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Abstract:  The following paper describes a new method to approximate the
minimum error decision boundary for any supervised classification problem by
means of a linear neural network consisting of simple neurons that use a local
Bayes criterium and a next neighbor decision rule. The neurons can be interpreted
as centroids in feature space or as a set of particles moving towards the classi-
fication boundary during training. In contrary to existing LVQ methods and RCE
networks each neuron has a receptive field of an adjustable widthε and the goal of
the supervised training method is completely different. Furthermore, the network
is able to grow in the sense of generating new entities in order to decrease the
classification error after learning.
For this purpose we initialize the network via a multidimensional octree
representation of the training data set. The neurons generated during initialization
only depend on the maximum number of data in a single octree cell. The learning
method introduced ensures that all neurons move towards the class boundaries by
checking the local Bayes criterium in their receptive field. For this process can also
be interpreted as a melting away of the initial octree, we called the network “The
Melting Octree” network.
This report first describes the algorithms used for initialization, training as well as
for growing of the net. The classification performance of the algorithm is then
illustrated by  some examples and compared with those of a Kohonen feature Map
(LVQ) and of a backpropagated multilayered perceptron.

1. Introduction

Classification and decision making belong to the most important problems of nearly any field of
science /6/, /9/, /10/, /11/, /12/. Lots of methods had been developed in the past, reaching from
classical statistical algorithms such as regression and maximum likelihood estimation /8/ to
connectionist classifiers such as backpropagation or learning vector quantization (LVQ) /1/,  /5/,
/7/. According to the Bayesian decision theory, the global goal has to be to find the decision
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boundary, that minimizes the probability of false classification for any given classification problem
/14/.

There are several methods that aim at approximating these theoretically postulated boundaries in
feature space, as i.e. parametric likelihood or polynomial regression techniques as well as
Restricted Coulomb Energy Networks. Furthermore, iterated gradient descent coefficient
updating, as used in backpropagation networks or in Kohonen’s feature map, is also capable to
approximate decision boundaries. Where multilayer perceptrons are confronted with local minima
and with the problem of selecting an appropriate topology, LVQ methods, that are based on an a-
priori clustering, also have only a fixed set of centroids for the next neighbor classification. In both
cases, the minimum error to be reached depends strongly on the number of neurons /4/.

Besides these aspects, there have been many theoretical investigations aiming at describing the
internal representation /2/, /3/ of the data in these neural networks.

Inspired by Kohonen’s LVQ classifiers and by the idea of having an easy to parallelize scheme,
the goal of the research reported below was to develop a supervised trained and self-optimizing
neural network, that approaches the Bayesian decision boundaries for arbitrary classification
problems with simple next neighbor units. In contrast to the LVQ we use a different training
scheme where the neurons are associated with receptive fields of adjustable width. These neurons
are moving towards the class boundaries by checking the Bayes condition in their receptive field
and stabilize themselves there. Furthermore, the network is generating neurons after training and
grows in order to decrease the classification error. For the initialization of the weight vectors all
neurons are precalculated by an octree tessellation. For this reason we named our network "The
Melting Octree".

The basic idea is to train and grow a linear network with gradient descent techniques in a way that

I. the weight vector of each neuron reaches a position in feature space close to the class boundaries
and thus approximates the Bayes border in its local environment.

II. the network optimizes itself by bearing child neurons according to the fractional error of each
neuron after classification.

To perform this, the neurons have associated receptive fields in which they pick up data samples
from a given training set and compare these with the Bayes criterium for the class boundary.
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Basically, our method consists of 4 steps. These are:

A. Initialization
B. Organization and Learning
C. Growing and Optimization
D. Classification

The following description of the algorithms often uses the 2-dimensional classification problem as
an example, i.e. the feature vectorx = (x1, x2), but all rules can be applied to N dimensions.

The outline of this report is as follows: First, we describe briefly the basics of Bayes decision
making as well as Kohonen’s work we relate on. The next chapter is dedicated to network topology
and the initialization by octree clustering. Then, we describe the gradient descent rules for updating
the neuron weights during the learning phase and explain the growing algorithm to adapt the
network automatically to a certain error quality to be reached. The last chapters document detailed
results applying this method on classification problems and compare the performance with those
of backpropagation and LVQ methods. Finally we give an outlook on a very difficult classification
problem: The automatic extraction of brain tumors from CT and MRT data sets.

2. Basics and Pre-assumptions

2.1 General Remarks

The following chapter introduces briefly the basics of decision theory we relate on and the
Kohonen LVQ algorithms, that inspired our work. In particular the Bayes theory is not explained
here in detail. The interested reader may find it anywhere in the literature /8/, /14/.

2.2 Bayesian decision theory

Let be given any classification problem, where we have to distinguish M classes from a data set
{X}. Furthermore, a limited training data set {X}T is given to learn a supervised classifier, where
{X} T consists of subsets of all classes Ck (k = 1..M) to be distinguished:

and

X{ } T X{ }{ T1
X{ } T2

, … X{ } TM
}, ,= (1)

X{ } Tk
Ck→
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Bayesian decision theory minimizes the error probability PE for any classification problem as in
the following one-dimensional example of figure 1.

