Probabilistic criterion for Max XIF) Let Q be a problem in Max BEF(C)
where C is Ng-aviomalizable. Then there exists a polynomial p(n) and a constant e > 0 such
that

p(n) > E(optg) > ep(n)

or E(oplg) decreases to 0 exponentially fast as n goes to infinity.

Before we prove Theorem 4.1, we assemble some results from the theory of asymptotic
probabilities that we need. As usual, we denote by u,,(¢) the probability that the sentence
1 is true in a random structure with universe n.

Fact 4.2 For every formula ¢(Z) in fizpoint logic, there exists a quantifier-free first-order
formula o(z) and a constant ¢ > 0 such that

Ha((V)[p(2) = a(@)]) > 1 - ¢

for large enough n.

In fact this result is true even for stronger logics than fixpoint logic, e.g. the infinitary
logic L% ,. It is essentially Theorem 3.13 in [18]. The second fact that we need is a
generalization of the 0-1 law for strict Y}-sentences, due to Kolaitis and Vardi [17]. Strict
Y{-formulae have the form (3.5)(3y)(Vz)p where ¢ is quantifier-free. A dyadic rational is a
rational number whose denominator is a power of two.

Fact 4.3 Let ¢(Z) be a strict X}-formula with free variables T = x1,...,xy. For every k-
tuple w € N¥, there exists a dyadic rational py, such that p,(1¥(w)) tends to py exponentially
fast. Moreover, pg only depends on the equality type of uy,...,ur (not on u itself).

Finally we will need a Lemma about binomial distributions b(n, k, p) := (Z)pkq”_k where

0<p<Lland g=1-p.

Lemma 4.4 Ife > 0 and k > (14 ¢)pn, then b(n,k,p) tends to 0 exponentially fast as n
goes to infinity.

For a proof, see [4, p. 10] or [1, Appendix A].

13



Proor oF THEOREM 4.1. Let @ € Max X¥P(C). We first assume that optg can be
expressed without maximization over constants, i.e. that there exists a ¥;-formula ¥(z, 5)
(with predefined fixpoint predicates) such that

opig(4) = max |{z : A }= 9(z, 5)}1.

The proof of Theorem 3.8 shows that for some constant € > 0, |BA| > optg(A) > ¢|B4|

where - B
BA={u:Ak=(35€C)y(uS)}.

On Q, we define the random variable X (A) := |B4|. It follows that E(X) > E(optg) >
eE(X). It suffices to prove that E(X) converges to a polynomial F(n). We write X as the
sum of the indicator random variables

o~ pA
0 otherwise

By linearity of expectation, (X ) = >, E(Xz). Let a(S) be a Yy-axiom for C. Then

E(X3z) is the probability that the formula

n(w) = (35)(a(5) A ¢(a, §))

holds on a random structure with universe n. Fact 4.2 tells us that except on a exponen-
tially decreasing fraction of structures, the predefined fixpoint predicates are definable by
quantifier-free formulae. If we substitute them into 7(#), then we obtain a strict ¥1-formula
o(u) such that, for some constant ¢ > 0,

E(Xq) = ma(p(@)] < ™.

Now, by Fact 4.3, the probability u,(¢(@)) converges exponentially fast to a dyadic
rational p; which only depends on the equality type of w. If k is fixed then the number of
equality types of k-tuples is also fixed; moreover, the number of k-tuples of equality type
e over n is a polynomial f.(n). Let p. be the asymptotic probability of ¢(u) for tuples of
equality type e. It follows that £(X) converges exponentially fast to the polynomial

F(n) =) pefe(n).

With maximization over constants, the situation becomes more complicated. We now
have

opto(A) = max H{z : A= o(z,¢, 9)}.

