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Abstract

The known parallel algorithms for computations with general Toeplitz, Hankel,
Toeplitz-like, and Hankel-like matrices are inherently sequential. We develop some
new techniques in order to devise fast parallel algorithms for such computations, in-
cluding the evaluation of Krylov sequences for such matrices, traces of their power
sums, characteristic polynomials and generalized inverses. This has further extensions
to computing the solution or a least-squares solution to a linear system of equations
with such a matrix and to several polynomial evaluations (such as computing ged,
lem, Padé approximation and extended Euclidean scheme for two polynomials), as
well as to computing the minimum span of a linear recurrence sequence. The al-
gorithms can be applied over any field of constants, with the resulting advantages
of using modular arithmetic. The algorithms consist of simple computational blocks
(mostly reduced to fast Fourier transforms, FF1’s) and have potential practical value.
We also develop the techniques for extending all our results to the case of matrices
representable as the sums of Toeplitz-like and Hankel-like matrices and in addition
show some more minor innovations, such as an improvement of the transition to the
solution to a Toeplitz linear system 7x = b from two computed columns of 771,
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1. Introduction.

Acceleration of computations with Toeplitz, Hankel and other dense structured matrices
by means of their parallelization is highly important both for the theory and practice of
computational linear algebra and of its applications to such areas as control theory, signal
processing and PDE’s.

A challenge of this subject is that the known fast and superfast algorithms for Toeplitz
and Hankel computations are inherently sequential: they either recursively reduce the di-
mension of the problem by 1 or, for some similar reasons, require at least n parallel steps for
the computations with nxn Toeplitz matrices (although there are faster parallel algorithms,
specially devised for computations with well-conditioned Toeplitz matrices [P89], [P92]; and
for rapid refinement of an already rather close initial approximation to the solution to a
Toeplitz or Toeplitz-like linear system [P]).

In this paper we will present another parallel algorithm [using the order of (logn)?
parallel arithmetic steps and the order of n?/logn processors] for any Toeplitz or Hankel
n X n input matrix, and moreover, for any n X n matrix obtained as the sum of a Toeplitz
matriz and a Hankel matriz or even of a Toeplitz-like matriz and a Hankel-like matriz (these
known matrix classes are defined by using associated displacement operators, see section 3).

We cover parallel computations with such matrices T, including the computation of the
Krylov sequences v,Tv,...,T7%v; of the traces of T%, i = 1,2,...,K, K = O(n); of the
characteristic polynomial of T'; and of the solution or a least-squares solution to a linear
system Tx = b. The results can be further extended to such computational problems as fast
parallel evaluation of rank 7’, of null space of T, of the minimum span of a linear recurrence
sequence (Berlekamp-Massey problem), of polynomial gcd and lem, Padé approximation and
extended Euclidean scheme for polynomials ([BGP], [KP], [P90b]). Many of our algorithms
can be immediately extended to computations with other dense structured matrices, such
as Hilbert-like and Vandermonde-like matrices, by applying the techniques of [P90a).

The algorithms work over (or can be extended to) any field of constants, which enables
us to take advantage of using the techniques of residue (modular) arithmetic.

Our algorithms satisfy the stated complexity bounds under any model of parallel com-
puting that supports the cost bounds of Table 1.1 (listed for some fundamental problems
of parallel computations). We refer the reader to [Q], [JJ] and [L] on verification of these
simple cost bounds under some realistic models of parallel computing.

Table 1.1



Parallel Processors
Arithmetic Time

summation of O(logn) O(n/logn)
n numbers
discrete Fourier O(logn) O(n)

transform on n
points (by means
of FFT)
multiplication of
two univariate
polynomials of O(logn) O(n)
degree n (by
reducing to 3 FFT%)
multiplication of two
bivariate polynomials
of degrees m and n
in the two variables O(log mn) O(mn)
(by means of 2-dimen-
sional FFT’s)

The fundamental complexity bounds of Table 1.1 are immediately extended to many
other computations. In particular, computation of the inner product of two vectors of
dimension 7 is reduced to one parallel multiplication step on n processors and to the sum-
mation of n numbers, whereas multiplication of a Toeplitz matrix by a vector is reduced to
polynomial multiplication (convolution), (see appendix B).

We use the asymptotic complexity estimates presented in the form O(¢, p), which amounts
to O(t) asymptotic bound on arithmetic time (the number of arithmetic parallel steps) used
in the algorithms and, simultaneously, O(p) on the number of processors. In our case, the
constants hidden in this “O” notation are quite small: in particular, at most 3logn arith-
metic time-steps and 2n processors are needed to support FFT on n points [Pe], and 2[log n ]
steps and [n/logn]| processors suffice in order to sum n numbers.

We deduced our estimates assuming Brent’s modified principle [KR], [P90b], according
to which the number of processors required for the implementation of a parallel algorithm
can be decreased by the factor of s, 1 < s < p, at the cost of slowing down the algorithm
by O(s) times. This means that the O(¢,p) bound also implies the O(st,p/s) bound for
any s, and in particular, for s = p, the time bound O(pt, 1), which measures the total
potential work O(pt) of the parallel algorithm if it were implemented sequentally, on a
single processor. A more intricate application of Brent’s principle enables us to simplify
some parallel computations, improving the straightforward bounds on the complexity of the
summation of n numbers from O(logn,n) to O(logn,n/logn) ([Q], [L]) and similarly for
our algorithm of this paper, from O(log? n,n?) to O(log* n,n?/logn) (see section 2).