Figure 1: Minimum error decision boundary value b in the one-dimensional case.
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In order to minimize PE , b has to follow the rule:

That means, in general the difference of the a-priori density function of neighboring classes C1 and
C2 to be distinguished from each other drops to zero at the so-called Bayesian border.

2.3 Kohonen’s LVQ

The Learning Vector Quantization (LVQ) method proposed by Kohonen /5/ can be considered as
a postprocessing on an initial vector quantization of an arbitrary feature space. The basic idea is to
move the cluster centroids close to the decision boundary in locally optimal positions for further
classification. This is done via an iterated gradient descent scheme on training data sets. The
updating of the coordinates of each centroid mi obtained by any C-means methods is done as
follows:

where mi and ms are the two closest centroids to x, and x and mi belong to the same class, while x
and ms belong to different classes. Furthermore, x ∈{X}T and x falls into a window of size ω.

if x, mi and ms belong to the same class. σ is a small positive constant.

is the time dependant learning rate.

This is also illustrated in figure 2, where the general direction of the movement of the cluster
positions is shown for a one-dimensional example. The positions of the centroids that are close to
the actual decision boundary are shifted in a way to approach the Bayes border of the training data
set.

p1 xb( ) p2 xb( )− 0= ! (4)

mi t 1+( ) mi t( ) α t( ) x t( ) mi t( ) ]−[−= (5)

ms t 1+( ) ms t( ) α t( ) x t( ) ms t( ) ]−[+=

mi s, t 1+( ) mi s, t( ) σα t( ) x t( ) mi s, t( ) ]−[+= (6)

α t( ) α0 1
t
T

−( )= (7)
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Figure 2: Illustration of the influence of the LVQ training on cluster centroids in feature space.

The disadvantages of the method explained above are:

I. Only a few cluster positions are influenced by the training. Most of them represent the class
centers and those regions, where the a-priori probability density function is high. This is
appropriate for non-supervised cluster analysis. For supervised classification problems,
however, the goal has to be to separate the classes from each other and thus, to be sensitive at
the decision boundaries. The representation of the class density function is no longer of interest.

II. This method is strongly restricted by the number of clusters C to be defined in advance. Only a
fraction of this value will be taken to approximate the optimal decision boundary. There is no
way to adapt automatically the number of cluster centroids to the shape of the boundary or to a
certain minimum error to be reached.

Recognizing these shortcomings, the general idea was to develop a scheme being able to modify
the position of each centroid towards the class boundary. Furthermore, the method should be able
to grow after training, i. e. to generate new centroids close to the boundary in order to approximate
its shape more precisely. Finally the classification should be performed via next neighbor decision

window

x

p(x)

ms

mi

p2(x)

p1(x)

neurons

1-dimensional density distribution



ZGDV-Report 60/92 The "Melting Octree" network ICSI TR-92-047

Page - 7

on all neurons created during this optimization process.

The following chapter describes the algorithm, we developed, illustrates the promising results
obtained and compares its classification performance  with the standard LVQ algorithm, as well as
with the backpropagation rule for multilayer perceptrons.

3. Network Topology and Initialization

3.1 General Remarks

This chapter introduces the network topology we use, where the octree clustering is emphasized
that initializes the network. Furthermore, the neuron type and its receptive field are explained. In
our approach the neurons are not connected to each other. Moreover, they can also be considered
as particles in feature space that are checking the data in their local environment and moving
according to the result of this calculation.

3.2 A linear network based on next neighbor units and isotrope receptive fields
in feature space

Basically, we introduce the following adaptive scheme to approximate the Bayes borders using a
simple neuron model, shown in figure 3. For we don’t know anything about the underlying density
distribution or statistical properties of the data, we  have to initialize the network by any C-means
clustering technique. After this initialization of the network, each neuron represents a cluster
centroid of the training data set. Thus the connection weight vectormi = (m1,..,mN) of a neuron i
(i = 1..C) holds the coordinates of the centroid associated to the neuron. C is the total number of
neurons after initialization and N is the number of dimensions.
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Figure 3: Simple neuron model used for the melting octree network (2-D example)

A further property of the neuron model used is its receptive field of an adjustable width ε. Any
decision or training rule applied onto the neuron is based on the data in this receptive field that can
be supposed as the local environment of the neuron. For a multidimensional case the receptive field
becomes a hypersphere around the neuron centroid in feature space. More generally, ε can be seen
as a vector describing a hyperellipsoid, ε = (ε1,...,εΝ).

The subset {X}T,εi of the training data {X}T in the receptive field of the neuron mi holds the
following inequality:

and

 is the Euclidean distance.

neuron model

ε−environment
receptive field

m1 mN

�• • • • • • • • • •

1 N

connection weights

X{ } Tεi
xl dil εi<( ) l 1

L{ , }= (8)

dil mi xl−= (9)

L number�of�elements�in X } T{=
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For any further discussion our feature space will be considered as being normalized in the range
[0..1].

Taking these types of neurons as basic units, we are able to define a linear network consisting of C
neurons as shown in figure 4.

