
Ring Array Processor

Programmer’s Guide to the RAP Libraries

Michael C. Greenspon
September, 1992
TR-92-060

Realization Group
International Computer Science Institute

Programmer’s Guide to the RAP Libraries V1.0

Copyright © 1992 Realization Group

International Computer Science Institute

Berkeley, CA USA

All Rights Reserved

Greenspon, Michael C., Programmer’s Guide to the RAP Libraries,

ICSI Technical Report TR-92-060

Acknowledgments

The International Computer Science Institute and its sponsors are gratefully

acknowledged for supporting this work.

The Ring Array Processor is brought to you by: Jim Beck on hardware; Phil␣Kohn,

Jeff Bilmes and Michael Greenspon on software and documentation; Steve Renals

and Chuck Wooters on applications; and Drs. Nelson Morgan and Joachim Beer on

algorithms and architecture.

This guide is set in the Garamond font and was produced interactively using Microsoft Word
version 5.0 running on Apple Macintosh IIfx and Quadra 700 workstations.

Contents i

Programmer’s Guide to the RAP Libraries

1 Introduction / 1
Data-parallel programming / 1

Object-oriented programming / 3

Software development cycle for RAP applications / 5

2 About the Programmer’s Guide / 7
Other references you should have / 7

Nomenclature and typographic conventions / 7

Conventions used in code examples / 8

3 Overview of the Libraries / 9
Distributed memory abstraction / 9

Matrix and vector classes / 9

Table lookup classes / 10

Random number classes / 10

Standard C library functions / 10

C stdio / 10

Extending the libraries / 10

Why you should use the libraries / 11

Methods provided by the libraries / 11

Source code organization / 14

4 Using the Libraries / 15
Including <rap.h> / 15

Conventions used in code examples / 15

C++ language interface conventions / 15

C language interface conventions / 16

5 Working with Matrices and Vectors / 19
Creating objects / 19

Deleting objects / 19

Putting and getting data / 19

Converting IEEE floating point data / 20

Converting ints to floats / 21

Copying data / 21

Initializing objects / 21

ii Programmer’s Guide to the RAP Libraries

Accessing members / 21

Computational methods / 22

Sparse binary vectors / 22

Reading and writing objects / 22

Tagged files / 23

Changing input-output formats / 23

Debugging distributed objects / 23

6 Using C stdio / 25
Parallel use of stdio / 25

7 Working with Function Lookup Tables / 27
Standard function lookup tables / 27

Initializing the standard tables / 27

Using the standard tables / 27

Creating custom function lookup tables / 28

Creating custom function lookup tables in C / 29

Using custom function lookup tables / 29

8 Generating Random Numbers / 31
Standard random generator / 31

Using custom random generators / 31

Defining custom random generators / 32

9 Building Your Application / 33
Building RAP applications for the Unix host / 33

Unix host environment / 34

Building applications for the RAP / 34

Running your RAP application with RAPMC / 34

10 Optimizing for the RAP / 35
Fast RAP facts / 35

Using memory effectively / 35

Code placement / 36

Data placement and memory type designators / 36

Specifying placement for matrices and vectors/ 36

Specifying placement for function lookup tables / 37

Specifying placement with operator new / 37

Contents iii

11 Extending the Libraries / 39
Distributed memory abstraction / 39

Working with distributed memory objects / 39

Replicating objects across processors / 40

Adding computational methods / 41

Deriving from the Fvec class / 41

Defining a new simple method / 42

Advanced topics / 42

Defining methods with global computations / 42

Use of N_NODE and NODE_ID / 43

Use of low-level routines / 43

Example: Reference-based class interfaces / 44

Figures and Tables

Figure 1–1 Scalar C code for back propagation algorithm / 2

Figure 1–2 Data-parallel C++ code for back propagation algorithm / 3

Figure 1–3 Structured approach to multiple layer types in C / 4

Figure 1–4 Object-oriented approach to multiple layer types in C++ / 5

Table 2–1 Data types of symbols / 7

Table 2–2 Formula interpretations of symbols / 8

Table 3–1 Classes and functions in the RAP class libraries / 9

Table 3–2 Computational methods on class Fvec / 12

Table 3–3 Computational methods on class Fmat / 13

Figure 3–1 RAP library source code organization / 14

Table 3–4 RAP library source files / 14

Table 4–1 Data type indicators for C language interfaces / 17

Table 10–1 RAP node memory layout / 35

Figure 11–1 Distributed 15 x 15 matrix on a 4-node RAP / 38

Figure 11–2 Replicated 15 x 15 matrix on a 4-node RAP / 39

1: Introduction 1

Introduction

Welcome to the Programmer’s Guide to the RAP Libraries! We hope this guide
will make developing applications for the Ring Array Processor a painless
experience. To make best use of the RAP, it’s helpful to understand some of the
basics of data-parallel and object-oriented programming. This section introduces
the necessary concepts and provides examples of the conversion between
scalar C code and data-parallel code for the RAP. It also provides an overview
of the software development cycle for RAP applications and the RAPMC
debugger.

Data-parallel programming

The RAP class libraries support data-parallel (SIMD) programming on the Ring
Array Processor. Data-parallel means that each processor node simultaneously
executes the same set of instructions, but on different portions of a large piece
of data, for example, the rows of a matrix. The data-parallel approach is well
suited for numerically intensive simulation and analysis applications, including
many types of artificial neural network (ANN) applications.

Because each processor runs the same or nearly the same sequence of
instructions, data-parallel programming is similar to programming a single
processor machine. The RAP libraries further simplify the process by providing
support for distributed memory objects which are automatically divided across
the available processors. Each piece of the object’s data has the same physical
address on all processor nodes, but different contents.

Other styles of parallel programming are possible using the RAP, for example,
multiprocessing (MIMD) with a processor farm or pipeline. These styles may be
suitable for some types of asynchronous networks or dataflow simulations.
However, the RAP libraries provide only low-level support for these models,
such as communications ring functions and computational inner loops.
Programming for a multiprocessing system is in general considerably more
complex than for a data-parallel system and the expected performance gains, if
any, are application specific. The remainder of this guide refers only to data-
parallel (SIMD) programming using the RAP class libraries.

Programming without loops?

One way to view data-parallel programming is as the removal of explicit inner
loops on data elements. The RAP libraries support applications that can be
written in terms of matrix and vector algebraic operations. The libraries
automatically map an atomic operation like a matrix-vector multiply onto a set
of iterations on each processor’s local subset of data. Figures 1–1 and 1–2
illustrate how typical scalar C code for the error back-propagation training of a
multilayer perceptron is simplified when converted to data-parallel code using
the RAP libraries:

2 Programmer’s Guide to the RAP Libraries

■ Figure 1–1 Scalar C code for back propagation algorithm

/* Propagate activity forward from layer in to layer out */

void forward(float* in, int n_in, float* out, int n_out,

float* weights, float* bias) {

int i, j;

float sum;

for (i = 0; i < n_out; i++) { /* for each output unit */

sum = 0.0;

for (j = 0; j < n_in; j++) /* sum weighted inputs */

sum += *weights++ * in[j]; /* weights[i][j] * in[j] */

out[i] = bias[i] + sum; /* activation=bias+input */

out[i] = 1.0 / (1.0 + exp(-out[i]));

/* output w/sigmoid gain */

}

}

/* Propagate error backwards from layer out to in and */

/* adjust weights and biases for layer out */

void backward(float* in, int n_in, int n_out, float* weights,

float* out_bias, float* out_err,

float* in_err, float learning_rate) {

int i, j; float sum, *w;

/* Calculate error of previous layer */

if (in_err) /* only if requested */

for (j = 0; j < n_in; j++) { /* for each element of */

sum = 0.0; /* vector-matrix product */

w = weights + j; /* deal with array index */

for (i = 0; i < n_out; i++) {

sum += out_err[i] * *w;

w += n_in;

} /* take inverse sigmoid */

in_err[j] = in[j]*(1-in[j])*sum;

}

/* Train weights and biases according to error */

/* w[i][j] += -l * out_err[i] * in[j] */

w = weights;

for (i = 0; i < n_out; i++) {

out_bias[i] += -learning_rate * out_err[i];

for (j = 0; j < n_in; j++) /* outer product of err*in */

*w++ += -learning_rate * out_err[i] * in[j];

}

}

1: Introduction 3

■ Figure 1–2 Data-parallel C++ code for back propagation algorithm

// Fvec and Fmat are RAP library vector and matrix objects

void forward(Fvec* in, Fvec* out, Fmat* weights, Fvec* bias) {

out->copy(bias); // out = bias

out->muladd(weights,in); // out += w*in

out->sigmoid(out);

}

void backward(Fvec* in, Fmat* weights, Fvec* out_bias,

Fvec* out_err, Fvec* in_err, float learning_rate) {

// Calculate error of previous layer

if (in_err) {

in_err->mul(out_err,weights);

in_err->d_sigmoid(in_err,in);

}

// Train in-out weights & out bias according to error

weights->muladd(-learning_rate,out_err,in);

out_bias->muladd(-learning_rate,out_err);

}

Object-oriented programming

Central to object-oriented programming are the concepts of class and object. A
class is a functional type description, i.e. a packaged set of data declarations
(like a C struct) and a set of function or method declarations that describe
the operations that can be performed on the data. These data and method
declarations collectively form the class interface, which is a protocol or contract
between the class and its clients. The term object refers to an instance of the
class, i.e. a particular copy of the struct at a particular location in memory.
Methods are invoked on objects and apply to the data of the particular object.