)

To establish Theorem 3.8 we fixed for every input structure A an optimal tuple ¢ which
then was considered as part of the input. Since ¢ depends on A this no longer works when
A is a random input. Therefore, let

BA(e):={z: A= (35 € O)v(u,¢c, 5)}.
On every input structure A we then have

max | BA(¢)| > optg(A) > e max|BA(¢)]
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for a fixed constant ¢ > 0. Let X := max; |B4(¢)|; it suffices to prove that there exists a
polynomial F(n) such that E(X) ~ F(n).

As above, we find a strict 21-formula ¢(¢, 7) such that, for any fixed (¢, @), the expecta-
tion that u € B4(¢) is exponentially close to the asymptotic probability of ¢(¢, #). Again,
the asymptotic probability of ¢(¢, ) is a dyadic rational that depends only on the equality
type of (¢, u).

Let D be the set of equality types of ¢ in n; clearly, the size of D is bounded (inde-
pendently of n) and the cardinality of every d € D is a polynomial f;(n). Each equality
type e of tuples (¢, ) is an extension of an equality type d € D; we write d < e when this
occurs. If ¢ € d < e, let U.(¢) = {u : (¢,u) € e}. The cardinality of U.(¢) is described
by a polynomial g.(n) (which depends only on e). We denote the asymptotic probability
of p(c,u) (for (¢,u) € e) by p.. If ¢ € d is fixed, then the arguments in the first part of
this proof show that E(|BA(¢)|) = 34« E(|BA(¢) N Ue(e)|) converges exponentially fast to
Gg(n) := 344, Pege(n) which is a polynomial. Eventually one of the G4(n) will dominate
all the other ones, so asymptotically F(n) := maxgep G4(n) is a polynomial. This implies
that

B(X) = Blmax |BA@)) > max B(BA@)) ~ max 3 pege(n) = F(n).
d<e

It remains to prove that asymptotically E(X)/F(n) < 1+ ¢ for every ¢ > 0. We first
prove a Lemma.

Lemma 4.5 Let d € D and d < e. Then, for every ¢ > 0, the probability that there exists
a tuple ¢ € D such that

|BA(©) N U(e)] > (1 + €)pege(n)
tends to 0 exponentially fast.

Proor. Fix k = k(n) and define the random variable Y (A) to be the number of tuples
¢ € d such that BA(¢)NU.(¢) has cardinality k. We can write Y as the sum of the indicator

random variables ] Are _
Voo(a)= {1 11U =BAON (o)
0 otherwise

where ¢ has equality type d and U is a subset of U.(¢) of cardinality k. Let m := g.(n),
p:=pe and ¢ := 1 — p. Markov’s inequality and linearity of expectation give

P(Y > 1)< E(Y)= Y E(Yap) = fu(n) (’;‘) pg™F = fa(n)b(m, k, p).

U

By Lemma 4.4, if £ > (14 ¢)pm = (1 + €)pege(n) then b(m, k,p) converges to 0 expo-
nentially fast. Thus the same holds for the probability that there exists a tuple ¢ for which
|BA(€) N U.(€)] exceeds (1 + &)pege(n). |

Suppose that E(X) > (1 4 ¢)F(n). Then there is a constant ¢ > 0 such that there
exists with non-negligible probability at least one tuple ¢ (of equality type, say, d) with
|BA(€)] > (1 + ¢)Gg4(n). But then there must exist an extension e of d such that with
non-negligible probability there is a ¢ with |BA(¢) N Uc(¢)| > (1 4 €)pege(n).
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The Lemma just proved shows that this is not the case. This proves the theorem. [ |

Applications. As usual in graph theory, let w(G), a(G) and x(G) denote the size of a
maximum clique, the size of a maximum independent set and the chromatic number of a
graph G. We use the following results from the theory of random graphs (see [1, 4]).

Fact 4.6 (i) E(w)= E(a)~ 2logn,
(ii) B(x) ~ n/(2logn).

Together with our probabilistic criterion, this implies that MAaXx CLIQUE and MAX
INDEPENDENT SET are not in Max P (<),

There are other important maximization problems ¢ for which E(optg) does not grow
like ©(p(n)) for any polynomial p(n), and which therefore are not in Max ¥i¥(<). Exam-
ples include the following.

