
Interaction". Proceedings Eurographics ’90. Montreaux. pp.481-494.
[FLM91] J.A.Feldman, C.C.Lim, F.Mazzanti. "pSather Monitors: Design, Tutorial, Rationale and
Implementation". ICSI Technical Report 91 - 031. 1991.
[FWC84] J.Foley, V.Wallace, P.Chan. "The Human Factors of Computer Graphics Interaction
Techniques". IEEE Computer Graphics & Application, pp.13-48, November 1984.
[GR83] M.Goldberg, D.Robson. "Smalltalk-80: the Language and its Implementation". Addison
Wesley Publishing Company, Reading Ma, 1983.
[H90] R.Hill. "A 2-D Graphics System for Multi-User Interactive Graphics Based on Objects and
Constraints". pp.67-91, in Advances in Object Oriented Graphics I. Springer Verlag.
[ISO91] ISO/IEC DIS 11 072. Information Processing Systems. Computer Graphics. Computer
Graphics Reference Model. ISO centrals Secretariat, Geneva, 1991.
[J92] J.Johnson. "Selectors: Going Beyond User-Interfaces Widgets". Proceedings of CHI’92
Conference, pp.273-279.
[LVC89] M.A.Linton, J.Vlissides, P.Calder. "Composing User Interfaces with InterViews". IEEE
Computer, February 1989, pp.8-22.
[LB90] C.Laffra, J.van den Bos. "A Layered Object-Oriented Model for Interaction", pp.47-61, in
Advances in Object Oriented Graphics I. Springer Verlag.
[NC92] V.Normand, J.Coutaz. "Unifying the Design and Implementation of User Interfaces
through the Object Paradigm". Proceedings of ECOOP ’92. July 1992.
[O91] S. Omohundro. "The Sather Language", ICSI Internal Report, June 1991.
[PF92a] F.Paterno’, G.Faconti. "A Visual Environment to Define Composition of Interacting
Graphical Objects", to be published on the Visual Computer, Springer Verlag. 1992.
[PF92b] F.Paterno', G.Faconti. "On the LOTOS Use to Describe Graphical Interaction".
Proceedings HCI Conference 1992. York. Cambridge University Press. In press.
[SO91] H.Schmidt, S.Omohundro. "CLOS, Eiffel and Sather: A Comparison", ICSI Internal
Report 91-047, September 1991.
[S90] Y.Shan. "An Object-Oriented Framework for Direct-Manipulation User Interfaces. pp.3-19,
in Advances in Object Oriented Graphics I. Springer Verlag.
[SW88] R.Swick, T.Weissman. "X Toolkit Widgets - C Lamguage X Interface". X Version 11,
Release 2, MIT Project Athena 1988.
[VL9O] J.Vlissides, M.Linton. "Unidraw: A framework for Building Domain-Specific Graphical
Editors", pp.237-268, ACM Transactions on Information Systems, Vol.8 N.3, July 1990.
[WK90] P.Wisskirchen, K.Kansy. "The New Graphics Standard - Object Oriented", pp.199-215, in
Advances in Object Oriented Graphics I. Springer Verlag.

Conclusions
We shown how the hierarchies of classes related to interaction objects should be primarily mod-
elled depending on their semantics in order to make the task-to-function translation easier. This
contrasts with the current toolkit approach where they are modelled depending on their appearance.

This classes should be obtained by multiple inheritance of objects performing abstract description
of the object, its appearance and its input functionality. This allows easy reconfigurability of inter-
actors. For example the same semantics can be easily associated with different appearance just
changing the collection and the feedback part that are inherited.

The system that is being developed is highly portable because has been built for using the standard
de facto X Window System as underlying window system.

Sather is currently being extended to pSather, an experimental parallel version of the language that
adds threads, synchronization, protection and exception handling [FLM91]. Future work will be
dedicated to pass the current prototypal implementation in the parallel Sather in order to exploit
all the possibilities of the model for UIS that is intrinsically parallel and to apply the system for
interacting with a neural networks simulator.

Acknowledgments
This work was carried out whilst Fabio Paterno’ was Visiting Scientist at the International Com-
puter Science Institute. Support from Consiglio Nazionale delle Ricerche and International Com
puter Science Institute is gratefully acknowledged. We would also like to thank David Bowley for
useful discussions on the implementation.