Class declarations are maintained in a hierarchy (a tree or directed acyclic
graph) so that descendants (called derived classes or subclasses) are said to
inherit properties (data and methods) from their parents or superclasses.
Derived classes can selectively redefine or override inherited methods so that
their functional behavior is largely the same as that of their parent classes but
with selected differences specified by the overridden methods.

Finally, polymorphism is the ability to operate on derived class objects knowing
only the functional interface of the superclass. For example, matrices are
implemented in terms of vectors; many methods that can be applied to vectors
may also be applied to matrices.

Inheritance, the selective overriding of methods and polymorphism are the key
features of object-oriented programming that support the re-use of code and
facilitate structured software engineering.

4 Programmer’s Guide to the RAP Libraries

RAP library classes

The RAP library classes can be thought of as packages or modules that
encapsulate the code and structure data needed to perform the advertised
functions. RAP library classes are implemented in the C++ language, which
provides compiler support for inheritance, polymorphism and function
overloading. Function overloading allows methods to be uniquely identified by
both name and argument type; this is used extensively in the RAP libraries. For
example, a multiply of two vectors mul(Fvec*,Fvec*) is a different
operation than a multiply of a matrix and a vector mul(Fmat*,Fvec*) .
Though both methods are named mul , the compiler can determine which
method to invoke by the data types of the arguments.

Programming without case statements?

One way to view object-oriented programming is as the removal of case
statements on types. In structured C code, you might define a struct with a
field indicating the object type, for example the layer type in a multi-layer
network, and then call particular functions based on this type field using a
switch /case block. Figure 1-3 illustrates this structure. However, this
approach makes the straight-line code dependent on the defined object types;
adding a new layer type requires adding a new case , perhaps to many
separate parts of the application.

■ Figure 1–3 Structured approach to multiple layer types in C

typedef enum { input, hidden, output } LayerType;

typedef struct {

LayerType type;

int rows;

int cols;

float* data;

struct Layer* inputs[];

struct Layer* outputs[];

} Layer;

typedef Layer* Net[];

void run_forward(Net net) {

while (*net) /* for each layer */

switch ((*net)->type) {

case input: forward_input(*net); break;

case hidden: forward_hidden1(*net); break;

case output: forward_output(*net); break;

}

}

1: Introduction 5

The object-oriented approach hides type-based dispatch within the method
calling mechanism. The straight-line code invokes a single method on an
abstract object type; the proper implementation of the method for the particular
object is selected at run time by an implicit table dispatch. As a result of these
mechanisms, all of the code for a particular subclass implementation can be
centralized which increases maintainability and reusability. Figure 1–4 illustrates
an implementation of this approach using C++. Note that the program fragment
run_forward() is independent of the particular types of layers:

■ Figure 1–4 Object-oriented approach to multiple layer types in C++

typedef List<class Layer*> Net; // Net is a List of Layers

class Layer { // Abstract Layer class

Fmat* data;

Net inputs;

Net outputs;

public:

void forward() = 0; // Real layers override and

void backward() = 0; // implement these methods

};

class InputLayer : public Layer { ... };

class HiddenLayer : public Layer { ... };

class OutputLayer : public Layer { ... };

void run_forward(Net& net) {

ListIterator i(net);

while(i)

net[i++]->forward();

}

Software development cycle for RAP applications

The RAP can be viewed either as a single-user parallel machine with a Unix
host acting as a “control processor” front-end, or as an array co-processor or
computational server to the host. This guide documents use of the RAP libraries
from the former perspective. That is, programs are written using the RAP
libraries and initially compiled for testing on the Unix host. Once satisfactory
results are obtained on the host processor, the application is recompiled for
direct execution on the RAP machine. These native RAP applications are
loaded, debugged and controlled using the RAPMC debugging shell on the
Unix host. RAPMC allows the user to load, examine, breakpoint and run RAP
programs and to redirect the input and output of each RAP processor node to
files or pipes.

6 Programmer’s Guide to the RAP Libraries

It is also possible to use the RAP as an embedded array co-processor for
applications running on the host processor. In this mode, programs are
compiled for the host and RAP library calls executed in the host program are
mapped into remote procedure calls (RPCs) to the appropriate routine running
on the RAP. The host application can then function as a computational server
with the RAP as the back-end. This RPC implementation is presently
undergoing revision and is not documented in this guide. However, the RPC
interface is designed so as to minimize the source code changes needed to
convert native RAP library applications to use the RPC interface. The RPC
implementation will be provided in a future release of the RAP libraries.

2: About the Programmer’s Guide 7

About the Programmer’s Guide

This guide provides a structure and content overview of the RAP class libraries
and a road map for their use in building RAP applications. It also provides
examples, tips and techniques. As a guide, it is intended to point you in the
right direction. Frequently, that will be to the library code itself, which is the
last word on the actual interfaces and algorithms.

Other references you should have

[SUM] RAP Software Users Manual V1.0, ICSI Technical Report TR-90-049.

[SAM] RAP Software Architecture Manual, ICSI Technical Report TR-90-050.

[NRC] Numerical Recipes in C, Press, Flannery, Teukolsky & Vetterling,
Cambridge University Press, 1988.

[ARM] C++ Annotated Reference Manual, Ellis & Stroustrup, Addison-Wesley
1991.

Nomenclature and typographic conventions

Tables 2–1 and 2–2 show the symbols used in formulas for computational
methods in this guide:

■ Table 2–1 Data types of symbols

Symbol Class Data Type

x, v, v1, v2 Fvec Column vector of floats

xT
, vT

, v1
T
, v2

T
Fvec Row vectors of floats

i Ivec Column vector of ints

b Ivec Index vector of column indices

M, m, m1, m2 Fmat Matrix of floats

8 Programmer’s Guide to the RAP Libraries

■ Table 2–2 Formula interpretations of symbols

Symbol Class Interpretation in formulas

x Fvec Object for which method is invoked (e.g., this)

v, v1, v2 Fvec Input arguments to method

M Fmat Object for which method is invoked (e.g., this)

m, m1, m2 Fmat Input arguments to method

i int Row index

j int Column index

k int Constant row or column index

s float scalar constant

F Table Function lookup table

f float Function returning a scalar; scalar function result

Conventions used in code examples

The following declarations apply to code examples show in this guide:

Fvec *x, *v, *v1, *v2;

Ivec *iv;

Fmat *m, *m1, *m2;

int i, j, k, n, *ints;

float f, g, *floats;

3: Overview of the Libraries 9

Overview of the Libraries

The RAP class libraries provide a convenient applications program interface to
the hand-optimized array processing methods running on the RAP machine.
These methods are typically executed in parallel by all of the processors on the
ring (SIMD operation.) The RAP libraries provide the following classes and
functions:

■ Table 3–1 Classes and functions in the RAP class libraries

Functions provided Implementing Classes

Matrix-vector arithmetic Fvec, Fmat, Ivec

IEEE floating point format conversion Fvec

Table lookup of functions Table

Random number generation AnyRandom

In addition to computational methods, the RAP libraries provide input-output
methods and general utility methods for programming and debugging.

RAP library classes are implemented in the C++ language with bottlenecks to
assembly language inner loops. We encourage use of the C++ language for
code built using the libraries because the language semantics can be used to
simplify the coding of large applications. However, C language interfaces for
most common operations are also provided.

Distributed memory abstraction

RAP library classes are built on a software distributed memory abstraction
implemented in the Dmem class. The Dmem class manages the allocation of
storage and communication of data across the available processors for a one-
dimensional array of elements which can be scalars or aggregates. Elements are
lumped into groups which are distributed but never broken across processors.

The matrix-vector classes Fvec , Fmat and Ivec derive from Dmem, which
enables their methods to be implemented generally, without concern for the
particular hardware configuration. Thus the distributed memory abstraction
considerably simplifies the parallel implementation of many of these methods
and provides inherent scalability as well as a degree of portability.

Matrix and vector classes

The three core library classes Fvec , Fmat and Ivec implement matrix-vector
arithmetic on distributed data. The classes Fvec and Fmat provide floating
point representations and methods. The Ivec class provides a simple integer
representation with few computational methods, though Ivec objects can be
used as arguments to methods on other classes. Data managed by Fvec , Fmat

10 Programmer’s Guide to the RAP Libraries

and Ivec objects are automatically distributed across the available processors
and arithmetic methods on these objects are executed in parallel when possible.

Table lookup classes

The library class Table provides discrete approximations of arbitrary functions
by table lookup. Where appropriate, this can offer a significant speed
advantage over computing the actual function. Both single values and arrays of
values may be looked up with a single method call. The Fvec class uses
methods in Table to look up an entire distributed vector in parallel.