The latter bounds also imply the bounds O(slog®n,n?/(slogn)) for any s,
1 < s < n%/logn, due to Brent’s principle. Moreover, the general techniques of su-
pereffective slowdown of parallel computations [PP] enable us to implement our algorithms



so as to arrive at the bounds O(n'~%log? n,n??/logn), for any a, 0 < a < 1, that is, we
may make our algorithms run in O(n'~%log?n) time using O(n?*/logn) processors for any
a, 0 < a < 1. In particular, for ¢ = 1/2, this turns into the bounds O(nl/2 log?n,n/logn).

Note that the total work (sequential time) of our fast parallel algorithm is O(n?logn),
even for ¢ = 1, which is close to the running time of the sequential algorithm of Levinson-
Durbin (widely used for solving Toeplitz linear systems), and which is the best sequential
time bound known for computing the characterstic polynomial of a Toeplitz or a Toeplitz-
like matrix.

In appendix B, we supply simple but practially promising (for both sequential and
parallel implementations) improvements of the known algorithms for the recovery of the
solution of a nonsingular Toeplitz linear system Tx = b from two columns of the inverse
matrix 77!, Some of the improvements can be extended to the Toeplitz-like case. We also
include some little known techniques for simple transition from the traces of the powers
of any general matrix 7" to its characterstic polynomial (appendix A) and further to a
least-squares solution to the linear system 7x = b [see equation (2.7)].

Besides the cited material of the two appendices, we organize our presentation in the
following order. In section 2 we present our main algorithm and its extensions, in the case
of a Toeplitz input matrix 7. In section 4 we extend the results of section 2 to the case
of matrices representable as the sums of Toeplitz-like and Hankel-like matrices. Such an
extension requires developing some special techniques of independent interest, which we
present in section 3. In particular, we study the properties of some displacement operators
associated with matrices of the latter class, thus extending the theory of [KKM], [CKL-A].
In appendix C we display some correlations between such operators and the two classical
displacement operators of [KKM], [CKL-A]. Some further details can be found in our original
technical reports [P90b] (on the algorithms for the computations with Toeplitz and Toeplitz-
like matrices) and [B83] (on the operators associated with the sums of Toeplitz-like and
Hankel-like matrices, on their main properties and on some related results).

2. Improved parallel computations with Toeplitz matrices.

In this section we will show a simple parallel algorithm for computation of the powers of
a Toeplitz matrix 7', with further extensions to simple parallel computation of the Krylov
sequence {T%v, i = 0,1, ...} (for any fixed vector v), of the sequence {trace(7), i = 0,1,...}
and of the solution and a least-squares solution to a Toeplitz linear system.

Hereafter [2] and |z] will denote two integers nearest to a real # and such that |z] <
z < [z]. e will denote the h-th unit coordinate vector, that is, the A-th column of the
n X n identity matrix I, h = 0,1,...,n — 1; log will denote logarithm to the base 2; F"*"
will denote the class of m X n matrices with their entries in a fixed field F, and we will
also use the following definitions: (W);; denotes the (7, ) entry of a matrix W. [For a
Toeplitz matrix W, we have: (W);; = (W)ijx ;4% for all integers ¢, 7, k, for which (W);;
and (W);4x j+x are defined .] Z denotes the n x n downshift matrix, (Z);;-1 =1, (Z);; =0
for all pairs 7 and j # ¢ — 1. J denotes the n X n reversion matrix (J)g,—1-4g = 1, (J)gn = 0
for all pairs ¢ and h # n — 1 — g. L(v) denotes the lower triangular Toeplitz matrix with
the first column v. W7 and W# denote the transpose and the Hermitian transpose of a
matrix W, respectively.



We recall Newton’s iteration for inverting a matrix 7',
X1 =2X;, - X\ TX;, 1=0,1,..., (2.1)
but we will apply it to the parametrized matrix
TN =1-AT

such that

TA) = (I =Ny =T+ AT+ (A2 4= ﬁ(1+ (AT,

=0
thus outputing the powers of T.

Algorithm 2.1. For two positive integers k and n and for a given n x n matrix 7T,
set So = I, T(A) = I — AT and apply the parametrized Newton iteration by recursively
computing

Siv1 =285, — 5, T(N)S; = (21 — S;T(N)) S, 1=0,...,k—1. (2.2)

Denote K = 2% and output the entries of the matrix polynomial S; mod AX = I 4+ AT +
<-4 (AT)E=1 that is, the entries of the matrix powers I, T,...,TK-1,

The latter equation follows since I — T'(X)Sg = AT = 0mod A\, I — T'(A\)S;41 = (I —
T(N)S;)?,i=0,1,..., and therefore,

I-T(\)S;mod A2 =0, i=0,1,..., (2.3)

Si= §imod A2 = T4 AT 4 A2 4 ... A2 -1p2-1 (T(A\))™! mod A2 (2.4)