V-C DIMENSION. Given a collection 57, ..., 5, of subsets of a finite set M, find asetT' C M
of maximal cardinality which is shattered by S57,...,5,, (this means that every subset of
T occurs as T'N S; for some ¢). The cardinality of 7" is called the Vapnik-Chervonenkis
dimension of 51, ..., 5,; it plays an important role e.g. in learning theory. We can represent
a collection S7,..., 5, of subsets of n by a binary predicate S over max(n,m) such that
Si={j: (l,]) €5}.

Max ComMoN INDUCED SuBGraPH (MCIS). Given two graphs G and H, find a graph
of maximal cardinality which is an induced subgraph of both G and H.

Max CriQueE MiNnor (MCM). Given a graph G, find a clique of maximal size which is
a minor (i.e. a contraction of a subgraph) of G. The size of such a clique is called the
contraction clique number of G, abbreviated ccl(G). It is known [5] that for all almost all

graphs, ccl(G) ~ n(logn)~1/2,

LoNGEST CHORDLEsSS PaTH (LCP). Given a graph G, find a set V of nodes, as large as
possible, such that G|y is a simple path.

Note that to apply the probabilistic criterion to these (and other) problems, it is not
necessary to determine E(optg) explicitly. Theorem 4.1 implies the following proposition.

Proposition 4.7 Let Q be a maximization problem. If, over the probability space 0 of all
o-structures with universe n,
1 < E(optg) = o(n)

then Q ¢ Max %P (<).

In fact, if we can show that for all € > 0, the probability that oplig(A) > ¢|A| tends to
0 exponentially fast then E(optg) = o(n) follows because optg is polynomially bounded.

There is a large class of graph problems, for which this can be established by the following
method. For any property P of graphs, let ¢,,(P) be the number of graphs with vertex set
n that satisfy P. Let MAX INDUCED SUBGRAPH WITH PROPERTY P (MIS(P)) be the
problem of maximizing the cardinality of a set of nodes V in a given graph G, such that the
induced subgraph G|y has property P. The problems MaX CLIQUE, MAX INDEPENDENT
SET, LONGEST CHORDLESS PATH are special cases of MIS(P); another example is Max
INDUCED k-COLOURABLE SUBGRAPH.
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Theorem 4.8 If0 < logec,(P) < n?/2—n'*? for some 6 > 0, then MIS(P) ¢ Max NP (<

).

Proor. For r = r(n), let Y,(G) be the random variable whose value is the number of
induced subgraphs in G of cardinality r with property P. Clearly optMIS(P)(G) = max{r :
Y, (G) > 0}. By linearity of expectation

Stirling’s formula implies that (Z) =9200") for n = O(r). It follows that
P(Y, > 1) < E(Y;) = 200040ser(P)=(3) < 9=r'**+0()

which tends to 0 expomnentially fast as n, and hence r, goes to infinity. Hence, 1 <
E(optyis(py) = o(n) and by Proposition 4.7 it follows that MIS(P) ¢ MAX uP(<). |

The arguments that show that MCIS and V-C-DIMENSION are not in Max SiP(<)
are very similar.
We also obtain results for minimization problems.

Theorem 4.9 MiN COLOURING is not in MiN XiF.

ProOF. Recall that Min X5F = Min X5, Suppose that the chromatic number could be
defined by

\(G) = min {7 : G |= 0z, 9)}]

where 1 is quantifier-free (possibly with predefined fixpoint predicates) and z = z1, ..., z.
It follows that x(G') can be defined as

\(G) = = max {7 5 G | (@, 5)| = 7 = oplg(G)

,C

with a maximization problem @ € Max N§F. But this implies that E(yx) = n* — ©(p(n))
for some polynomial p, which is the not the case, since E(x) ~ n/(2logn). [

There also is a probabilistic criterion for membership in Max II¥F | which will allow us
to separate Max II5Y from Max IIEF,

Theorem 4.10 (Probabilistic criterion for Max IIt'Y) For every problem Q € Max III'Y
and every natural number k € N, the property that oplg(A) > k salisfies a 0-1 law.