Random number classes

The library class AnyRandom provides floating point and integer random
number generation by several popular algorithms by Knuth [NRC]. You can
easily add your own algorithm of choice for your particular application within
the framework of AnyRandom.

Standard C library functions

Most functions of the standard C libraries are supported on the RAP. For a
complete listing, refer to [SUM] §14.

C stdio

Reading and writing data to host files via the C stdio facility involves some
special considerations because of the RAP’s parallel hardware. In general, input-
output is performed sequentially through processor node 0 and data are
communicated to other nodes using the ring. This is handled internally by stdio
and should be transparent to most programs. In addition to the stdio facility,
the RAP library classes provide tagged binary and formatted input-output
methods for their objects. This is covered in more detail in Section 5.

Extending the libraries

If you find a need for a special computational operation not in the libraries, you
can extend the libraries by deriving a new class from those provided. The Fvec
and Fmat classes provide a framework for the data-parallel implementation of
computational methods. Your derived classes can take advantage of this
framework to minimize their code complexity. Also, by deriving your special
operations from the library classes, you are helping to extend the libraries in a
way that is potentially useful to others. We encourage sharing of library class
derivatives amongst RAP users and submission of user-defined classes for
redistribution via ICSI.

3: Overview of the Libraries 11

Why you should use the libraries

The RAP library classes provide optimized versions of most if not all of the core
operations needed for implementing a wide variety of artificial neural network
models as well as solutions to general computational problems. The library
classes hide the numerous details of coding in parallel for multiple processors
from direct view so that you can concentrate on your application with the
assurance that it will take full advantage of the speed of the RAP. Because the
inner loops of most library routines are implemented in hand-optimized
assembly code, you are free to take advantage of the structural benefits
provided by the C++ classes without sacrificing performance. Further, by
implementing your C++ or C application in terms of the library methods, your
application will automatically run on larger RAP machines, potentially with
proportionately faster performance. And your application will be substantially
easier to port to new machines as they become available.

Methods provided by the libraries

We divide methods on RAP library classes loosely into three groups:
computational methods; input-output methods; and programmatic methods.
Computational methods (listed in Tables 3-2 and 3-3) include the arithmetic and
algorithmic operations defined for Fvec and Fmat library objects.
Programmatic methods (covered in Section 5) include all code-level operations
needed to create, initialize, access, copy, delete and debug library objects and
their members. Input-output methods provide format conversion when reading
and writing library objects via the C stdio facility.

12 Programmer’s Guide to the RAP Libraries

■ Table 3–2 Computational methods on class Fvec

(✓ indicates optimized methods with assembly language inner loops)

✓ Method name Description of result Formula

✓ add sum of two vectors xi = v1i + v2i

✓ add sum of each vector element and scalar xi = xi + s

add sum of one vector element and scalar xi += s

✓ sub difference of two vectors xi = v1i − v2i

✓ sub difference of each vector element and scalar xi = xi − s

✓ mul dot product of two vectors f = v1i ⋅ v2i
i

∑
✓ mul matrix-vector product xi

= m ij ⋅ vj
T

j
∑

✓ mul vector-matrix product xj
T = vi ⋅ m ij

i
∑

✓ mul scaled vector xi = s ⋅ vi

✓ mul_ele element-wise product of two vectors xi
= v1i ⋅ v2i

✓ mul_ele scaled element-wise product xi
= s ⋅ v1i ⋅ v2i

✓ muladd accumulated matrix-vector product xi
+= m ij ⋅ vj

T

j
∑

✓ muladd accumulated matrix-vector product of float matrix
and sparse binary vector

xi
+= mi jb

j
∑

✓ muladd accumulated vector-matrix product xj
T += vi ⋅ m ij

i
∑

✓ muladd accumulated scaled vector xi += s ⋅ vi

✓ muladd_ele accumulated element-wise product xi += v1i ⋅ v2i

muladd_ele accumulated scaled element-wise product xi += s ⋅ v1i ⋅ v2i

recip element-wise reciprocal xi
= 1 / vi } vi ≠ 0

✓ sum scalar sum of vector elements f = xi
i

∑
✓ sum_row sum of matrix rows x j

T = m ij
i

∑
✓ l2 norm of difference of two vectors f = (v1i − v2i

i
∑)2

✓ wl2 weighted norm of difference of two vectors f = vi ⋅(v1i − v2i
i

∑)2

✓ l2_row norms of differences of corresponding row vectors xi = (m1ij − m2 ij
j

∑)2

✓ max_ele maximum element of vector f =
i

max xi

✓ min_ele minimum element of vector f =
i

min xi

3: Overview of the Libraries 13

■ Table 3–2 Computational methods on class Fvec (continued)

✓ Method name Description of result Formula

apply scalar function applied to each vector element xi = f (xi)

softmax soft maximum of each vector element xi = ive / jve
j

∑
✓ d_sigmoid inverse of sigmoid (error backprop function) xi

= v1i ⋅ v2i ⋅(1 − v2i)
✓ lookup scalar table lookup applied to each vector element xi = F(vi)

✓ sigmoid sigmoid table applied to each vector element xi
≅ (1 + i−ve)−1

✓ exponential exponential table applied to each vector element xi
≅ isve

✓ log log table applied to each vector element xi
≅ log xi

✓ tanh tanh table applied to each vector element xi
≅ tanh xi

■ Table 3–3 Computational methods on class Fmat

(✓ indicates optimized methods with assembly language inner loops)

✓ Method name Description of result Formula

✓ add sum of one matrix element and scalar Mij
+= s

add_col sum of matrix column and column vector Mij
+= vi

✓ sub difference of two matrices Mij − = mij

sub matrix difference of two vectors Mij = v1j
T − v2i

✓ sub_row difference of row vector and each matrix row Mij = vj
T − mij

✓ mul scaled matrix Mij
= s ⋅ Mij

✓ mul scaled matrix product of two vectors
(outer product)

Mij
= s ⋅ v1j

T
⋅ v2i

✓ mul_row row-wise product of matrix and vector Mij = mij ⋅ vi

✓ muladd accumulated scaled outer product Mij
+= s ⋅ v1j

T
⋅ v2i

✓ muladd accumulated scaled outer product of float and
sparse binary vectors

Mi jb
+= s ⋅ vi

muladd_row accumulated scaled row-wise product Mij
+= s ⋅ mij ⋅ vi

transpose transpose of matrix M = mT

inverse inverse of matrix by LU decomposition; returns
determinant

M = m−1
, f = det m

✓ closest_row minimum of norms of differences between given
row and all other rows

f =
i

min (m1kj − m2 ij
j

∑)2

Source code organization

Figure 3–1 shows the directory tree organization for the files that make up the
RAP libraries. Table 3–4 describes the contents of the source files that
implement the RAP library classes documented in this guide.

14 Programmer’s Guide to the RAP Libraries

■ Figure 3–1 RAP library source code organization

aa

rap

include

src

doc

lib

sun

lib

tms

lib

libc

math

mon

stdio

sun

tms

general RAP library .h files

Sparc-specific .h files

RAP-specific .h files

library .a archives

RAP library sources for Sparc

standard C library for RAP

RAP library sources for RAP

bootstrap, kernel & host interface for RAP

C stdio library for RAP

ti
standard C library routines from TI

examples

example code & makefile templates

■ Table 3–4 RAP library source files

File name Description of contents

rap.h Single global include file for all RAP library methods

matvec.h Matrix-vector & distributed memory class declarations

c_matvec.h C interface to RAP library declarations

mat3.cc Matrix-vector & distributed memory class implementations

mat4_common.cc C interface to RAP library methods

random.h, .cc Random number class declarations & implementation

table.h, .cc Table lookup class declarations & implementation

io.h, .cc Tagged binary and formatted ASCII I/O methods used by Fvec

raplib.h General declarations and low-level computational method declarations

mat2.cc Matrix-vector low-level computational methods and inner loops

ring.h, .cc Communications ring function declarations & implementation

convert.cc IEEE to TMS floating point conversion routines (for host only)

4: Using the Libraries 15

Using the Libraries

RAP library objects and methods can be used from both the C++ and C
languages interchangeably. All library declarations are included from the single
root file rap.h , located in rap/include .

Including <rap.h>

To declare the RAP library classes, methods and interfaces, be sure to include
rap.h from your .cc or .c source file:

#include <rap.h>

Conventions used in code examples

In the C and C++ code examples of the sections that follow, these declarations
apply:

Ivec* iv;

Fvec *vec, *v, *v1, *v2;

Fmat *mat, *m, *m1, *m2;

Table *table;

int *ints, i, j, k, n;

float *floats, f, g;

C++ language interface conventions

The RAP library classes were implemented with consistency and code legibility
in mind. The following common-sense conventions generally apply when
invoking methods on RAP library objects using the C++ language:

■ Computational methods that produce matrix or vector results are
invoked on the object that will hold the result:

vec->mul(m,v); // vec = m * vt

mat->sub(m); // mat -= m

vec->copy(v); // vec = v

■ Since Fmat is derived from Fvec , methods defined on vectors can
often be sensibly applied to matrices as well:

vec->mul_ele(v1,v2); // vec[i] = v1[i]*v2[i]

mat->mul_ele(m1,m2); // mat[ij] = m1[ij]*m2[ij]

f = mat->sum(); // f = sum(mat[ij])

m2->copy(m1); // m2[i2j2] = m1[i1j1]

16 Programmer’s Guide to the RAP Libraries

■ Default arguments are defined for many methods where appropriate:

vec->get(floats); // vec[0..len] = floats[0..len]

vec->get(floats,n); // vec[0..n] = floats[0..n]

vec->get(floats,n,5); // vec[5..n] = floats[5..n]

■ Objects are passed as pointers (e.g., Fvec*) rather than as references
(e.g., Fvec& .) This is more compatible with dynamic allocation of
computational objects. A reference-based interface can be derived from
the library classes to enable operator notation for matrix and vector
objects and to facilitate use of library objects as members of other
structures. See rap/examples for an example of such subclasses.

