
- 0 -

Inductive learning of

compact rule sets

by using

efficient hypotheses reduction

Thomas Koch1

TR 92-069
October 1992

Abstract:
A method is described which reduces the hypotheses space with an efficient and
easily interpretable reduction criteria calledα - reduction. A learning algorithm is
described based onα - reduction and analyzed by using probability approximate
correct learning results. The results are obtained by reducing a rule set to an equiva-
lent set of kDNF formulas.
The goal of the learning algorithm is to induce a compact rule set describing the
basic dependencies within a set of data. The reduction is based on criterion which is
very flexible and gives a semantic interpretation of the rules which fulfill the crite-
ria. Comparison with syntactical hypotheses reduction show that theα - reduction
improves search and has a smaller probability of missclassification.

1. ICSI on leave from Krupp Forschungsinstitut GmbH, HA Informationstechnik, Muenchener Str. 100,
W- 4300 Essen 1, Germany

- 1 -

Acknowledgment

I thank Anna Morpurgo, Klaus-Peter Jantke, Michael Luby and Philip Kohn for the fruitful dis-
cussions about draft versions. I’m deeply grateful to Prof. Jerome Feldman has supported my
work here very strongly and to the management of the Krupp Forschungsinstitut, namely to Dr.
Bernd Schoenwald, Dr. Bernd Fehsenfeld and Dr. Diethard Bergers who sent me to Berkeley in
order to improve research.

1. Introduction

Rule based systems are the standard technique used in expert systems. Because of the difficulties
in extracting rules from a human expert, automatic rule generation is a helpful way to bridge the
knowledge acquisition bottleneck.
The scenario can be described as given a data set (i.e. set of examples) from a database, construct
a set of rules which describe the dependencies within the data set. Systems that perform this task
are for example ID3 family [Quinlan 86] and [Utgoff 89], AQ15 [Michalski 83] or CN2 [Clark,
Niblett 89] and RULEARN [Koch 88]. The questions which arises after finding the rules can be
formulated as: “With what level of confidence do the generated rules describe the “true” depen-
dencies in the data set?”
This question is solved by showing that the task of finding rules is PAC (probability approxi-
mately correct) identifiable. Given a representation, a function describing the dependencies
between the size of the data set and probability and confidence can be formulated. In general this
can be done independently from the probability distribution which generates the examples (data
set) from the sample space.
In this approach the PAC identification is done by constructing a set of kDNF’s which are equiva-
lent to a set of rules. Because the kDNF Problem has been analyzed within the many PAC publi-
cations (f. e. [Shackelford and Volper 88],[Kearns 89)] these results can also be used for rule-
based systems.
We also describe the hypotheses reduction method used in the RULEARN system, calledα -
reduction within the framework of PAC. This technique can be used in various applications beside
Machine Learning. It is very efficient, gives a semantic interpretation of the reduction and enables
an algorithm to find compact descriptions with only a small probability of missclassification.
This report describes the rule learning system RULEARN within the PAC learning framework.
The RULEARN software has been developed at the Krupp Forschungsinstitut GmbH [Fehsenfeld
et. al 91] and has been applied to various data sets from all sections of the production process
from product development up to after sales. RULEARN is used as a data evaluation method but
also as a knowledge acquisition tool for building expert systems [Kirchheiner and Koch 92]. For
reference of expert system development see for example [Pfeiffer et al 88].

- 2 -

In section 2 we describe the ideas of the RULEARN system, which uses three user defined evalu-
ation criteria to distinguish between good and bad rules.
In the following section we show the equivalence of concept descriptions using a set of rules and
a set of kDNF’s.
In section 4 we describe the PAC identification of a kDNF. This allows us to derive the number of
needed examples to ensure that the found solution isε - close to the “true” description with at
least a given probability (sample complexity).
After this we describe the trade - off between search effort and the fault of a solution using a
reduced search space. We formally describe the reduction of specifying a threshold in the number
of literals in a term and on theα - value of a term. By using the PAC framework we can derive
upper bounds on the maximal fault. We also show how the search is reduced within typical exam-
ples.
Section 7 outlines the search for rules within RULEARN. In the last section we summarize the
results and compare the differences between the different reduction methods.

2. Rule generation methods

Within an expert system shell the programmer can formulate complex rules, which for example
contain arbitrary functions in premise and conclusion in the underlying programming language. In
this case they are nearly as powerful as the underlying programming language. In order to find
rules automatically the rule representation must be restricted to a specific subset. In the following
we use propositional logic as representation language.
We assume that each of the given examples can be expressed by a finite numbern of attributes
A1,...,An with possible values X1,..., Xn. The sample space for an attribute value based inductive

system can be described by the sample space , where each attribute

 has a finite set of possible values denoted by. To handle unknown values a special attribute

value “*” can be included in the set of possible values.

An example can be written as a vector . Each rule component describing possible

examples has the formai,j which means the attribute Ai has the value Xi. For each example it

can be tested whetherai,j has the value true or false. A rule can be written as

 where .

Without loss of generality we assume the last attribute is the one for which rules should be found
(conclusion attribute).

This assumption is also typical for the induction of decision trees.

ℵ X1 X2… Xn 1−×× Xn×=

Xi Xi

x1 x2 … xn, , ,()
xj ∈

ai1 j1, ai2 j2, … aik jk, an j, k 1+
→∧ ∧ ∧ i k 1 n≤+≤()∀ ji Xi≤

- 3 -

As an example for a rule induction method we choose the RULEARN machine learning system.
The goal of RULEARN is to find a short (compact) set of rules from a given data set which

- describes as many data sets as possible
- describes as precisely as possible
- uses as few rules as possible.

There is a trade - off between the three goals so that all goals can not be optimized by one set of
rules. The idea is to combine these goals so that a learned rule set covers each goal to at least a
specific degree.
In order to do that, RULEARN uses three evaluation criteria which are measures of the rule qual-
ity. The user of the system defines thresholds for each of the measures.

The quality measures are defined as follows:

The measure of a rule is defined if the rule applicable is at least once.

The values of the criteria can have following values: , and where

m is the number of examples.

The settings of the demands determine the number of rules to be learned and the time which is
needed to find the rules. If the demands are minimal, that means π = 0, σ = m andα = 0,
RULEARN generates all possible rules. In general a set of at most 20 rules can be generated,
which describe dependencies within the data. In the next sections we focus on the threshold for
the universality (α) and show how the threshold forα reduces the search space.

reliability π() number of correct applicationsof therule
number of possibleapplicationsof therule

=

specilization σ() number of examplesinwhichtheconclusionisfulfilled
number of examplesinwhichthepremiseisfulfilled

=

universality α() number of possibleapplicationsof therule
number of examples

=

0 π 1≤ ≤ 1
m

σ m≤ ≤ 0 α 1≤ ≤

- 4 -

3. Reduction

This section describes the formalization of rules using attribute value assignments. In the case the
learning of rules is reduced to the learning of DNF’s.

A DNF is a set of terms where each term is a conjunction of p

literals where each literal is negated or not. If no literal is negated, we call the DNF monotone. If
no term of the DNF has more than k literals, the DNF is called akDNF.

We reduce the learning of kDNF to learning rules by using a set of kDNF’s in which each element

corresponds to a set of rules describing one conclusion attribute value. The result is a set of

separate kDNF’s. For each rule we construct a term in the kDNF which belongs to the conclusion
attribute value which is described by the rule.

To construct a term which is equivalent to a given rule we define a set of vectors

 = called attribute-value-

vector with

 which contains all possible rule components.

For each term in the kDNF we construct a vector with iff the corresponding rule

component occurs in the actual rule. This component must be included in the kDNF which corre-
sponds to the conclusion attribute value which is inferred by the rule.

A inference using the rules is equivalent to the testing of kDNF’s one after another. If one

kDNF has the value true, the conclusion value which corresponds to the actual kDNF can be
inferred. If the rule set is consistent, at most one of the kDNF’s is true for any possible combina-

tion of attribute values. If the rule set does not match the given example, none of the kDNF’s

is true.

Notice that this construction allows a given attribute to be represented by more than one value.
For example the value for an attribute color may have the values “red” and “black”. If a rule set
should be generated in which each attribute has only two possible values and which classifies all
examples, the attribute value vector needs to be only half the size.
As mentioned above, it is also possible that none of the rules match a given example even in the
training set.
This property is used in the RULEARN system to keep the generated rule set small. If a rule set

t1 t2 … t, , ,
l

ti x1 x … xp∧ ∧ ∧=

Xn

a a 1[] … a a[], ,() a1 1, a1 2, …a1 X1, … an 1, … a, n Xn,, , , , ,()=

a Xi
i 1=

n

∑= ai j,

a a i[] 1=

Xn

Xn

- 5 -

must cover all training examples it would normally consist of many rules which are generally
more complicated. The reason for this is that in general if there is an exception to a general rule,
the exception must be included in the general rule (which makes the rule more complicated) and
the exception must be described by an individual rule in order to describe all examples (which
increases the number of rules).

4. PAC identification

Learning of kDNF’s is one of the first problems investigated by Valiant in 1984 [Valiant 84]. The
question: “How many examples do I need in order to ensure that my generated concept c differs
only ε form the true “unknown” concept with probability at least 1 -δ?” has been solved under
various conditions. We can use this results for the task of rule learning algorithms because we
have reduced the problem of finding rules to finding a set of kDNF’s.
Within PAC learning there are different ways to treat noise. The easiest way is to assume that
there is no noise in the given examples. If you handle the noise you have to distinguish whether
only the conclusion attribute is affected by noise (example has false classification) or whether
each attribute is affected by noise (the “whole” example is noisy). The number of needed data
depends on the used noise model.

4.1 Each attribute value is affected by a known noise factor.

In this noise model, each rule component ai,j (literal) is affected by a known noise rateβ so that

ai,j = ai,j with probability 1 -β
ai,j = 0 with probability 0.5 β
ai,j = 1 with probability 0.5 β

Shackelford and Volper [Shackelford, Volper 88] showed that the class of kDNF isPAC - identi-
fiable which means there exists as algorithm A, so that for , ,

and for all distributions D using as Oracle function E(f) outputs a Boolean functionc such that:

(1)

whereh is the “true” concept to be learned and is a measure of the region in whichh andc

disagree. is the probability given the distribution D.

c kDNF∈()∀ ε 0≥()∀ δ 0≥()∀

p pD h c∇ ε<()() 1 δ−≥

h c∇
pD

- 6 -

Figure 1: learning a kDNF which isε close to the “true” concept

The algorithm to construct the kDNF essentially tests for all negative examples whether they are
“true” negative or whether they are “true” positive examples which seem to be negative due to the
noise. By assuming a specific noise model it can be found out which case is preferred. The terms
which correspond to the negative examples are deleted so that the remaining set of terms
describes the “true” concept within the demanded bounds. The algorithm finds the concept to be
learned because it is assumed to be expressed by a kDNF.