Let us estimate the computational cost of this algorithm assuming that 7" is a Toeplitz
matrix (consequently) 7°(\) is a Toeplitz matrix polynomial (that is, a Toeplitz matrix filled
with polynomials). In this case we may express the matrix polynomial 5; = S; mod A% =
T(A\)~! mod A% via its first and last columns, by applying the Gohberg-Semencul formula
for the inverse of a Toeplitz matrix (see [GS], [FMKL], [T]):

1
NG

Ug

g = (L(uu))LT(JV(i)) _ L(ZVU))LT(ZJu(Z'))) mod A2, (2.5)

where uél) = (§Z-)00 =1 mod X, u” and v(*) are the first and last columns of §Z-, respectively,
ul®) = G,e(0 v(i) = G eln-1), ‘

Therefore, for every ¢, the iteration (2.2), performed modulo A?", can be reduced to the
computation of a pair of vector polynomials:

ulitt) = 240 — §Z’T(/\)u(i) ,
vt = 2y _ §iT(/\)V(i) ,

and algorithm 2.1 outputs the pair of vector polynomials 5ze® and gke(”_l), that is,
the first and the last columns of the matrix polynomial Sy = S; mod AX. Due to (2.5),



this computation is reduced to 10 multiplications of n X n Toeplitz matrix polynomials
modulo A% by vectors. Each such a matrix-by-vector multiplication can be reduced to the
multiplication of two bivariate polynomials of degrees n — 1 or 2n — 2 and 2° in their two
variables and performed at the parallel cost O(i + log n, n2') by using 2-dimensional FFT’s.
The overall parallel cost of steps ¢ = 0, ...,k — 1 of the iteration (2.2) is, therefore, bounded
by O(log(Kn)log K,nK), K = 2. Furthermore, O(n[K /log K1) processors suffice at steps
i=0,1,...,k—1— [logk], which suggests the bound

O(log(Kn)log K,nK/log K) (2.6)

if we exclude the last [logk] = [loglog K] steps. Instead of their exclusion, we may slow
them down, by applying Brent’s principle. Then it suffices to use O(nk/log K') proces-
sors, performing each of these steps in O(log(K n)log K/loglog K') time and all of them in
O(log(Kn)log K) time. This enables us to bound the overall computational cost of the k
iteration steps (2.2) by (2.6). Note that (2.6) turns into O(log? n, n?/logn) for K = O(n).

Due to (2.4), (2.5), from the output vector polynomials 5:e® and Spe(™1) we may
immediately recover the vector polynomial

K-1
Spv = Spv mod AF = Z (AT)'v ,
=0
defining the Krylov sequence )
v,Tv,.. .,TK_IV ,

for any fixed vector v. At this point, we may apply the techniques of Krylov subspace
iteration as a means of fast parallel approximate solution of a Toeplitz linear system.

On the other hand, from the first column u*) = [uék), . .,ufzk_)l]T and the last column
vk) = [v(()k), .. .,vfzk_)l]T of the matrix polynomial Se = S mod MK, we may immediately
recover [within the cost bounded by (2.6)]

n—1 7 7—1
trace S5, = trace(I — AT)~! mod M= vo_l Z (Z ugk)vl(k) + E ufzk_)l_ivff_)l_i)
7=0 ;=0 1=0

This gives us trace(Ti), t=0,1,..., K — 1, and the result has various further applications.

In particular, having computed trace(T?) for i = 0,1,...,n, we may then obtain the
coefficients of the characteristic polynomial of T, ep(z) = det(zl — T) = Y./ ¢;z°, either
from the system of Newton’s identities or by applying a special algorithm (of appendix A),
whose parallel cost is bounded by

O(log?n, n/logn) .

As one of further applications, we may compute a least-squares solution 7tb to any
Hermitian Toeplitz linear system

Tx=b,

where T7 denotes the Moore-Penrose generalized inverse of T and where ¢g = ¢; = --- =
Cpr—1 =0, ¢r # 0 (see the end of section 4 on a further extension to a more general class



of linear systems). Then r = rank 7', and we may apply the following simple expression

([P90]):

n—1
T+ = (1/Cn—7°) Z ((Cn—}—l—'r/cn—'r)ci - Ci—}—l) TZ_TH_T + (Cn—}—l—r/cn—'r) . (27)
t=n—r+1
Postmultiplication by b expresses Ttb through the coefficients ¢,,_,,...,¢,_1 and the vec-

tors T'b,i=1,...,7.

Remark 2.1. Appendix B shows further small improvements of the computation of
§Z-e(0) and gie(”_l).

Remark 2.2. The results of this section can be applied over any field of constants
supporting FFT, except that the least-squares solution is only considered over the fields
of characteristic 0 (of course) and that the transition from trace(7%), i = 0,1,...,n, to
€o, - - -, Cn—1 shown in appendix A requires divisions by 2,3,...,n and thus cannot be per-
formed in the fields of characteristic p for 1 < p < n. Alternate techniques of [KPa] use
randomization to ensure such a transition over any field at the computation cost

0 (log2 nd(n,p), n*loglogn / d(n,p)logn) )

where p is the characteristic of the field of constants, d(n,p) = [logn/logp| if p > 0,
d(n,p)=1if p=0.

