GENETIC AND NON GENETIC
OPERATORS IN ALECSYS *

Marco Dorigo*
TR-92-075 - Revised Version
November 1992

Abstract

It is well known that standard learning classifier systems, when applied to
many different domains, exhibit a number of problems: payoff oscillation,
difficult to regulate interplay between the reward system and the background
genetic algorithm (GA), rule chains instability, default hierarchies instability,
are only a few. ALECSYS is a parallel version of a standard learning classifier
system (CS), and as such suffers of these same problems. In this paper we
propose some innovative solutions to some of these problems. We introduce
the following original features. Mutespec, a new genetic operator used to
specialize potentially useful classifiers. Energy, a quantity introduced to
measure global convergence in order to apply the genetic algorithm only when
the system is close to a steady state. Dynamical adjustment of the classifiers set
cardinality, in order to speed up the performance phase of the algorithm. We
present simulation results of experiments run in a simulated two-dimensional
world in which a simple agent learns to follow a light source.

* To appear on the Evolutionary Computation Journal, 1993. This work has been partly
supported by the Italian National Research Council, under the "Progetto Finalizzato Sistemi
Informatici e Calcolo Parallelo”, subproject 2 "Processori dedicati”, and under the "Progetto
Finalizzato Robotica", subproject 2 "Tema: ALPI".

* International Computer Science Institute, Berkeley, CA 94704, and Progetto di Intelligenza
Artificiale e Robotica, Dipartimento di Elettronica e Informazione, Politecnico di Milano,
Piazza Leonardo da Vinci, 32, 20133 Milano, Italy (e-mail: dorigo@icsi.berkeley.edu).

1. Introduction

The goal of this research is two-fold. We want to gain a deeper understanding
of some features of the classical learning classifier system (CS, see Holland,
1980, 1986), and we want to improve the classical CS by introducing new genetic
and non-genetic operators. Results of this research have been used to improve
the performance of ALECSYS (Dorigo, 1992a; Dorigo & Sirtori, 1991), a learning
system based on a coarse grain parallel version of the standard CS. The main
goal of the ALECSYS project is to learn to control an autonomous robot moving
in a real environment (Dorigo & Schnepf, 1993; Dorigo, 1992b; Colombetti &
Dorigo, 1992a, 1992b). In this paper the focus is on some technical, from a
classifier systems point of view, aspects of ALECSYS. We discuss the following
features of our system.

* Mutespec, a new genetic operator which is used to reduce reward variance in
default classifiers (overly general classifiers can fire in conflicting situations,
causing actions which in some situations are useful and in others are not: in
these cases more specific classifiers perform better).

* The concept of energy is introduced to allow the call of background genetics
at steady state (i.e., through energy we measure the achievement of a steady
state; once in that state, we call the genetic algorithm). We also
experimentally investigate the optimal number of classifiers to be introduced
by an application of the genetic algorithm (GA).

* The number of activatable classifiers is dynamically changed at run-time (i.e.,
the cardinality of the set of classifiers is not fixed; instead, it shrinks as the
bucket brigade finds out that some classifiers are useless or even dangerous).

All the experiments presented in this paper have been run on the
sequential version of ALECSYS. No substantial differences have been found
running, later on, the same experiments using the distributed version.

2. The task

Our long term goal is to apply CSs to the control of autonomous robots. So that
we can run many experiments in a reasonable length of time, we use a
computer simulation of a simplified version of the task our real robot will be
required to perform. We have an agent living on the screen of a computer (two
dimensional world). The agent can move in eight directions (say the eight
cardinal directions), and can choose the step-size between three values: zero,
one or two pixels. The agent has four sensors which allow him to perceive the
presence of a light source, the lamp. Each sensor is a binary device that
monitors a semispace; it sets to the ON value whenever the lamp is in the
monitored semispace. The agent therefore can discriminate between four lamp
positions: North-West, North-East, South-West, South-East. The agent can
approach the lamp along three directions (see Figure 1). The reward for the

approaching behavior was set to three different values: +18 for the best move,

+6 for the other two possibilities.