Proor.  We again use the fact that except on a exponentially decreasing fraction of
structures, fixpoint predicates are definable by quantifier-free formulae. Thus, the optimum
for Q € Max II}'F, is defined on almost all structures by an expression

opig(A) = max|{z : A |= ¢(z,¢, 5)}]

,C
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where 1(z, ¢, §) is a II;-formula.
Then, the property that optg(A) > k is expressed by the strict %]-formula

(39)(30)(3z0)---(Fzr) N\ (@£ z)A N ¥(zi605).

0<i<j<k 0<i<k
The theorem now follows from the 0-1 law for strict X1-formulae. [

We did not find natural optimization problems that do not satisfy this criterion. How-
ever, we can cook up artificial ones such as MAXIMUM CONNECTED COMPONENT WITH
PERFECT MATCHING (MCCPM) which, given a graph, asks for a maximum connected
component that admits a perfect matching. Note that MCCPM is solvable in polynomial
time.

Proposition 4.11 MCCPM ¢ Max IIiF.

Proor. With probability tending to 1, a random graph is connected. Obviously, a graph
of odd cardinality cannot have a perfect matching, but almost all graphs of even cardinality
admit a perfect matching. Thus, optyccpm(G) tends to 0 on graphs with odd cardinality,
and to |G| on graphs of even cardinality. ]

Corollary 4.12 Max IIY'F € Max II5F = Max PB.

5 Monotonicity properties

The simple monotonicity properties that were used in [20, 15] to separate expressibility
classes of optimization problems do not survive in the presence of fixpoint definitions.
Nevertheless we can make use of them to prove inexpressibility results for Max Elfp and
Min SEF by looking at classes of structures where fixpoint logic collapses to Yg-formulae.
Although such classes cannot contain very interesting structures, they somewhat surpris-
ingly suffice to show that prominent problems such as Max CLIQUE, MAX MATCHING and
MiN COLOURING are not in Max XFF and Min SFF respectively.

As usual, we identify n with the set {0,...,n — 1} and denote the group of all permu-
tations on n by 5.

Definition 5.1 For all natural numbers n, m, we define the graphs K,.,, = (n x m, E, ,,,)
where E, ., = {((z,y)(2",y")) : © # 2'}. K, is the complete n-partite graph where each
partition class contains exactly m vertices.

Let ¢ € 5, and 71,...,m, € S,,. Then the bijection (7,7) — (0%, 7;j) on n X m is an
automorphism of K., and every automorphism of K,,,, can be described in this way.

Definition 5.2 For k-tuples @, in K, we write 4 =, v if there is an automorphism f of
Ky with fu; = v; for« = 1,..., k. The equivalence classes with respect to = are called

=i-types.

The following lemma is easy to prove.
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Lemma 5.3 There exists a function f: N — N such that the number of =-lypes in K.,
is bounded by f(k) (independently of n and m). Furthermore every =-lype is uniformly
definable by a quantifier-free formula. This means that there exist quantifier-free formulae
e1(@), ..., e5k)(7) such that every =¢-lype in any K.y, is defined by precisely one formula

62(50)

Note that for small n, m, some of the =4-types may not occur in K,,. However, for
every k, there exists a ng such that for n,m > ng, the number of =;-types in K., is

precisely f(k).

Proposition 5.4 For any formula () € L%, there exisls a Yo-formula a(Z) and a num-
ber ng such that for all n,m > ng

Knim | (VE)(p(2) = a(2)).