3. Operators of Toeplitz and Hankel type.

In this section we will introduce some machinery that we will use in the next section in
order to extend the algorithms of section 2 to a more general class of matrices. In particular,
we will follow the line of [B83] to define this class of matrices in terms of the associated
displacement operators. Our study of these classes of matrices and operators extends the
theory developed in [KKM], [CKL-A].

Let V be an n X n matrix and consider the following operator defined on the linear space
F™*" of n X n matrices over the field F:

Fy(A)= AV - VA . (3.1)

Observe that the operator (3.1) is a linear and singular operator; indeed Fy (V) = 0.
Moreover, its null space N(Fy) = {A € F**": Fy(A) = 0} is made up by all the matrices
that commute with V. In particular, if V has eigenvalues of geometric multiplicity 1, the
null-space coincides with the matrix algebra generated by V., i.e. with the linear space
spanned by I, V,V?, ... v* L

Observe that we may uniquely represent any matrix A € F"*™ as the sum of a matrix
N belonging to the null-space N(Fy) of Fy and of a matrix R belonging to the range of
Fy,ie. R(Fv) = {Fv(A)Z Ae ann}

In this section we determine some choices for the matrix V', which define operators Fy
particularly effective in the study of Toeplitz-like, Hankel-like and the sums of Toeplitz-like
and Hankel-like matrices. (Such a natural extension of the classes of Toeplitz, Hankel and
the sums of Toeplitz and Hankel matrices will be formally defined later on.) As usual in the
extension of the class of Toeplitz matrices, such choices of the matrix V' will be dictated by
the two main conditions:



— the null-space N(Fy) must be made up by “computationally easy” matrices;

— the range R(Fy) must be made up by matrices of small rank.

This will allow us to represent Toeplitz-like, Hankel-like and Toeplitz-like + Hankel-like
matrices with small memory space and to deal with them with a low computational cost.

Such an approach is quite general and can be applied to various classes of matrices by
devising suitable operators.

Now we will describe some simple general properties of the operator Fy of (3.1).

For any A, B,C € F™*" such that CCT = I, we have
Fy(AB) = AFy(B)+ Fy(A)B (3.2)

(Fv(A)T = —Fyr(AT),  Foyer(A) = CFy(CTAC)CT . (3.3)

Moreover, if A is nonsingular, then
F(A™Yy = —A7'F(A)A™Y . (3.4)

Let us now represent the linear operator Fy in matrix form by means of tensor product.
For this purpose, represent the matrix A as the vector a obtained by arranging the entries
of A column-wise, i.e. a = (@11, @21, .-+, Gn1,@12,022, -+, A2y« - -, Any )., Where a;; = (A);;.
This way equation (3.1) can be rewritten in the following form:

f=(V'gri-I1aV)a, (3.5)

where f is the vector representing the matrix Fy(A), and ® denotes the tensor product
defined as A @ B = (a;;B) for any pair of matrices A, B.

Next define F*(A) = Fz(A) = AZ — ZA, F~(A) = Fyr(A) = AZT — ZT A. We have
the following result:

Proposition 3.1.

(a) The null space of F* is made up by the algebra of lower triangular Toeplitz matrices.
The null space of F~ is made up by the algebra of upper triangular Toeplitz matrices.

(b) For any Toeplitz matriz A, the malrices F*(A) and F~(A) have rank al most 2;
moreover,

PHA) = @07 AZ — Zael Ve T = o077 2D - Zaelr-DelnT

FT(A) = e Vel=DT g 7T _ 77 e = e(”_l)(JZTAe(O))T — 7T 4eeOT

(¢) Let G = [g1,...,84], H = [hy,...,hy] € F™*¢. For any matriz A € F™*", we have
FH(A) = GHT = YL, gh? if and only if simultaneously Y"%_ 1205 1h D gni- lg, =0,

where h; = [h;i)] and any of the two following matriz equations holds:

d
A= L(Ae9) + 3" L(g) LT (Zhy) ,
=1
d
A=L(JATe" ) N 1T(ZJg)L(Jh;) .
=1



(d) Similarly, for the operator F~ we have F~(A) = GHT = 4 g:h! if and only if

simultaneously Z?:l Z?:_OI h;i)(ZT)jgi = 0 and any of the two following malriz equalions
holds: ;
A=IT(ATe®) - N L(Zgi) LT (h;) ,
=1

d
A=1T(J4e" ) + 3 1T (Jg)L(Z ;) .
=1
Proof: The proofs of parts (a) and (b) are immediate. To prove part (c), we follow
[B83] and apply the matrix representation (3.5) of the operator, that is, we rewrite F7(A) =
E?:l g:h? in matrix form, thus obtaining the block tridiagonal system of linear equations:

/i 0]
-7 I )
.. T =1

0 -7

This immediately implies the vector equation of part (c).

Now we fix the first column ag of A, compute the remaining columns by using back
substitution and arrive at the first matrix equation of part (c). To yield the extensions
to the other equations of parts (c¢) and (d), combine the relations (F~(A4))T = —F+(AT),
F~(A) = JF*(JAJ)J obtained from (3.3) (with C = J) since ZT = JZJ, J = J7T.