They showed that if

then the probability is in the assumed bounds where is the number of terms with at most k liter-

als and is the number of equivalence classes over the set of terms.

 [Valiant 84] and the equivalence relation over the set of terms is

defined so that two terms are in the same class iff they consist of exactly the same literals. There-

fore . The number of needed examples is called thesample complexity. In section 5

we show that the RULEARN algorithm uses a reduced search space which is less complex.

premises (of rules inferring the concept

conclusion (concept to be learned)

p (pD (< ε)) >= 1 -δ
)

-

m
2k 3+ K2

ε2 1 β−() 2k

22k 1+ E
δ()log≥

K

E

K n
r

2r

r 0=

k

∑= 2n() k 1+≤

E n
i

i 0=

k

∑=

- 7 -

4.2 Conclusion attribute is affected by noise

In this noise model we have the correct classification of a given example with probability 1 -β.
The other attributes aren’t affected by noise. This conditions have been analyzed by Valiant [Val-
iant 85]

Let be the number of possible rule premises (terms), then , wherel is the maxi-

mal number of possible values for each attribute. If and then a concepth is

PAC - identifiable by a DNFc if

.

4.2 Noise free case

Before we analyze the number of needed examples we introduce two definitions:

If C is a class of representations over X we say that Cshatters a set if the set

 is the power set of Y. TheVapnic-Chervonenkis dimension (or VC-dimension)

of C denoted VCD(C) is the greatest integer d such that there exists a set of cardinality d that is
shattered by C. In one sense the VC dimension is a measure of the number of “degrees of free-
dom” possessed by C. The VC -dimension was originally introduced by Vapnic and Chervonenkis
[Vapnic and Chervonenkis 71].

Kearns [Kearns 89] derived a lower bound for the sample space complexity in the noise free case.

If , and then C is PAC - identifiable if

where is the Vapnic-Chervonenkis dimension.

If we don’t specify bounds onε andδ Natrajan [Natrajan 91] showed that if

then C is PAC - identifiable (without noise).

This results can be used for determining the sample complexity for rule learning systems of

M M n
i

li

i 1=

n

∑≤

β
δ

4 M
= ε 2β=

m
36
δ M

M
δ()log≥

Y X⊆
c Y c C∈∩{ }

0 ε 1
32

≤< 0 δ 1
1000

≤< VCD C() 2≥ m
VCD C() 2−

128ε≥

VCD C()

m
1
ε n' 1+() VCD C() ln 2() ln

1
δ()+()≥

- 8 -

kDNF’s. The VC - dimension of the concept class of all rule sets or kDNF is the number of possi-
ble terms. So the above results can be applied by substituting VCD(C) toM.

In the result from Natrajan n’ is a length parameter which specifies the number of possible vari-
ables. In our casen’ = n l wheren is the number of attributes andl is the maximal number of pos-
sible values for each attribute.

Because this results are based on a worst case analysis, the number of needed examples is much
higher than the number available in practical applications. This results can be improved by assum-
ing a underlying distribution or by reducingM.

In the next section we describe how the setM can be reduced to a small fraction by specifying aα
threshold. If we assume that a concept is learnable in respect to a giveα value the number of
needed examples becomes much smaller.

5. Trade - off between finding a approximate good and a compact set of rules

After we have described the syntactical equivalence between the set of kDNF’s and the set of
rules we want to figure out some differences between the semantics of learning kDNF and rule
induction within RULEARN. The goal of learning the kDNF as described before is to find a con-
cept description which differs from the ‘true” concept at mostε assuming that the true concept can
be described by a kDNF.

The idea of finding rules within the RULEARN system is to generate a compact rule set which
consists of only a few general and precise rules. As a result of this, the goal is not to be as close to
the “true” concept as possible. In terms of the kDNF this means that there should be only a few
terms.
There is a trade - off between the correctness and the compactness of the classification.

Figure 2 and 3 illustrate the different view to classification.

- 9 -

Figure 2: describing a rule for the best cover

Figure 3: Describing a rule in general

The main difference is that the RULEARN system does not care about the part of the concept
which is not described by the rule. In contrast to that the kDNF construction algorithm and also
most rule-learning systems try to find aε-close cover in which the unclassified parts of the con-
cept are counted as faults.
In order to construct a compact rule set from the set of kDNF’s which cover the “true” concept
with a symmetric difference from at leastε, we delete all terms which do not fulfill the demanded
thresholds. In the following we describe the fault which is done by dropping out some rules which
cover a part of the “true” concept.

premiseconclusion

covered
part of concept

uncovered
part of concept

faulty
classified
part of the
concept

premiseconclusion

correct
applications

false
applications

- 10 -

Figure 4: Finding a compact rule set describing the concept

The threshold for the universality reduces the set of possible rules (which correspond to the terms
in the kDNF) by demanding that there must be at least a number of occurrences in which the
premise is fulfilled. All rules or terms describing less examples are dropped out. The set of possi-
ble hypothesesH (hypotheses space) is the power set of the set of possible rules (terms of the

DNF) M. Because |H| is exponential in the number of rules (), a reduction ofM reduces
the hypothesesH very efficient.

The process of defining a threshold for the universality can be compared with defining a maximal
number of literals k in a term to reduce the search space from DNF to kDNF. This is also a reduc-
tion of the set of terms. After describing the reduction we compare the results with kDNF.

Proposition 1

For each fixed set of attributes there are at most combinations of attribute values which have

a universality of at least α.

Proof

A: We first evaluate the case when the rule consists of only one element in the premise.

If the attribute has more than attribute values which occur at least times, the sum of all

occurrences is greater than the number of examples, which is a contradiction.

B: If the rule consists of k components (literals), there are at most possible combinations of
attribute values for k fixed attributes wherel is the maximal number of different attribute values.
Because the sum of all occurrences of each combination is the number of examples, there can be

at most combinations which occur at least times.■

premises (of rules inferring the concept

conclusion (concept to be learned)

)

H 2M=

1
α

1
α α

lk

1
α α

- 11 -

In the calculation we only consider rules in which all attribute values in a premise (term) are taken
from different attributes, because the conjunction of two components (literals) of the same
attribute is always false. In the reduction to the DNF described before such combinations are pos-
sible. This increases the set of rules and the hypotheses space more than actually needed because
such rules do not make sense.

Theorem 1

Let l be the maximal number of different attribute values, then the sum of all possible rules in

respect to α: is for all :

(2)

where n is the number of attributes.

Proof

From Proposition 1 there are at most attribute values for each combination of attributes. The

sum of all possible combinations of attribute values is .■

For low values forα might be larger than , so that result of the theorem can be improved.

Because the number of possible combinations of k (fixed) attributes is , this is the number

of possible values for each combination.

For each there is a constantd, so that .

Mα α 1
l

>

Mα
n
i

 1
α

i 1=

n

∑≤

1
α

n
i

i 1=

k

∑

li 1
α

Xi
i j1=

jk

∏

α 1

Xi
i 1=

n

∏
≥

1

Xi
i 1=

d

∏
α 1

Xi
i 1=

d 1−

∏
≤<

- 12 -

For all rules containing more thand components (terms with more thand literals),α reduces the
number of rules to be considered. From (3) we can therefore derive:

(2.1)

Because there are at most combinations of attribute values, from (2) and (2.1) we derive:

(2.2)

If we reduce the search from DNF to kDNF the number of possible terms is

(2.3)

Because this is only the exponent for the number of hypotheses, theα-reduction is a very efficient
way of reducing the hypotheses space.

Notice that we made no assumption about the distribution which generates the examples from the
sample space. In the derivation we used the worst case in which each attribute value occurs the
same number of times. The more the occurrences of the attribute values differ, the lower is the
number of possible rules with respect toα.

The effect of defining a minimum universalityα on the hypotheses space is shown in figure 5.

Figure 5: Reduction of the hypotheses space

The threshold forα may cause only a subset of the possible concept to be learned. Ifα is less than

Mα
n
i

ld

i 1=

d

∑≤ n
i

 1
α

i d 1+=

n

∑+

ld

Mα
n
i

min

1
α l,

i
{ }

i 1=

n

∑≤

Mk

Mk n
i

li

i 1=

k

∑≤

hypotheses space H

reduced
hypotheses
space Hα

concept to be learned

- 13 -

 and each possible rule is applicable at least once, than Hα is equal H. Ifα is near to one then

Hα may be empty. In this case the concept is not learnable with respect toα. As discussed before,

instead of finding an exact description of the concept, the algorithm finds a subset so that each ele-
ment describes a part of the “true” concept with at least a given probability. This problem is
equivalent to learning a kDNF for an unknown concept with a fixedk. If we assume that the con-
cept may be described with the chosen representation, the algorithm will find it.

In the following we assume that there is a concept to be learnedh and there exists a DNFc, so that

 (1)

Let t be a term, |t| denotes the number of literals in t and we call |t| the length of t. Let ,

than and we call |c| the length ofc. The functioncover(t) gives the subset of possible

examples with respect to the given distribution which is covered byt. We define

 the terms in the given DNF c which cover at leastα percent

of the data and the terms which have at most k literals.

We want to compare the hypotheses reduction of a DNFc to:
- to a kDNFck

- to a subsetcα

For and clearly .

The question which remains is: “What is the maximum fault in respect toc which is made by

defining anα higher than or a k less than kmax?”

1. α > αmin

There exists a set of termst = t1,...,tl with . Let |cover(t)| = mt and

|cover(c-t)| = mc-t then mt + mc-t >= m. The sum is equal to m if the two sets are disjunct.

In formula (1)ε is a upper bound for the

uncovered examples and the faulty covered examples

1
m

p pD h c∇ ε<()() 1 δ−≥

c DNF∈

c |t|
t c∈
∑=

cα c⊆ t c∈ cover t() αm>{ }=

ck c⊆ t c∈ t k≤{ }=

kmax max t c∈{ }= αmin min cover t() |t c∈{ }= ckmax
cαmin

c= =

αmin

i l≤()∀ ti c∈ ti Hα∉∧

u x x cover h() x cover c()∉∧∈{ }=

- 14 -

. In the worst casecover(t) and f are disjunct, this

means that the terms which cover less thanα percent of the data don’t imply any faulty classifica-
tion.
In other words, the probability for a faulty classification of the remaining set of terms increases
because the terms which are dropped out have no missclassification.

In contrast to the standard PAC identification we want to distinguish between
- the probability that an example is classified false
- the probability that an example is uncovered

The phrase includes both cases.

For the first case we can derive from (1)

 (1.1)

Becauseε is a upper bound for the missclassification, in the worst case each term which is
dropped out has no missclassification. In this case the smaller remaining subset has the same
(absolute) amount of missclassification. The percentage of missclassification decreases with the
number of dropped out terms.

Of course the probability that an example of the true concept is classified decreases by specifying

α. The amount of lost coverage is , so in the worst case is if the dropped out

terms are disjunct .