Proor. Take n,m large enough such that every =g-type e; is realized by some k-tuple u;
in K. Let I(@) = {t < f(k): Ky = @(4;)} and set

a(z) = \/ ei(T).

i€l(yp)

The following result gives us a useful monotonicity criterion to prove inexpressibility
results even for Max 2iF(<) and Min BV (<):

Theorem 5.5 Let Q be an optimization problem on graphs in either Max XP(<) or
Min SEP(<). Then either optg(K,.m) = O(1) or there exists a constant ng such that
optg(Kpm) < oplg(Kpm+1) for all all n,m > ng.

ProoOF. By proposition 5.4 there exists for every optimization problem @ in MAX E?P(<)
or Min XFP(<) an existential first-order formula ¢ (Z, ¢, <, S) (without fixpoint predicates)
such that

oplo(Kpm) = opt {2 : Ky | (2,6, <, )}
S,<,¢
for all large enough n, m. B
Suppose that optg(K,,,) # O(1). For any large enough n, m, fix predicates 5, orderings

< and constants ¢ = ¢y,...,¢, in Ky, such that the set
Ln(5,<,6) i={u: Kpm = ¥(4,¢,<,5)}

realizes an optimal solution, i.e. optg(Kn.m) = |Ln(S,<,¢)|.
Since optg(Kp.ym) is unbounded, we can choose a tuple @ = (uy,...,ux) € Ly,(S,<,¢)
such that at least one of the w; is different from all constants ¢1,...,¢,. Fix u; = (24, v;).
First, consider the case where @) is a maximization problem. Let © : Kypny1 — Ky
be the projection with 7(z, m) = (z, ;) and 7(z,y) = (z,y) for all y < m, and extend
it to tuples in the obvious way. We extend S to predicates S* over Kymq1 by defining
5*(z) = S(wz). We also extend any ordering < on K., to an ordering <* on K,.,4+1 by
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letting (2, m) be the immediate successor of (z,y;). Let v be the tuple obtained from u by
replacing (every occurrence of) u; by m. Since 1 is an existential formula, it follows that
Ly, (5,<,6)U{p} C Lyy1(5*,<*,€). Thus oplg(K ) < opto(Knmt1)-

Now let @ be a minimization problem. We show that oplg(K,.m—1) < |Lu(S, <,¢)|.

First, since every permutation 7 of m gives an automorphism (id X 7) of K., we can
assume without loss of generality, that ¢y,...,¢, € K1,

Let §* and <* be the restrictions of § and < to Ky.m—1. Since v is existential, it follows
that L, 1(5*,<*,¢) C L,(S5,<,¢). If the inclusion is strict, then we are done.

Suppose L,,_1(5%,<*,¢) = L,(5,<,¢). Take a tuple u € L,,(S5,<,¢) containing the
element w; which is different from all constants ¢q,...,c,, and let ¢ be the automorphism
of K., that switches u; = (x;,y;) with (z;,m — 1). Define T(2) = S(cz) and define new
orderings < by z <; 2/ iff 0z <; o2’. It follows that for all z

€ Ln(T,=,¢) < 0% € Ly,(5,<,¢) = Lp—1(5*, <%, ).

Thus |Ly (T, <,¢)| = optg(Kpm). Again, let T* and <* be the restrictions of 7" and < to
Kpm—1. Then L,,_1(T*,<*,¢) C L,(T,=,¢). But ou; isin K. — Ky 50

ot € Ly(T,=,¢) — L1 (T*,3%,0).
This implies that optg(K,m—1) < optg(Ku.m). [
Theorem 5.6 (i) Max CLIQUE is nol in Max 2P (<).

(ii) MIN COLOURING is not in Min X5F(<).

Proor. As usual, let w(G) and x(G) denote the size of a maximum clique and the
chromatic number of G. Obviously, w(K ;) = X(Kn;m) = n is independent of m. The
claim now follows from Theorem 5.5. [

A very similar criterion applies to the structures Kg = (n, Rd) with the d-ary predicate

R = {(ay,...,aq) :a; # a; for all i # j}.

Theorem 5.7 Let Q) be an optimization problem on d-ary relations in either Max LiF(<)
or Mix X¥P(<). Then either optg(K2) = O(1) or there exists a constant ng such that
oplo(KZ) < optg(K2, ) for all n > ne.