Proposition 3.1 yields formulae for an eflicient representation of matrices A such that
d = rank(F(A)) is small. In particular, the entries of such matrices are uniquely determined
by the first column Ae(® and by the pair of n X d matrices (G, H), which we call an F-
generator of length d for A. In the specific case of Toeplitz matrices and of the operator
Ft wehaved = 2, g; = e®, gy = ZAe" V) hy = Jgy, hy = —e(® V) and it is easy
to specify an FT-generator for the inverse of a nonsingular Toeplitz matrix based on the
Gohberg-Semencul formula, and similarly, if the operator '~ replaces F©. On the other
hand, the first matrix equation of part (c) or proposition 3.1 and the matrix equation (3.4)
together yield the following inversion formula for a nonsingular Toeplitz matrix A:

A = (a) LT (e® — Jb) — L(b)LT(Ja) ,a=A"te® | b=A"1ZAe*V . (3.7)

Similar inversion formulae for Toeplitz matrices can be obtained from the other matrix
equations of proposition 3.1. Note that, unlike (2.5), these formulae do not involve division.

A matrix A having an F-generator of length d bounded from above by a fixed (small)
constant [or formally, using the ”O” notation, of length d = O(1) as n — oo], with respect
to one of the operators F'* or 7, is called a Toeplitz-like matriz.

Proposition 3.1 together with (3.2) and (3.4) enables us to represent the product of
Toeplitz-like matrices and the inverse of a nonsingular Toeplitz-like matrix in terms of the
sum of products of lower triangular and upper triangular Toeplitz matrices. In particular,
we obtain that, if A has an F-generator of length d, then A~! has an F-generator of length



d. If A and B have an F-generator of length d4 and dp, respectively, then AB has an
F-generator of length at most d4 + dp.

The class of triangular Toeplitz matrices plays an important role in the representation
formulae of proposition 3.1. We recall in particular that the product of a triangular Toeplitz
matrix and a vector can be computed by means of two FFT’s and one inverse FFT at the
sequential cost of O(nlogn) arithemtic operations and at the parallel cost O(logn,n).

In order to deal with the sums of Toeplitz and Hankel matrices, we will make a different
choice of the matrix V of (3.1). Consider the matrix M = Z + ZT and define

FE(A)=AM - MA . (3.8)

We have the following result:

Proposition 3.2. For the operator F* of (3.8), the following properties hold:

(a) The null-space of F* is made up by the algebra T generated by I, M, M?,...,
M"™ 1, the entries of any matriz U € 7 are defined by the equations

Ui 51+ Ui 41 = U1 + Uig1,j

w;;=0if i€ {-1,n}, or j € {-1,n}.
(b) For any Toeplitz or Hankel matriz A, the matriz Fi(A) has rank at most 4; more-
over, F¥(A) = e@e@T AN — M Ae®eOT 4 e(n-Den=DT g1 — M Aeln=Deln=1)T
(c) Let G = [g1,...,8], H = [hy,...,hy] € F**?. For any matriz A € F™", we have
FE(A) = GHT = 24, g:h? if and only if simultaneously Y0, E?:_& h;Z)Tn_j_l(IW)gi +
Tn(Ae(O)) = 0, where T;(x) denotes the Chebyshev polynomial of degree j, and any of the
four following matriz equations holds:

A= 7(4e)) + Zdzr(gi)LT(Zhi) LA =7(JAe D) 4 Zd:T(JgZ-)LT(ZJhZ») A =7(ATe®) - zd: L(Zg;)7(h;)

=1 1=1 =1

Here U = 7(u) is the n x n matriz that belongs to the matriz algebra T such that Ue(®) = u.

(d)
FE(JAJ) = JFE(A) T, FE(AT) = —(FEA)T .

Proof: The proof is analogous to the proof of proposition 3.1 and is left to the reader.
We only observe that for the operator F'*, equation (3.2) takes the following form:

-M I 0
I -M I ;
AP a=> hi®g,
.. T =1
0] I -M

and that the matrix M has n distinct eigenvalues.

Proposition 3.2, together with (3.2)-(3.4), allows us to represent the product of Toeplitz
and Hankel matrices and the inverse of nonsingular Toeplitz and Hankel matrices in terms
of a sum of products of matrices of the class 7 and upper triangular Toeplitz matrices. In
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particular, the inverse of a Hankel+Toeplitz matrix A is defined by the first and the last
rows and columns of the matrices A7, A7'MA. A matrix A having an F-generator of
length d bounded by a fixed (small) constant [or formally, using the ”O” notation, of length
d = O(1) as n — oc], with respect to the operator F* of (3.7), is called representable as a
sum of Toeplitz-like and Hankel-like matrices.

The matrices of the class 7 satisfy interesting computational properties that play an
important role in the representation formulae of proposition 3.2. Such matrices are real
symmetric matrices uniquely determined by their first column. Moreover, for any matrix
A = (a;;) € 7, the following relations hold ([BC]):

A:STDS,D:diag(ao,...,an_l),Ui_lz , t=1,...,n,5 =

> i1 aj_10sinfigm/(n+ 1)] 1 (sil
sin[im/(n+ 1)]

Here the matrix 5, associated to the sine lransform x — 5x, is symmetric and orthogonal,
that is, such that § = ST, §T§ = I. Performing the sine transform of a real vector involves
by factor 1/2 fewer operations than performing its FFT [PFTV].