Figure 4: Linear network consisting of C neurons

In the network defined above,  the neurons are not connected to each other. Moreover, they interact
separately as long as their receptive fields do not overlap. According to this, the network could also
be considered as a set of particles moving in feature space during the training.

3.3 Initialization by multidimensional octree tessellation and vector
quantization of feature space

Usually we don’t know anything about the data distribution of the classification problem to be
solved. For this reason, the initial position and the number of the neurons after the initialization
have to represent the probability density function of the data p(x). This can be performed by any
C-means method.

We propose a multidimensional octree tessellation of the training data set {X}T as it is indicated
in figure 5 for N=2. The global criterion of clustering the data is given for each octree cell i with

mi1 miN

�• • • • • • • • • •

1 N

�• • • • • • • • • • �• • • • • • • • • •

neuron i

Pi x( )
∆Vi

δmax≤ (10)
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where ∆Vi is the volume element enclosed by the octree cell i, Pi(x) is the a-priori probability of x
in octree cell i and δmax is a threshold for subdividing the cell into 2N sons.

This induces that the amount of training data samples in each octree cell is less than an upper limit.

Figure 5 (a): Octree tessellation of the training data set and associated neuron centroids for N=2.
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octree tesselation of a 2-D data set

data density distribution

octree cell



ZGDV-Report 60/92 The "Melting Octree" network ICSI TR-92-047

Page - 11

Figure 5 (b): Initial placement of the neurons.
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The rule for generating the octree can be written in pseudcode as:
.
.
.
init_octree ();
create_first_cell ();
while (!eof) {
  read (x);
  actual_cell = root_of_octree;

  while (child (actual_cell) ) /* search the octree branch for x  */
    actual_cell = son_cell (x, actual_cell);

  while ( delta (actual_cell) >= DELTA_MAX ){ /* divide this branch into sons if
    split_cell_into_sons (actual_cell); data limit is reached                   */
    transfer_data_into_sons (actual_cell); /* transfer all data to the new son */
    actual_cell = son_cell (x, actual_cell);
    }

  if ( delta (actual_cell) < DELTA_MAX )
    write_x_into_actual_cell;

  }
.
.
.

After defining the octree, one neuron mi is set up in the center of each octree cell i (figure 5 (b) ).
The initial weight vector of the neuron is given by the center coordinate xcell i of the respective
octree cell.

The initial width ε of the receptive field of this neuron is also given by the boundaries of the octree
cell. If the boundaries of a certain cell i are given in a N-dimensional case with bmin(i,j)
and bmax(i,j), then we can easily calculate ε = (ε1,...,εN) with

mij xcell i j,( ) bmin i j,( ) bmax i j,( ) bmin i j,( )−( ) 2⁄+= = (11)

j 1
N i 1

C;

εij bmax i j,( ) bmin i j,( )−( ) 2⁄= (12)



ZGDV-Report 60/92 The "Melting Octree" network ICSI TR-92-047

Page - 13

In our scheme, we assume isotrope octree cells and isotrope receptive fields in all dimensions.

After this step, each neuron centroidmi, its position and its associatedεi are initialized.
For further learning and optimization of the network, we have to assign the class number  Ck (k =
1..M) to each neuron. This can be done by majority voting on the training data set {X}T based on
a next neighbor decision:

and

based on the Euclidean distance dil  of eq. (9).

The octree representation has also advantages in data and neuron management during the different
phases of the network. For instance, in order to find all the training data in theε-environment of a
neuron (in its receptive field) it is sufficient to check the data of all neighboring octree cells. We
don’t have always to search through the whole training data set which strongly reduces the
calculation times. This is shown in figure 6.

mi Cc sumc→ max= x X{ }∈( )∀,{ } (13)

sumc max sumj xl xl Cj→ d
i̇l

min i=∧( ){ }
j

{ }= (14)

l 1
L L=number�of�data�in X{ } T;
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.

Figure 6: Checking data in the receptive field of an arbitrary neuron position. Only the data sets
of the indicated cells have to be checked.

x1

x2

neuron position touched octree cells
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4. Organization and Learning of the network

4.1 General Remarks

After initializing the network as described above, we have now to set up a method for updating the
weight vector mi of each neuron in a way, that the neuron moves towards the Bayes class boundary.
This can also be interpreted in the sense of a particle system, where the single particles (neurons)
move towards local energy minima by iterated gradient descent techniques. The following chapter
introduces the basic ideas on it and explains the updating rules in detail. In particular, collision
avoidance is a general problem of particle systems. We introduce a simplified model for collision
handling.

4.2 The basic concept: Moving the neurons towards the class boundaries

As emphasized above, the general goal has to be to find an updating rule for the weights mi of all
neurons created by the octree, in order to move them towards the class boundaries. This is
illustrated for a  2-D example in figure 7. If we succeed in arranging the neurons close to the
optimal class boundary, we could obtain a very sensitive classification scheme even though, we
only use simple next neighbor decision rules and some of the neurons may get stuck in local
minima.
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Figure 7: Moving the neurons towards the Bayes decision boundary and stop them in a γ-
environment of it. During this movement, some of the neurons might get captured in
local minima because of the gradient descent method specified below.