If the set a DNF contains lots of specific terms, it also contains a super set which contains the
smaller terms. To be precise we refer to the definition of asunflower as: A family of sets S is

called a sunflower if there is a set C, called center, such that for every if then

.

The theorem by Erdoes and Rado [Erdoes Rado 60] claims that if there is a family of setsF and

two integersv andw, so that every element inF has size at mostv and thanF con-

tains a sunflower of sizew. By using this result we can guarantee that if the description of h con-

f x x cover h() x cover c()∈∧∉{ }=

h c∇

p pD missclassificationof cα() ε
cover c()

cover cα()<()() 1 δ−≥

cover t()
t c t cα∉∧∈

∪

cover t()
t c t cα∉∧∈

∩ ∅=()

A B C∈, A B≠
A B∩ C=

F v! w 1−() v>

- 15 -

tains terms it has a sunflower which is not dropped out if the threshold forα is

increased to drop out the small terms.

2. k < kmax

We now consider the case where we reduce the concept c to a kDNFck with k less than kmax.

In this case there exists a set of terms with . Because

 we must only consider missclassifications. Each of this terms misses at

least one subterm (at most one literal)li. In the worst case classifies all examples where

classifies only examples withinh. From (1) we derive

 (1.3)

If one of the termsli covers all examples the upper bound is 1.

In comparison of both reduction methods theα-reduction decreases the number of applications
(i.e. number classifications) of a rule by keeping the probability of a missclassification small. On
the other hand the reduction on the term length increases the number of applications of the rule set
by allowing a high probability of missclassification.
In that sense theα-reduction is more secure. If the rule is applicable, then the probability that the
result is correct is within a reasonable bound.

v! w 1−() v

t1 … tj i j ti c∈ ti ck∉∧()≤∀, , ti k>

cover c() cover ck()⊂

ti ti l∧

p pD h ck∇ min 1 ε,
cover ti() cover li()∩

i j≤
∪

cover TRUE()+{ }<

1 δ−≥

- 16 -

Figure 5 a) Number of possible rule-components (terms) in relation to different values for
α and k in linear scale

Figure 5 b): Number of possible rule-components (terms) in relation to different values for
α and k in half-logarithmic scale

This picture is not available
by ftp. In order to get the whole
report you have to contact ICSI.

This picture is not available
by ftp. In order to get the whole
report you have to contact ICSI.

- 17 -

Figure 6: Number of possible rule-components (terms) in relation to different values forα and k
in logarithmic scale (in linear scaling the alpha reduction can not be
distinguished from the x-axis).

6. RULEARN algorithm

The RULEARN algorithm can be described as

1. determine the set of possible rules with respect toα
2. test, whether the rule fulfills the thresholds forσ andπ

true: store rule and test the next
false: look for a new rule to be tested

The idea is to find as high thresholds as possible in order to keep the rule set small. Given a true

rule the system should have thresholds to findr even if the examples are affected by noise.
If we use the noise model in which each attribute is affected by noise, we can derive a threshold
for the reliabilityπ.

If the counterexamples which must be considered fulfill

the premise, but have a different value for the conclusion attribute value with

. Because each component in the attribute value vector can be affected by

This picture is not available
by ftp. In order to get the whole
report you have to contact ICSI.

r h∈

r ai1 j1, ai2 j2, … aik jk, an j, k 1+
→∧ ∧ ∧=

an j, l

jl Xn jl jk 1+≠∧≤

- 18 -

noise, a counterexample is an example in which at least one of the components for the conclusion
is changed. In the noise model where each attribute value is affected by noise the probability that

a correct true value (1) is set to 0 is, which is equal to the probability that a correct false value

(0) is 1. If the examples are generated independently from an oracle, the probability that an exam-

ple becomes a counterexample is . So if the reliability threshold is less than this

value the rule would be generated.

The influence of the universality (α) has been described in the previous sections. Independent

from this, if the specialization is set to and the universality values are set to 0, no “true” rule is
dropped out.

6. Conclusions

We have represented a very efficient way of reducing the search space that can be used for learn-
ing rules or kDNF formulas. The reduced space decreases exponentially with only a small fault
for missclassification. In contrast to syntactical reduction, thresholds in the number of literals
within a term, theα-reduction gives a easy semantic interpretation. It allows the user to have a
deeper understanding about the definition of the threshold and is easier to adjust.
Combining both reduction techniques gives a even better reduction of the search space.

7. References

[Bloendorn Michalski 91] Bloendorn E. and Michalski R. S.: Data-driven Constructive Induction
in AQ17-DCI: A Method and Experiments, Reports of Machine Learning and Inference Labora-
tory, Center for Artificial Intelligence, George Mason University, 1991
[Clark Niblett 89] Clark P. and Niblett T. : The CN2 induction algorithm, Machine Learning.
3:261-283, 1989
[Erdoes Rado]Erdoes, P. and Rado R.: Intersection theorems for systems of sets, Journal of the
London Math. Society, vol.35 pp. 85-90, 1960
[Fehsenfeld et al 91]Fehsenfeld B., Harris S., Koch T. and Kirchheiner R. : Automatic learning
with RULEARN in the example of corrosion tests, in Technische Mitteilungen Krupp 1/1991
[Kearns 89] Kearns M. J.: The Computational Complexity of Machine Learning, MIT press, 1989
[Kirchheiner Koch 92] Kirchheiner R. and Koch T. : Computer aided learning of corrosion rules

β
2

1 1
β
2

−()
Xn

−

m

- 19 -

from factual data bases, Proceedings of the NACE-CORRSION ‘92, Nashville 1992
[Koch 88] Koch T.: Effizientes Lernen und Bewerten von Regeln, Kuenstliche Intelligenz
Informatik Fachberichte 181, 186-195, Springer Berlin 1988
[Michalski 83] Michalski R. S.: A Theory and Methodology of Inductive Learning in “Machine
Learning: An Artificial Intelligence Approach, Michalski R.S.,Carbonell J. and Mitchell T. (Eds.)
pp. 83-134, Morgan Kaufmann Publishing Co., Mountain View, CA, 1983
[Natrajan 91] Natrajan B. K. : Machine learning: A theoretical approach, Morgan Kaufmann Pub-
lishers 1991
[Pfeiffer et al 88] Pfeiffer J., Siepmann T. and Teichmann W.: Expert system for metal machining
practise, in Technische Mitteilungen Krupp 46 (1988) pp 113 - 124
[Shackelford, Volper 88] Shackelford G. and Volper D. : Learning k-DNF with noise in thee
Attributes. Proceedings of the first Annual ACM Workshop on Computational Learning Theory
1988, 97-103
[Quinlan 86] Quinlan J.R.: Induction of decision trees, Machine Learning, 1:81-106, 1986
[Utgoff 89] Utgoff P.E.: Incremental Learning of Decision trees., Machine Learning 4:161-
186, 1989
[[Valiant 84] Valiant L.G. : A Theory of the learnable, Communications of the ACM, 27:11,
1134-1142, 1984
[Valiant 85] Valiant L.G. : Learning disjunctions of conjunctions,Proc. of the 9 th IJCAI, Los
Angeles California, Morgan Kaufman 1985, pp 560-566
[Vapnic and Chervonenkis 71] Vapnik V. N. and Chervonenkis A. Ya.: On uniform convergence
of relative frequencies of events to their probabilities , Theory of Probability and its Applications,
16(2).1971, pp. 264-280

- 0 -

Inductive learning of

compact rule sets

by using

efficient hypotheses reduction

Thomas Koch1

TR 92-069
October 1992

Abstract:
A method is described which reduces the hypotheses space with an efficient and
easily interpretable reduction criteria calledα - reduction. A learning algorithm is
described based onα - reduction and analyzed by using probability approximate
correct learning results. The results are obtained by reducing a rule set to an equiva-
lent set of kDNF formulas.
The goal of the learning algorithm is to induce a compact rule set describing the
basic dependencies within a set of data. The reduction is based on criterion which is
very flexible and gives a semantic interpretation of the rules which fulfill the crite-
ria. Comparison with syntactical hypotheses reduction show that theα - reduction
improves search and has a smaller probability of missclassification.

1. ICSI on leave from Krupp Forschungsinstitut GmbH, HA Informationstechnik, Muenchener Str. 100,
W- 4300 Essen 1, Germany

- 1 -

Acknowledgment

I thank Anna Morpurgo, Klaus-Peter Jantke, Michael Luby and Philip Kohn for the fruitful dis-
cussions about draft versions. I’m deeply grateful to Prof. Jerome Feldman has supported my
work here very strongly and to the management of the Krupp Forschungsinstitut, namely to Dr.
Bernd Schoenwald, Dr. Bernd Fehsenfeld and Dr. Diethard Bergers who sent me to Berkeley in
order to improve research.

1. Introduction

Rule based systems are the standard technique used in expert systems. Because of the difficulties
in extracting rules from a human expert, automatic rule generation is a helpful way to bridge the
knowledge acquisition bottleneck.
The scenario can be described as given a data set (i.e. set of examples) from a database, construct
a set of rules which describe the dependencies within the data set. Systems that perform this task
are for example ID3 family [Quinlan 86] and [Utgoff 89], AQ15 [Michalski 83] or CN2 [Clark,
Niblett 89] and RULEARN [Koch 88]. The questions which arises after finding the rules can be
formulated as: “With what level of confidence do the generated rules describe the “true” depen-
dencies in the data set?”
This question is solved by showing that the task of finding rules is PAC (probability approxi-
mately correct) identifiable. Given a representation, a function describing the dependencies
between the size of the data set and probability and confidence can be formulated. In general this
can be done independently from the probability distribution which generates the examples (data
set) from the sample space.
In this approach the PAC identification is done by constructing a set of kDNF’s which are equiva-
lent to a set of rules. Because the kDNF Problem has been analyzed within the many PAC publi-
cations (f. e. [Shackelford and Volper 88],[Kearns 89)] these results can also be used for rule-
based systems.
We also describe the hypotheses reduction method used in the RULEARN system, calledα -
reduction within the framework of PAC. This technique can be used in various applications beside
Machine Learning. It is very efficient, gives a semantic interpretation of the reduction and enables
an algorithm to find compact descriptions with only a small probability of missclassification.
This report describes the rule learning system RULEARN within the PAC learning framework.
The RULEARN software has been developed at the Krupp Forschungsinstitut GmbH [Fehsenfeld
et. al 91] and has been applied to various data sets from all sections of the production process
from product development up to after sales. RULEARN is used as a data evaluation method but
also as a knowledge acquisition tool for building expert systems [Kirchheiner and Koch 92]. For
reference of expert system development see for example [Pfeiffer et al 88].