References
[B92] A.Baker. "Designing Reusable Widget Classes with C++ and OSF/MOTIF". The X
Resource 2, Spring 1992. pp.106-130.
[B86] P.Barth. "An Object Oriented Approach to Graphical Interfaces". ACM Transaction on
Graphics, Vol.5, N.2, April 1986, pp.142-172.
[BB87] T.Bolognesi, H. Brinskma. "Introduction to the ISO Specification Language LOTOS".
Computer Networks and ISDN Systems, vol.14, pp.25-59, 1987.
[B91] L.Bass et al. "A Metamodel for the Runtime Architecture of an Interactive System". SIGCHI
bulletin, January 1992, pp.32-37.
[C87] J.Coutaz. "PAC, an Object Oriented Model for Dialog Design". Proceedings Interact’87,
pp.431-436.
[DH91] D.Duce, F.Hopgood, R.Gomez, J.Lee (Eds.). "Report of the Concepts, Methods,
Methodologies Working Group" in "User Interface Management and Design". pp.35-45. Springer
Verlag 1991.
[FP90] G.Faconti, F.Paterno’. "An Approach to the Formal Specification of the Components of an

by the point indicated by the cursor when the button of the mouse was pressed. One Controller can
implement different policies to perform graphical interactions depending on when it generates the
trigger events: in our example it can impose to have an object-oriented specification of the trans-
formation (the user has to select the object and then the transformation) or a command-oriented
specification (before selecting the transformation and then the object to modify).

The Pick object works out the current selected object and sends it to the Transformation Interactor.
This is an only input object that means that it has not a collection and the feedback performs only
echoing of the measure. In this case returns the transformed graphical object to the Pick Interactor
that will visualize it in the new state.

The Transformation object to perform its functionality has to receive data of different types in the
input function: graphical primitives from the Pick object, transformation indication from the But-
ton objects. This was made possible exploiting the dispatched objects provided by Sather: the input
data type was defined as $entity that means it can be any subclass of entity (that is the root class of
all graphical objects) and then when a data is received a test on its type is performed before decid-
ing which type of processing to perform. Figure 5 shows how these objects are related.

The communication between the application and the UIS is performed in the following way: when
the application wants to pass data to an interaction objects it has before to provide them by the out-
put function of the object and then, when it wants that the processing of the interaction object is
applied, it has to call the output_trigger function.

In the implementation some problems were raised by the controvariant rule that Sather applies. It
requires that the arguments of routines in descendents be supertypes of the corresponding argu-
ments in ancestors in the case of arguments of dispatched types. It is imposed to guarantee that the
descendent can handle any call made on the parent. This was slightly rigid because sometimes in
defining a hierarchy of interaction techniques where we want that subtypes can receive or produce
graphics entities that are subclasses of those manipulated by superclass interactors.

..............

Fig.5 The composition of interacting objects performing the example

Pick
Set of Button

Transformation
Interactor

Interactor Interactors

Controller

it in logical coordinates and passes the result to another object that selects one graphical element
depending on the position received). At the end we obtain a multi-layered system where the
elements of all the layers are defined in an uniform way.

Within this approach it is possible to create systems more powerful with respect existing graphics
systems because it is possible to perform a wider set of manipulations of graphical items. This
means that in this type of approach the role of the application is more limited. The resulting
architecture of a UIS within this approach is a graph with the lower level elements interacting with
the user and the higher level elements interacting with the application.

Fig.4 An example of performed graphical user interface

Now we consider a simple example in order to show how it is possible to perform an interaction
with a graphics scene within this approach. We have a graphical editor such as that represented in
figure 4 where the application visualizes a graphical scene and the user can select one graphical
element in the set of defined graphical objects that may compose also a complex scene, and then
he can indicate one transformation (there is one button for each possible transformation such as
shifting right, left, down, up or rotating clockwise, counterclockwise or scaling bigger, smaller)
that is automatically applied with a constant coefficient on the selected graphical object.

To perform this interaction we have: one object of pick class whose output part performs visual-
ization of graphical entities (when the collection sends them to the picture it applies a transforma-
tion from user coordinates to window coordinates) while the input part allows the user to select
one of them; a set of objects of button class associated with each possible basic transformation that
in this case return a string indicating the type of the related transformation; one object of transfor-
mation class performing the selected transformation.