The proof is very similar to the proof of Theorem 5.5. As applications, we present the
problems to find a maximum matching in a graph and to find a maximum (disjoint) covering
in a d-dimensional predicate.

MAX MATCHING(MM) is the problem of finding a set of independent edges of maximal
size in a given graph. It is well-known that this is solvable in polynomial-time. A covering
of a d-dimensional predicate R is a subset M C R of mutually disjoint d-tuples (i.e. if
w € M and v € M then u; # v; for all ¢, < d ). MAX d-COVER (M dC') is the problem of
finding a maximum covering of a given d-dimensional predicate. Note that MAX 2-COVER
is MAaX MATcHING. For all d, Max d-CovEr is in APX. Panconesi and Ranjan [20] proved
that MaX d-COVER is not in MAX X;. We extend this to the following result.
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Theorem 5.8 MaX MATCHING and MaX d-COVER are not in Max Y1FP(<).

Proor. opthC(Kgn) = Opthc(Kflln_l_l) = n, so the claim follows from Theorem 5.7. =

To complete the picture we prove that the problem MAX SAT separates MAX Y from
Max XEF.

Theorem 5.9 Max Sar ¢ Max SfF.

Proor. We consider propositional formulae depending on the variables Xg,..., X,_1.
Let p C m; we say that a clause has type p if it has the form

\/XZ'\/ \/ -X;.

1€p i€p
Let By, be the set of Boolean formulae F’in CNF satisfying the following two conditions:
e every clause of F’ has type p for some p C m;
e for every p C m, F contains at least n clauses of type p.

Note that an assignment of truth values to the variables Xy, ..., X,,_1 is also described
by a subset ¢ C m and that the assignment ¢ makes clauses of type p false if and only if p
is the complement of g.

As described above, we encode formulae by finite structures over the vocabulary ¢ =
{C, P, N} whose universe is the disjoint union of the set of clauses and the set of variables,
where C identifies the set of clauses, and where Pxy and Nzy say that the variable y occurs
positively (respectively negatively) in clause z. With respect to this encoding we have the
following.

Lemma 5.10 For every formula ¢(z) in (FO + LFP) there exists a nalural number ng
and a quantifier-free first-order formula o(Z) which is equivalent to () on By, ., provided
that n, m > ng.

The proof is a straightforward application of Ehrenfeucht-Fraissé games.

Towards a contradiction, we now suppose that MaX SAT (abbreviated MS) is in Max S5V,
i.e.

optyis(F) = max {7 : F |2 (., 5)}]

where 1 is a Yg-formula, possibly containing fixpoint predicates, and where z = z1, ..., z,,
c=c1,...,csand S = 851,...,5; If we restrict attention to formulae F € B, where n,m
are sufficiently large compared to r,s and ¢ then we can eliminate the fixpoint predicates
and assume that @ is a quantifier-free first-order formula.

If a is a clause in a formula F, we denote by F, the formula obtained by removing clause
a. Now, let G be a formula in B, ,, which contains n clauses of type m and at least n + 2
clauses of every type p C m. Note that the optimal assignments for G are all those which
make at least one variable true. Furthermore, removing any clause a of type m from G does
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not change the maximal number of satisfiable clauses, but removing 7 < 2 clauses of any
other type does reduce the number of satisfiable clauses by j. In particular

[ optms(G) if @ has type m
optms(Ga) = {OPtMS(G) —1 if @ has type p C m.

We now fix values for ¢ and S on G such that optys(G) = |L(¢c, S)| where
L(e,8) = {w: G = ¥(w,e, 5).
In the sequel, we call a clause in G generic if it is different from the constants cq, ..., ¢,.

Lemma 5.11 Let a be any generic clause in G. If a has type m then no tuple w € L(e, S)
contains a. However, if a has type p # m, then there exists precisely one tuple w € L(¢,5)
containing a; this tuple does not contain any other generic clause.