C language interface

RAP library objects can be created and operated on using a set of C language
interfaces. Most, but not all, library methods have a C language interface
defined. These interface routines simply invoke the appropriate C++ methods
on the objects. Thus the C language interface adds the overhead of an
additional subroutine call for each method invocation. Typically this overhead
is negligible but it may be significant for short (e.g., single-element) operations
executed in a loop. Some of this overhead can be avoided by invoking the C++
methods directly.

C language calling conventions

The following common-sense conventions apply when invoking methods on
RAP library objects using the C language:

■ The C language interfaces are named according to the general form
“op_xx_y ” where “op ” is the operation, “x ” indicates the data type of
one or more source objects and “y ” optionally indicates the data type of
the destination or resultant object. Scalar function results and parameters
are implicit with respect to naming. The data type indicators are listed in
Table 4–1. Objects are passed by reference with arguments in the order
indicated in the name:

mul_MV_V(m,v,vec); /* vec = m * vt */

copy_V_V(v1,v2); /* v2[i] = v1[i] */

f = sum_V(vec); /* f = sum(v[i]) */

■ The C language does not support default arguments for function
declarations. Thus all parameters to the method must be specified:

get_V(v,0,floats,size_V(v));

/* vec[0..len] = floats[0..len] */

4: Using the Libraries 17

■ Table 4–1 Data type indicators for C language interfaces

Indicator Data Type Description

S float scalar float

V Fvec* Reference to vector of floats

I Ivec* Reference to vector of ints

B Ivec* Reference to sparse binary vector

M Fmat* Reference to matrix of floats

T Table* Reference to function lookup table

■ The C language does not support polymorphism. Thus Fmat* must be
explicitly cast to Fvec* in order to use vector methods applicable to
matrices when there is no explicit interface for Fmat :

mul_ele_VV_V(v1,v2,vec); /* vec[i] = v1[i]*v2[i] */

mul_ele_VV_V((Fvec*)m1,(Fvec*)m2,(Fvec*)mat);

/* mat[ij] = m1[ij]*m2[ij] */

f = sum_V((Fvec*)mat); /* f = sum(mat[ij]) */

copy_M_M(m1,m2); /* explicit interface provided */

5: Working with Matrices and Vectors 19

Working with Matrices and Vectors

This section covers the basic programmatic methods you’ll need to create,
delete, initialize, set, copy, read, write and access matrix and vector objects.

Creating objects

In C++, matrix and vector objects may be created dynamically on the heap
using the new operator or automatically on the stack by declaration. (Note that
the space for the object’s data, i.e. the contents of the matrix or vector, as
opposed to the object that describes it, is always allocated on the heap.) The
optional parameter memtype specifies the desired memory partition for the
object’s data. Memory partitions and optimization for the RAP are discussed in
Section 10. The default value for memtype is FASTEST which allocates the
object’s data in the fastest memory partition that has enough free space:

Ivec local_inputs(100,FASTEST); // a new 100 element vector of ints

Fvec* v = new Fvec(10000); // a 10000 element vector of floats

Fmat* m = new Fmat(200,100); // a 200 row x 100 column matrix

In C, matrix and vector objects must be allocated on the heap, and the
memtype parameter must be passed explicitly:

Ivec* iv = new_Ivec(100,FASTEST); /* Must specify memtype */

Fvec* v = new_Fvec(10000,FASTEST);

Fmat* m = new_Fmat(200,100,FASTEST);

Deleting objects

When you’re finished with an object you can destroy it and free the memory
allocated for its data with the delete operator:

delete iv; delete v; delete m; // C++ flavor

delete_Ivec(iv); delete_Fvec(v); delete_Fmat(m); /* C flavor */

Putting and getting data

Data are moved into and out of matrix and vector objects using the methods
put and get . The method put copies a data element or a linear array of data
elements from local memory into the object’s distributed storage. The sym-
metrical method get does the opposite, retrieving data from a distributed
object into local memory. Typically these methods are used in conjunction with
reading or writing data from files.

20 Programmer’s Guide to the RAP Libraries

vec->put(floats); // put local data into entire Fvec

vec->get(floats); // get it back; floats must be big enough!

vec->put(floats,100); // get only 100 elements starting at vec[0]

vec->put(floats,100,5); // get only 100 elements starting at vec[5]

f = vec->get(5); // f = vec[5]

vec->put(5,f); // vec[5] = f (these also work on Ivecs)

mat->put(floats); // put local data in row-major order

f = mat->get(10,20); // f = mat[10][20]

m->get(3,3,floats,5); // get 5 elements starting at m[3][3]

For matrices, variants of put and get also move data between individual
matrix rows and columns and either local memory or distributed vectors:

m->get_col(0,floats); // get column m[*][0] into local memory

m->get_col(0,vec); // get column m[*][0] into an Fvec

m->put_row(5,floats); // put row m[5][*] from local memory

m->put_row(5,vec); // put row m[5][*] from an Fvec

The C interface lacks overloading and default arguments. The method size is
used to determine the number of matrix or vector elements:

put_I(iv,0,ints,size_I(iv)); /* put the whole Ivec */

put1_V(v,5,f); /* v[5] = f */

put_M(m,3,3,floats,100); /* put 100 elements starting at m[3][3] */

put_row_M(m,3,floats,1); /* put 1 row into m[3][*] */

put_row_MV(m,3,vec,1); /* put Fvec into 1 row m[3][*] */

get_col_M(m,7,floats,3); /* get 3 columns m[7..9][*] */

f = get1_M(m,10,20); /* f = m[10][20] */

Converting IEEE floating point data

Single precision floating point data are normally stored in 32-bit IEEE standard
format. However, the RAP uses a different binary format which must be
converted to and from IEEE format when data are written or read from the host.
The tagged binary and formatted input-output methods on Fvec and Fmat
take care of the conversion automatically; this is covered below. If you read or
write binary data directly with stdio (bypassing the Fvec and Fmat methods)
you must perform the conversion explicitly. Note that the IEEE data are treated
as type ���������������	����
 by the RAP:

m->put_binary(0,ints,m->size()); // convert IEEE to Fmat

v->get_binary(10,ints,v->size()-10); // convert v[10..n] to IEEE

In C:

put_ieee_V((Fvec*)m,0,ints,size_V((Fvec*)m)); /* C flavor */

get_ieee_V(v,10,ints,size_V(v)-10);

5: Working with Matrices and Vectors 21

Converting ints to floats

The cast method converts the integer elements of an Ivec into floats and
copies them into an Fvec of the same size:

vec->cast(iv); // vec[i] = (float) iv[i]

cast_I_V(iv,vec); /* C */

Copying data

The copy method duplicates the data elements from one matrix or vector into
another of identical size:

v2->copy(v1); // v2 = v1

m2->copy(m1); // m2 = m1

copy_I_I(iv1, iv2); /* iv2 = iv1 */

copy_V_V(v1,v2); /* v2 = v1 */

copy_M_M(m1,m2); /* m2 = m1 */

Initializing objects

The set method initializes all elements of a matrix or vector to a constant
scalar value:

v->set(0.0); m->set(1.0); iv->set(-1); // C++

set_S_V(0.0,v); set_S_M(1.0,m); set_S_I(-1,iv); /* C */

Accessing members

The methods size , n_rows , and n_cols are accessors used to determine the
size of vectors (number of elements) and matrices:

int num_ele = vec->size(); // number of elements

int s = mat->size(); // same as n_rows*n_cols for Fmats

int nc = mat->n_cols(); // number of columns

for (int i=mat->n_rows(); i--;) // loop backwards over rows of mat

int s = size_V(vec); s = size_I(iv); /* C flavors */

int nr = n_rows_M(mat);

int nc = n_cols_M(mat);

s = size_V((Fvec*)mat); /* same as nr*nc */

22 Programmer’s Guide to the RAP Libraries

Computational methods

The available computational methods on matrix and vector class objects are
given in Tables␣3–2 and 3–3. Typically several overloaded versions of each
method may be defined. For example, the Fvec method to add two vectors is
defined both as add(Fvec* v1, Fvec* v2) and as add(Fvec* ␣v) . The
first definition adds the vectors v1 and v2 and places the result in this . The
second adds the vector v to this . In fact, the second can be defined in terms
of the first as simply add(v,this) . The corresponding C interfaces use the
methods add_VV_V and add_V_V . Methods for the other available
computational operations are defined similarly.