There is also a Controller objects that deliver the input trigger events for all the interactors. It com-
municates with the window system: when the button of the mouse is pressed the window system
inform it about which is the interactor whose output area is containing the cursor and it calls the
related input trigger function. In the case of the Pick object the controller sends to it before the
position of the cursor and then the input trigger signal so it can detect which is the selected element

identify an object out of a set by providing a point. We have to make a first distinction among single
Choice and a Multiple Choice class that allows to select more objects from the available set. This
means that the first refinement is performed on the semantics of the interaction. In the interactor
hierarchy under both of them there is the same subtree of interaction objects, the only difference is
the number of returned elements. Then we can refine the subclasses introducing appearance
aspects. If the selectable elements are all of the same type we have a Menu subclass otherwise we
have a Pick subclass. A Transformation interaction object returns the selected element after having
applied a transformation on it. The Menu can be further refined by only appearance-dependent
aspects indicating the type of the menu elements (rectangles, ovals, pixmap and so on). Another
refinement can be obtained by the type of echo: inverting foreground and background colors; by
adding a symbol such as a cross on the selected element; by providing a 3D echo and so on.

If we want to define a Choice object from the root interactor superclass we have to refine a measure
object in order to allow it to have a state composed of a point received from the lower level, a set
of area associated with menu elements and a measure function that by comparing the point received
with the set of area can detect the performed choice. This means that the Choice class differs with
respect to the Interactor class only for inheriting a measure_ch object instead of its ancestor,
measure. The only difference in this two classes is that the measure function of the measure_ch
class allows to select one graphics entity of entity_ch class or of its subclasses depending on the
received point.

An Example of User Interface obtained by the presented approach
The architecture of a UIS can be obtained by composing graphical interaction objects in two
possible ways: the picture of an interactor is delivered to the collection of another one (for example
the first interactor performs some modelling transformation and the second works out a projection
of the received 3D scene); the measure of an interactor passes its data as result to the measure of
another one (for example one interaction object receives a point in device coordinates, transforms

CHOICE

MENU PICK

RECTANGLES OVALS PIXMAPS

REVERSECO CROSSECO 3DECO

INTERACTOR

MULTIPLE CHOICE

Fig.3 A Task-Oriented Hierarchy of Interactors

......

POSITION
QUANTIFIER

TEXT

TRANSFORMATION

ment, a string that appears inside the rectangular, an identifier that is defined by the position in the
array and the background color and the foreground color (for drawing the rectangle and the string).
When the output trigger is verified the collection is interpreted. In this case it means to send to the
feedback the same information and to the measure the list of rectangles, strings and the associated
identifiers.

The feedback draws to the outside the last picture that received from the collection. When receives
a value from the measure it performs echoing for example by inverting foreground and background
color of the indicated element.

The measure receives as input a point. It finds out which rectangle the point is internal to by using
the information received from the collection and then it transmits the related identifier to the feed-
back for echoing. If the input trigger is verified the string of the current selected element is deliv-
ered to the outside.

The Design of the Refinement of a Hierarchy of Interactors
The traditional approach to object-oriented user interfaces is to associate the graphical objects
visible from the user with an underlying object representation. Here we aim to a task-object
association. This means that we want to make it possible to design user interface systems by
creating instances of objects that are characterized more by their semantics than their appearance.
In order to stress the semantic aspects in the design of the hierarchy of the available interaction
objects, its first levels depend on their semantics, then we distinguish subclasses by the received
input data and finally by the type of output visualization applied. An example of a typical user
task that can have different appearance is a choice that can be performed by a wide set of
interaction techniques such as a set of button-radio or a menu or a cycle button or a type-in-field.
We think that this approach allows for a more immediate development of user interfaces.
Refinement of appearance can be left as a secondary aspect. This is performed by exploiting
multiple inheritance that allows us to associate different presentations with the same semantics in
the definition of interactor objects.

