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Abstract

This paper is related to Holland's result on implicit parallelism. Roughly speaking, Holland

showed a lower bound of the order of 
n3

c1 l
 to the number of schemata usefully processed by the

genetic algorithm in a population of n = c1 ⋅2l  binary strings, with c1 a small integer. We analyze

the case of population of n = 2βl binary strings where β is a positive parameter (Holland's result is

related to the case β=1). In the main result, for all β>0 we state a lower bound on the expected

number of processed schemata; moreover, we prove that this bound is tight up to a constant for all

β≥1 and, in this case, we strengthen in probability the previous result.
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Abstract

This paper is related to Holland's result on implicit parallelism. Roughly

speaking, Holland showed a lower bound of the order of 
n3

c1 l
 to the number of

schemata usefully processed by the genetic algorithm in a population of n = c1 ⋅2l

binary strings, with c1 a small integer. We analyze the case of population of n = 2βl

binary strings where β is a positive parameter (Holland's result is related to the case

β=1). In the main result, for all β>0 we state a lower bound on the expected number

of processed schemata; moreover, we prove that this bound is tight up to a constant

for all β≥1 and, in this case, we strengthen in probability the previous result.

Introduction

The term implicit parallelism, and that closely related of building block, are used

to explain how genetic algorithms (GAs) work.

Implicit parallelism refers to the fact that the effective number of schemata proces-

sed by a GA is greater than the number of structures processed (i.e., greater than the

population size).

A well known result is Holland's estimate of an 
n3

c1 l
 lower bound on the number

of effective schemata processed [1], where n is the number of structures processed

and c1 is a small integer. This result is usually interpreted to say that, despite the

processing of only n structures, the GA processes at least  n3 schemata. This result

has been analyzed in [2], [3], [4], [5], [6], [7], [8].

In our paper, fixed k, ε and a parameter β>0, we found a lower bound of the type

nf(β) on the expected number of schemata processed by the genetic algorithm applied

to a population of n = 2βl individuals obtained by random extractions from {0,1}k

with probability of being disrupted by crossover less than ε, where l = 
kε
2 . Moreover,

we prove that this bound is tight up to a constant for all β≥1 and, in this case, we

strengthen in probability the previous result, showing that with probability
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P ≥ (1 − 2 ⋅ e−1) the number of schemata which propagate is greater than one half the

previous bound.

Preliminary definitions

Let <{0,1}k, U> be a probability space, where {0,1}k is the set of words of length k on
the alphabet {0,1} and U is the uniform distribution.

Let  = <ω1, ..., ωn> be a sample (population) of n elements chosen independently
from <{0,1}k, U>.

Let XOVER( ) be the population obtained from  applying the usual single point
crossover operator [4].

A schema S is a word S {0,1,*}k; 0 and 1 are called specific symbols, * is said non

specific and the positions occupied by specific symbols are said defining positions.

We denote with  the set of strings of {0,1}k obtained from S by substituting every
occurrence of symbol * with the symbols 0 or 1 in every possible way. Schemata S

and S' are called disjoint iff   and . In the following we will consider classes
of schemata containing the same number of defining positions: in this way all pairs
of schemata will be disjoint.

Example: given the schema SA = 0 * * 1 1 0 0 * *, positions 1,4,5,6, and 7 are defi-
ning positions while A is the set of 24 words that are obtained from SA substituting
the symbols * with the symbols 0 or 1 in every possible way.

Given a population , we say that  contains an instance of S iff  ≠∅.

We say that, because of an application of the crossover operator, schema S propa-
gates if ( ≠∅) and (XOVER( ) ≠∅).

Finally, we will consider the "entropy function" H(ξ ), where, for 0<ξ< 1 ,
H(ξ) = −ξ ⋅ logξ − (1 − ξ) ⋅ log(1 − ξ).
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The main result

Theorem

Fixed k and ε, let l = 
kε
2 , and consider a sample  of   n = nβ = c1 ⋅ 2l = 2βl   individuals

independently chosen from <{0,1}k, U>, where β is a parameter (β>0). Then:

(1) The expected number of disjoint schemata defined in a window of dimension 2l, and which

propagate with a probability ≤ ε of being disrupted by crossover, is at least order of 
nf (β)

log2n
,

where f(β) = 1+ 2/β for 0<β<1, f(β) = 1 + 2 . H(β/2)/β for 1≤β≤4/3,  f(β) = (2.log23)/β for

β>4/3.