The complete C++ interface declarations can be found in matvec.h and the C
interface declarations in c_matvec.h , both in rap/include . When coding,
it’s best to locate the method you need according to its formula by using
Tables␣3–2 and 3–3. Then refer to the appropriate .h file for the actual
interface.

Sparse binary vectors

Limited support for sparse binary vector operations is provided by the RAP
libraries. The libraries provide two methods Fvec::muladd(Fmat*,Ivec*)
and Fmat::muladd(float,Fvec*,IVec*) (accumulated matrix-vector
product and accumulated scaled outer product.) These operations correspond
to the computationally intensive parts of the forward activity and backward
error propagation steps and may be of use in certain artificial neural network
applications that use binary inputs and unit activations.

Sparse binary vectors are Ivec objects that contain a list of the indices of the
non-zero elements. For example, the binary vector [0 1 0 0 0 1 0] would be
represented in an Ivec of two elements [1 5] corresponding to the elements of
the original vector with the value 1. The creation and maintenance of these
index vectors is up to the application.

Reading and writing objects

The method print is used to output a simple formatted ASCII representation
of floating point matrix and vector objects to a host stdio stream. By default,
matrices are written one row per line and vectors ten elements per line. The
output is optionally preceded by a title string. Output is to stdout by default:

FILE* f = fopen("filename","w"); // open stream for writing

vec->print("my vector="); // print to stdout, default format

m->print("weights\n","%4.1f\t"); // Custom format for floats

v->print(f,NULL,"%3.2f "); // print v to file f, no title

print_V(stdout,"v\n","%f "); /* Must specify all args in C */

print_M(f,"weights\n","%4.1f\t");

5: Working with Matrices and Vectors 23

Tagged files

The method io is used to read and write matrix and vector objects to tagged
host files. Both binary and formatted ASCII modes are supported and the data
transfer is performed on a stdio stream. The tag format is an identifier padded
to 4 characters (“vec ” for matrices and vectors) followed by the data. For
matrices and vectors the data begins with an integer element count. The mode
can be either “r ” to read data from the stream or “w” to write data, optionally
followed with “b” to indicate binary mode. Note that the mode for io should
be the same as the fopen mode:

FILE* f; // file must be fopen’d in the right mode

vec->io(f,"wb"); // write entire vector in binary to f

v->io(f,"rb"); // read entire vector in binary from f

mat->io(f,"w"); // write entire mat to f using fprintf

m->io(f,"w","%4.2f\n"); // write entire mat with custom format

v->io(f,"r"); // read entire mat from f using fscanf

io_V(vec,f,"w","%f\n"); /* C version */

io_I(iv,f,"r","%d"); /* Read entire integer vector */

io_M(m,f,"wb",0); /* No format spec for binary mode */

Changing input-output formats

Note that when using the method io in formatted ASCII mode, elements are
read and written one at a time using the default format "%f\n" for floats and
"%d\n" for integers. You can use a custom format string (for example, fixed
point or exponential.)

The method io calls the method io_format_ele for each element when
writing and io_scan_ele for each element when reading. These methods are
passed the format string as an argument along with the file and data element.
The default definition of io_format_ele simply calls fprintf and
io_scan_ele calls fscanf . These methods can be overridden in classes you
derive to provide custom formats.

For binary mode, elements are written in blocks which tends to be much more
efficient than sequential ASCII formatting. Floating point data are converted to
IEEE format when writing to host files and converted back to RAP format when
reading on the RAP.

Debugging distributed objects

C++ programs can call the methods dump and info on matrix and vector
objects to produce a formatted display of the object’s contents and fields related
to allocation, which may be of use in program debugging. The output is written
to stdout :

vec->info("suspect vector"); // Write info on vec to stdout

mat->dump("weights"); // Dump the whole weights matrix

6: Using C stdio 25

Using C stdio

In addition to using the Fvec methods print and io , you can also read and
write data to host streams directly using the C stdio facility. Note that the RAP is
a word-addressed and not byte-addressed machine so characters are normally
stored one per 32-bit word. The C stdio routines are by default character-
oriented and thus each character read from the host will be stored in a separate
word on the RAP.

To specify word-oriented instead of character-oriented data transfers, the
fopen routine accepts the additional mode option “b” to indicate binary mode.
That is, in binary mode, each word of the host file corresponds to one word of
RAP memory. Note that floating point data are not automatically converted to
and from IEEE format when using stdio routines directly:

FILE* f;

Fmat* m = new_Fmat(100,100,FASTEST);

float* buf = MALLOC(float,100*100,FASTEST,"i/o buf"); // [SUM] §6.2.2

fopen("filename","rb"); // open for binary read

fread(buf,sizeof(float),100*100,f); // read IEEE floats from host

put_ieee_V((Fvec*)m,0,buf,size_V((Fvec*)m));

// convert & put into Fmat

Parallel use of stdio

Reading and writing data to host files via the C stdio facility involves some
special considerations because of the RAP’s parallel hardware. In general, input-
output is performed sequentially through processor node 0 and data are
communicated to other nodes using the ring. This is now handled internally by
stdio and should be transparent to most programs. For example, though all
nodes execute the fopen routine, only node 0 actually does the kernel call to
open the host file; the other nodes get the file descriptor from node 0.

Similarly, for fwrite , data in the stream buffer are assumed to be the same on
all nodes and only node 0 actually makes the write call to transfer data. The
exception to this is the stream stderr which is normally written from all
processor nodes so that error aborts in a particular node can be detected.

Note the stream stdout is by default written only from node 0. This can be
overridden by setting the global STDOUT_FROM_NODE0_ONLY to 0, which
enables output to stdout from all nodes. Note that RAP client processes on
the host like RAPMC may redirect or ignore stdout from selected nodes.

Normally for fread , only node 0 reads data from the stream, and then
broadcasts the data to all other nodes using the ring. An additional mode
option “m” can be specified with fopen to enable parallel (MIMD) mode file
reading. When a stream is opened using the mode option “m”, the fread call
results in a host read request for each processor node. This may be desirable
for certain types of host streams. For more information, refer to [SUM] §6.2.3.

7: Working with Function Lookup Tables 27

Working with Function Lookup Tables

The library class Table provides discrete approximations of arbitrary functions
of a single variable by table lookup. Where appropriate, this can offer a
significant speed advantage over computing the actual function.

Standard function lookup tables

The RAP libraries provide several standard predefined table lookup classes
derived from Table for functions that are commonly used in artificial neural
network applications. These include sigmoid, exponential, logarithmic and
hyperbolic tangent functions. For convenience, the libraries provide a global
instance of each of these commonly used tables which you must explicitly
initialize. The Fvec methods sigmoid , exponential , log , and tanh use
these global tables.

You can define your own function lookup tables for arbitrary functions of a
single variable by deriving a C++ class from Table or by passing a scalar
function to the method setup_table_T .

Initializing the standard tables

Before using the standard function lookup tables or any Fvec methods that use
these tables, you must explicitly initialize each table by calling the appropriate
domain_init method. This allocates space for the table and indicates the
domain over which the function is to be evaluated in creating the table, as well
as the step size between table entries (i.e. the input resolution.) Input values
outside the domain of the table are pinned to the endpoints of the table. These
initialization methods for the standard global tables can be called from either
C++ or C:

int size = 1000; // Number of table entries

float start = -5.0; // Minimum input value

float end = 5.0; // Maximum input value

float step = (end-start) / (float)size; // Input resolution

float k = 2.0; // Exponential scale factor

float eps = 1.0E-6; // A small value

sigmoid_domain_init(size, start, step); // domain is [-5,5]

exponential_domain_init(size,start,step,k); // f=exp(k*x)

tanh_domain_init(size,start,step);

log_domain_init(size,eps,10.0/(float)size); // domain is (0,10]

Using the standard tables

Once the global tables have been initialized with one or more of the above
calls, you can perform table lookups on matrices and vectors:

vec->sigmoid(v); // vec[i] = sigmoid(v[i])

28 Programmer’s Guide to the RAP Libraries

mat->log(m); // mat[ij] = log(mat[ij])

In C:

exponential_V_V(v,vec); /* vec[i] = exp(k*v[i]) */

tanh_V_V((Fvec*)m,(Fvec*)mat); /* mat[ij] = tanh(mat[ij]) */

You can also look up single scalar values if necessary using the following
methods from either C++ or C:

f = log_s(g); f = tanh_s(g); /* table lookup versions */

f = sigmoid_s(g); f = exponential_s(g);

Creating custom function lookup tables

You can create your own custom function lookup tables for arbitrary functions
that you define. In C++, this is best done by deriving a class from the library
class Table and overriding the method float func(float) to define the
function represented by the lookup table. You can pass any additional
parameters that you need to your derived class constructor. Your constructor
calls the inherited method Table::setup to create the data for the table:

class HatTable : public Table { // Define a table for hat function

public:

HatTable (int size, float start, float step, float f) {

w = f; // Save the freq we’re given

setup(size,start,step); // Call inherited:: to setup table

}

float func(float x) { // This defines the table’s function

return x * sin(w*x); // in this case, a hat function

}

private:

float w; // Any other params you keep for your func

};

That’s all there is to defining your custom table. To use create the custom table
in your code, just use the new operator:

int size = 2000; // Number of table entries

float start = -2*PI; // Minimum input value

float end = 2*PI; // Maximum input value

float step = (end-start) / (float)size; // Input resolution

HatTable* hat_table = new HatTable(size,start,step,1.0);

7: Working with Function Lookup Tables 29

Creating custom function lookup tables in C

If you’re using the C language you can still define a custom function lookup
table by using the methods new_Table and setup_table_T . You define a
scalar function of a single variable and pass a pointer to it to set up the table.
Additional parameters to your table function must be handled in file or global
scope:

static float hat_freq; /* Declare func & its params */

float HatFunc(float x) { return x * sin(hat_freq*x); }

Table* new_HatTable(int size, float start, float step, float f) {

Table* t = new_Table(); /* Create an empty table object */

hat_freq = f; /* Save function parameters */

if (t)

setup_table_T(t,size,start,step,HatFunc);

/* Initialize the table like this */

return t; /* Return the new table */

}

Table* hat_table = new_HatTable(size,start,step,1.0);

Using custom function lookup tables

Once you’ve created and initialized your custom table from either C++ or C,
you can use it to perform table lookups on matrices, vectors and scalars:

vec->lookup(hat_table,v); // vec[i] = hat_table[v[i]]

mat->lookup(hat_table,m); // mat[ij] = hat_table[m[ij]]

f = hat_table->lookup(g); // f = hat_table[g]

In C:

lookup_V_V(hat_table,v,vec); /* vec[i] = hat_table[v[i]] */

lookup_V_V(hat_table,(Fvec*)m,(Fvec*)mat); /* use Fmat as an Fvec */

f = lookup_S(hat_table,g); /* f = hat_table[g] */

8: Generating Random Numbers 31

Generating Random Numbers

The library class AnyRandom provides uniform spectrum floating point and
integer random number generation by several popular algorithms of Knuth
[NRC]. You can easily add your own algorithm of choice for your particular
application within the C++ framework of AnyRandom.

Standard random generator

A default random number generator is defined at compile time in random.cc .
As shipped, this is the ran3 generator from Numerical Recipes in C [NRC].

Before using the standard generator, you must first initialize it by calling seed
from either C or C++. This global method seeds each processor with a different
value (i.e. it calls the method distributed_seed .)

seed(13); // initialize standard random generator

seed(time(nil) & 127); // different seed every time

Once the standard generator has been seeded, the Fvec method random fills a
distributed vector with random elements in a specified floating point range:

vec->random(-10.0,10.0); // vec[i] = random[-10..10]

random_V(0.0,1.0,vec); /* C flavor */

The Fvec method irandom fills a distributed floating point vector with
integer-valued random elements in a specified integer range:

vec->irandom(-10,10); // vec[i] = irandom[-10..10]

irandom_V(-10,10,vec); /* C flavor */

Using custom random generators

Two classes of generators are provided by the libraries: Random1 and
Random3 which implement, respectively, the algorithms ran1 and ran3 from
[NRC]. These classes are derivatives of the abstract base AnyRandom. Each
object holds its own state information and you can have multiple generators if
you like:

AnyRandom* KnuthRandom1 = new Random1();

AnyRandom* KnuthRandom3 = new Random3();

You must seed the generator using either of the methods replicated_seed
or distributed_seed . The method replicated_seed gives the same
value to each processing node. The method distributed_seed gives each
node a different value; this is normally what you want in order to produce
spectrally uniform randoms over a distributed vector or matrix. Note that each
generator may be seeded differently if you wish:

32 Programmer’s Guide to the RAP Libraries

KnuthRandom1->distributed_seed(3); // normal, each node different

KnuthRandom3->replicated_seed(3); // each node produces the same

Any generator can be used to fill a vector or matrix with random elements:

vec->random(0.0,1.0,KnuthRandom1);

mat->random(-10.0,10.0,KnuthRandom3);

Defining custom random generators

Using C++, you can implement your own random number generation algorithm
of choice by deriving a class from AnyRandom. You must override the method
uniform to provide a spectrally uniform sequence of floating point random
numbers in the range [0.0,1.0]. You can keep any state information you need as
private members. You can also override the method seed(int) to provide an
integer seed for your algorithm:

class MyRandom : public AnyRandom {

public:

MyRandom() { seed(0); }

void seed(int); // if you need to be seeded

float uniform(); // your generator goes here

private:

// int state[16]; // you could keep state info here

};

void MyRandom::seed(int) { }

float MyRandom::uniform() { return 0; } // your generator goes here

Once defined, you can use your generator class with matrices and vectors:

AnyRandom* myRandom = new MyRandom();

myRandom->distributed_seed(time(nil) & 1023);

vec->random(0.0,10.0,myRandom);

9: Building Your Application 33

Building Your Application

Programs written using the RAP libraries can be easily compiled for either the
host machine or the RAP itself. Before running your application on the RAP
machine, it’s a good idea to build and test it on the Unix host. Once you’ve
verified that your application is producing the desired results on the host
machine, you can recompile it for the RAP and run it under the RAPMC
debugging shell.

Building RAP applications for the Unix host

If you’ve written your application using the RAP libraries, you can build it on
the host by linking with the library librapsun.a . You can use the following
template makefile , found in rap/examples/sun :

sample makefile for building RAP applications on Unix host

OBJECTS = myapp.o # your other objects go here

LIBS = -lrapsun # include librapsun.a for building on host

MORELIBS = # other libraries you need go here, eg. -lm

CPLUS = CC

root directory for rap software - change for your installation

RAP_ROOT = /usr/local/rap

CC_LIB_DIR = /usr/local/lib

subdirectories of rap software root directory

RAP_LIB = $(RAP_ROOT)/lib/sun

RAP_INCLUDE_DIR = $(RAP_ROOT)/include/sun

CC_INCLUDE_DIR = /usr/CC/incl

myapp: $(OBJECTS) $(RAP_LIB)/librapsun.a makefile

$(CPLUS) $(OBJECTS) $(LDFLAGS) -L$(CC_LIB_DIR) \

-L$(RAP_LIB) $(LIBS) $(MORELIBS) \

-o myapp

generic c++ compile

.cc.o:

 $(CPLUS) $(CC_FLAGS) -I$(RAP_INCLUDE_DIR) \

-I$(CC_INCLUDE_DIR) -c $<

generic c compile

.c.o:

 $(CC) $(C_FLAGS) -I$(RAP_INCLUDE_DIR) -c $<

34 Programmer’s Guide to the RAP Libraries

Unix host environment

Note that programs built for the Unix host have the symbols N_NODE set to 1
and NODE_ID set to 0. Your program must be able to run on a single
processing node in order for it to work properly on the Unix host. All RAP
library routines will run on a single processing node. For more information on
the use of N_NODE and NODE_ID, see Section 11.

Building applications for the RAP

So you’ve debugged your program by compiling it on the host, and now you’re
ready to build it for execution on the RAP! A good place to start is with the
sample makefile in rap/examples/tms . Edit this file to specify your
program’s components.

You’ll also want to copy the link.cmd file in rap/examples/tms and edit it
for your program’s components. This file tells the RAP linker how allocate your
program’s object code in memory. Initially you can follow the comments in this
file and not worry too much about placement of your objects. Optimizing
performance by selective code and data placement is covered in the next
section.

(You may notice that the make procedure is a little more complex than normal
due to several aspects of the cross-compilation from host to RAP. For example,
the RAP C compiler limits identifiers to 32 characters in length. This is fine for
some programs, but C++ is fond of generating long identifiers for type-safe
linkage. Thus the C output of your C++ compilation is run through a “name
hack” to generate unique (and meaningless) 32 character identifiers for any
externals longer than the C compiler’s limit. The make procedure creates a
directory called .hack which stores the intermediate results of this process if
you need to debug the translated C++ code. Note that only the hacked names
appear in the link map.)

Running your RAP application with RAPMC

Once your application is successfully linked, you can execute it on the RAP
using the RAPMC debugging shell. For example, the following commands will
execute your application with RAPMC (your typing is in italics:)

rapmc # invoke RAPMC from your shell

RAP Master Commander... # RAPMC prints its banner

0> node * # command all nodes

0> load yoapp # load your app into all nodes

0> run # and set ’em all running

For more information on using RAPMC and its many commands, refer to
[SUM]␣§7.

10: Optimizing for the RAP 35

Optimizing for the RAP

The RAP machine is based on the Texas Instruments TMS320C30 digital signal
processor (DSP.) This chip is capable of parallel instruction execution which
when used correctly can effectively double program execution speed. The RAP
libraries provide hand-coded assembly language inner loops to realize this peak
hardware performance where possible at no added cost to the applications
programmer. The next level of optimization depends on how the programmer
chooses to allocate data in the multi-tier memory hierarchy. This section
explains several simple strategies and techniques for using RAP memory
effectively.