Z)IS
N

6

<— —>

AN
/

Figure 1. Different rewards for an approaching the lamp move.

In ALECSYS classifiers have two conditions and one action. Conditions and
actions are strings of length k. Symbols in conditions belong to {0,1,#}, and
symbols in actions belong to {0,1}.

Messages were set to be five bits long; four bits code the sensory
information, one bit is a tag saying whether a message is a sensors reading or an
internal message (i.e., a message sent by other classifiers). A classifier is
therefore 15 bits long.

In all experiments, if not otherwise stated, we used a population of n=240
classifiers and the message list length was set to 10. In addition to the new
operators, we used classic context operators (cover detector and cover effector,
see for example Robertson & Riolo, 1988) and classic genetic algorithm
operators (sometimes referred to as background genetics, i.e., crossover and
mutation). Every classifier C with both conditions matched competes in a
auction to gain the right to append a message to the message list. It makes
therefore a bid, which in our experiments is given by the formula Bid.(t) =
constant - spec. - Sc(t), where the constant was set to 0.1, spec. is the specificity of
classifier C (given by the ratio (number of 0 or 1 symbols)/(length of the
classifier)), and S.(t) is the strength of classifier C at time t. Winning classifiers
(i.e., those which append their message to the message list) are chosen among
bidding classifiers with a probability proportional to their bid. Among the
messages on the message list which have an "effector" tag, one is
probabilistically chosen (with probability proportional to the strength of the
corresponding posting classifier), and sent to the agent's actuators; the classifier
which posted this message receives the external reward.

3. The mutespec operator

A problem caused by the presence of don't care (#) symbols in classifiers
conditions is that the same classifier can receive high rewards when matched
by some messages and low rewards (or even punishments if we use negative
rewards) when matched by some other messages. We call these classifiers
oscillating classifiers. Consider the example in Figure 2; the oscillating classifier
has a don't care symbol in the third position of the first condition. Suppose that
whenever the classifier is matched by a message with a 1 in the position
corresponding to the # in the classifier condition the message 1 1 1 1 is useful
while when the matching value is a 0 then the message 1 1 1 1 is harmful.

Oscillating classifier: 01#1;0110->1111
ML ->0 1 1 1 implies that message1 1 1 1 is very useful
ML ->0 1 0 1 implies that message1 1 1 1 is harmful

Figure 2. Example of oscillating classifier.

As a result the strength of that classifier cannot converge to a steady state value,
but will oscillate between the steady state values that would be reached by the
two more specific classifiers in the right side of Figure 3. The major problem
with oscillating classifiers is that, on the average, they will be activated too
often in situations in which they should not be used and, on the contrary, too
seldom when they could be useful. This causes the performance of the system
to be lower than it could be.

The mutespec operator tries to solve this problem using the oscillating
classifier as the parent of two offspring classifiers: one of the offspring will have
a 0 in place of the #, the other one a 1 (see Figure 3). This is the optimal
solution in case there is a single #. In case the number of # symbols is greater
than 1, the # symbol chosen could be the wrong one (i.e.,, not the one
responsible for oscillations); in this case, as the mutespec operator did not solve
the problem, with high probability the mutespec operator will be applied again.
The mutespec operator can be likened to the mutation operator. The main
differences are that it is applied selectively only to oscillating classifiers and that
it always mutates # symbols to Os and 1s. Also, the mutation operator mutates a
classifier, while mutespec introduces two new, more specific, classifiers (the
parent classifier remains in the population).

To decide which classifier should be mutated by the mutespec operator we
monitor the variance of the rewards each classifier gets. This variance is
computed according to the following formula:

1 d It O D2
VAR(R, (1)) :IZRg(j) - %ZRC(J')D t% , where R.(t) is the reward received by
= i=1

classifier C at time t.