We identify four basic task:
Choice, the selection of an element from a set of visualized objects;
Position, the selection of a specific point in the space defined by the graphic application, we can
distinguish subclasses depending on if the point is 2D or 3D and for the echo type;
Quantifier, the definition by a graphic interaction of a specific input value of a particular
application domain, its subclasses allow to distinguish among input of a constant value (such as a
button), input of a value chosen among a set of available ones, input of a value chosen among an
interval of values (such as a scrollbar);
Text, the input of user defined text. Providing text to the application is classified a text task just
only if it is passed by an input device such as a keyboard. If the input text is obtained by selecting
some text already visualized this is considered a subclass of choice interaction.

Now we want to show more in detail an example of this methodology for designing a hierarchy
of interaction techniques. We can define a Choice class as an interaction allowing the user to

interactors descendents can define different behaviours with respect to the general one and can
compose by multiple inheritance instances of the descendents of its components objects. The
variables preceded by the dollar sign can held objects of a descendent of the class which follows
the dollar sign in the specification. They are used when it is not possible to know previously the
data type that will be used.

When theinput trigger is verified the measure function is called with the indication of the
interactor that will receive its result. This is useful because in this way it is possible to describe UIS
whose topology can always dynamically changed. When an input data is received in theinput
function, this is passed to the measure to compute the information necessary for the echo that is
delivered to the feedback that will perform the related highlighting. When theoutput trigger is
verified then if it is the first time that it occurs the interactor is initialized, that means the related
window is created and mapped by the underlying window system, otherwise the current collection
is traversed and the related data are transmitted to the feedback and the measure. If output data
are received by theoutput function they are added to the current collection.

class INTERACTOR is
 -- A General Description of a Graphical Interaction

col: COLLECTION;
feed: FEEDBACK;
mea: MEASURE;
init: BOOL:=false;

create(cl: $COLLECTION; fd: $FEEDBACK; ms: $MEASURE) : SELF_TYPE is
res:=new;
res.col:=cl;
res.feed:=fd;
res.mea:=ms;
end; -- create

inputrigger (bl: BOOL; tin: $INTERACTOR) is
if bl then mea.measure(tin); end;
end; -- inputrigger

input(pin: $ENTITY) is
feed.highlight(mea.eco(pin));
end; -- input

outputrigger (bl: BOOL) is
if not(init) then init:=true; end;
if bl then mea.update(col.trav_meas); feed.output(col.trav_feed); end;
end; -- outputrigger

output (op: ARRAY{$ENTITY}) is
col.interpret(op);
end; -- output
end; -- class INTERACTOR

Now we want to show how a simple common graphical interaction such as a menu can be
described within this approach. In the menu collection we can find an array with an element for
each item of the menu and all the elements have to belong to the same class. In the case of the
rectangle menu each element is associated with a rectangle that defines the area related to the ele-

for the corresponding Sather function;
- when a LOTOS process calls itself recursively with a modified status this is reflected in the Sather
implementation by an assignment to the internal data of the corresponding class.
Future work will be dedicated to check the validity of the results obtained by making automatic
this translation.

If we compare LOTOS, that is a formal specification language, and Sather, that is a programming
language, we can notice how Sather provides the possibility of compact and structured code
especially with respect to ACT ONE, the notation for specification of algebraic data types included
in LOTOS.

An object of class interactor has in its definition three objects belonging to different classes
(collection class, picture class, measure class) and four functions, one for each possibility to
receive and processing information from the outside. These functions allow to perform the
associated interaction depending on the data received from the outside. For each of the component
object a class hierarchy is defined: the collection for manipulation of output structured graphics
data and its visualization; the picture carries out a lower graphics output and performs feedback of
the current element selected by input; the measure performs input processing.

 Class Protocol

INTERACTOR create, input, output, inputrigger, outputrigger
COLLECTION create, interpret, trav_meas, trav_feed
FEEDBACK create, output, highlight
MEASURE create, update, measure, echo

Table 1

The collection has a state composed of a set of graphical entities. Its functions allows it to receive
new entities (interpret); to traverse them and send the result to the feedback (trav_feed); to traverse
them and send the result to the measure (trav_meas).
The feedback has a state composed of a set of graphical entities (at a lower level with respect to the
collection), and a function to update its state depending on the data received from the collection
and to transmit the results to the underlying layers (output) and another to provide echoing of the
new data received from the measure (highlight).
Finally, the measure has a state composed of the last input data processed and a set of graphical
entities received from the collection that are necessary to compute its function. Here the functions
are: to update the measure when receiving new items from the collection (update); the measure
function to apply its processing on the last received element when the input trigger is verified, and
the echo function that is computed when new input data are received and it returns the current
selected element to the feedback object for performing echoing to the user.