Fast RAP facts

• Texas Instruments TMS320C30 digital signal processor running at 16MHz

• 32MFLOPS peak for pipelined, parallel multiply-accumulate operations

• 4 nodes per RAP board

• 32-bit word addressed (1KW = 4KB)

• Each node has 2 x 4KB on-chip memory, 256KB or 1MB static RAM, and
4MB or 16MB dynamic RAM

• RAP memory mapped into host’s virtual address space

Using memory effectively

Each RAP processing node has memory organized into four banks as indicated
below in Table␣10–1. Generally, library code, user code and the run-time stack
are located in static memory (SRAM), large data arrays are allocated in dynamic
memory (DRAM) and selected assembly inner loops and other time-critical code
may be located in on-chip memory (RAM0 or RAM1.)

■ Table 10–1 RAP node memory layout

Name Description Relative Speed Size Primary Use

RAM0 on-chip 12 (fastest) 1KW time-critical loops

RAM1 on-chip 12 (fastest) 1KW and data (eg, tables)

SRAM Static, on-board 4 (rd) 2 (wr) 64-256KW code, data, stack

DRAM Dynamic, on-board 1 (slowest) 1-4MW large data arrays

Because of the difference in memory access speeds between the banks,
application performance can benefit significantly from optimal memory
placement of code and especially of data.

36 Programmer’s Guide to the RAP Libraries

Code placement

Control over the memory location of user code on the RAP is provided by the
linker via the link.cmd located in rap/examples/tms . In general, seldom-
called code can safely be placed in DRAM (for example, initialization code)
whereas more commonly used code can be placed in SRAM. Note that there is
a tradeoff in using SRAM for large code blocks which could otherwise be used
for frequently accessed data. Furthermore there may be little penalty in placing
certain code blocks containing tight (several instruction) loops in DRAM
because the processor also maintains an instruction cache. Small assembly
language inner loops known to be time-critical may benefit from being moved
to on-chip memory (RAM0 or RAM1.) See comments in link.cmd and [SUM]
§3.4 and §6.2.5 for more information on placing code in specific memory banks.

Given programs which perform most of their computation in tight inner loops
(such as those provided by the RAP libraries), the greatest performance benefits
will likely come from optimizing the placement of data rather than code.

Data placement and memory type designators

Control over placement of dynamically allocated user data including library
objects (vectors, matrices and function lookup tables) is provided by the RAP
libraries using a memory type designator at allocation time. Separate control is
provided for raw heap allocation (via the MALLOC macro or rap_malloc
method; see [SUM] §6.2.2), data allocation for library objects (via their
constructors) and object allocation (via the C++ operator new .)

Memory type designators for the RAP can have the values given above in
Table␣10–1, i.e. one of { RAM0, RAM1, SRAM, DRAM } . The special
designator FASTEST and modifier FASTER are also provided. FASTEST will
satisfy the allocation request in the first bank with sufficient space, searching
strictly in the order RAM1, RAM0, SRAM and finally DRAM. Note that earlier
allocations will thus be satisfied with faster on-chip memory whereas later
requests will get space in remaining off-chip static or dynamic memory. Is is
therefore important to make allocations for time-critical data first in program
execution order.

The modifier FASTER is intended to be used as an inclusive flag, eg.
SRAM|FASTER would attempt to satisfy a request first from on-chip memory
(RAM1 and RAM0) and, failing that, from static memory. For more information
see [SUM] §6.2.2.

Specifying placement for matrices and vectors

For C++ programs, the constructors for Fvec and Fmat objects accept an
optional parameter memtype which designates a particular memory bank to
hold the object’s data (i.e. the elements of the vector or matrix):

vec = new Fvec(1000); // The default: FASTEST

10: Optimizing for the RAP 37

vec = new Fvec(1000,SRAM); // Specifically in SRAM

vec = new Fvec(200,SRAM|FASTER); // Tries RAM1, RAM0, SRAM

Fmat m(100,100,SRAM); // auto declaration of m; data uses

// 10KW of SRAM

In C, the memtype specifier is not optional; you can use FASTEST as the
default with the understanding that the first requests will get the fastest memory
and later requests will get whatever is left over:

vec = new_Fvec(1000,FASTEST); /* C flavor */

mat = new_Fmat(1000,1000,DRAM); /* Specifically in DRAM */

vec = new_Fvec(1000,SRAM|FASTER); /* etc...*/

Whereas the space allocated for the object’s data elements is determined by the
designator, the space for the object itself is allocated either on the stack (for
C++ auto declarations) or via operator new . Note that the C interface to the
libraries also calls operator new . Allocations performed by operator new
can be controlled as described below.

Specifying placement for function lookup tables

Function lookup tables implemented with the library class Table can provide
significant performance benefits for certain applications. These benefits can be
fully realized by ensuring the lookup table is placed in on-chip memory. The
placement of data for objects derived from Table is designated by the method
table_memory() . This is by default set to FASTEST which attempts to
guarantee that small tables allocated at the beginning of an application will be
placed in on-chip memory. You can change this as needed, eg. calling
table_memory(RAM1) will guarantee that an error abort is generated if
succeeding Table objects cannot be allocated in RAM1 as expected:

table_memory(RAM1); // FastTable must be on-chip

FastTable T(...); // Create the fast table

table_memory(SRAM|FASTER); // SRAM is ok for the rest

OtherTable OT(...);

Specifying placement with operator new

The RAP version of the default operator new uses rap_malloc with the
memory designator set in the global variable OBJ_RAM. By default, OBJ_RAM is
set to FASTEST. You can set OBJ_RAM to whatever is appropriate for a
sequence of object allocations in your application:

38 Programmer’s Guide to the RAP Libraries

OBJ_RAM = SRAM; // Only use SRAM for these objects

vec = new Fvec(1000,DRAM); // Put object data in DRAM

...

OBJ_RAM = FASTEST; // Now allow objects on-chip

vec = new Fvec(1000,SRAM|FASTER); // and data on-chip or in SRAM

You can use this technique to prevent object allocations at the beginning of
your application from using all of the on-chip memory, preserving it for time-
critical allocations made later in the execution sequence. Note that if you want
to use this technique, you should set OBJ_RAM and possible call
table_memory() before making any calls which may allocate objects (eg.,
seed() , sigmoid_domain_init() , etc.)

11: Extending the Libraries 39

Extending the Libraries

The RAP libraries are designed to allow for the easy addition of user-defined
methods by deriving user-defined classes from the library classes. For example,
new matrix-vector computational methods can be added to subclasses of Fvec ,
Fmat and Ivec . In order to take advantage of the library framework for
parallel computation of matrix-vector operations, it is important to understand
how library objects are distributed across processors.

Distributed memory abstraction

RAP library classes are built on a software distributed memory abstraction
implemented in the Dmem class. The Dmem class manages the allocation of
storage and communication of data across the available processors for a one-
dimensional array of elements which can be scalars or aggregates. Elements are
lumped into groups which are distributed but never broken across processors.

The matrix-vector classes Fvec , Fmat and Ivec derive from Dmem. Generally
their methods are implemented in terms of operations on the local subset of
grouped data, without concern for the particular hardware configuration. The
distributed memory abstraction considerably simplifies the parallel
implementation of many of these methods and provides inherent scalability as
well as a degree of portability.

Working with distributed memory objects

Dmem objects maintain distributed data in one of two states: distributed or
replicated. When initially created, Dmem objects are distributed, meaning that
each available processor has only a subset of the object’s data in its local
memory. Dmem objects distribute their data groups (e.g., matrix rows) over the
available processors so that each node, 0 through N_NODE-2, has an integral
number of groups given by ceil(n_groups / N_NODE) except the last node,
N_NODE-1, which will have possibly fewer. The last node will have
n_groups␣mod ceil(n_groups / N_NODE) groups. The field Dmem::local_ele
points to the data groups local to each node.

For example, Figure 11–1 shows how a 15 x 15 Fmat is distributed across a 4-
node RAP. Notice that each processor has allocated space for 4 of the 15 rows
of the matrix except the last which has 3 rows of data followed by one row of
placeholders.

40 Programmer’s Guide to the RAP Libraries

■ Figure 11–1 Distributed 15 x 15 matrix on a 4-node RAP

aa

node 0

float [0][0]
float [0][1]
float [0][2]

float [0][14]

float [3][14]

Fmat

full_ele

n_local_row

n_local_ele

n_local_word

local_ele

n_dummy_word

4

60

60

0

Dmem

nil

node 1

Fmat

float [4][0]
float [4][1]
float [4][2]

float [4][14]

float [7][14]

full_ele

n_local_row

n_local_ele

n_local_word

local_ele

n_dummy_word

4

60

60

0

Dmem

nil

node 2

float [8][0]
float [8][1]
float [8][2]

float [8][14]

float [11][14]

Fmat

full_ele

n_local_row

n_local_ele

n_local_word

local_ele

n_dummy_word

4

60

60

0

Dmem

nil

node 3

Fmat

full_ele

n_local_row

n_local_ele

n_local_word

local_ele

n_dummy_word

3

45

45

15

Dmem float [12][0]
float [12][1]
float [12][2]

float [12][14]

float [14][14]
dummy [0]

dummy [14]

nil

Replicating objects across processors

Normally Dmem objects remain distributed throughout their lifetimes. However,
some methods require that all data are available in the local memory of each
processor. That is, all of the object’s data are replicated on each processor. The
method Dmem::replicate calls ring_distribute which takes care of the
inter-processor communication necessary to replicate all the data on each node.
The replicate method also calls Dmem::alloc_full to allocate enough
space for the entire object. The field Dmem::full_ele is set to point to this
space. The field local_ele is adjusted to point within it to the subset of
elements that the node had managed when the object was distributed.