A classifier C is an oscillating classifier if VAR(Rc)2K-AVG_VAR, where
AVG_VAR is the average variance of the classifiers in the population and K is
a user defined parameter (in our experiments we set K=1.25). At every cycle
mutespec is applied to the oscillating classifier with the highest variance. (If no
classifier is an oscillating classifier then mutespec is not applied.)

0101;0110->1111

01#1;0110->1111—>
0111;0110->1111

Figure 3. Example of application of mutespec operator.

Experiments have been run to verify the positive effects of mutespec in the
simple environment described in Section 2. Four combinations of operators
have been tested. In the first experiment we use only background genetics, in
the second background genetics and context operators, in the third background
genetics and mutespec, and finally in the last both background genetics, context
operators and mutespec. We call standard CS the CS which uses only
background genetics. It works as follows.

* Reproduction: offspring classifiers are uniformly sampled with repetitions
from the population of parent classifiers; reproduction probability is
proportional to classifiers strength. Every application of the background
genetics introduces NC=24 new classifiers (i.e., 10% of the population is
replaced) which replace the 10% lower strength classifiers.

* Crossover: we used one-point crossover; the crossing point was chosen with
uniformly distributed probability; crossover probability was set to 0.6.

* Mutation: mutation rate was set to 0.04; this means that every bit position of
every classifier is mutated with probability 0.04.

Results are presented in Figure 4. Performance is measured as the
percentage of correct moves on total moves in the last 100 iterations. (A 100%
performance is the maximum achievable by the system.) Background genetics
was applied every 400 iterations of the CS. The starting generality of the
classifiers (i.e., the percentage of # symbols in the classifier set) was set to 50%.
In the graph of Figure 4 every point represents the performance level achieved
between iterations 300 and 400, after background genetics was applied (the
graph is averaged on 100 runs). This choice shows the behavior of the system
when the noise introduced by new classifiers generated by the GA has faded
away. The predicted improvement in performance can be observed both when
using mutespec alone and when together with context operators. It is also
interesting to note that mutespec alone was more effective than context

operators alone. The use of mutespec improves both the performance level
achieved and the speed with which that performance is obtained.

\
100 %)—

p
e
r 95%
f
0
r

90 %

Number of applications
of background genetics

1 ! 1 ! N
T T T T >

500 600

Figure 4. Performance of the CS using differing combinations of genetic and non-genetic operators:
¢ gen.1 - background genetics only (i.e., crossover plus mutation),
¢ gen.2 - background genetics + cover detector and cover effector,
¢ gen.3 - background genetics + mutespec,
¢ gen.4 - background genetics + cover detector, cover effector and mutespec.

4. Classifier system energy

A problem with classifier system is how to decide when to apply the genetic
algorithm (GA) to generate new classifiers. In principle the GA should be
applied as soon as the system has reached a steady state, i.e. when the strength
acquired by each classifier correctly reflects the classifier utility. In practice in
existing implementations of CSs the choice has been to apply the GA every IBG
(Interval Between Genetics) steps, with IBG experimentally determined. This
policy requires some experimental work to find a good value for IBG;
moreover, situations in which the optimal value for IBG changes in time
cannot be considered. It is therefore advisable to try to introduce an automatic
mechanism to detect the attainment of a steady state. A straightforward way to
check whether the system is at a steady state could be to track the strength of
each classifier. Unfortunately, as we saw in the preceding section, there can be
oscillating classifiers, and to wait for the mutespec operator to substitute them
all with non-oscillating ones can take too long. A way out is to use some kind
of aggregate measure which indicates whether the CS as a whole is close to a
steady state or not.