(2) For β≥1 the previous lower bound order of 
nf (β)

log2n
 is optimal up to a constant.

(3) For β≥1, with probability P≥(1-2e-1) the number of schemata which propagate is greater than

one half of the previous lower bound order of 
nf (β)

log2n
 .

Proof

Consider a window of 2l contiguous positions in the string ω . It is clear that

any schema with its defining positions within this window will propagate with a

probability of being disrupted by crossover ≤ 
2l

k
= ε .

The number of disjoint schemata with x defining positions in a window of

dimension 2l is L =
2l

x






⋅2x . Observe that although L is a function of x for the sake of

simplicity we do not make evident this dependency. This function has a maximum

for x = 4l

3
− 1

3





.

Let {S1, ..., SL} be the set of schemata with x defining positions within the window.

Let Si be the random variable:
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Si(<ω1, ..., ωnβ
>) ={1              ∃ωj∈ i          

0              ∀ωj (ωj∉ i)  

Defined   =∑
i=1

L

 Si,  then (<ω1, ..., ωnβ
>)  is  the  number  of  different  schemata

in =<ω1, ..., ωnβ
> (obviously 0 ≤  ≤ L), and the expected value of  is

E( ) = ∑
i=1

L

E( Si) = L ⋅E( S1).

Note that although  is a function of x, for the sake of simplicity we do not make
evident this dependency.

To compute E( S1), consider, without loss of generality, the schema S1 defined on
the first x defining positions, i.e. S1 = b1 ... bi ... bx   * ... * ... * ,  where bi {0,1}. Then

E( S1) = Prob(<ω1, ..., ωnβ
>| ∃k  ωk  1) = 1- Prob(<ω1, ..., ωnβ

>| ω1∉ 1, ..., ωnβ
∉ 1) =

1 - ∏
i=1

nβ

Prob(ωi∉ 1) = 1 -  
    

1 − 1
2x







nβ

≥      1 − e−nβ 2x

 
because of the independence of the

extractions and since for every real z, 1-z ≤ e-z.

The expected number of schemata processed by the GA is therefore E( ) ≥

  L ⋅ (1 − e
−nβ 2x

).

Since nβ=2βl, the expected number of schemata is E( ) ≥  
2l

x






⋅ 2x ⋅ (1 − e−2βl − x
).

Let  M(x,β) = 
2l

x






⋅ 2x ⋅ (1 − e−2βl − x
) and M(β) = Max M(x,β), 0≤ x ≤ 2l, β>0. Obviously,

for every β  and calling  the random variable obtained evaluating  on the

maximum of M(x,β), it holds E( ) ≥ M(β); therefore we will estimate the function
M(β).



6

First of all, we observe that if x << βl, then M x,β( ) ≈
2l

x






⋅ 2x , and that if x >> βl,

then M x,β( ) ≈
2l

x






⋅ 2x ⋅ 1 − 1 −
nβ

2x












=
2l

x






⋅ nβ =
2l

x






⋅ 2βl .

Since the maximum of 
2l

x






 is in x=l, while the maximum of 
2l

x






⋅ 2x  is in x = 4l

3
,

within the approximation we used (see also Fig.1), the class of functions M(x,β) with
parameter β has the following behavior.

• For a fixed β<1, M(x,β) reaches the maximum in x=l : 
  
M β( ) ≈

2l
l







⋅ 2βl .

• For a fixed β, 1≤β≤4/3, M(x,β) reaches the maximum in x=βl : 
  
M β( ) ≈

2l
βl 







⋅ 2βl .

• For a fixed β>4/3, M(x,β) reaches the maximum in x = 4l

3
: 
  
M β( ) ≈

2l
4l 3 







⋅ 24l 3 .