Proo¥r. First, suppose that ¢ has type m, and let @ be a tuple in L(¢, S) containing a.
We add a clause o’ also of type m to G and obtain a new formula F with optyg(F) =
optms(G). However, we can extend S to predicates S’ over F in such a way that a’ remains
indistinguishable from a. The tuple @', obtained from @ by substituting a’ for a is then
contained in L(¢, S’). Thus, it would follow that opims(F) > optms(G) + 1 which is false.
This proves the first part.

Now, let @ have type p # m. Suppose that no tuple in L(¢,5) contains ¢ and let S”
be the restriction of S to G,. Then L(¢,S”) in G, coincides with L(¢,S) on G, hence
optms(Gq) > optyms(G) which is false.

Now, suppose that there are two distinct tuples » and w in L(¢, S) that contain a. As
above, we add a copy @ of a to G to obtain a new formula F, and extend S to predicates
5’ over F. Note that optys(F) = optms(G) + 1. But the tuples o’ and @', obtained from
v and @ by substituting ' for @ are then contained in L(¢, S’). Thus, it would follow that
optms(F') > optms(G) 4 2, which is false.

Finally we assume that some tuple @ € L(¢c, S) contains two generic clauses a, a’. Then
they both must have type different from m and do not occur in any other tuple in L(¢, S).
Thus, if we remove both clauses @,a’ from G we obtain a formula F' with optms(F) =
optms(G) — 2. However, by taking the restriction of S to F', we would remove only the tuple
o from L(¢,S) and could conclude that optys(F) > optms(G) — 1, whence a contradiction.
This proves the lemma. [ |

To prove the theorem, we now fix a type p C m with the following properties:

1) For all © < s, if ¢; stands for a variable X;, then j € p, i.e. X, occurs positively in
j J
clauses of type p.

(ii) p is neither too large nor too small: |p|,|m — p| > r + s.

Choose a generic clause a of type p; there exists precisely one tuple w € L(¢, S) con-
taining a.
We distinguish two possibilities.
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First, we assume that @ consists only of a and (possibly) of constants from ¢, ..., ¢s. In
this case we add to G a clause of type m and obtain a formula G' with optys(F') = optys(G).
For any tuple u, let @’ be the tuple obtained by replacing occurrences of a by a’. We extend
S to predicates S’ over F in such a way that S/(@') = S(u). Then, despite the fact that
a and o' have different types, the tuples w and w’ are indistinguishable by quantifier-free
formulae ¥(w,¢,S) (here we use property (7). It follows that opims(F) = optms(G) + 1
which is false.

In the second case, w contains some element v which is neither ¢ nor a constant from
€1,...,¢s. By the Lemma, it can only be a variable, say X;. We fix another variable, say
X which is different from all constants cq,...,cs, does not occur in w, and satisfies the
condition that k € p < j € p (by condition (), such a variable must exist).

We now add to G clauses by, ...b, of type p, where ¢ = optyg(G), to obtain a formula
F. Clearly optms(F') = 2o0ptys(G). On the other hand, for any tuple @ and k < ¢, let !
be obtained by replacing occurrences of @ by b;; moreover, let @ be the tuple by replacing
occurrences of X; in @} by Xg. Let S’ be any extension of S to F, satisfying the condition
that for all @ and all ¢ < ¢, 5'(4}) = S(u). We modify S’ to a new predicates S”. For
any tuple v, let v* be constructed by replacing occurrences of X by X;; then we set
S5"(w) = S'(v*).

It is easy to see that @ and all tuples w!, w" are contained in L(¢, 5”). This implies that
optms(F') > 2o0ptms(G) 4 1 which is false. The theorem is proved. ]

Corollary 5.12 Max 2P C Max P € Max IIP € Max IEF = Max PB.

Acknowledgement.