Now we consider the specification of the root of the interactors hierarchy. It is obtained by
multiple inheritance of the root of measure, collection and feedback hierarchies. An interactor
object has associated five functions: create, input trigger, input, output trigger, output. Then the

There are six kinds of variables in Sather: the shared, constant, and object attributes of classes, and
the arguments, local variables, and return values of routines. The four kinds of type specification
are: non-parameterized, whose features are completely specified by the class specification;
parameterized, where the name of the class is followed by the specification of the type of the
parameter; type parameter, where the type of the parameter is specified by a type variable, when a
parameterized class is used, the type variable is instantiated and the compiler generates appropriate
calls; dispatched, where the type will be dynamically dispatched and it can be a subclass of the
given class, there is a runtime mechanism that chooses the routine to be called depending on the
runtime type of an object.
Two kinds of type specification can be considered mechanisms for old code to call new code:
parameterized classes allow the compiler to optimize such calls; object-oriented dispatch is a run-
time mechanisms which gives more flexibility at the expense of some efficiency.
The second one is performed because Sather’s typing rules are based on late checking in order to
ease rapid prototyping and provide maximal freedom in reusing existing definitions despite the
strong-typing approach. This means that inherited definitions need only be type-correct in the
descendent context and client calls to actualized parametric classes need only be type-correct in the
actualized version of that class. Parameterized classes can be used to model open modules some of
whose operations are only defined in combinations with other classes in the different descendents.

The problems that the choice of using Sather as implementation language opens are: how is
possible to map the previously defined abstract design of user interfaces into the Sather Language;
is Sather suitable to support user interfaces development or there are features of objected oriented
languages that would be useful but are not present in Sather?

A Sather Interactor
In order to support reusability by exploiting inheritance we define two types of class hierarchies:
one for interactive objects, one for graphical entities. The most immediate approach to map an
interactor into an object oriented language is to try to encapsulate the general behaviour of an
interactor object in the definition of a class. This is the superclass for all interactors. Then we have
a class hierarchy for each of its main components (collection, picture, measure). By multiple
inheritance an interactor has the features of one instance of each of these objects. A subclass of an
interactor can modify these components.

In the refinement from LOTOS specification into Sather implementation we followed the
following rules:
- an interactor that in LOTOS is obtained by a parallel composition of processes in Sather is
performed by an object class that is obtained by multiple inheritance of the objects associated with
the component processes of the LOTOS parallel composition;
- a LOTOS process is associated with a Sather class;
- the parameters of the processes are associated with the internal data of the classes;
- the behaviour of a process usually is a choice among different behaviours: we associate each
possible behaviour choice with a class function;
- for each possible behaviour in the process definition the input commands indicate the parameters

Another goal of our approach is to have a full symmetry among input and output data types. So,
for example, it is possible to have as input a typical output primitive such as a polyline. Generally
the graphics entities are defined by a code, a geometry and a set of attributes. The type of attributes
and geometry depends on the considered abstraction level.

Sather
To perform a prototypal implementation of interaction objects following the previously described
design the programming language Sather (it is public available at icsi-ftp.berkeley.edu) was used.
In this section we remember the main basic concepts of Sather. Its primary goals are efficiency and
reusability. The Sather compiler generates efficient C code that in this way can be considered as a
portable assembly language. This language takes some concepts from Eiffel but stresses
implementation inheritance, simplicity, and efficiency and its semantics differs from Eiffel in a
number of respects (for example the Sather type system allows the programmer to explicitly
distinguish between declarations that cause dispatch and declarations that are resolved by the
compiler). It is more structured and with more features with respect to C++. In [SO91] there is a
comparison among CLOS, Eiffel and Sather.
Sather features are: clean and simple syntax, parameterized classes, object-oriented dispatch,
multiple inheritance, strong typing and garbage collection. All code is partitioned into units called
classes. The entities defined in a class are called its features. There are four kinds of features:
routines, object attributes, shared attributes and constant attributes.
A class A inherits the features of another class B means that the features of B are textually copied
into A at the point the name appears. Later features in a class with the same name as earlier ones
override the earlier definitions. This means that the order in which classes are inherited can have
an effect on the meaning. A class may inherit from many other classes (multiple inheritance). The
inheritance relations define an acyclic directed graph. Classes serve both the functions of declaring
the structure of objects and encapsulating code into well-defined modules.