We propose to use a quantity we call energy to find out when the CS has
reached a steady state and consequently apply the GA. We define the energy
Ecs(t) of a classifier system CS to be the sum of the strengths Sc(t) of all the n
classifiers in the classifiers set CS at time t:

Ees(0)= T5.(0)

Ecs(t) oscillates less than the single classifiers because the various
oscillating classifiers do not oscillate synchronously. Ideally, at a steady state the
total energy of the system is constant and therefore its variance value is zero. In
practice, as can be seen from Figure 5, this situation is never achieved. In Figure
5 we show two graphs. The upper one (and the most oscillating one) is given by
the following sum

¥ (s2-S2) [1]
c=1
L
»Se(t-j)
where S, (t) = %). The lower one is given by
Egq(t) - E&g(t) 2]
L
Y Ecs(t-)
where Eqg(t) = % (L is a parameter which was set to min {t, 20}.)

It can be seen that the behavior of the energy is much smoother than that of
the sum [1].

Variance

90
80
70
60
50
40
30
20

‘.\ » '
u\'!f‘i" &” m‘”‘"\u K ‘ﬁhw.#f“ \"1"';"'“

1

Number of

10 iterations
0 : . : >
0 50 100 150 200 250 300 350 400

Figure 5. Comparison between the behavior of energy (lower graph, see formula [2]) and the
behavior of the sum in formula [1] (upper graph); typical graph.

Operationally, we consider a system to be at a steady state when
Ecs(t) €[Eyin By] VtE[t,t-k], where Ey,=min{Ecs(t), t&ft-kt-2k]},
Eyac=max{Ecs(t), t [t - k,t - 2k]}, and k is a parameter. In this way we exclude
both cases in which Ec(t) is increasing or decreasing, and situations in which
Ecs(t) is still oscillating too much. We experimentally found that the value of k
is very robust; in our system it was set to 50, but no substantial differences were
found for values of k in the range 20+100. When the system is at a steady state
the GA can be applied. We call steady state classifier system (SSCS) the CS that
uses energy to decide when to apply the GA.

5. How many classifiers should be substituted by the GA?

Figure 6 shows the typical behavior of energy in SSCS; every insertion of new
classifiers in the CS causes a peak because new possibly better classifiers replace
useless, and therefore low strength, classifiers. The magnitude of peaks, and
their frequency!, depends on the number NC of new classifiers generated by the
GA. Peaks are due to the substitution of low strength classifiers with new
classifiers generated by the GA. The strength of new generated classifiers is set
to the average value of active classifiers.

Energy

A
10000 +

8000 +
6000 1
4000 1+

2000 4
Number of
iterations
0 : : : : : ' : ' : ——>

0 400 800 1200 1600 2000

Figure 6. Behavior of the energy function in a typical run. Peaks in the graph are due to the
substitution of low strength classifiers with new classifiers generated by the GA.

1 In fact, the higher the number of new classifiers generated by the GA, the higher the peak
and the longer the time required to reach a new steady state.

It is interesting to study how the behavior of the system changes when
changing NC. We have two opposite effects. With NC set to a high value, a
high number of new classifiers will be tested between two calls of the GA, but,
as it takes longer to achieve a steady state, the GA is called with a lower
frequency. We ran some experiments and evaluated the behavior of SSCS for

NC € {2, 4, 6, 12, 24, 48, 72}. Results are shown in Figures 7, 8, 9, and Table 1.
Figures 7, 8, 9 are histograms; each vertical bar indicates the number of
iterations of the SSCS before the GA was called. It can be observed that
increasing the value of NC increases the average distance (measured by the
number of iterations) between two calls of the GA. Still the total number of
classifiers generated during the run was maximum for NC=72. Although for
NC=72 exploration is favored (the number of new classifiers introduced is
maximum, see Table 1), it is important to consider the effects that the
introduction of many new classifiers at each GA call has on performance.
Results shown in Table 1 show that the introduction of too many classifiers
lowers the overall performance. Moreover, the on-line behavior of the system
changes abruptly when many new classifiers are inserted at once, and this can
be an undesirable property for real world applications. We also compared SSCS
with the standard CS, for the same values of NC. The comparison was done
both with respect to the total number of classifiers generated and the
performance level achieved in a 20000 iterations experiment. Performance was
measured as the sum of all the rewards received during the complete run.
Results, averaged over 5 trials, are reported in Table 1. As Figure 10 shows
(Figure 10 plots the last column of Table 1 for easier visualization of the results)
SSCS always outperformed the standard CS. In two cases, for NC=48 and
NC=72, SSCS explored a lower number of classifiers.