Bayes decision border
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Because this dynamic process can be interpreted as some kind of "melting away" of the initial
octree position of the neurons, we named our network the "The Melting Octree".

In order to achieve this behavior, the neurons have to be assigned with local intelligence. The
Bayes border may be of arbitrary complex shape for a given classification problem and thus it
might be too difficult to set up some global criteria on the data for a single neuron. For this reason,
we introduce the receptive field of a neuron as a kind of local environment, in which the Bayes
criterium of eq. (4) can be checked.

This means, that the neuron mi has to perform four steps on each updating cycle:

I Check the a-priori probabilites Pk,i (x ∈ {X}T,εi | x → Ck) of the data set {X}T,εi in its ε-
environment.

II Stop close to the border in a sense of a γ-distance.
III Move one step along the gradient of the density function of the data set ∇p(x).
IV Detect and try to avoid a possible collision with other neurons.

These four steps are now described in detail:

4.3 Checking the a-priori class probabilities and the local Bayes criteria

To check the a-priori class probabilities Pk,i (x ∈ {X}T,εi | x → Ck) for all classes k of the data set
{X}T,εi  in the local ε-environment of a neuron mi, we propose the following scheme: For any
position of the neuron mi  in feature space, set up a table, that counts the class assignments of Ck
for all x ∈ {X}T,εi according to table 1. If L(εi) is the total number of data in {X}T,εi and Lk(εi)
is the number of data belonging to class Ck, then we can use the local estimation of
Pk,i (x ∈ {X}T,εi | x → Ck).

Pk i, x X{ } Tεi
∈ x Ck→( )( )

Lk εi( )
L εi( )≈ (15)
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Dividing L by the N-dimensional hypervolume covered by the receptive field which is proportional
to εN , we can also estimate the local value of the density function pk(mi) of class Ck at position
mi in feature space.

This is shown in figure 8.

Table 1: Estimation of the local density distributions and of the local Bayes criteria by counting
the class assignments of the data in the receptive field of a neuron.

Class

C1

CM

Number of data inεi

L1(εi)

LM(εi)

←Pmax1

←Pmax2

.

.
.
.

.

.
.
.

.

.
.
.

L εi( ) Lk εi( )
k 1=

M

∑=
 
 

pk mi( )
Pk i,

εN
∼ (16)
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Figure 8: Checking the local a-priori probabilities Pk,i for all classes Ck in the receptive field of a
neuron mi. The contour lines represent the class density distributions.

As we remember the criterium for the Bayes decision border with eq. (4), the values of the density
distributions for both classes have to become equal. According to our estimation scheme, the local
Bayes criterium for a neuron mi can be obtained from the table. If we indicate the two largest

data density distribution

Bayes decision border

�−∇p(x)

class 1 class 2

neuron

mi
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estimates Pmax1 and Pmax2, then the neuron has to find a position, where

and γ is a small positive constant.

That means, the neuron stops in feature space at a position, where the local estimates of the density
functions hold the Bayes criterium. This is also a locally optimal position of the neuron and any
learning process has to stop there.

4.4 An iterated gradient descent technique

From figure 8 we see that the neuron itself should move from its initial position towards the class
borders using the gradient of the density function ∇P(x). This induces the following gradient
descent updating scheme for learning the weights mi of any neuron.

According to the illustration of figure 9 we have to distinguish five cases for the updating of a
neuron position.The primary goal is just to ensure, that a neuron

moves as long as it is not beyond the Bayes border of its assigned class C(mi)
{

I. in the direction of the steepest descent of the density function of its own class,
−∇PC(mi)(x)

II. towards the cluster centroids of any other class
},

that it moves, if it is beyond the Bayes border of its class C(mi)
{

III. towards the cluster centroids of its class C(mi), according  ∇PC(mi)(x)
IV. in the direction of the steepest decent of the density function of any other class.

}

and that it stops, if
V. the local Bayes criterium of eq. (17) holds.

Pmax1 Pmax2− γ< (17)
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Figure 9: Updating the neuron position with gradient decent methods depending on the data
condition in its receptive field.

This can be formulated as follows:
Choose randomly a sample xl ∈ {X}T and calculate the neuron mc with the minimum euclidean
distance

Bayes decision border

case 1

case 4case 2

case 3

x

∇p(x)

x

-∇p(x)

x

-∇p(x)

x

∇p(x)
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and update the weight vector mc of the neuron according to

Case 1:
if C (xl) = C (mc)
and C (Pmax1) = C (mc)
and Pmax1 - Pmax2 > γ

Case 2:
if C (xl) = C (mc)
and C (Pmax1) ≠ C (mc)
and C (Pmax2) = C (mc)

Case 3:
if C (xl) ≠ C (mc)
and C (Pmax1) = C (mc)
and C (Pmax2) = C (xl)

Case 4:
if C (xl) ≠ C (mc)
and C (Pmax1) ≠ C (mc)
and C (Pmax2) = C (xl)

Case 5: all other cases

α (t) holds eq. (7) and rand is a random number in the range [-1.0..1.0].