The above formulae enable us to compute the product of a matrix A € 7 and of a vector
by means of three sine transforms at the sequential cost of O(nlogn) arithmetic operations
and at the parallel cost O(logn,n), (see appendix B).

If Ais the sum of a Toeplitz and a Hankel matrix and is nonsingular, then from (3.4)
and proposition 3.2 we obtain that

A7Y = 7(ag) LT (el®) — dg) + 7(eo) LT (bo — T(an_1) LT (dp 1) + 7(cne1 ) LT (by1),a; = A7Lel | b; = A7 Tel)

Remark 3.1. Our approach can be effectively applied also with other choices of the matrix
V of (3.1). In particular, by choosing V' = Cjy, with C being the unit circulant matrix [with
the first row e(”_l)], the reader may deduce useful formulae for the inverse of a Toeplitz
matrix, similar to ones of [AG].

4. Extension of algorithms to Toeplitz-like + Hankel-like matrices.

In this section we apply the operators F'*', F'~, and F'* as the operator F and the matri-
ces of the class 7, to extend the results of section 2 to Toeplitz-like and Hankel-like matrices.
We first present an algorithm that computes the traces of matrix powers, uses O(n?logn)
ops and has parallel cost O4(log? n,n?/logn). Then we show some modifications, which
allow us to compute the coefficients of the characteristic polynomial, the Krylov sequence,
the solution or a least-squares solution to a linear system, and a short F-generator for the
inverse, for an n X n Toeplitz-like + Hankel-like matrix. As in section 2, the algorithms are
based on the technique of the parametrization of Newton’s iteration and involve FFT’s and
(for the transition to the characteristic polynomial) divisions by 2,3, ..., n.

Now we apply Newton’s iteration (2.2) in its parametrized version with T'(A) = I — AT,
So = I, and deduce from (2.4) that rank(#(.5;)) = rank(#(71')) over the ring of polynomials
in A modulo A%, for any operator F't, F'~, F'*. Therefore, in view of propositions 3.1 and
3.2, computing a generator of S; of length d = rank(#(7")) and the first column of .5; allows
us to compute modulo A% all the entries of S;, that is, all the entries of 7, 72,..., 7% 71,

Actually, we seek the traces of T,T?,...,T" and the sequence of vectors Tb,T?b, ...,
T"b, rather than all the entries of 72,...,7". Due to propositions 3.1 and 3.2, these
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computations can be reduced to the evaluation of an F-generator and the first (or last)
column of the matrix 7'(A). On the other hand, due to (3.2) and (3.4), we may modify
Newton’s iteration so as to compute an F-generator of S;y; from an F-generator of 5;
(rather than to compute all the entries of S;41), thus reducing the computational cost per
step.

Specifically, let F(T(\)) = —AF(T) = GHT, where G and H are n x d matrices.
Applying (3.4) with F = Pt P = P~ F = F* we yield F(S5;) = —S;F(T()\))S; mod A%
Now, by using (2.2), we obtain

F(Sit1) = GipHL,  Gigr = =S11G = (28, = ST(N)S)G  HYL = HY S0 = HY(25; — SiT(X)S) .
(4.1)

Thus, in view of propositions 3.1 and 3.2, the F-generator G;4q, HZ-T_I_1 of S;y1 can be
computed, together with the first column of 5;41, from the F-generator G, HZT and the
first column of 5}, by performing a constant number of multiplications of triangular Toeplitz
matrices and /or of the class 7 matrices by vectors, that is, by pre- and post-multiplying the
matrix polynomial S;41 = 25; — S;T(X)S; of the expression (4.1) by the d columns and the
d rows of the matrices G and H”, respectively, and by multiplying S;4; by e,

Summarizing and extending all these considerations, we arrive at the following algo-
rithm:

Algorithm 4.1.

Input: an F-generator of length d for an n x n matrix 7' (having F-rank at most d),
where F' denotes F*, F~, or F*, that is, two n X d matrices G, H such that F(T) = GHT.

Output: the traces of the matrices 7,7T2,...,T".

Computation:

1. Set T'(X) = 1 — XT', Sy = I and compute

2i+l

Gip1 = —(285; — ST(A\)S)G mod A**  HE | = HT(28; — ST(M)S;) mod A*™ i=0,...,h—1,

where sg = e© for the operators Ft, F*; sy = e(® 1 for the operator F'~, Sit1 =
25; — S;T(X)S;. Performing matrix multiplications, apply the representations of 7'(\) and
S; given in propositions 3.1 and 3.2 and operate with F-generators, rather than with the
matrices. Note that GhH;{ =FI+ X'+ -+ A1) mod AL

2. By using propositions 3.1 or 3.2, recover from GhH;{ the diagonal entries of
S, mod A"t! and their sum, which is a polynomial in A of degree at most n, whose co-
efficients are the power sums of the eigenvalues of 7.

The most expensive stage of the computation by the above algorithm is the performance
of six multiplications of matrices given with their /-generators of length d by d + 1 vectors
over the ring of the polynomials in F modulo A?"". This stage can be reduced to 0(d?)
multiplications of the bivariate polynomials and for d = O(1) performed in O(n?logn)
arithmetic operations or at the computational cost OA(log2 n,n?/logn), under parallel
models of computation.