A
2000 4
1750 4+
1500 4+
1250 4+
1000 -

750 A
500 4
250

GA calls

Distance between GA calls
(number of iterations of SSCS)

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55

Figure 7. Distance between two GA applications in the case of NC=24. On the horizontal axis we
report an index into GA calls in the considered run. In this case the GA was called 55 times.

o4 A

S 2 2000 4

g6 1750 1
wn

§_§ 1500 4

25 1250+

© o 10004+

O ¥

0w 7504

O O

S 5004

23 250

a € i GA calls
2 0
C

1 3 5 7 9 1113 1517 19 21 23 25 27 29 31 33 35

Figure 8. Distance between two GA applications in the case of NC=48. On the horizontal axis we
report an index into GA calls in the considered run. In this case the GA was called 36 times.

32 A

S & 20001

&5 1750 L

c wn

S S 1500 4

o -2

=2 125041

R

2 8 1000 4

8w 750 4

C

85 5004

2 8

a E 2504 GA calls
E o

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Figure 9. Distance between two GA applications in the case of NC=72. On the horizontal axis we
report an index into GA calls in the considered run. In this case the GA was called 29 times.

Table 1. Comparison of SSCS and standard CS for different values of NC.

Type of CS used NC Number of itera- | Total number of Average
(number of classifiers | tions between | classifiers tested | performance over
introduced by an ap- | two applications| in 20000 itera- 10 trials
plication of the GA) of the GA2 tions (best performance

was set to 100)

Standard CS 2 500 80 83.7

SSCS 2 201 199 90.5

Standard CS 4 500 160 86.1

SSCS 4 251 319 929

Standard CS 6 500 240 83.5

SSCS 6 292 411 94.3

Standard CS 12 500 480 914

SSCS 12 293 819 93.0

Standard CS 24 500 960 91.9

SSCS 24 370 1297 96.6

Standard CS 48 500 1920 75.5

SSCS 48 556 1727 100.0

Standard CS 72 500 2880 82.9

SSCS 72 690 2087 91.7

Performance
100+
95 _//\/\
90F
85+
80+
ST Value of NC
70 } } } } f {
2 4 6 12 24 48 72
Standard CS SSCS

Figure 10. A plot of the last column of Table 1. For all the tested values of NC the SSCS
outperformed the standard CS.

2 For the S5CS we report the average number of cycles. For the standard CS we call the GA
every IBG=500 iterations (this value was experimentally found to be optimal).

6. Dynamically changing the number of activatable classifiers

The computational complexity of the matching phase in the performance
algorithm of CSs is, on a sequential computer, a linear function of a number of
parameters: the number of classifiers in the classifier population, the number
of conditions in each classifier, the number of bits in each condition and the
message list (ML) length3. Unfortunately, the relationship between the values
of these parameters and the achievable results (expressed as performance level)
is poorly understood. Some hints have been given about the optimal number
of classifiers: unfortunately results from Goldberg (1989) and from Robertson &
Riolo (1988) are antithetical. We chose in our work a different approach. We
propose a method that allows a dynamical change, at runtime, of the number
of classifiers used by the CS.

The main idea is to inhibit the matching phase for classifiers with a
strength lower than h- S(t), where S(t) is the average strength of classifiers in
the population at time t (this is different from S, of Section 4), and h is a user
defined parameter (0.25<h=<0.35 was experimentally found to be a good range
for h). In this way there are two savings. First, the system does not lose time in
trying to match conditions of classifiers that would, with very high probability,
produce bad actions?; therefore, computation time per iteration is reduced,
giving faster real time performance. Second, steady state is reached faster,
giving more applications of the genetic algorithm in the same number of
iterations. What we do therefore is to trade short-term accuracy for
computational speed. This computational speed allows us to test a greater
number of classifiers.