dc min di l,( )
i

= (18)

mc t 1+( ) mc t( ) α t( ) x[ l t( ) mc t( )−− rand ]+= (19)

mc t 1+( ) mc t( ) α t( ) x[ l t( ) mc t( )− rand ]++= (20)

mc t 1+( ) mc t( ) α t( ) x[ l t( ) mc t( )− rand ]++= (21)

mc t 1+( ) mc t( ) α t( ) x[ l t( ) mc t( )−− rand ]+= (22)

mc t 1+( ) mc t( ) α t( ) rand+= (23)
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As this method uses a gradient descent technique, some of the neurons can get captured in local
minima. The octree initialization of the neurons, however, ensures that most of them will find the
local Bayesian border. For this reason, the additional noise term rand  in the equations (19) - (23)
can be used to allow some of them to escape from there.

In particular, the octree management of both data and neurons can help to learn more efficiently
following the scheme above.

4.5 Updating the receptive field of a neuron

The scheme introduced above assumes that the local values of the density function p(x) are high
enough to find reliable local estimations in the receptive field of the neuron. This has not always
to be the case, especially when dealing with sparse data sets or when using large numbers of
neurons and small values ofδmax for the octree.

To ensure reliable estimates, we have to update theεi of the receptive field after each learning step
of the neuronmi. This could be done by using several schemes. If we assume the average number
of data in {X}T,εi to be constant and equal toδmax and if we furthermore estimate the data to be
equally distributed around the centermi, then the total number of data in {X}T,εi is for a N-
dimensional problem proportional to the hypervolume covered byεi . This implies, thatεi (t+1)
can be estimated by

Pi represents the a-priori probability ofx in εi of neuronmi. This implies, that the local gradient
of ∇p(x) is constant, as often used in integration schemes.

4.6 Collision handling

Another problem that arises  with the schemes introduced above is the question of what to do if one
neuron collides with another neuron of the same class during the simulation. This collision
detection and avoidance is a very generic problem in any particle systems. Indeed we have to
compare the neuron position after updating with the positions of all other neurons of the same class.
If we detect a collision, we have to move the actual neuron away. But after this, a new collision
with another neuron might happen. We would have to check it again and move the neuron once
more and so forth. Depending on the updating scheme we could even get captured in endless loops.

For this reason, we cannot avoid a collision in general. But we can update the neuron’s position

εi t 1+( ) εi t( )
Pi t 1+( )

Pi t( )N= (24)
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taking into account the position of other neurons. This algorithm is shown in figure 11. Let xl be
the datum actually chosen for updating the next neighbored neuron mc, that holds this new position
and collides there with a neuron ma. If dc,a is the euclidean distance between the neurons, we
postulate, that a collision happens, when

that means, the centroid of the neuron with the larger receptive field lies in the ε-environment of
the neuron with the smaller one (see also figure 10).

Figure 10: Definition of the collision of neurons ma and mc.

Then we can set up the following updating rule according to figure 11.  Let β be the angle between
the vectors |xl - mc| and |ma - mc|. To ensure a motion towards the class C (mi), we calculate

dc a, min εc εa,( )≤ (25)

mc

ma
dc,a

εmc

εma

neuron 2

neuron 1

βcos
xl mc−( ) ma mc−( )
xl mc− ma mc−

= (26)
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and distinguish

Case 1:
if (β ∈ [0..π/2) or β ∈ (3π/2..2π])
and C (xl) = C (mc)

Case 2:
if (β ∈ [0..π/2) or β ∈ (3π/2..2π])
and C (xl) ≠ C (mc)

Case 3:
if β ∈ ]π/2..3π/2[
and C (xl) = C (mc)

Case 4:
if β ∈ ]π/2..3π/2[
and C (xl) ≠ C (mc)

α (t) holds eq. (7), rand is a random number in the range [-1.0..1.0] and lap is a small positive value
relative to da,c .  nx represents the normalized vector of x.

mcnew mcold lap xl mc−( )n
ma mc−( )n+( ) α t( )rand+ += (27)

mcnew mcold l− ap xl mc−( )n
ma mc−( )n+( ) α t( )rand+= (28)

mcnew mcold lap xl ma−( )n( ) α t( )rand+ += (29)

mcnew mcold lap xl ma−( )n( )− α t( )rand+= (30)
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Figure 11: Collision avoidance and updating the neuron

This prevents the neurons from moving towards the centroids of classes Ck ≠ C(mc) and avoids a
"spreading apart" of these neurons in case of a collision.

5. Growing and Optimization

5.1 General Remarks

During the learning phase of the network, the goal was to find some kind of equilibrium state,
where most of the neurons arrange close to the Bayesian decision boundary satisfying local
optimization criteria. When classifying any unknown data set {X} with this scheme in the sense of
next neighbor decision, the class boundaries thus obtained should be not far from the real Bayes

xl

mc

ma
ma - mc

xt - mc

β

neuron 2

neuron 1
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border. This is illustrated in figure 12. Depending on the underlying density distribution, some of
the neurons could stay in local minima.