- 2 -

In section 2 we describe the ideas of the RULEARN system, which uses three user defined evalu-
ation criteria to distinguish between good and bad rules.
In the following section we show the equivalence of concept descriptions using a set of rules and
a set of kDNF’s.
In section 4 we describe the PAC identification of a kDNF. This allows us to derive the number of
needed examples to ensure that the found solution isε - close to the “true” description with at
least a given probability (sample complexity).
After this we describe the trade - off between search effort and the fault of a solution using a
reduced search space. We formally describe the reduction of specifying a threshold in the number
of literals in a term and on theα - value of a term. By using the PAC framework we can derive
upper bounds on the maximal fault. We also show how the search is reduced within typical exam-
ples.
Section 7 outlines the search for rules within RULEARN. In the last section we summarize the
results and compare the differences between the different reduction methods.

2. Rule generation methods

Within an expert system shell the programmer can formulate complex rules, which for example
contain arbitrary functions in premise and conclusion in the underlying programming language. In
this case they are nearly as powerful as the underlying programming language. In order to find
rules automatically the rule representation must be restricted to a specific subset. In the following
we use propositional logic as representation language.
We assume that each of the given examples can be expressed by a finite numbern of attributes
A1,...,An with possible values X1,..., Xn. The sample space for an attribute value based inductive

system can be described by the sample space , where each attribute

 has a finite set of possible values denoted by. To handle unknown values a special attribute

value “*” can be included in the set of possible values.

An example can be written as a vector . Each rule component describing possible

examples has the formai,j which means the attribute Ai has the value Xi. For each example it

can be tested whetherai,j has the value true or false. A rule can be written as

 where .

Without loss of generality we assume the last attribute is the one for which rules should be found
(conclusion attribute).

This assumption is also typical for the induction of decision trees.

ℵ X1 X2… Xn 1−×× Xn×=

Xi Xi

x1 x2 … xn, , ,()
xj ∈

ai1 j1, ai2 j2, … aik jk, an j, k 1+
→∧ ∧ ∧ i k 1 n≤+≤()∀ ji Xi≤

- 3 -

As an example for a rule induction method we choose the RULEARN machine learning system.
The goal of RULEARN is to find a short (compact) set of rules from a given data set which

- describes as many data sets as possible
- describes as precisely as possible
- uses as few rules as possible.

There is a trade - off between the three goals so that all goals can not be optimized by one set of
rules. The idea is to combine these goals so that a learned rule set covers each goal to at least a
specific degree.
In order to do that, RULEARN uses three evaluation criteria which are measures of the rule qual-
ity. The user of the system defines thresholds for each of the measures.

The quality measures are defined as follows:

The measure of a rule is defined if the rule applicable is at least once.

The values of the criteria can have following values: , and where

m is the number of examples.

The settings of the demands determine the number of rules to be learned and the time which is
needed to find the rules. If the demands are minimal, that means π = 0, σ = m andα = 0,
RULEARN generates all possible rules. In general a set of at most 20 rules can be generated,
which describe dependencies within the data. In the next sections we focus on the threshold for
the universality (α) and show how the threshold forα reduces the search space.

reliability π() number of correct applicationsof therule
number of possibleapplicationsof therule

=

specilization σ() number of examplesinwhichtheconclusionisfulfilled
number of examplesinwhichthepremiseisfulfilled

=

universality α() number of possibleapplicationsof therule
number of examples

=

0 π 1≤ ≤ 1
m

σ m≤ ≤ 0 α 1≤ ≤

- 4 -

3. Reduction

This section describes the formalization of rules using attribute value assignments. In the case the
learning of rules is reduced to the learning of DNF’s.

A DNF is a set of terms where each term is a conjunction of p

literals where each literal is negated or not. If no literal is negated, we call the DNF monotone. If
no term of the DNF has more than k literals, the DNF is called akDNF.

We reduce the learning of kDNF to learning rules by using a set of kDNF’s in which each element

corresponds to a set of rules describing one conclusion attribute value. The result is a set of

separate kDNF’s. For each rule we construct a term in the kDNF which belongs to the conclusion
attribute value which is described by the rule.

To construct a term which is equivalent to a given rule we define a set of vectors

 = called attribute-value-

vector with

 which contains all possible rule components.

For each term in the kDNF we construct a vector with iff the corresponding rule

component occurs in the actual rule. This component must be included in the kDNF which corre-
sponds to the conclusion attribute value which is inferred by the rule.

A inference using the rules is equivalent to the testing of kDNF’s one after another. If one

kDNF has the value true, the conclusion value which corresponds to the actual kDNF can be
inferred. If the rule set is consistent, at most one of the kDNF’s is true for any possible combina-

tion of attribute values. If the rule set does not match the given example, none of the kDNF’s

is true.

Notice that this construction allows a given attribute to be represented by more than one value.
For example the value for an attribute color may have the values “red” and “black”. If a rule set
should be generated in which each attribute has only two possible values and which classifies all
examples, the attribute value vector needs to be only half the size.
As mentioned above, it is also possible that none of the rules match a given example even in the
training set.
This property is used in the RULEARN system to keep the generated rule set small. If a rule set

t1 t2 … t, , ,
l

ti x1 x … xp∧ ∧ ∧=

Xn

a a 1[] … a a[], ,() a1 1, a1 2, …a1 X1, … an 1, … a, n Xn,, , , , ,()=

a Xi
i 1=

n

∑= ai j,

a a i[] 1=

Xn

Xn

- 5 -

must cover all training examples it would normally consist of many rules which are generally
more complicated. The reason for this is that in general if there is an exception to a general rule,
the exception must be included in the general rule (which makes the rule more complicated) and
the exception must be described by an individual rule in order to describe all examples (which
increases the number of rules).

4. PAC identification

Learning of kDNF’s is one of the first problems investigated by Valiant in 1984 [Valiant 84]. The
question: “How many examples do I need in order to ensure that my generated concept c differs
only ε form the true “unknown” concept with probability at least 1 -δ?” has been solved under
various conditions. We can use this results for the task of rule learning algorithms because we
have reduced the problem of finding rules to finding a set of kDNF’s.
Within PAC learning there are different ways to treat noise. The easiest way is to assume that
there is no noise in the given examples. If you handle the noise you have to distinguish whether
only the conclusion attribute is affected by noise (example has false classification) or whether
each attribute is affected by noise (the “whole” example is noisy). The number of needed data
depends on the used noise model.

4.1 Each attribute value is affected by a known noise factor.

In this noise model, each rule component ai,j (literal) is affected by a known noise rateβ so that

ai,j = ai,j with probability 1 -β
ai,j = 0 with probability 0.5 β
ai,j = 1 with probability 0.5 β

Shackelford and Volper [Shackelford, Volper 88] showed that the class of kDNF isPAC - identi-
fiable which means there exists as algorithm A, so that for , ,

and for all distributions D using as Oracle function E(f) outputs a Boolean functionc such that:

(1)

whereh is the “true” concept to be learned and is a measure of the region in whichh andc

disagree. is the probability given the distribution D.

c kDNF∈()∀ ε 0≥()∀ δ 0≥()∀

p pD h c∇ ε<()() 1 δ−≥

h c∇
pD

- 6 -

Figure 1: learning a kDNF which isε close to the “true” concept

The algorithm to construct the kDNF essentially tests for all negative examples whether they are
“true” negative or whether they are “true” positive examples which seem to be negative due to the
noise. By assuming a specific noise model it can be found out which case is preferred. The terms
which correspond to the negative examples are deleted so that the remaining set of terms
describes the “true” concept within the demanded bounds. The algorithm finds the concept to be
learned because it is assumed to be expressed by a kDNF.

They showed that if

then the probability is in the assumed bounds where is the number of terms with at most k liter-

als and is the number of equivalence classes over the set of terms.

 [Valiant 84] and the equivalence relation over the set of terms is

defined so that two terms are in the same class iff they consist of exactly the same literals. There-

fore . The number of needed examples is called thesample complexity. In section 5

we show that the RULEARN algorithm uses a reduced search space which is less complex.

premises (of rules inferring the concept

conclusion (concept to be learned)

p (pD (< ε)) >= 1 -δ
)

-

m
2k 3+ K2

ε2 1 β−() 2k

22k 1+ E
δ()log≥

K

E

K n
r

2r

r 0=

k

∑= 2n() k 1+≤

E n
i

i 0=

k

∑=

- 7 -

4.2 Conclusion attribute is affected by noise

In this noise model we have the correct classification of a given example with probability 1 -β.
The other attributes aren’t affected by noise. This conditions have been analyzed by Valiant [Val-
iant 85]

Let be the number of possible rule premises (terms), then , wherel is the maxi-

mal number of possible values for each attribute. If and then a concepth is

PAC - identifiable by a DNFc if

.

4.2 Noise free case

Before we analyze the number of needed examples we introduce two definitions:

If C is a class of representations over X we say that Cshatters a set if the set

 is the power set of Y. TheVapnic-Chervonenkis dimension (or VC-dimension)

of C denoted VCD(C) is the greatest integer d such that there exists a set of cardinality d that is
shattered by C. In one sense the VC dimension is a measure of the number of “degrees of free-
dom” possessed by C. The VC -dimension was originally introduced by Vapnic and Chervonenkis
[Vapnic and Chervonenkis 71].

Kearns [Kearns 89] derived a lower bound for the sample space complexity in the noise free case.

If , and then C is PAC - identifiable if

where is the Vapnic-Chervonenkis dimension.

If we don’t specify bounds onε andδ Natrajan [Natrajan 91] showed that if

then C is PAC - identifiable (without noise).

This results can be used for determining the sample complexity for rule learning systems of

M M n
i

li

i 1=

n

∑≤

β
δ

4 M
= ε 2β=

m
36
δ M

M
δ()log≥

Y X⊆
c Y c C∈∩{ }

0 ε 1
32

≤< 0 δ 1
1000

≤< VCD C() 2≥ m
VCD C() 2−

128ε≥

VCD C()

m
1
ε n' 1+() VCD C() ln 2() ln

1
δ()+()≥

- 8 -

kDNF’s. The VC - dimension of the concept class of all rule sets or kDNF is the number of possi-
ble terms. So the above results can be applied by substituting VCD(C) toM.

In the result from Natrajan n’ is a length parameter which specifies the number of possible vari-
ables. In our casen’ = n l wheren is the number of attributes andl is the maximal number of pos-
sible values for each attribute.

Because this results are based on a worst case analysis, the number of needed examples is much
higher than the number available in practical applications. This results can be improved by assum-
ing a underlying distribution or by reducingM.

In the next section we describe how the setM can be reduced to a small fraction by specifying aα
threshold. If we assume that a concept is learnable in respect to a giveα value the number of
needed examples becomes much smaller.

5. Trade - off between finding a approximate good and a compact set of rules

After we have described the syntactical equivalence between the set of kDNF’s and the set of
rules we want to figure out some differences between the semantics of learning kDNF and rule
induction within RULEARN. The goal of learning the kDNF as described before is to find a con-
cept description which differs from the ‘true” concept at mostε assuming that the true concept can
be described by a kDNF.

The idea of finding rules within the RULEARN system is to generate a compact rule set which
consists of only a few general and precise rules. As a result of this, the goal is not to be as close to
the “true” concept as possible. In terms of the kDNF this means that there should be only a few
terms.
There is a trade - off between the correctness and the compactness of the classification.