Therefore, by recalling that 
N

ξ ⋅ N






~
2N⋅H(ξ)

2πξ(1 − ξ)N
, where H is the entropy function,

we obtain the following bounds:

if β < 1 then M(β) ~
1
πl

⋅ 2(2+β)⋅l ;

if 1 ≤ β ≤ 4
3

 then M(β) ~
1

πβ(2 − β)l
⋅ 2(β+2⋅H(β 2))⋅l ;

if β > 
4
3

then M(β) ~
3
2

⋅ 1
2πl

⋅ 2(2log2 3)⋅l .
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Figure 1.  A 3D plot of the function M(x,β) for l=24

Since n=2βl, omitting a multiplicative term depending only on the parameter β,

we obtain for M(β) a lower bound of the order of 
1

log2 n
⋅ nf (β) , where

if β < 1 then f(β) = 1 + 2/β

if 1 ≤ β ≤ 4
3

 then f(β) = 1 + 2.H(β/2)/β

if β > 
4
3

then f(β) = (2.log23)/β

This proves the first part of the theorem.

Figure 2 gives a pictorial representation of the function f(β).
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Figure 2. A plot of the function f(β)

Now we observe that L = 
2l

x






⋅ 2x , while M(β) is the maximum, in the interval

0 ≤ x ≤ 2l, of M(x,β) = 
2l

x






⋅ 2x ⋅ (1 − e−2βl − x
) = L ⋅ (1 − e−2βl − x

) .

Therefore, if β≥1 then M(β) ≥ L̂ ⋅ (1 − e−1) , where L̂  denotes the value of L =
2l

x






⋅2x

evaluated on the maximum of M(x,β). Since L̂ ⋅ (1 − e−1)  ≤ M(β) ≤ E( ) ≤ L̂ , where 
is the random variable obtained evaluating  on the maximum of M(x,β), we
obtain that the lower bound M(β) is optimal (up to a constant) in the case β≥1, under
the assumption of considering classes of schemata with the same number of
defining positions. This proves (2).

Let now P( ) be the probability of the event  ={  ≥ M(β) 2}, and let a = (1 − e−1) .

Then, in the case β≥1 and remembering that  ≤ L̂ :

a ⋅ L̂  ≤ E( ) = ˆ∫ dµ = ˆ∫ dµ + ˆ
c∫ dµ ≤ L̂ ⋅ dµ∫ + L̂

2
⋅ dµc∫ =

L̂ ⋅P( ) +  L̂2  ⋅(1-P( )).
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Therefore P( ) ≥ 1-2e-1. By remembering the order of the lower bound 
nf (β)

log2 n
 for

M(β) 2  we conclude the proof.

Conclusions

In this paper we showed that the lower bound on the expected number of
schemata processed by an application of the genetic algorithm to a population of
nβ=2βl individuals obtained by random and independent extractions from {0,1}k with
a probability of being disrupted by crossover ≤ ε is a monotonically decreasing
function of the population dimension (i.e., of β). We identify three interesting
ranges of values of the parameter β.

1 • For β<1 the lower bound on the expected number of schemata processed by the

genetic algorithm is order of 
1

log2 n
⋅ n(2+β) β .

2 • For 1 ≤ β ≤ 4
3

 the lower bound on the expected number of schemata processed by

the genetic algorithm is order of 
1

log2 n
⋅ n1+2⋅H(β / 2) β . Imposing the constraint β=1

(as Holland did) gives the well known lower bound order of 
n3

l
.

3 • For β>4/3 the expected number of schemata processed by the GA remains

constant (
  
M x,β( ) =

2l
4l 3 







⋅ 24l 3) and the lower bound becomes order of

1
log2n

⋅ n(2⋅log2 3) β .

We also show that for β≥1 the lower bound is optimal up to a constant and that
with probability (1-2e-1) the number of schemata propagated is greater than one half
the value of the lower bound.

It is widely believed that Holland has proved an order n3 lower bound on the
number of effective schemata processed. However, the problem with Holland's
result is that one doesn't get to pick an arbitrary population size n and then assert
that order of n3 schemata are processed. In fact, it is the population size n (or more
precisely its relationship to the window size 2l as given by the parameter β and the
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defining relation nβ=2βl ) which determines whether n3, n3000, n0.3, (or any number
of other possibilities) is the appropriate bound.

For example, choosing β=0.1 gives a lower bound order of 
n21

log2n
, β=10 gives a

lower bound order of 
n0.317

log2n
, and β=1000 gives a lower bound order of 

n0.00317

log2n
.

Only the choice β=1 gives Holland's 
n3

log2n
 estimate.
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