Also depending on the local positions of neurons of different class assignments, the actual
classification boundary could deviate locally from the optimal border and could be deformed. This
effect can decrease the classification accuracy by false class assignment (see also figure 12).

Figure 12: Real and optimal classification boundary after learning the network. Neurons that have
no counterpart of the other class can lead to a strong deformation of the real class
boundary.

real classification
boundary (sketched)

minimum err or
(Bayes) boundary

neurons of class 1

neurons of class 2

local
deformations
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To avoid this effect, we added a growing phase to the network, where additional neurons are
generated and positioned close to the already existing ones, that have the largest fractional
classification error. These neurons help to define the class border more accurately.

5.2 "Bearing" child neurons

The basic idea of the following growing concept is based on generating a child neuron from the J
neurons with the largest fractional errors. For this purpose, we have first to set up a confusion
matrix according to table 2 that describes the percentage of the false classified data of {X}T  for
each neuron mi. This can be done by reclassification of the whole data set {X}T.

ei,k describes the number of  false classified data of class k by the neuron mi relative to the total
number of data classified by mi.

If we pick now  the neuron me with the largest fractional error ee,f  in the class f,  then we create a
child neuron mch with the position

and the class assignment

Table 2: Confusion matrix  E  of the network

e11 e12 e13 .. e1L

e21 e22 eef .. e2L

e31 e32 e33 .. e3L

: : : .: :
eM1 eM2 eM3 .. eML

Neurons

m1 m2 m3   .. mL

C
la

ss
es

C
M

  .
 . 

 C
3 

  C
2 

  C
1

mch me rand+= (31)

mch Cf→ (32)



ZGDV-Report 60/92 The "Melting Octree" network ICSI TR-92-047

Page - 29

That means, the newly generated neuron belongs to the class where we had the largest fractional
error and can be interpreted as a counterpart of the neuron me. This is illustrated in figure 13.

Figure 13: The neuron with the largest fractional error is also the neuron that causes a strong local
deformation in the decision boundary. This neuron creates a child of the counterclass
as a counterpart to itself. In this way the error decreases and the curve becomes
smoother.

5.3 Training of the child neurons

In order to ensure an optimal positioning of this neuron, we train it with data from {X}Tf ,
exclusively belonging to the class Cf.  This training is done according to the algorithm described
in chapter 4.4, but only for a low number of cycles to avoid the neuron moving too much in
direction of the data centroids.

A more self-stabilizing method could calculate the coordinates of mch directly by taking the mean
of the data of class Cf falsely classified by neuron me. Let {X}Tf (me) be these data, we just
calculate

This position can be interpreted as being somewhere in the center of the deformation of the

me
mch

mother neuron

child neuron

local
deformation

real decision boundary
(without child)

real decision boundary
(with child)

Bayes border

mch
1

Lf me,
xl x X }{ Tf me( )∈,

l 1=

Lf me,

∑= (33)
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classification border caused by the false classified data of neuron me.

The process described above is done for the J neurons with the largest errors in the confusion
matrix. It can be repeated for any number of growing cycles or until a certain error rate has been
reached during reclassification. For reasons of performance, we always update the information
about the 2 classes, that have the highest amount of data in the ε-environment of each neuron. One
of these classes has to be the one that causes the largest error regarding the neuron and is therefore
mainly responsible for the neurons reclassification error. Thus, this class becomes the class of the
newly created child neuron mch.
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6. Results

6.1 General remarks

The following chapter describes simulation results obtained when applying the network described
above on 2- and 3-dimensional examples. The problem to be solved by the network was a learning
and classification of data samples generated by superposition of gaussian distributed data clusters.
In order to faciliate a comparison of the tests, they were all proceeded until the absolute number of
neurons reached the value 2000. An illustration of the development of the classification error for
each test is given in figure 22. The %-values that are shown below pictures always document the
remaining classification error after the phase of the algorithm decribed by the picture.

Figure 14 shows the initial data sets to be trained by the network for the 2-D case. The left picture
contains a 3 class problem, the right one a four class problem.

Figure 14: Data sets used to train the network (left: 3 classes, right: 4 classes)

We figured out a parameter study as well as a comparison of the network with standard LVQ and
backpropagation learning.

6.2 Parameter studies

Figure 15 shows initial neuron positions (a) and the initial class assignment (b) for the 3 class
problem of figure 14 (a). Furthermore the class assignment of the entire feature space is shown after
initialization (c), after learning (d) and after growing. The development of the classification errors

(a) (b)
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is always illustrated in  the charts of figure 22. In the following case, the average data density was
set to δmax = 30 and 112 initial neurons had been created. A detailed parameter specification is
listed in appendix B. Figures 16-17 show the same arrangement with a modified choice of δmax.

Figure 15: Neuron positions and class assignment of the entire feature space after  several phases
of the process (δmax = 30).

(b) 5.533333 % 24.800003 % 2.333333 %(c) (d)

(a)
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Figure 16: Neuron positions and class assignment of the entire feature space after several phases
of the process (δmax = 5).

3.533333 % 4.933331 % 0.466667 %
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Figure 17: Neuron positions and class assignment of the entire feature space after several phases
of the process (δmax = 10).