Figure 2 and 3 illustrate the different view to classification.

- 9 -

Figure 2: describing a rule for the best cover

Figure 3: Describing a rule in general

The main difference is that the RULEARN system does not care about the part of the concept
which is not described by the rule. In contrast to that the kDNF construction algorithm and also
most rule-learning systems try to find aε-close cover in which the unclassified parts of the con-
cept are counted as faults.
In order to construct a compact rule set from the set of kDNF’s which cover the “true” concept
with a symmetric difference from at leastε, we delete all terms which do not fulfill the demanded
thresholds. In the following we describe the fault which is done by dropping out some rules which
cover a part of the “true” concept.

premiseconclusion

covered
part of concept

uncovered
part of concept

faulty
classified
part of the
concept

premiseconclusion

correct
applications

false
applications

- 10 -

Figure 4: Finding a compact rule set describing the concept

The threshold for the universality reduces the set of possible rules (which correspond to the terms
in the kDNF) by demanding that there must be at least a number of occurrences in which the
premise is fulfilled. All rules or terms describing less examples are dropped out. The set of possi-
ble hypothesesH (hypotheses space) is the power set of the set of possible rules (terms of the

DNF) M. Because |H| is exponential in the number of rules (), a reduction ofM reduces
the hypothesesH very efficient.

The process of defining a threshold for the universality can be compared with defining a maximal
number of literals k in a term to reduce the search space from DNF to kDNF. This is also a reduc-
tion of the set of terms. After describing the reduction we compare the results with kDNF.

Proposition 1

For each fixed set of attributes there are at most combinations of attribute values which have

a universality of at least α.

Proof

A: We first evaluate the case when the rule consists of only one element in the premise.

If the attribute has more than attribute values which occur at least times, the sum of all

occurrences is greater than the number of examples, which is a contradiction.

B: If the rule consists of k components (literals), there are at most possible combinations of
attribute values for k fixed attributes wherel is the maximal number of different attribute values.
Because the sum of all occurrences of each combination is the number of examples, there can be

at most combinations which occur at least times.■

premises (of rules inferring the concept

conclusion (concept to be learned)

)

H 2M=

1
α

1
α α

lk

1
α α

- 11 -

In the calculation we only consider rules in which all attribute values in a premise (term) are taken
from different attributes, because the conjunction of two components (literals) of the same
attribute is always false. In the reduction to the DNF described before such combinations are pos-
sible. This increases the set of rules and the hypotheses space more than actually needed because
such rules do not make sense.

Theorem 1

Let l be the maximal number of different attribute values, then the sum of all possible rules in

respect to α: is for all :

(2)

where n is the number of attributes.

Proof

From Proposition 1 there are at most attribute values for each combination of attributes. The

sum of all possible combinations of attribute values is .■

For low values forα might be larger than , so that result of the theorem can be improved.

Because the number of possible combinations of k (fixed) attributes is , this is the number

of possible values for each combination.

For each there is a constantd, so that .

Mα α 1
l

>

Mα
n
i

 1
α

i 1=

n

∑≤

1
α

n
i

i 1=

k

∑

li 1
α

Xi
i j1=

jk

∏

α 1

Xi
i 1=

n

∏
≥

1

Xi
i 1=

d

∏
α 1

Xi
i 1=

d 1−

∏
≤<

- 12 -

For all rules containing more thand components (terms with more thand literals),α reduces the
number of rules to be considered. From (3) we can therefore derive:

(2.1)

Because there are at most combinations of attribute values, from (2) and (2.1) we derive:

(2.2)

If we reduce the search from DNF to kDNF the number of possible terms is

(2.3)

Because this is only the exponent for the number of hypotheses, theα-reduction is a very efficient
way of reducing the hypotheses space.

Notice that we made no assumption about the distribution which generates the examples from the
sample space. In the derivation we used the worst case in which each attribute value occurs the
same number of times. The more the occurrences of the attribute values differ, the lower is the
number of possible rules with respect toα.

The effect of defining a minimum universalityα on the hypotheses space is shown in figure 5.

Figure 5: Reduction of the hypotheses space

The threshold forα may cause only a subset of the possible concept to be learned. Ifα is less than

Mα
n
i

ld

i 1=

d

∑≤ n
i

 1
α

i d 1+=

n

∑+

ld

Mα
n
i

min

1
α l,

i
{ }

i 1=

n

∑≤

Mk

Mk n
i

li

i 1=

k

∑≤

hypotheses space H

reduced
hypotheses
space Hα

concept to be learned

- 13 -

 and each possible rule is applicable at least once, than Hα is equal H. Ifα is near to one then

Hα may be empty. In this case the concept is not learnable with respect toα. As discussed before,

instead of finding an exact description of the concept, the algorithm finds a subset so that each ele-
ment describes a part of the “true” concept with at least a given probability. This problem is
equivalent to learning a kDNF for an unknown concept with a fixedk. If we assume that the con-
cept may be described with the chosen representation, the algorithm will find it.

In the following we assume that there is a concept to be learnedh and there exists a DNFc, so that

 (1)

Let t be a term, |t| denotes the number of literals in t and we call |t| the length of t. Let ,

than and we call |c| the length ofc. The functioncover(t) gives the subset of possible

examples with respect to the given distribution which is covered byt. We define

 the terms in the given DNF c which cover at leastα percent

of the data and the terms which have at most k literals.

We want to compare the hypotheses reduction of a DNFc to:
- to a kDNFck

- to a subsetcα

For and clearly .

The question which remains is: “What is the maximum fault in respect toc which is made by

defining anα higher than or a k less than kmax?”

1. α > αmin

There exists a set of termst = t1,...,tl with . Let |cover(t)| = mt and

|cover(c-t)| = mc-t then mt + mc-t >= m. The sum is equal to m if the two sets are disjunct.

In formula (1)ε is a upper bound for the

uncovered examples and the faulty covered examples

1
m

p pD h c∇ ε<()() 1 δ−≥

c DNF∈

c |t|
t c∈
∑=

cα c⊆ t c∈ cover t() αm>{ }=

ck c⊆ t c∈ t k≤{ }=

kmax max t c∈{ }= αmin min cover t() |t c∈{ }= ckmax
cαmin

c= =

αmin

i l≤()∀ ti c∈ ti Hα∉∧

u x x cover h() x cover c()∉∧∈{ }=

- 14 -

. In the worst casecover(t) and f are disjunct, this

means that the terms which cover less thanα percent of the data don’t imply any faulty classifica-
tion.
In other words, the probability for a faulty classification of the remaining set of terms increases
because the terms which are dropped out have no missclassification.

In contrast to the standard PAC identification we want to distinguish between
- the probability that an example is classified false
- the probability that an example is uncovered

The phrase includes both cases.

For the first case we can derive from (1)

 (1.1)

Becauseε is a upper bound for the missclassification, in the worst case each term which is
dropped out has no missclassification. In this case the smaller remaining subset has the same
(absolute) amount of missclassification. The percentage of missclassification decreases with the
number of dropped out terms.

Of course the probability that an example of the true concept is classified decreases by specifying

α. The amount of lost coverage is , so in the worst case is if the dropped out

terms are disjunct .

If the set a DNF contains lots of specific terms, it also contains a super set which contains the
smaller terms. To be precise we refer to the definition of asunflower as: A family of sets S is

called a sunflower if there is a set C, called center, such that for every if then

.

The theorem by Erdoes and Rado [Erdoes Rado 60] claims that if there is a family of setsF and

two integersv andw, so that every element inF has size at mostv and thanF con-

tains a sunflower of sizew. By using this result we can guarantee that if the description of h con-

f x x cover h() x cover c()∈∧∉{ }=

h c∇

p pD missclassificationof cα() ε
cover c()

cover cα()<()() 1 δ−≥

cover t()
t c t cα∉∧∈

∪

cover t()
t c t cα∉∧∈

∩ ∅=()

A B C∈, A B≠
A B∩ C=

F v! w 1−() v>

- 15 -

tains terms it has a sunflower which is not dropped out if the threshold forα is

increased to drop out the small terms.

2. k < kmax

We now consider the case where we reduce the concept c to a kDNFck with k less than kmax.

In this case there exists a set of terms with . Because

 we must only consider missclassifications. Each of this terms misses at

least one subterm (at most one literal)li. In the worst case classifies all examples where

classifies only examples withinh. From (1) we derive

 (1.3)

If one of the termsli covers all examples the upper bound is 1.

In comparison of both reduction methods theα-reduction decreases the number of applications
(i.e. number classifications) of a rule by keeping the probability of a missclassification small. On
the other hand the reduction on the term length increases the number of applications of the rule set
by allowing a high probability of missclassification.
In that sense theα-reduction is more secure. If the rule is applicable, then the probability that the
result is correct is within a reasonable bound.

v! w 1−() v

t1 … tj i j ti c∈ ti ck∉∧()≤∀, , ti k>

cover c() cover ck()⊂

ti ti l∧

p pD h ck∇ min 1 ε,
cover ti() cover li()∩

i j≤
∪

cover TRUE()+{ }<

1 δ−≥

- 16 -

Figure 5 a) Number of possible rule-components (terms) in relation to different values for
α and k in linear scale

Figure 5 b): Number of possible rule-components (terms) in relation to different values for
α and k in half-logarithmic scale

This picture is not available
by ftp. In order to get the whole
report you have to contact ICSI.

This picture is not available
by ftp. In order to get the whole
report you have to contact ICSI.

- 17 -

Figure 6: Number of possible rule-components (terms) in relation to different values forα and k
in logarithmic scale (in linear scaling the alpha reduction can not be
distinguished from the x-axis).

6. RULEARN algorithm

The RULEARN algorithm can be described as

1. determine the set of possible rules with respect toα
2. test, whether the rule fulfills the thresholds forσ andπ

true: store rule and test the next
false: look for a new rule to be tested

The idea is to find as high thresholds as possible in order to keep the rule set small. Given a true

rule the system should have thresholds to findr even if the examples are affected by noise.
If we use the noise model in which each attribute is affected by noise, we can derive a threshold
for the reliabilityπ.

If the counterexamples which must be considered fulfill

the premise, but have a different value for the conclusion attribute value with

. Because each component in the attribute value vector can be affected by

This picture is not available
by ftp. In order to get the whole
report you have to contact ICSI.

r h∈

r ai1 j1, ai2 j2, … aik jk, an j, k 1+
→∧ ∧ ∧=

an j, l

jl Xn jl jk 1+≠∧≤

- 18 -

noise, a counterexample is an example in which at least one of the components for the conclusion
is changed. In the noise model where each attribute value is affected by noise the probability that

a correct true value (1) is set to 0 is, which is equal to the probability that a correct false value

(0) is 1. If the examples are generated independently from an oracle, the probability that an exam-

ple becomes a counterexample is . So if the reliability threshold is less than this

value the rule would be generated.