The utility of this approach is also suggested by examination of the typical
distribution of classifiers strengths in early phases of computation compared to
those obtained at a steady state (see Figure 11). At the beginning all classifiers
have the same strength. As computation goes on classifiers gain or lose
strength and classifiers strength in the population is no longer uniform.
Figures 11 shows that after 4000 iterations there is already a marked difference
between strong and weak classifiers. After 8000 iterations the gap is still bigger®.
Figure 12 shows the algorithm used to dynamically change the number of
classifiers used. It should be noted that this algorithm eliminates only a few
classifiers in the early phases of the computation, but many more as
computation goes on. Figure 13 shows an example of a run in which h was set
to 0.3. It can be observed that after about 1000 iterations the CS dimension
dramatically shrinks: it moves from an average dimension of 200 classifiers to
just 35 classifiers.

3 To be sure, it is not exactly linear in the number of bits in a message if you match a word at a
time; but it is on some average linear in the number of bits of the message.

The system also saves the time required for the auction phase.

5 The GA was never called in this run.

Classifiers

strength
A
140 |
120 - - Population at time O
100 " — Population after 4000 iterations
Population after 8000 iterations
80 1
60 L
40 4
20 4 .
e Classifiers
0 : —— ——— ——

0 20 40 60 80 100 120 140 160 180 200 220 240

Figure 11. Typical distribution of classifiers strengths at different stages of computation.
Classifiers are sorted by strength. On the horizontal axis we report an index into the set of
classifiers ordered by strength.

Let CS be the classifiers set, CS;j a classifier € CS, and h a user defined parameter.

CS_Usable < ICS|1; /* CS_Usable is the set of classifier actually used*/
AVG_CS < AVG(CS_Usable); /*the average strength of classifiers in CS_Usable is computed*/

CS_Usable < {CS; : CS; € CS_Usable and Strength(CS;)= h - AVG_CS};

Figure 12. The algorithm used to dynamically change the number of classifiers used.

Number of
classifiers
used

A

250

200

150

100

50

Number of iterations

.

200

400 600 800 1000 1200 1400 1600 1800 2000

—>>

Figure 13. Number of used classifiers in a typical run.

In Table 2 we compare a system in which all classifiers are always used with
a system in which the number of classifiers is reduced dynamically; for all the
observed performance indexes the second system was the best one.

Table 2. Comparison between a standard CS and a CS with dynamically changing number of

classifiers (8000 iterations per run).

Maximum Number of | Time required | Average
performance | iterations torun 8000 | time of an
achieved required to iterations iteration
[(100%is the max- | achijeve 67 % (seconds) (seconds)
imum perfor mance
achievable) per formance
Standard CS 78 % 3200 6000 0.75
CS with dynam-
ically changing 92 % 1800 3120 0.39

number of classi-

fiers

7. Related work and discussion

Classifier systems have, up to now, seen only a limited number of real world
applications (examples of such applications are Frey & Slate's (1991) letter
recognition and Colombetti & Dorigo's (1992a, 1992b) learning robot (Dorigo,

1992b). The main reasons for this shortage of complex applications is the slow
rate of learning presented by standard implementations of CSs, which often
makes working with real world problems unfeasible. For this reason, most of
CSs application are in the realm of simulation (e.g., see Grefenstette, Ramsey &
Schultz, 1990; Zhou, 1990; Booker, 1988), which can be run for days with a
limited experimental effort. In our work we followed two directions to
improve the applicability of CSs to real world problems. One direction, not
considered in this paper (but see Colombetti & Dorigo, 1992a, 1992b; Dorigo,
1992a, 1992b) is that of using many interacting CSs running in parallel on
different processors of a MIMD architecture. This is an engineering approach,
in which design choices are based on both ethological plausibility and efficient
engineering solutions.