Part of this work derives from the first author’s Diplomarbeit. Other parts were done by
the second and third author during visits at INRIA, Rocquencourt and at the International
Computer Science Institute (ICSI), Berkeley.

References

[1] N. Alon and J. Spencer, The Probabilistic Method, Wiley, New York (1991).

[2] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy, Proof verification and
intractability of approximation problems, Proceedings of Annual IEEE Symposium on
Foundations of Computer Science (1992).

[3] A. Blass and Y. Gurevich, Fzistential fized-point logic, in: “Computation Theory and
Logic” (E. Borger, Ed.), Lecture Notes in Computer Science Nr. 270, Springer 1987,
20-36.

[4] B. Bollobés, Random graphs, Academic Press, London (1985).

[5] B. Bollobds, Fztremal Graph Theory with Emphasis on Probabilistic Methods, AMS
Regional Conference Series in Mathematics, Nr. 62 (1986).

23



[6] D. Bruschi, D. Joseph and P. Young, A structural overview of NP optimization prob-
lems, Technical Report 861, Department of Computer Science, University of Wisconsin,
Madison (1989).

[7] N. de Bruijn, Asymptotic Methods in Analysis, Dover, New York 1981.

[8] K. Compton, 0-1 laws in logic and combinatorics,in: “NATO Advanced Study Institute
on algorithms and Order”, (L. Rival, Ed), pp 353-383, Reidel, Dordrecht (1988).

[9] R. Fagin, Generalized first-order spectra and polynomial time recognizable sets, Com-
plexity of Computations, SIAM-AMS Proc. 7 (1974), Richard Karp, ed., American
Math. Soc., Providence, RI, 43-73.

[10] M. R. Garey and D. S. Johnson, Computers and Intractibility: A Guide the to the
Theory of NP-Completeness, Freeman, New York (1979).

[11] T. Hirst and D. Harel, Taking it to the Limit: On Infinite Variants of NP-Complete
Problems, in preparation.

[12] N. Immerman, Relational Queries Computable in Polynomial Time, Information and
Control 68 (1986), 86-104.

[13] V. Kann, On the Approzimability of NP-complete Optimization Problems, Dissertation
(1992), Royal Institute of Technology, Stockholm.

[14] P. Kannellakis, Elements of Relational Database Theory, in: J. van Leeuwen (Ed.),
Handbook of Theoretical Computer Science, vol. B, North Holland, Amsterdam 1990,
pp.- 1073-1156.

[15] Ph. Kolaitis and M. Thakur, Logical definability of NP optimization problems, to appear
in Information and Computation.

[16] Ph. Kolaitis and M. Thakur, Approzimation properties of NP minimization classes,
Proceedings of 6th IEEE Conference on Structure in Complexity Theory (1991), 353
366, to appear in Journal of Computer and System Sciences.

[17] Ph. Kolaitis and M. Vardi, The decision problem for the probabilities of higher-order
properties, Proceedings of 19th Annual ACM Symposium on Theory of Computing
(1987), 425-435.

[18] Ph. Kolaitis and M. Vardi, Infinitary logic and 0-1 laws, Information and Computation
98 (1992), 258-294.

[19] C. Lautemann, Logical definability of NP-optimization problems with monadic aux-
iliary predicates, Informatik-Bericht Nr. 1/92, Institut fiir Informatik, Johannes
Gutenberg-Universitdt Mainz (1992).

[20] A. Panconesi and D. Ranjan, Quantifiers and approzimation, Proceedings of 22nd
Annual ACM Symposium on Theory of Computing (1990), 446-456.

24



[21] Ch. Papadimitriou and M. Yannakakis, Optimization, approzimation and complezily,
Journal of Computer and System Sciences 43 (1991), 425-440.

[22] Ch. Papadimitriou and M. Yannakakis, On the complezily of computing the V-C di-
mension, Extended Abstract (1992).

[23] M. Vardi, Complezity of Relational Query Languages, Proc. of 14th Annual ACM
Symposium on Theory of Computing (1982), 137-146.

25