4.466666 % 5.399998 % 0.933333 %
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Figure 18  illustrates the process of learning and growing for δmax = 20. We recognize that the
initial quadtree arrangement of the neurons is melting away in a certain way and that the neurons
are arranging close to the class boundaries. During the growing phase, the differences of the neuron
positions become smaller and smaller and the increasing number cannot be deviated anymore from
the chart with its limited resolution.

Figure 18: Neuron positioning during several phases of the algorithm. The quadtree is "melting"
away with increasing number of learning cycles.

After Initialization

Learning 500 cycles Learning 1000 cycles Learning 5000 cycles

50 child neurons 200 child neurons 1000 child neurons

Learning 10000 cycles

2000 child neurons

Growing:
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Figure 19 shows initial neuron positions (a) and the initial class assignment (b) for the 4 class
problem of figure 14 (b). Furthermore the class assignment of the entire feature space is shown
after initialization (c), after learning (d) and after growing. Again, development of the classification
errors  is  illustrated in charts of figure 22. In the following case, the average data density was set
to δmax = 30  and 193 initial neurons had been created. A detailed parameter specification is listed
in the appendix B. Figures 20-21 show the same arrangement with a modified choice of δmax.

Figure 19: Neuron positions and class assignment of the entire feature space after several phases
of the process (δmax = 30).

(b) 8.439996 % 25.520000 % 7.119995 %(c) (d)

(a)
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Figure 20: Neuron positions and class assignment of the entire feature space after the several
phases of the process (δmax = 5).

6.039996 % 7.679995 % 5.399996 %
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Figure 21: Neuron positions and class assignment of the entire feature space after the several
phases of the process (δmax = 10).

7.199998 % 11.719999 % 4.639999 %
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Figure 22: Development of the classification errors in all "Melting Octree" tests.
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6.3 Comparison with Backpropagation and LVQ

The following table shows the reclassification results obtained by out method and compares them

with those of 2 backpropagation networks and 2 Kohonen-maps. In both cases, the "Melting

Octree" algorithm provides better results even though we used more neurons with the Kohonen-

Map II (2500). Another remarkable result is, that while the backpropagation networks and

Kohonen-Maps already convergate, the results of the "Melting Octree" in some cases can still be

ameliorated by "bearing" more child neurons. Figure 22 shows that in some of the tests the

reclassification errors don’t  yet convergate at all.

 (Learning cycles: 100000 for Backpropagation,
250000 for Kohonen-Map I,    900 neurons

1000000 for Kohonen-Map II, 2500 neurons)

Figures 23 and 24 show again the reclassification of the entire feature space for the 3-class and 4-
class problem.

Table 3: Reclassification errors in % for 2-D tests

δmax / type of net 3-class test 4-class test

5 0.466667 5.399996

10 0.933333 4.639999

30 2.333333 7.639999

Kohonen-Map I 3.202135 6.482593

Kohonen-Map II 4.336224 7.322929

Backpropagation I 5.403603 9.003601

Backpropagation II 5.003335 9.083633
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Figure 23: Comparison of final reclassification results for the 3-class tests.

δmax = 5

Backpropagation I

Backpropagation II

Kohonen-Map I

Kohonen-Map II
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Figure 24: Final reclassification results for the 4-class tests.

δmax = 10

Backpropagation I

Backpropagation II

Kohonen-Map I

Kohonen-Map II
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7. Application on medical image data sets

Figure 25: Future applications on medical data images.

Before modification After modification

Before contrast aid

After contrast aid

Profile
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Figure 25 shows pictures of very interesting and challenging classification problems: the tissue
extraction from MRT data sets in medical imaging. The upper pictures show 2-D slices taken from
a brain tumor patient (meningiom) by spin-echo technique before adding a contrast aid. The middle
pictures show the same slice after contrasting the tissue. The tumor in the middle of the brain can
now be recognized more easily. The right pictures always correspond to the pictures on the left
sides. They were produced by applying several image processing techniques to the original pictures
in order to try to ameliorate the image quality of the originals (left sides). These results  show that
even after the image processing it is very hard to locate the tumor so that more sophisticated
methods are requested.

In order to develop a method being able to extract these damaged areas automatically, we have to
introduce intensive preprocessing to find appropriate texture descriptors to be classified later on.
This is very interesting in regard to the support of physician’s and surgeon’s work and in order to
avoid unnecessary surgeries for diagnosis purposes.
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Appendix A: Notations