Appearance

Input

Semantics

Fig.2 A 3D Space for Interaction Objects Classification

Point

Text

String

Menu

dynamic behaviour defined by enabling/disabling the possibility to receive data from the outside
and by the interaction among the input and the output part.

The layout management among interactors appearance is performed by the low level interactors.
There exists one for each frame. The frame is an output area which different interactors refers to.
Inside the collection of this low level interactors it is possible to define constraints operators
among the output area associated with different interactors.

There are two ways to manage the control of interactors:
- when they are active there is an input trigger associated with the measure to indicate when its
function has to be applied and an output trigger indicating when the collection has to be updated
in order to send new graphical information to the picture and the measure. For example in a pop up
menu we can consider the button press (that implies the menu appears) as an output trigger, and
the button release (that implies that the current selected element is sent to the application) as an
input trigger. Triggers can be considered as boolean functions that when are verified generate the
control signal.
- there are control objects, controllors, whose main aim is to indicate when graphical objects are
active that means when they are enabled to receive data; this decision is performed depending on
the events that controllors can receive.

Starting from the design of an interactor we can define a design space for graphical interaction
objects (Fig.2): one axis for appearance, the graphical representation produced by the output part;
one for semantics, the information transmitted toward the application; and one for input, what is
received from the user to perform the interaction. The control is external to this design because
from this point of view is not important if the trigger event is performed by pressing a mouse button
or by speaking in a voice device. The design space for interactors is different from the proposal
contained in [S90] because here the semantics is defined in a more precise way as the data type
delivered by the measure to the application or to higher level interactors. If we consider the
example of two buttons where one returns the "yes" string and the other returns "no" within this
approach they are considered with the same semantics (a string) while in [S90] are different.

By this classification we can compare interactors. We have interaction objects that have the same
appearance and semantics such as a menu (where the appearance is a list of similar elements and
the semantics is the string associated with the selected element) but are differing for the input (we
can have menu where the element of interest is selected by a pointing device but in other cases
this can be performed in different ways, for example by typing the word associated with it)
otherwise we can have interactors with the same input but different semantics, for example a pick
interactor and a locator interactor, both receive a point as input but the former returns a graphical
object while the latter returns a point in higher level coordinates, and they also provide different
appearances (in the pick case a set of selectable graphics objects and in the locator case a cursor
shape).

- to introduce the user point of view in the design of these systems in order to obtain a better
usability, either from the UIS designer point of view either from the user point of view. In [NC92}
is remembered that general model for interaction objects may be difficult to apply because
developers often have problems identifying the objects for their system. For this purpose it is
important to have interactors characterized for how they support the user task that means what
type of manipulation they allow users to perform. Also allowing to associate different presentations
with the same task-oriented interaction should be possible but without making the choice of the
presentation the main and unique problem in developing user interfaces.

We can see a graphical interaction (Fig.1) as composed of three components: the collection, where
an higher level description of the output is provided; the picture, that provides a description of the
same scene described by the collection but at a lower abstraction level and determines how to
represent echoing of input values; the measure, that receives input data from the lower levels, it
applies its function on them and then delivers the result to the outside.

As example of the possible environments performed by the couple collection/picture we can refer
the Computer Graphics Reference Model [ISO91] where the graphics functionality were
subdivided into five layers: the application-oriented model; a completely geometrically defined
scene; a view of the scene; the complete association of attributes to the output primitives; the access
to the physical devices. More generally speaking, the transformation in the output part can be of
two types:
- common graphical transformations typical of graphic output pipelines for obtaining an image
from the application model such as those indicated in the Computer Graphics Reference Model;
- different output representations of the same application data, i.e. a pie chart versus a bar chart for
visualizing the same data set;

We can single out in each interaction object two parts: the internal one defining its semantics,
which data type the measure produces toward the application (that is different from the application
semantic that means what the application performs by the received specific value); the external
one defining its appearance that is defined by the collection and the picture. Then we have its

Collection

 Picture

Fig.1 The Architecture of a Graphical Interaction Object

Measure

Input

Trigger

Output

Trigger

and behaviour. In this way it is possible to obtain a unique manipulation for widgets previously
separated. This was carried out in C++ and OSF/Motif environment. This approach is still strongly
affected by the existing toolkit design.