The influence of the universality (α) has been described in the previous sections. Independent

from this, if the specialization is set to and the universality values are set to 0, no “true” rule is
dropped out.

6. Conclusions

We have represented a very efficient way of reducing the search space that can be used for learn-
ing rules or kDNF formulas. The reduced space decreases exponentially with only a small fault
for missclassification. In contrast to syntactical reduction, thresholds in the number of literals
within a term, theα-reduction gives a easy semantic interpretation. It allows the user to have a
deeper understanding about the definition of the threshold and is easier to adjust.
Combining both reduction techniques gives a even better reduction of the search space.

7. References

[Bloendorn Michalski 91] Bloendorn E. and Michalski R. S.: Data-driven Constructive Induction
in AQ17-DCI: A Method and Experiments, Reports of Machine Learning and Inference Labora-
tory, Center for Artificial Intelligence, George Mason University, 1991
[Clark Niblett 89] Clark P. and Niblett T. : The CN2 induction algorithm, Machine Learning.
3:261-283, 1989
[Erdoes Rado]Erdoes, P. and Rado R.: Intersection theorems for systems of sets, Journal of the
London Math. Society, vol.35 pp. 85-90, 1960
[Fehsenfeld et al 91]Fehsenfeld B., Harris S., Koch T. and Kirchheiner R. : Automatic learning
with RULEARN in the example of corrosion tests, in Technische Mitteilungen Krupp 1/1991
[Kearns 89] Kearns M. J.: The Computational Complexity of Machine Learning, MIT press, 1989
[Kirchheiner Koch 92] Kirchheiner R. and Koch T. : Computer aided learning of corrosion rules

β
2

1 1
β
2

−()
Xn

−

m

- 19 -

from factual data bases, Proceedings of the NACE-CORRSION ‘92, Nashville 1992
[Koch 88] Koch T.: Effizientes Lernen und Bewerten von Regeln, Kuenstliche Intelligenz
Informatik Fachberichte 181, 186-195, Springer Berlin 1988
[Michalski 83] Michalski R. S.: A Theory and Methodology of Inductive Learning in “Machine
Learning: An Artificial Intelligence Approach, Michalski R.S.,Carbonell J. and Mitchell T. (Eds.)
pp. 83-134, Morgan Kaufmann Publishing Co., Mountain View, CA, 1983
[Natrajan 91] Natrajan B. K. : Machine learning: A theoretical approach, Morgan Kaufmann Pub-
lishers 1991
[Pfeiffer et al 88] Pfeiffer J., Siepmann T. and Teichmann W.: Expert system for metal machining
practise, in Technische Mitteilungen Krupp 46 (1988) pp 113 - 124
[Shackelford, Volper 88] Shackelford G. and Volper D. : Learning k-DNF with noise in thee
Attributes. Proceedings of the first Annual ACM Workshop on Computational Learning Theory
1988, 97-103
[Quinlan 86] Quinlan J.R.: Induction of decision trees, Machine Learning, 1:81-106, 1986
[Utgoff 89] Utgoff P.E.: Incremental Learning of Decision trees., Machine Learning 4:161-
186, 1989
[[Valiant 84] Valiant L.G. : A Theory of the learnable, Communications of the ACM, 27:11,
1134-1142, 1984
[Valiant 85] Valiant L.G. : Learning disjunctions of conjunctions,Proc. of the 9 th IJCAI, Los
Angeles California, Morgan Kaufman 1985, pp 560-566
[Vapnic and Chervonenkis 71] Vapnik V. N. and Chervonenkis A. Ya.: On uniform convergence
of relative frequencies of events to their probabilities , Theory of Probability and its Applications,
16(2).1971, pp. 264-280

- 0 -

Inductive learning of

compact rule sets

by using

efficient hypotheses reduction

Thomas Koch1

TR 92-069
October 1992

Abstract:
A method is described which reduces the hypotheses space with an efficient and
easily interpretable reduction criteria calledα - reduction. A learning algorithm is
described based onα - reduction and analyzed by using probability approximate
correct learning results. The results are obtained by reducing a rule set to an equiva-
lent set of kDNF formulas.
The goal of the learning algorithm is to induce a compact rule set describing the
basic dependencies within a set of data. The reduction is based on criterion which is
very flexible and gives a semantic interpretation of the rules which fulfill the crite-
ria. Comparison with syntactical hypotheses reduction show that theα - reduction
improves search and has a smaller probability of missclassification.

1. ICSI on leave from Krupp Forschungsinstitut GmbH, HA Informationstechnik, Muenchener Str. 100,
W- 4300 Essen 1, Germany

- 1 -

Acknowledgment

I thank Anna Morpurgo, Klaus-Peter Jantke, Michael Luby and Philip Kohn for the fruitful dis-
cussions about draft versions. I’m deeply grateful to Prof. Jerome Feldman has supported my
work here very strongly and to the management of the Krupp Forschungsinstitut, namely to Dr.
Bernd Schoenwald, Dr. Bernd Fehsenfeld and Dr. Diethard Bergers who sent me to Berkeley in
order to improve research.

1. Introduction

Rule based systems are the standard technique used in expert systems. Because of the difficulties
in extracting rules from a human expert, automatic rule generation is a helpful way to bridge the
knowledge acquisition bottleneck.
The scenario can be described as given a data set (i.e. set of examples) from a database, construct
a set of rules which describe the dependencies within the data set. Systems that perform this task
are for example ID3 family [Quinlan 86] and [Utgoff 89], AQ15 [Michalski 83] or CN2 [Clark,
Niblett 89] and RULEARN [Koch 88]. The questions which arises after finding the rules can be
formulated as: “With what level of confidence do the generated rules describe the “true” depen-
dencies in the data set?”
This question is solved by showing that the task of finding rules is PAC (probability approxi-
mately correct) identifiable. Given a representation, a function describing the dependencies
between the size of the data set and probability and confidence can be formulated. In general this
can be done independently from the probability distribution which generates the examples (data
set) from the sample space.
In this approach the PAC identification is done by constructing a set of kDNF’s which are equiva-
lent to a set of rules. Because the kDNF Problem has been analyzed within the many PAC publi-
cations (f. e. [Shackelford and Volper 88],[Kearns 89)] these results can also be used for rule-
based systems.
We also describe the hypotheses reduction method used in the RULEARN system, calledα -
reduction within the framework of PAC. This technique can be used in various applications beside
Machine Learning. It is very efficient, gives a semantic interpretation of the reduction and enables
an algorithm to find compact descriptions with only a small probability of missclassification.
This report describes the rule learning system RULEARN within the PAC learning framework.
The RULEARN software has been developed at the Krupp Forschungsinstitut GmbH [Fehsenfeld
et. al 91] and has been applied to various data sets from all sections of the production process
from product development up to after sales. RULEARN is used as a data evaluation method but
also as a knowledge acquisition tool for building expert systems [Kirchheiner and Koch 92]. For
reference of expert system development see for example [Pfeiffer et al 88].

- 2 -

In section 2 we describe the ideas of the RULEARN system, which uses three user defined evalu-
ation criteria to distinguish between good and bad rules.
In the following section we show the equivalence of concept descriptions using a set of rules and
a set of kDNF’s.
In section 4 we describe the PAC identification of a kDNF. This allows us to derive the number of
needed examples to ensure that the found solution isε - close to the “true” description with at
least a given probability (sample complexity).
After this we describe the trade - off between search effort and the fault of a solution using a
reduced search space. We formally describe the reduction of specifying a threshold in the number
of literals in a term and on theα - value of a term. By using the PAC framework we can derive
upper bounds on the maximal fault. We also show how the search is reduced within typical exam-
ples.
Section 7 outlines the search for rules within RULEARN. In the last section we summarize the
results and compare the differences between the different reduction methods.

2. Rule generation methods

Within an expert system shell the programmer can formulate complex rules, which for example
contain arbitrary functions in premise and conclusion in the underlying programming language. In
this case they are nearly as powerful as the underlying programming language. In order to find
rules automatically the rule representation must be restricted to a specific subset. In the following
we use propositional logic as representation language.
We assume that each of the given examples can be expressed by a finite numbern of attributes
A1,...,An with possible values X1,..., Xn. The sample space for an attribute value based inductive

system can be described by the sample space , where each attribute

 has a finite set of possible values denoted by. To handle unknown values a special attribute

value “*” can be included in the set of possible values.

An example can be written as a vector . Each rule component describing possible

examples has the formai,j which means the attribute Ai has the value Xi. For each example it

can be tested whetherai,j has the value true or false. A rule can be written as

 where .

Without loss of generality we assume the last attribute is the one for which rules should be found
(conclusion attribute).

This assumption is also typical for the induction of decision trees.

ℵ X1 X2… Xn 1−×× Xn×=

Xi Xi

x1 x2 … xn, , ,()
xj ∈

ai1 j1, ai2 j2, … aik jk, an j, k 1+
→∧ ∧ ∧ i k 1 n≤+≤()∀ ji Xi≤

- 3 -

As an example for a rule induction method we choose the RULEARN machine learning system.
The goal of RULEARN is to find a short (compact) set of rules from a given data set which

- describes as many data sets as possible
- describes as precisely as possible
- uses as few rules as possible.

There is a trade - off between the three goals so that all goals can not be optimized by one set of
rules. The idea is to combine these goals so that a learned rule set covers each goal to at least a
specific degree.
In order to do that, RULEARN uses three evaluation criteria which are measures of the rule qual-
ity. The user of the system defines thresholds for each of the measures.

The quality measures are defined as follows:

The measure of a rule is defined if the rule applicable is at least once.

The values of the criteria can have following values: , and where

m is the number of examples.

The settings of the demands determine the number of rules to be learned and the time which is
needed to find the rules. If the demands are minimal, that means π = 0, σ = m andα = 0,
RULEARN generates all possible rules. In general a set of at most 20 rules can be generated,
which describe dependencies within the data. In the next sections we focus on the threshold for
the universality (α) and show how the threshold forα reduces the search space.

reliability π() number of correct applicationsof therule
number of possibleapplicationsof therule

=

specilization σ() number of examplesinwhichtheconclusionisfulfilled
number of examplesinwhichthepremiseisfulfilled

=

universality α() number of possibleapplicationsof therule
number of examples

=

0 π 1≤ ≤ 1
m

σ m≤ ≤ 0 α 1≤ ≤

- 4 -

3. Reduction

This section describes the formalization of rules using attribute value assignments. In the case the
learning of rules is reduced to the learning of DNF’s.

A DNF is a set of terms where each term is a conjunction of p

literals where each literal is negated or not. If no literal is negated, we call the DNF monotone. If
no term of the DNF has more than k literals, the DNF is called akDNF.

We reduce the learning of kDNF to learning rules by using a set of kDNF’s in which each element

corresponds to a set of rules describing one conclusion attribute value. The result is a set of

separate kDNF’s. For each rule we construct a term in the kDNF which belongs to the conclusion
attribute value which is described by the rule.