x = (x1, ... , xN) data vector
N; dimension
j = 1...N: index for the dimension
{X} T = {{X} T1, ..., {X} TM}: training data set
M:  number of classes
k = 1...M: index for the classes
{X} Tk: training data set of elements of class k
Ck: class assignment, symbol for a class
m = (m1,..., mN): weight vector of a neuron, also cluster centroid in feature space
{ m}: set of neurons
i = 1...C: index for the neurons
C: number of neurons/cluster centroids
ε: width of the receptive field
εi: width of the receptive field of neuron i
P(x): probability ofx
Pe(x): error probability ofx
b: decision boundary for a one-dimensional example
d: euclidian distance
dil : distance between neuron i and datumxl
l = 1...L: index for the training data
L: number of elements in {X}T
t = 1...T: simulation time
T: maximum number of training cycles
{X} Tεi : Training data in the receptive field of neuron i
a, c, e, f: inizes, that specify a selected element of a set {}
J: number of neurons with the largest classification errors
|| E ||: confusion matrix of order O(MxC)
mm: mother neuron
mch: child neuron
rand: uniform distributed random value {0...1}
{X}: set of data vectorsx
σ: small positive constant for the LVQ
xcelli: center coordinate for the octree cell i
δmax: maximum data density of one octree cell
γ: instance of a neuron from the Bayes border
β: angle for the collision handling
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Appendix B: Parameter tables of documented tests

Table 4: Parameter for the 2-D tests on 3 classes

δmax = 5 δmax = 10 δmax = 30

ALPHA0 = 1.000000 ALPHA0 = 1.000000 ALPHA0 = 1.000000

T0 = 7500 T0 = 5000 T0 = 2500

T1 = 10 T1 = 10 T1 = 10

NOISE = 0.010000 NOISE = 0.010000 NOISE = 0.010000

EPSILON_MAX = 5 EPSILON_MAX = 10 EPSILON_MAX = 30

J_VALUE = 10 J_VALUE = 10 J_VALUE = 10

ERROR_MAX = 0.000000 ERROR_MAX = 0.000000 ERROR_MAX = 0.000000

T2 = 10 T2 = 10 T2 = 30

T3 = 135 T3 = 167 T3 = 190

ADJUST_EPSILON = 1 ADJUST_EPSILON = 1 ADJUST_EPSILON = 1

AVOID_COLLISION = 1 AVOID_COLLISION = 1 AVOID_COLLISION = 1

Table 5: Parameter for the 2-D tests on 4 classes

δmax = 5 δmax = 10 δmax = 30

ALPHA0 = 1.000000 ALPHA0 = 1.000000 ALPHA0 = 1.000000

T0 = 30000 T0 = 30000 T0 = 30000

T1 = 10 T1 = 10 T1 = 10

NOISE = 0.010000 NOISE = 0.010000 NOISE = 0.010000

EPSILON_MAX = 5 EPSILON_MAX = 10 EPSILON_MAX = 30

J_VALUE = 10 J_VALUE = 10 J_VALUE = 10

ERROR_MAX = 0.000000 ERROR_MAX = 0.000000 ERROR_MAX = 0.000000

T2 = 15 T2 = 15 T2 = 15

T3 = 95 T3 = 142 T3 = 181

ADJUST_EPSILON = 1 ADJUST_EPSILON = 1 ADJUST_EPSILON = 1

AVOID_COLLISION = 1 AVOID_COLLISION = 1 AVOID_COLLISION = 1
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Table 6: Parameter for the 3-D tests on 2 classes

δmax = 10 δmax = 20

ALPHA0 = 1.000000 ALPHA0 = 1.000000

T0 = 5500 T0 = 5500

T1 = 10 T1 = 10

NOISE = 0.010000 NOISE = 0.010000

EPSILON_MAX = 10 EPSILON_MAX = 20

J_VALUE = 10 J_VALUE = 10

ERROR_MAX = 0.000000 ERROR_MAX = 0.000000

T2 = 10 T2 = 10

T3 = 150 T3 = 200

ADJUST_EPSILON = 1 ADJUST_EPSILON = 1

AVOID_COLLISION = 1 AVOID_COLLISION = 1



ZGDV-Report 60/92 The "Melting Octree" network ICSI TR-92-047

Page - 50

Table 7: Net configurations for the 2-D tests on 4 classes

Backpropagation net I Backpropagation net II

TYPE = BACKPROPAGATION TYPE = BACKPROPAGATION

INPUT = 0 INPUT = 0

TARGET = 1_OF_N TARGET = 1_OF_N

ACTIVATION = SYMMETRIC ACTIVATION = SYMMETRIC

LEARNING = NORMAL LEARNING = NORMAL

LAYERS = 3 LAYERS = 4

LAYER#1 = 2 * 1 * 1, 0 , 0 , 0 LAYER#1 = 2 * 1 * 1, 0 , 0 , 0

LAYER#2 = 50 * 1 * 1, 0 , 0 , 0 LAYER#2 = 50 * 1 * 1, 0 , 0 , 0

LAYER#3 = 4 * 1 * 1, 0 , 0 , 0 LAYER#3 = 40 * 1 * 1, 0 , 0 , 0

LAYER#4 = 4 * 1 * 1, 0 , 0 , 0

Table 8: Net configurations of the Kohonen-Maps for all 2-D tests

Kohonen-map net I Kohonen-map net II

TYPE = KOHONEN_MAP TYPE = KOHONEN_MAP

LAYERS = 2 LAYERS = 2

LAYER#1 = 2 * 1 * 1 LAYER#1 = 2 * 1 * 1

LAYER#2 = 30 * 30 * 1 LAYER#2 = 50 *50 * 1
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