In [WK90] some requirements for an object oriented second generation graphics standard are
provided, among them we can remember: inheritance, integration of geometric modelling in a
kernel; multi level part hierarchy with a well defined semantics; dynamic model for part editing
(the number of subparts may change dynamically during run-time); more flexible communication
patterns (mutual communication among application and graphical user interface); rule intepreters
and constraint solvers for supporting new declarative and less imperative styles for graphics
programming. They claim that the key point for the definition of the graphic standard is that a clear
description of the messages which can be sent by the application programmer to instances or
classes of the kernel must be given. Here the problem to integrate graphics system concepts with
those of UIS is not addressed.
The problem to try to map user task with interaction techniques was addressed in [FWC84] but they
did not consider object-oriented implementation environments.

The Abstract Design of the Graphical Interaction
Modelling of the graphical interaction is a continuing evolving issue. We can identify three
tendencies:
- The input model of current graphics systems such as GKS and Phigs, that is about twenty years
old but is still used, classifies logical input devices depending on the data type that they return
towards the application (a point, an identifier of a graphical object, an integer and so on). Its
limitations are well known: the appearance of input devices is implementation-dependent, there is
no possibility to connect input and output functionality without application support, it provides a
fixed set of data types, it classifies in the same logical input device, systems with very different
approach and behaviours;
- The toolkits of window systems such as Athena X toolkit [SW88] and Interviews [LVC89] have
a different approach: they model their classes depending on the external appearance (a scrollbar,
a menu, a button) and provide functionality to compose them mainly from a layout point of view.
In this case the limitations are: too low level interfaces for the programmer, they focus their
attention more on appearance and layout issues, rather than on more important semantic issues
[J92]; the interaction with the callback procedures has different problems: when a procedure is
called it is not possible to activate other parts of the application until it returns; they do not mesh
well with application semantic because know nothing about the values that they handles (for
example they allow an user to select a label but they returns an identifier that the application may
map erroneously to another item);
- Other modelling techniques, such as Small talk and PAC do not provide clear indications about
the strict relationship among input and output functionality.

Our approach to the abstract design of graphical interaction has two main goals:
- to integrate the concepts of the toolkits of window systems with those of graphics systems. This
problem, as the previous section showed, is not yet deeply investigated;

This paper concerns the third phase. We have chosen an object oriented language for
implementation because it allows us for reusability, modularity and data hiding and can provide a
more suitable environment to design an implementation closer to the conceptual world of the
designer. This choice implies different problems, for example, to find the good abstractions for
building graphical interfaces, how to encapsulate state and operations of interaction objects into
objects of the implementation environment, how to exploit inheritance in order to make extension
easy.

In the next paragraph we discuss related works, then a description of the approach to the modelling
of graphical interaction and a their design space are presented. After remembering the principal
concepts of Sather we show how the abstract model can be implemented in this object-oriented
environment. A proposal to the design of a hierarchy of interactor characterized by the supported
user task and then, in a second moment, by their appearance is presented. Finally we apply the
presented concepts to perform an example of user interface.

Related Work
One of the first serious attempt to address an object-oriented approach to user interface design was
[B86], where the first aspects of this approach were located: a hierarchy of graphical objects, the
possibility to compose objects in order to consider them as a unique entity and to define
dependency among them, the separation of interface and application.

In [LB90] there is a proposal for a layered user interface system (in Procol language) with different
element types depending on the layer: physical events, abstract events, interaction tools, panels. It
provides a design where an interaction technique consists of three components: the graphics
presentation, an event handler and a method part. They claim that the familiar class-inheritance
paradigm, adopted by most object-oriented models is too static and inflexible and consider a
prototype-instance model more appropriate. Here instances are not created from a class
description but from a (possibly initialized) prototype. They use protocols to specify input patterns
and sequencing. Because all access to the underlying window system has to go through a window
object they create a portable framework for designing and developing interactive systems. The
model aims to provide extensibility, adaptability of interaction styles and support for graphical
interaction. In this way they want to avoid the low level of programming of existing toolkits. One
limitation of this approach is that it does not allow for pick logical input devices.