To construct a term which is equivalent to a given rule we define a set of vectors

 = called attribute-value-

vector with

 which contains all possible rule components.

For each term in the kDNF we construct a vector with iff the corresponding rule

component occurs in the actual rule. This component must be included in the kDNF which corre-
sponds to the conclusion attribute value which is inferred by the rule.

A inference using the rules is equivalent to the testing of kDNF’s one after another. If one

kDNF has the value true, the conclusion value which corresponds to the actual kDNF can be
inferred. If the rule set is consistent, at most one of the kDNF’s is true for any possible combina-

tion of attribute values. If the rule set does not match the given example, none of the kDNF’s

is true.

Notice that this construction allows a given attribute to be represented by more than one value.
For example the value for an attribute color may have the values “red” and “black”. If a rule set
should be generated in which each attribute has only two possible values and which classifies all
examples, the attribute value vector needs to be only half the size.
As mentioned above, it is also possible that none of the rules match a given example even in the
training set.
This property is used in the RULEARN system to keep the generated rule set small. If a rule set

t1 t2 … t, , ,
l

ti x1 x … xp∧ ∧ ∧=

Xn

a a 1[] … a a[], ,() a1 1, a1 2, …a1 X1, … an 1, … a, n Xn,, , , , ,()=

a Xi
i 1=

n

∑= ai j,

a a i[] 1=

Xn

Xn

- 5 -

must cover all training examples it would normally consist of many rules which are generally
more complicated. The reason for this is that in general if there is an exception to a general rule,
the exception must be included in the general rule (which makes the rule more complicated) and
the exception must be described by an individual rule in order to describe all examples (which
increases the number of rules).

4. PAC identification

Learning of kDNF’s is one of the first problems investigated by Valiant in 1984 [Valiant 84]. The
question: “How many examples do I need in order to ensure that my generated concept c differs
only ε form the true “unknown” concept with probability at least 1 -δ?” has been solved under
various conditions. We can use this results for the task of rule learning algorithms because we
have reduced the problem of finding rules to finding a set of kDNF’s.
Within PAC learning there are different ways to treat noise. The easiest way is to assume that
there is no noise in the given examples. If you handle the noise you have to distinguish whether
only the conclusion attribute is affected by noise (example has false classification) or whether
each attribute is affected by noise (the “whole” example is noisy). The number of needed data
depends on the used noise model.

4.1 Each attribute value is affected by a known noise factor.

In this noise model, each rule component ai,j (literal) is affected by a known noise rateβ so that

ai,j = ai,j with probability 1 -β
ai,j = 0 with probability 0.5 β
ai,j = 1 with probability 0.5 β

Shackelford and Volper [Shackelford, Volper 88] showed that the class of kDNF isPAC - identi-
fiable which means there exists as algorithm A, so that for , ,

and for all distributions D using as Oracle function E(f) outputs a Boolean functionc such that:

(1)

whereh is the “true” concept to be learned and is a measure of the region in whichh andc

disagree. is the probability given the distribution D.

c kDNF∈()∀ ε 0≥()∀ δ 0≥()∀

p pD h c∇ ε<()() 1 δ−≥

h c∇
pD

- 6 -

Figure 1: learning a kDNF which isε close to the “true” concept

The algorithm to construct the kDNF essentially tests for all negative examples whether they are
“true” negative or whether they are “true” positive examples which seem to be negative due to the
noise. By assuming a specific noise model it can be found out which case is preferred. The terms
which correspond to the negative examples are deleted so that the remaining set of terms
describes the “true” concept within the demanded bounds. The algorithm finds the concept to be
learned because it is assumed to be expressed by a kDNF.

They showed that if

then the probability is in the assumed bounds where is the number of terms with at most k liter-

als and is the number of equivalence classes over the set of terms.

 [Valiant 84] and the equivalence relation over the set of terms is

defined so that two terms are in the same class iff they consist of exactly the same literals. There-

fore . The number of needed examples is called thesample complexity. In section 5

we show that the RULEARN algorithm uses a reduced search space which is less complex.

premises (of rules inferring the concept

conclusion (concept to be learned)

p (pD (< ε)) >= 1 -δ
)

-

m
2k 3+ K2

ε2 1 β−() 2k

22k 1+ E
δ()log≥

K

E

K n
r

2r

r 0=

k

∑= 2n() k 1+≤

E n
i

i 0=

k

∑=

- 7 -

4.2 Conclusion attribute is affected by noise

In this noise model we have the correct classification of a given example with probability 1 -β.
The other attributes aren’t affected by noise. This conditions have been analyzed by Valiant [Val-
iant 85]

Let be the number of possible rule premises (terms), then , wherel is the maxi-

mal number of possible values for each attribute. If and then a concepth is

PAC - identifiable by a DNFc if

.

4.2 Noise free case

Before we analyze the number of needed examples we introduce two definitions:

If C is a class of representations over X we say that Cshatters a set if the set

 is the power set of Y. TheVapnic-Chervonenkis dimension (or VC-dimension)

of C denoted VCD(C) is the greatest integer d such that there exists a set of cardinality d that is
shattered by C. In one sense the VC dimension is a measure of the number of “degrees of free-
dom” possessed by C. The VC -dimension was originally introduced by Vapnic and Chervonenkis
[Vapnic and Chervonenkis 71].

Kearns [Kearns 89] derived a lower bound for the sample space complexity in the noise free case.

If , and then C is PAC - identifiable if

where is the Vapnic-Chervonenkis dimension.

If we don’t specify bounds onε andδ Natrajan [Natrajan 91] showed that if

then C is PAC - identifiable (without noise).

This results can be used for determining the sample complexity for rule learning systems of

M M n
i

li

i 1=

n

∑≤

β
δ

4 M
= ε 2β=

m
36
δ M

M
δ()log≥

Y X⊆
c Y c C∈∩{ }

0 ε 1
32

≤< 0 δ 1
1000

≤< VCD C() 2≥ m
VCD C() 2−

128ε≥

VCD C()

m
1
ε n' 1+() VCD C() ln 2() ln

1
δ()+()≥

- 8 -

kDNF’s. The VC - dimension of the concept class of all rule sets or kDNF is the number of possi-
ble terms. So the above results can be applied by substituting VCD(C) toM.

In the result from Natrajan n’ is a length parameter which specifies the number of possible vari-
ables. In our casen’ = n l wheren is the number of attributes andl is the maximal number of pos-
sible values for each attribute.

Because this results are based on a worst case analysis, the number of needed examples is much
higher than the number available in practical applications. This results can be improved by assum-
ing a underlying distribution or by reducingM.

In the next section we describe how the setM can be reduced to a small fraction by specifying aα
threshold. If we assume that a concept is learnable in respect to a giveα value the number of
needed examples becomes much smaller.

5. Trade - off between finding a approximate good and a compact set of rules

After we have described the syntactical equivalence between the set of kDNF’s and the set of
rules we want to figure out some differences between the semantics of learning kDNF and rule
induction within RULEARN. The goal of learning the kDNF as described before is to find a con-
cept description which differs from the ‘true” concept at mostε assuming that the true concept can
be described by a kDNF.

The idea of finding rules within the RULEARN system is to generate a compact rule set which
consists of only a few general and precise rules. As a result of this, the goal is not to be as close to
the “true” concept as possible. In terms of the kDNF this means that there should be only a few
terms.
There is a trade - off between the correctness and the compactness of the classification.

Figure 2 and 3 illustrate the different view to classification.

- 9 -

Figure 2: describing a rule for the best cover

Figure 3: Describing a rule in general

The main difference is that the RULEARN system does not care about the part of the concept
which is not described by the rule. In contrast to that the kDNF construction algorithm and also
most rule-learning systems try to find aε-close cover in which the unclassified parts of the con-
cept are counted as faults.
In order to construct a compact rule set from the set of kDNF’s which cover the “true” concept
with a symmetric difference from at leastε, we delete all terms which do not fulfill the demanded
thresholds. In the following we describe the fault which is done by dropping out some rules which
cover a part of the “true” concept.

premiseconclusion

covered
part of concept

uncovered
part of concept

faulty
classified
part of the
concept

premiseconclusion

correct
applications

false
applications

- 10 -

Figure 4: Finding a compact rule set describing the concept

The threshold for the universality reduces the set of possible rules (which correspond to the terms
in the kDNF) by demanding that there must be at least a number of occurrences in which the
premise is fulfilled. All rules or terms describing less examples are dropped out. The set of possi-
ble hypothesesH (hypotheses space) is the power set of the set of possible rules (terms of the

DNF) M. Because |H| is exponential in the number of rules (), a reduction ofM reduces
the hypothesesH very efficient.

The process of defining a threshold for the universality can be compared with defining a maximal
number of literals k in a term to reduce the search space from DNF to kDNF. This is also a reduc-
tion of the set of terms. After describing the reduction we compare the results with kDNF.

Proposition 1

For each fixed set of attributes there are at most combinations of attribute values which have

a universality of at least α.

Proof

A: We first evaluate the case when the rule consists of only one element in the premise.

If the attribute has more than attribute values which occur at least times, the sum of all

occurrences is greater than the number of examples, which is a contradiction.

B: If the rule consists of k components (literals), there are at most possible combinations of
attribute values for k fixed attributes wherel is the maximal number of different attribute values.
Because the sum of all occurrences of each combination is the number of examples, there can be

at most combinations which occur at least times.■

premises (of rules inferring the concept

conclusion (concept to be learned)

)

H 2M=

1
α

1
α α

lk

1
α α

- 11 -

In the calculation we only consider rules in which all attribute values in a premise (term) are taken
from different attributes, because the conjunction of two components (literals) of the same
attribute is always false. In the reduction to the DNF described before such combinations are pos-
sible. This increases the set of rules and the hypotheses space more than actually needed because
such rules do not make sense.

Theorem 1

Let l be the maximal number of different attribute values, then the sum of all possible rules in

respect to α: is for all :

(2)

where n is the number of attributes.

Proof

From Proposition 1 there are at most attribute values for each combination of attributes. The

sum of all possible combinations of attribute values is .■

For low values forα might be larger than , so that result of the theorem can be improved.

Because the number of possible combinations of k (fixed) attributes is , this is the number

of possible values for each combination.

For each there is a constantd, so that .

Mα α 1
l

>

Mα
n
i

 1
α

i 1=

n

∑≤

1
α

n
i

i 1=

k

∑

li 1
α

Xi
i j1=

jk

∏

α 1

Xi
i 1=

n

∏
≥

1

Xi
i 1=

d

∏
α 1

Xi
i 1=

d 1−

∏
≤<

- 12 -

For all rules containing more thand components (terms with more thand literals),α reduces the
number of rules to be considered. From (3) we can therefore derive:

(2.1)

Because there are at most combinations of attribute values, from (2) and (2.1) we derive:

(2.2)

If we reduce the search from DNF to kDNF the number of possible terms is

(2.3)

Because this is only the exponent for the number of hypotheses, theα-reduction is a very efficient
way of reducing the hypotheses space.