The other direction, whose results have been presented in this paper, is that
of improving the efficiency of a single learning classifier system. Some work in
this same direction has been done by other researchers. For example Zhou
(1990) introduced a mechanism to give a CS some memory and generalization
capabilities, while Grefenstette, Ramsey & Schultz (1990) introduced a specialize
operator®. In learning classifier systems research the problem of how to
partition efficiently the state space has been there from the very beginning (see
for example Holland 1986; Riolo, 1987; 1989). It has been suggested that the most
efficient way to partition the state space is by default hierarchies (Holland,
Holyoak, Nisbett & Thagard, 1986). A default hierarchy is a multi-level
structure composed of rules (classifiers) with different degree of generality.
General rules cover broad set of states, while particular rules can respond to
very specific states in which the general rules are wrong. lL.e., a general rule
covers default situations, while a specific rule covers exceptions. To evolve and
maintain default hierarchies has proven difficult (Wilson, 1988; Smith &
Goldberg, 1991; Wilson & Goldberg, 1989). The author has therefore chosen a
different approach, in which default hierarchies have a less prominent role. In
this approach the search space is kept small by design. This means that difficult
problems are solved by designing many different learning classifier systems,
each one devoted to the solution of a single smaller problem which can either
be a basic problem (and we call these CSs basic classifiers, like the light
following CS we developed as example in this paper), or a higher level
problem, like learning the coordination of basic behaviors (more on this in
Dorigo & Schnepf (1993), in Dorigo (1992b), and in Colombetti & Dorigo (1992a,
1992b). In this perspective, default hierarchies are, although still potentially
useful, much less important, and mutespec seems therefore to be the ideal
operator; in fact, it speeds up convergence towards high performance rule sets.
Although it certainly does not help default hierarchies formation, experiments
have shown that the developed rule set is not an isomorphic model (i.e., a
model where all rules are maximally specific), and that some general rules are
still there.

6 Specialize is different from mutespec because it is applied to general rules which fired during
a successful episode. Moreover, specialize is applied to high-level symbolic rules.

To the author knowledge, no previous work has been done on dynamically
changing the number of rules in the classifiers set and on the automatic
detection of a steady state. It has been sustained that low strength individuals
are a pool from which the system can pick up rules when no high strength rule
is available. We have found that it is more efficient to use cover operators to
solve such situations. Again, this result must be evaluated in the context of our
approach; we let a CS solve a simple (i.e., small search space) problem. This
result might not transfer to more difficult tasks.

8. Conclusions

A number of problems are still open regarding learning classifier systems. In
this paper we reported about research aimed at shedding some light on some of
them. We investigated a dynamical mechanism to shrink the classifier set by
disabling the matching phase for classifiers judged useless by the bucket brigade.
The use of this mechanism improved the efficiency of the algorithm and
permitted the testing of a greater amount of classifiers, with the final result of
quicker convergence to higher values of performance.

A new genetic operator was introduced, mutespec, to reduce the annoying
presence of oscillating classifiers (i.e., classifiers whose reward is highly context
sensitive). Although mutespec was shown to be useful for the robotic task used
as example in this paper, it is not clear whether it is useful in the general case.

In fact, its use tends to drive the system away from using default
hierarchies. We introduced mutespec mainly because we assumed we were
going to use ALECSYS as a tool to build distributed learning systems composed
of many cooperating CSs whose tasks were chosen to be easy.

We also introduced energy, a quantity used to ease the evaluation of
attainment of a steady state. Using energy we are able to call the genetic
algorithm at the right moment, increasing in this way its efficacy.

As we said, the improvements to the standard CS introduced in this paper
are part of the distributed version of ALECSYS, which is currently being
investigated on more complex real and simulated robotic tasks.

Acknowledgments

I would like to thank Rick Riolo and the three referees for their valuable
comments.

References

Booker L., 1988. Classifier Systems that Learn Internal World Models. Machine
Learning, 3, 3, 161-192.