Hill [H90] presented a 2-D graphics system for multi-user interactive graphics based on a
hierarchical display structure of graphical objects and extensive use of constraints to maintain
graphical consistency. He identifies six requirements for graphics systems: structural parallelism,
composition of graphical objects, communication, responsiveness, hierarchy, abstraction.
Shan presented [S90] another proposal for user interfaces modelling. He starts from the
consideration of the rigidity of the Smalltalk approach, then he decomposes a user interface in
modes, each one with its semantics (defined as a connection of the underlying application which
generates the semantics), its appearance and its interaction component. In [B92] there is an attempt
to separate user interface details from widget semantics by defining abstract classes for appearance

Introduction
This paper presents the issues raise from the performing of the refinement of an abstract
description of graphical user interfaces defined by a formal specification into an object oriented
language. We use Sather [O91], an object-oriented programming language developed at
International Computer Science Institute, as case study for functionality provided by an object-
oriented platform. The formal specification was performed by LOTOS [BB87] and is described in
[PF92b].

The main features that must be supported by a User Interface System (UIS), the system that
manages the communication among user and application, in order to be characterized by
interactivity, flexibility and usability are:
- multiple parallel dialogues among users and applications;
- multiple processing levels, that means that the system architecture is organized in different layers;
- multiple feedback levels: each layer can provide a feedback to inform the user on the state of the
current interactions;
- multiple views of the same abstract graphical description;
- dynamic activation and deactivation of the interaction objects.

The design of user interface systems providing this kind of functionality can be obtained by a
composition of graphical interaction objects. Different changes to the general model of a graphical
interaction were performed after analysis of the dynamic behaviour carried out by applying
automatic tools on the LOTOS formal specification that detected a few possible inconsistencies.
We call interactor the resulting abstract description of a general graphical interaction. This means
that it encapsulates in a general framework the dynamic behaviour of the wide range of possible
graphical interactions. One difference of this proposal with respect to other previous proposals
such as MVC[GR83], PAC[C87] and others is that it allows us to clearly identify the relationship
among input and output part of a graphical interaction. Moreover, it attempts to integrate concepts
deriving from graphics systems and user interface systems in order to design systems that can
provide interaction with structured graphics scenes.

Another important goal that we consider is to make the development of user interfaces easier. This
implies to simplify the task-to-function translation: after identifying objects and attributes in the
task-domain problem space, to transform them as immediate as possible, into functions, objects
and attributes supported from the available system.

The general environment for the development of user interfaces that we refer consists in three
phases:
- a visual editor where the designer defines the logical structure of the user interface by
manipulating graphical representations of the interaction objects and their compositions [PF92a];
- the performed graphical representation can be automatically translated into a formal specification
that provides an environment more suitable to verify its dynamic behaviour and properties
[PF92b];
- when the designer is satisfied of the specification this can be refined into a programming language
in order to obtain the executable system which the user interacts with.

An Object-Oriented Approach to the
Design of Graphical User Interface Systems

Fabio Paterno’
CNUCE-C.N.R. - Via S.Maria 36 - 56100 Pisa - Italy

ICSI - 1947 Center Street - Suite 600 - Berkeley, CA 94704

TR-92-046

August 1992

Abstract

In this paper the problems concerning the design of graphical user interface systems composed of
a set of interaction objects allowing users to interact with structured graphics are discussed. Each
interaction object can have input and output functionality. Here we want to point out the problems
and the requirements that are raised in performing such design in an object-oriented environment.
For this purpose the importance of task-oriented design hierarchies of interaction objects in order
to make the translation from the user task to the system functions easier is addressed. The design
of a hierarchy of interaction objects following this approach is proposed. This contrast with the
current window systems toolkits design because it is mainly driven by the semantics of the inter-
action objects rather than their appearance. Finally an example of a common graphical user inter-
face performed by the proposed approach is presented.

__
Email address: paterno@icnucevm.cnuce.cnr.it - Phone: +39 50 593289