Figure 11–2 shows the same 15 x 15 Fmat replicated across a 4-node RAP; each
processor has a complete copy of the matrix. Notice that each node has a
pointer within the matrix data to its local subset of data, and that the last local
subset may be padded with placeholders so that each subset is of equal length.

11: Extending the Libraries 41

■ Figure 11–2 Replicated 15 x 15 matrix on a 4-node RAP

aa

node 0

Fmat

full_ele

n_local_row

n_local_ele

n_local_word

local_ele

n_dummy_word

4

60

60

0

Dmem float [0][0]

float [14][14]

float [0][14]
float [1][0]

dummy [0]

dummy [14]

node 1

Fmat

full_ele

n_local_row

n_local_ele

n_local_word

local_ele

n_dummy_word

4

60

60

0

Dmem float [0][0]

float [14][14]

float [3][14]
float [4][0]

dummy [0]

dummy [14]

node 2

Fmat

full_ele

n_local_row

n_local_ele

n_local_word

local_ele

n_dummy_word

4

60

60

0

Dmem float [0][0]

float [14][14]

float [7][14]
float [8][0]

dummy [0]

dummy [14]

node 3

Fmat

full_ele

n_local_row

n_local_ele

n_local_word

local_ele

n_dummy_word

3

45

45

15

Dmem float [0][0]

float [14][14]

float [11][14]
float [12][0]

dummy [0]

dummy [14]

Adding computational methods

Computational methods can be added to the RAP libraries by deriving a new
user-defined class from the library classes Fvec , Fmat or Ivec . New
computational methods can then be added to the user-defined class. This
approach avoids modification of the RAP library source code and will make it
easier to upgrade the libraries for future releases without modifying your source
code. Deriving separate classes also makes it easier to share new computational
methods with other RAP users.

Deriving from the Fvec class

Your derivative must minimally have a constructor and destructor as well as any
new methods you wish to add. As a derivative of Fvec or Fmat you can use
the private accessors of Dmem and Fvec in your implementation. (Note that
deriving from Fvec precludes inheriting methods from Fmat ; you might want
to derive from Fmat instead.)

42 Programmer’s Guide to the RAP Libraries

typedef rapFvec Fvec;

class FVec : public rapFvec {

public:

// note size is n_groups == n_ele iff group_size == 1

FVec(int size, int mem_type=FASTEST, int group_size=1) :

rapFvec(size, mem_type, group_size) {}

~FVec() {} // Declare destructor even if null to avoid bugs

void sgn(FVec* in, float thresh=0.0); // new method: signum fn

};

Defining a new simple method

Given the above declarations for a new FVec : rapFvec class, you can
define your new computational method following the pattern of library routines
found in tms/lib/math/mat3.cc for routines that perform only local
computations. To increase your chances of remaining compatible with future
releases, use Dmem accessors rather than specifying the protected members
directly (eg., use size() rather than n_ele):

void FVec::sgn(FVec* in, register float thresh) {

assert (this->size() == in->size()); // vectors must be == length

register int n = get_n_local_ele(); // count of our local elements

register float* o = local_ptr(); // pointer to our locals

register float* i = in->local_ptr();

// note: avoid using x[i] -- C30 doesn’t have hw integer multiply

for (; n--; i++) // all nodes do this on their locals

if (*i > thresh) *o++ = 1.0;

else if (*i < thresh) *o++ = -1.0;

else *o++ = 0.0;

}

Advanced topics

Some users may wish to go further in extending the RAP libraries or integrating
existing DSP code with the RAP libraries. A detailed discussion of the issues
involved is beyond the scope of this guide; however, here are some orienting
pointers to get you going in the right direction.

Defining methods with global computations

The sample method defined above performs only local computations; that is,
each node need consider only the data in its portion of the vector in
performing the computation. Other methods may need to use the data or
intermediate results of other nodes in performing their computations. On a
distributed architecture like the RAP, this necessitates some communication
between nodes. The RAP libraries accomplish this using the ring functions
provided in ring.cc . For more information on using the communications ring,

11: Extending the Libraries 43

refer to [SUM] §6.2.4.3 and to the examples provided by the RAP library routines
in mat3.cc .

Use of N_NODE and NODE_ID

The RAP libraries define two globals at system initialization time, N_NODE and
NODE_ID which are, respectively, the number of nodes in the RAP system and
the ID of each node (0 ≤ NODE_ID < N_NODE.) In a data-parallel environment,
there are few legitimate uses of these globals; programs should be written to
scale to any number of nodes and in particular should work on a single node,
i.e. a uniprocessor machine, which is the case when the program is compiled
for the host. The RAP libraries meet these criteria. Still, there are several
situations where it is necessary to refer to these globals, notably for ring
communications. The code in mat3 provides adequate examples; or refer to
[SUM] and [SAM.] Note that it is easy to lose the simplicity of lock-step data
parallelism by executing a conditional on NODE_ID. You are then writing
essentially multithreaded code — caveat programmer.

Use of low-level routines

Further inspection of RAP library routines in mat3.cc reveals that most are
implemented by calls to lower-level routines in tms/lib/math/mat2.c .
Whereas the routines in mat3 know about distributed objects, local elements
and the ring, the routines in mat2 are implemented in terms of an integer
count and a pointer to a linear array of elements (i.e. a float* .) Most routines
in mat2 either in turn call their assembly-language equivalents if running on
the RAP, or perform the actual inner loop of the computation in C if running on
the host.

Routines in mat2 are named according to a convention similar to that used for
the high-level C interface to the libraries (which is defined in
mat4_common.cc). That is, mat2 contains routines such as mul_vv (dot
product) whereas the high-level C interface would be called mul_VV (note
difference in case.) The mat2 routines are declared in raplib.h and you may
choose to use them when implementing new methods on Fvec and Fmat
derivatives.

When an assembly-language implementation is available, it will be named as
the mat2 routine with a preceding underscore, eg., _mul_vv . These inner
loops are implemented for the RAP in tms/lib/math/mat1.s . We suggest
you follow the convention of calling the mat2 bottleneck routine rather than
calling the assembly routine directly; also you should define a C
implementation and bottleneck for any assembly routines you add. This will
allow your application code to be debugged on the host and to port more
easily to other processors. Also the C bottleneck provides some degree of type
safety when calling the assembly routines (or at least it isolates the hazard.)

44 Programmer’s Guide to the RAP Libraries

Example: Reference-based class interfaces

The Fvec interface provided by the RAP libraries is pointer-based; i.e.,
arguments to methods take pointers to objects. Some programs may be more
conveniently written in terms of member objects, in which case a reference-
based class interface can be easily derived as follows. Note that the present
limitations of C++ necessitate the addition of garbage collection to efficiently
implement binary operators and preclude the definition of compound operators
like *+ altogether. However, the assignment operators are trivially and perhaps
usefully overloaded in a reference-based interface:

11: Extending the Libraries 45

class FVec : rapFvec {

public:

FVec(int size, int mem_type=FASTEST, int group_size=1) :

rapFvec(size, mem_type, group_size) {}

~FVec() {}

// copy constructor just duplicates data (no aliasing or GC)

FVec(const FVec& src) :

rapFvec(src.n_rows(), FASTEST, src.group_size()) {

*this = src; // copy the data of the source

} // vector to this using op=

// Some assignment operators

FVec& operator=(const float* vals) { // put data from a float*

return (put(0,vals,n_ele),*this); }

FVec& operator=(float value) { // set all v[i] = scalar

return (set(value),*this); }

FVec& operator=(const FVec& src) { // copy an FVec to *this

assert(size() == src.size());

copy((rapFvec*)&src); // Just blindly copy data for now...

return *this;

 }

// some in-place unary operators

// add in_vector to this vector (element by element)

FVec& operator+=(const FVec& in_vector) {

return(rapFvec::add((rapFvec*)&in_vector),*this); }

// subtract in_vector from this vector (element by element)

FVec& operator-=(const FVec& in_vector) {

return(rapFvec::sub(this,(rapFvec*)&in_vector),*this); }

// multiply in_vector to this vector (element by element)

FVec& operator*=(const FVec& in_vector) {

return(rapFvec::mul_ele((rapFvec*)&in_vector),*this); }

// ... other methods -- no GC to support binary operators

// add vector1 and vector2 and put result in this vector

void add(FVec& vector1, FVec& vector2) {

rapFvec::add(&vector1, &vector2); }

// etc...

};

❏

46 Programmer’s Guide to the RAP Libraries

Notes