Colombetti M., & M. Dorigo, 1992a. Robot Shaping: Developing Situated Agents
through Learning. Technical Report 92-040, International Computer
Science Institute, Berkeley, CA.

Colombetti M., & M. Dorigo, 1992b. Learning to Control an Autonomous Robot
by Distributed Genetic Algorithms. Proceedings of the Second International
Conference on Simulation of Adaptive Behavior (From Animals To
Animats—SAB92), Honolulu, December 7-11, 1992.

Dorigo M., 1992a. Using Transputers to Increase Speed and Flexibility of
Genetics-based Machine Learning Systems. Microprocessing and
Microprogramming Journal, 34, 147-152.

Dorigo M., 1992b. ALECSYS and the AutonoMouse: Learning to control a real
robot by distributed classifier systems. Technical Report 92-011,
Dipartimento di Elettronica e Informazione, Politecnico di Milano, Milano,
Italy.

Dorigo M. & U. Schnepf, 1993. Genetics-based machine learning and behavior-
based robotics: A New Synthesis. IEEE Transactions on Systems, Man, and
Cybernetics, SMC-23, 1.

Dorigo M. & E. Sirtori, 1991. ALECSYS: A parallel laboratory for learning
Classifier systems, Proceedings of Fourth International Conference on
Genetic Algorithms, R K. Belew & L.B. Booker (Eds), Morgan Kaufmann,
San Diego, California.

Frey P.W. & D.]. Slate, 1991. Letter recognition using Holland-style adaptive
classifiers. Machine Learning, 6, 2, 161-182.

Goldberg D.E., 1989. Sizing populations for serial and parallel Genetic
Algorithms. Proceedings of the Third International Conference on Genetic
Algorithms, J.D. Schaffer (Ed.), Morgan Kaufmann.

Grefenstette J.J., C.L. Ramsey & A.C. Schultz, 1990. Learning sequential decision
rules using simulation models and competition. Machine Learning, 5, 4,
355-382.

Holland J.H., 1980. Adaptive algorithms for discovering and using general
patterns in growing knowledge-bases. International Journal of Policy
Analysis and Information Systems, 4, 217-240.

Holland J.H., 1986. Escaping Brittleness: The possibilities of general-purpouse
learning algorithms applied to parallel rule-based systems. In Machine
learning: An artificial intelligence approach, Vol.Il, R.S. Michalski, J.G.
Carbonell, & T.M. Mitchell (Eds), Morgan Kaufmann.

Holland J.H., K.J. Holyoak, R.E. Nisbett & P.R. Thagard, 1986. Induction:
Processes of inference, learning and discovery. MIT Press.

Riolo R.L., 1987. Bucket Brigade performance: II. Default Hierarchies.
Proceedings of the Second International Conference on Genetic
Algorithms, J.J. Grefenstette (Ed.), Lawrence Erlbaum.

Riolo R.L., 1989. The emergence of default hierarchies in learning classifier
systems. Proceedings of the Third International Conference on Genetic
Algorithms, J.D. Schaffer (Ed.), Morgan Kaufmann.

Robertson G.G., & R. L. Riolo, 1988. A tale of two classifier systems. Machine
Learning, 3, 2-3, 139-160.

Smith R.E. & D.E. Goldberg, 1991. Variable default hierarchy separation in a
classifier system. In Foundations of Genetic Algorithms (G.J.E. Rawlins,
Ed.), Morgan Kaufmann, 148-167.

Wilson, S.W. 1988. Bid competition and specificity reconsidered. Complex
Systems, 2, 6, 705-723.

Wilson & Goldberg, 1989. A critical review of classifier systems. Proceedings of
the Third International Conference on Genetic Algorithms, J.D. Schaffer
(Ed.), Morgan Kaufmann, 244-255.

Zhou H.H., 1990. CSM: A computational model of cumulative learning.
Machine Learning, 5, 4, 383-406.