Algorithm 4.1 can be extended in order to compute (at the same asymptotic cost, if the
field of constants allows division by n!) the coefficients of the characteristic polynomial of
the matrix 7' (see appendix A).
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Another simple modification of algorithm 4.1 enables us to compute the Krylov sequence
b,Tb,T%b,...,T" b, for a given vector b and for a given Toeplitz-like and Hankel-like ma-
trix T and to compute the solution T71b or a least-squares solution 77 b to a linear system of
equations at the cost O(n%logn) ops and at the parallel cost
Oa(log?n,n*/logn). For this purpose, once a generator modulo A" of length d of the
matrix S5 has been computed, together with the first (or last) column of S5, we have a
representation of S, mod A*t! given by propositions 3.1 and 3.2. Thus, we may compute
the product Sj, mod A\**! by performing multiplications of matrices and vectors by means
of FFT’s, and/or sine transforms. The result of this computation is the vector polynomial
b+ ATb + (/\T)Qb 4+ 4 (/\T)”_lb, which gives us the Krylov sequence.

In order to compute the vector x = T~'b, we apply the modification of algorithm 4.1 to
compute the coefficients ¢;, ¢ = 0,...,n of the characteristic polynomial det(Al —7") and use
the Cayley-Hamilton theorem to write x = —(1/¢cg) -7 ¢;41T"b, ¢, = 1. Analogously, we
may compute a generator of length d of the inverse matrix together with its first (or last)
column. Even for this extension of the computations, the upper bound on the asymptotic
cost remains unchanged. If 7" is (in addition) a Hermitian matrix, we may apply (2.7) in
order to similarly compute 7Tb. The latter assumption, however, can be relaxed, since
for any énatrix T, we may obtain Tt from the generalized inverse of the Hermitian matrix

0O T
7 o]

Appendix A. A fast transition from the power sum of polynomial zeros to the
polynomial coefficients.

Let ¢(z) denote a monic polynomial,

c(x):ZcZﬂ:H(x—x]), cn=1,
1=0 71=1
and let
n
=3 al, E=0,1,....
i=1
The power sums {5 and the coeflicients ¢; are related to each other via the system of Newton’s
identities:
k-1
tk+zcn—itk—i+kcn—k207 k=1,...,n,
=1
n
tn—}—k"'zcn—itn—}—k—i:()a k:1727"'7lm_n7
=1

By using these identities, we may compute the power sums {; if we are given the coefficients
¢;, and vice versa. For the converse computation, however, a simpler algorithm is available,
due to [S] (see also [P90]). Consider the reverse polynomial

n

ch_i.ri =z"c(z7) =14 u(z) =1+ ch_ixi = H(l —zx;j) .
=0 =1

i=1

13



Obtain that

k
(In(1 + w(2))) = v'(2)/(1+ w(z)) = - thxj_l mod z¥ , k<n+1. (A1)

i=1

Denote u,(z) = u(z) mod z"t1. Note that uj(z) = ¢,_12 and show the transition from
uy(z) to ug,(x) for r =1,2,3,.... Start with the equation

1+ ug(2) = (1 + u(2)) (14 v.(2)) mod 22! (A.2)
where
2r )
ve(z) = Z vzt (A.3)
i=r4+1
All we need is to compute the coefficients v,41,...,v9, provided that the coefficients of

uy(z) are known. Deduce from (A.3) that
vi(z)/ (14 v,(2)) = v.(z) mod 2"+t .

Then deduce from (A.2) and (A.3) that

Uy, () up (%) vr(2)
In(1+ ug (2))) = 2r = r r mod 22"
(In( (@) 14+ ug(z) 14u(z) 1+ v(2)
Combine these equations with (A.1) for £ = 2r + 1 and deduce that
Uy (x) E 2r
m + v;(x) = — ]z:; tjx] mod z*" . (A.4)

Since we know the coefficients of u,(z) and the values of ¢; for j < 2r + 1, we may now
compute the polynomial (1 + u,(z))~! mod 22", multiply it by u.(z) mod 2?7, substitute
the result into (A.4) to obtain the coefficients of v/(z), and finally recover the coefficients
of v,(z) [by using (A.3)] and of ug,(z) [by using (A.2)]. The computation is reduced to a
sequence of multiplications of polynomials, and it is easy to verify that their overall cost is

bounded by
O(log’n, n/logn) .
In particular, ¢(z) may represent the characteristic polynomial of a matrix A, and then

ty represents trace(Ak), k= 0,1,.... In this case the algorithm enables us to recover the
characteristic polynomial of a matrix A from the traces of its powers A* for : = 0,1,...,n.

Appendix B. A simplification of multiplications of Toeplitz and Toeplitz-like
matrices by vectors.
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Consider the vector equation,

q0 0
q1 '
pO : . .. To
P1 ' 7 T
p= QI‘ = : = | 9% T qo0 : ) (Bl)
Phtn—2 - gl Tp—1
0 qk—1

which represents the product of a special Toeplitz matrix ¢ by a vector and equivalently

represents the product p(z) = Zﬁ-&%—z piz’ of two polynomials

k-1 n—1
) r(o) = (L 0 (2 )

Multiplication of any n X n triangular Toeplitz matrix by a vector is represented by
the first n equations of (B.1) for £ = n and thus can be reduced to multiplication of two
polynomials of degrees at most n, which can be further reduced to three discrete Fourier
transforms (DFT’s) on m > 2n — 1 points, performed by means of FFT’s.