Notice that we made no assumption about the distribution which generates the examples from the
sample space. In the derivation we used the worst case in which each attribute value occurs the
same number of times. The more the occurrences of the attribute values differ, the lower is the
number of possible rules with respect toα.

The effect of defining a minimum universalityα on the hypotheses space is shown in figure 5.

Figure 5: Reduction of the hypotheses space

The threshold forα may cause only a subset of the possible concept to be learned. Ifα is less than

Mα
n
i

ld

i 1=

d

∑≤ n
i

 1
α

i d 1+=

n

∑+

ld

Mα
n
i

min

1
α l,

i
{ }

i 1=

n

∑≤

Mk

Mk n
i

li

i 1=

k

∑≤

hypotheses space H

reduced
hypotheses
space Hα

concept to be learned

- 13 -

 and each possible rule is applicable at least once, than Hα is equal H. Ifα is near to one then

Hα may be empty. In this case the concept is not learnable with respect toα. As discussed before,

instead of finding an exact description of the concept, the algorithm finds a subset so that each ele-
ment describes a part of the “true” concept with at least a given probability. This problem is
equivalent to learning a kDNF for an unknown concept with a fixedk. If we assume that the con-
cept may be described with the chosen representation, the algorithm will find it.

In the following we assume that there is a concept to be learnedh and there exists a DNFc, so that

 (1)

Let t be a term, |t| denotes the number of literals in t and we call |t| the length of t. Let ,

than and we call |c| the length ofc. The functioncover(t) gives the subset of possible

examples with respect to the given distribution which is covered byt. We define

 the terms in the given DNF c which cover at leastα percent

of the data and the terms which have at most k literals.

We want to compare the hypotheses reduction of a DNFc to:
- to a kDNFck

- to a subsetcα

For and clearly .

The question which remains is: “What is the maximum fault in respect toc which is made by

defining anα higher than or a k less than kmax?”

1. α > αmin

There exists a set of termst = t1,...,tl with . Let |cover(t)| = mt and

|cover(c-t)| = mc-t then mt + mc-t >= m. The sum is equal to m if the two sets are disjunct.

In formula (1)ε is a upper bound for the

uncovered examples and the faulty covered examples

1
m

p pD h c∇ ε<()() 1 δ−≥

c DNF∈

c |t|
t c∈
∑=

cα c⊆ t c∈ cover t() αm>{ }=

ck c⊆ t c∈ t k≤{ }=

kmax max t c∈{ }= αmin min cover t() |t c∈{ }= ckmax
cαmin

c= =

αmin

i l≤()∀ ti c∈ ti Hα∉∧

u x x cover h() x cover c()∉∧∈{ }=

- 14 -

. In the worst casecover(t) and f are disjunct, this

means that the terms which cover less thanα percent of the data don’t imply any faulty classifica-
tion.
In other words, the probability for a faulty classification of the remaining set of terms increases
because the terms which are dropped out have no missclassification.

In contrast to the standard PAC identification we want to distinguish between
- the probability that an example is classified false
- the probability that an example is uncovered

The phrase includes both cases.

For the first case we can derive from (1)

 (1.1)

Becauseε is a upper bound for the missclassification, in the worst case each term which is
dropped out has no missclassification. In this case the smaller remaining subset has the same
(absolute) amount of missclassification. The percentage of missclassification decreases with the
number of dropped out terms.

Of course the probability that an example of the true concept is classified decreases by specifying

α. The amount of lost coverage is , so in the worst case is if the dropped out

terms are disjunct .

If the set a DNF contains lots of specific terms, it also contains a super set which contains the
smaller terms. To be precise we refer to the definition of asunflower as: A family of sets S is

called a sunflower if there is a set C, called center, such that for every if then

.

The theorem by Erdoes and Rado [Erdoes Rado 60] claims that if there is a family of setsF and

two integersv andw, so that every element inF has size at mostv and thanF con-

tains a sunflower of sizew. By using this result we can guarantee that if the description of h con-

f x x cover h() x cover c()∈∧∉{ }=

h c∇

p pD missclassificationof cα() ε
cover c()

cover cα()<()() 1 δ−≥

cover t()
t c t cα∉∧∈

∪

cover t()
t c t cα∉∧∈

∩ ∅=()

A B C∈, A B≠
A B∩ C=

F v! w 1−() v>

- 15 -

tains terms it has a sunflower which is not dropped out if the threshold forα is

increased to drop out the small terms.

2. k < kmax

We now consider the case where we reduce the concept c to a kDNFck with k less than kmax.

In this case there exists a set of terms with . Because

 we must only consider missclassifications. Each of this terms misses at

least one subterm (at most one literal)li. In the worst case classifies all examples where

classifies only examples withinh. From (1) we derive

 (1.3)

If one of the termsli covers all examples the upper bound is 1.

In comparison of both reduction methods theα-reduction decreases the number of applications
(i.e. number classifications) of a rule by keeping the probability of a missclassification small. On
the other hand the reduction on the term length increases the number of applications of the rule set
by allowing a high probability of missclassification.
In that sense theα-reduction is more secure. If the rule is applicable, then the probability that the
result is correct is within a reasonable bound.

v! w 1−() v

t1 … tj i j ti c∈ ti ck∉∧()≤∀, , ti k>

cover c() cover ck()⊂

ti ti l∧

p pD h ck∇ min 1 ε,
cover ti() cover li()∩

i j≤
∪

cover TRUE()+{ }<

1 δ−≥

- 16 -

Figure 5 a) Number of possible rule-components (terms) in relation to different values for
α and k in linear scale

Figure 5 b): Number of possible rule-components (terms) in relation to different values for
α and k in half-logarithmic scale

This picture is not available
by ftp. In order to get the whole
report you have to contact ICSI.

This picture is not available
by ftp. In order to get the whole
report you have to contact ICSI.

- 17 -

Figure 6: Number of possible rule-components (terms) in relation to different values forα and k
in logarithmic scale (in linear scaling the alpha reduction can not be
distinguished from the x-axis).

6. RULEARN algorithm

The RULEARN algorithm can be described as

1. determine the set of possible rules with respect toα
2. test, whether the rule fulfills the thresholds forσ andπ

true: store rule and test the next
false: look for a new rule to be tested

The idea is to find as high thresholds as possible in order to keep the rule set small. Given a true

rule the system should have thresholds to findr even if the examples are affected by noise.
If we use the noise model in which each attribute is affected by noise, we can derive a threshold
for the reliabilityπ.

If the counterexamples which must be considered fulfill

the premise, but have a different value for the conclusion attribute value with

. Because each component in the attribute value vector can be affected by

This picture is not available
by ftp. In order to get the whole
report you have to contact ICSI.

r h∈

r ai1 j1, ai2 j2, … aik jk, an j, k 1+
→∧ ∧ ∧=

an j, l

jl Xn jl jk 1+≠∧≤

- 18 -

noise, a counterexample is an example in which at least one of the components for the conclusion
is changed. In the noise model where each attribute value is affected by noise the probability that

a correct true value (1) is set to 0 is, which is equal to the probability that a correct false value

(0) is 1. If the examples are generated independently from an oracle, the probability that an exam-

ple becomes a counterexample is . So if the reliability threshold is less than this

value the rule would be generated.

The influence of the universality (α) has been described in the previous sections. Independent

from this, if the specialization is set to and the universality values are set to 0, no “true” rule is
dropped out.

6. Conclusions

We have represented a very efficient way of reducing the search space that can be used for learn-
ing rules or kDNF formulas. The reduced space decreases exponentially with only a small fault
for missclassification. In contrast to syntactical reduction, thresholds in the number of literals
within a term, theα-reduction gives a easy semantic interpretation. It allows the user to have a
deeper understanding about the definition of the threshold and is easier to adjust.
Combining both reduction techniques gives a even better reduction of the search space.

7. References

[Bloendorn Michalski 91] Bloendorn E. and Michalski R. S.: Data-driven Constructive Induction
in AQ17-DCI: A Method and Experiments, Reports of Machine Learning and Inference Labora-
tory, Center for Artificial Intelligence, George Mason University, 1991
[Clark Niblett 89] Clark P. and Niblett T. : The CN2 induction algorithm, Machine Learning.
3:261-283, 1989
[Erdoes Rado]Erdoes, P. and Rado R.: Intersection theorems for systems of sets, Journal of the
London Math. Society, vol.35 pp. 85-90, 1960
[Fehsenfeld et al 91]Fehsenfeld B., Harris S., Koch T. and Kirchheiner R. : Automatic learning
with RULEARN in the example of corrosion tests, in Technische Mitteilungen Krupp 1/1991
[Kearns 89] Kearns M. J.: The Computational Complexity of Machine Learning, MIT press, 1989
[Kirchheiner Koch 92] Kirchheiner R. and Koch T. : Computer aided learning of corrosion rules

β
2

1 1
β
2

−()
Xn

−

m

- 19 -

from factual data bases, Proceedings of the NACE-CORRSION ‘92, Nashville 1992
[Koch 88] Koch T.: Effizientes Lernen und Bewerten von Regeln, Kuenstliche Intelligenz
Informatik Fachberichte 181, 186-195, Springer Berlin 1988
[Michalski 83] Michalski R. S.: A Theory and Methodology of Inductive Learning in “Machine
Learning: An Artificial Intelligence Approach, Michalski R.S.,Carbonell J. and Mitchell T. (Eds.)
pp. 83-134, Morgan Kaufmann Publishing Co., Mountain View, CA, 1983
[Natrajan 91] Natrajan B. K. : Machine learning: A theoretical approach, Morgan Kaufmann Pub-
lishers 1991
[Pfeiffer et al 88] Pfeiffer J., Siepmann T. and Teichmann W.: Expert system for metal machining
practise, in Technische Mitteilungen Krupp 46 (1988) pp 113 - 124
[Shackelford, Volper 88] Shackelford G. and Volper D. : Learning k-DNF with noise in thee
Attributes. Proceedings of the first Annual ACM Workshop on Computational Learning Theory
1988, 97-103
[Quinlan 86] Quinlan J.R.: Induction of decision trees, Machine Learning, 1:81-106, 1986
[Utgoff 89] Utgoff P.E.: Incremental Learning of Decision trees., Machine Learning 4:161-
186, 1989
[[Valiant 84] Valiant L.G. : A Theory of the learnable, Communications of the ACM, 27:11,
1134-1142, 1984
[Valiant 85] Valiant L.G. : Learning disjunctions of conjunctions,Proc. of the 9 th IJCAI, Los
Angeles California, Morgan Kaufman 1985, pp 560-566
[Vapnic and Chervonenkis 71] Vapnik V. N. and Chervonenkis A. Ya.: On uniform convergence
of relative frequencies of events to their probabilities , Theory of Probability and its Applications,
16(2).1971, pp. 264-280