Let i be the imaginary unit and w,, = cos % + isin % be an m-th root of 1. Given
the coefficients of the polynomials ¢(z) and r(z), the coefficients of the polynomial p(z) =
g(z)r(z) can be computed according to the following stages:

1- Compute py; = q(wfn), t=0,1,...,m—1, by means of an FFT on m points;
2— Compute v; = r(wfn), 1=0,1,...,m—1, by means of an FFT on m points;

3— Compute n; = v, t=0,1,....m—1;
4— Compute p; = % E}”:_Ol w;jjm, t=0,1,...,m—1, by means of an FF'T on m points.

Given a vector w and the vectors a and b of (3.7), the computation of the product
A~'w can be performed by means of 10 FFT’s on m > 2n — 1 points.

Propositions 3.1 and 3.2 and Algorithm 4.1 immediately enable us to extend this result
to multiplication of a Toeplitz-like + Hankel-like matrix A and its inverse by a vector w.

Let us show a simpler way in the case of a Toeplitz matrix A. Let d = k—n+1 > 0. Then
we may delete the first n — 1 and the last n — 1 equations of (B.1) and arrive at the product
of a general d X n Toeplitz matrix by a vector, which is thus reduced to multiplication of
two polynomials of degrees k — 1 = d 4+ n — 2 and n — 1, respectively. This in turn can be
reduced to three FFITson m > k+n—1=2n+d — 2 points.

If we need to compute A~'w, (for a Toeplitz matrix A), we may combine (3.7) with
(B.1), provided that the vectors a and b of (3.7) are available.

An easy (but apparently novel and practically promising) simplification of this computa-
tion can be obtained by observing that the multiplication of two polynomials ¢(z) and r(z)
of degrees at most n — 1 yields both of the products L(q)r [given by the first n equations
of (B.1) with & = n] and

LT(Jq)r = JL(q)Jr
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[given by the last n equations of (B.1)]. This saves for us two FFT’s in the computation of
the product A=!w, if we are given the vectors a and b of (3.7) and w. Such a computation
may now be performed at the overall cost of 8 FFT’s.

Similar consideration and the same conclusion apply to the Gohberg-Semencul formula

A"l = i(L(u)LT(JV) — L(Zv)LT(ZJu)),

where

u= A_le(o),v = A" te” 1)
Moreover, if A is also symmetric, it is easy to check that v = Ju, so that
1
—(L(w)LT(n) = L(ZJw) LT (ZJu)) .

U

A7l =

Since DFT of any vector t also gives us DFT of the vector Jt, we may now compute the
product A=tw, (for given vectors w and u), in 7 FFT’s.

In the case of a Hermitian and positive definite Toeplitz matrix A, the known best way
for the recovery of A=! w from A~'e(*~1) is shown in [AG] (also compare our Remark 3.1).
This approach is reduced to the computation of two vectors, each taking the form

L(u)Cw , (B.2)

where we are given a circulant matrix C' and two vectors u and w. The vector C'w can be
computed via three DFT’s on s points for any s > n, and then the computation of L(u)v.
can be reduced to three DFT’s on 2s points. We will show how to replace one of the latter
DFT’s by a DFT on s points. For simplicity, assume that s = n and denote m = 2n, so
that C'w is the DF'T of some n-dimensional vector v=(v;), and we need to compute the m
point DFT of this vector extended by the vector of n zeros:

_l_ —2 'k _ _
Cw = ( _HXZ:E “iik k=0,1,. 1.

We now obtain that w, = w?, so that

n—1 n—1
* k—21)7
nwp = civi, ¢ =y wlFTHT
1=0 7=0

for all k. Therefore, ¢4 = n, ¢; = 0 unless ¢ = k; wy = vy, for even k, and it now remains
to compute

|
—

n

wi = 3 (v, el
0
forodd k,k =2s+1;s=0,1,...,n—1. This essentially amounts to DF'T on n (rather than
2n) points, which gives us the desired improvement of the computation of the expression
(B.2).

The reader may now work out the extensions of the latter technique in order to improve
the known methods, in particular, for successive multiplication of two triangular Toeplitz

.
Il
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matrices by a vector and, consequently, for computation of the product of a Toeplitz-like
matrix by a vector.

Appendix C. Correlations between F'*, /'~ and the classical displacement oper-
ators.

The classical displacement operators F and F_ of [KKM], [CKL-A], such that
Fr(A)=A-zAzT

F_(A)=A-z%Az,

are related to operators F+ and F~ of sections 3 and 4 via the following equations, which
hold for any n x n matrix A ([P90b]):

FHA)ZT = Fr(A) — 4eWeOT 2T pt(A) = e Ne("UTA — F_(A), F7(A)Z = F_(A) — AelrDen=1T

These equations are immediately verified based on the definition of the operators F'*, F'~,
Fy and F_ and on the following simple vector equations:

7Tz =1 —elnDeln-1T 77T — | _ 0O
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