

22

OBJECTTYPE CatSpec_InstinstType SUBTYPEOF Metaclass_InstinstType;
INTERFACE
METHODS initCategoryOf(generalinst: OID) ;
categorySpecializationOf(): OID ;
IMPLEMENTATION
EXTERN prints(s:STRING); endline();
PROPERTIES categoryOfObj: OID;
METHODS
initCategoryOf(generallnst: OID) ;
{ categoryOfObj := generalinst; };
categorySpecializationOf(): OID ;
{ RETURN categoryOfObj; };
NOMETHOD
{ RETURN categoryOfObj—>currentMeth(arguments); }
END;
END_SCHEMA;

Figure 12: Definition of the instance-instance-type of the metaclass CatSpecClass.

21

OBJECTTYPE CatSpec_InstType SUBTYPEOF Metaclass_InstType;
INTERFACE
METHODS defCategoryOf(genClass: OID, asp: Aspectld) ;
createCategoryOf(generalinst : OID) : OID ;
checklsCategoryOf(generalClass: OID): BOOL ;
categoryOf() : OID ;
new() : OID;
IMPLEMENTATION
EXTERN prints(s:STRING); printo(0:OID); endline();
PROPERTIES categoryOfCls: OID;
aspect: Aspectld;
METHODS
defCategoryOf(genClass: OID, asp: Aspectid) ;
{ categoryOfCls := genClass;
aspect ;= asp; genClass—>defHasCategory(SELF, asp); };
createCategoryOf(generalinst : OID) : OID ;
{ VAR categoryObj : OID;
IF NOT SELF—>checklsCategoryOf(generalinst—>(OID)class())
THEN { prints('Such a category object cannot be created for this object.’);
endline(); RETURN NULL; }
END;
IF generallnst—>(BOOL)checkHasCategory(aspect)
THEN { prints('Creation failed: category for this object already exists.’); endline();
RETURN NULL; }
END;
categoryObj := SELF—>new();
categoryObj—>initCategoryOf(generallnst);
generallnst—>initHasCategory(categoryObj, aspect);
RETURN categoryObj; };
checklsCategoryOf(generalClass: OID): BOOL ;
{ RETURN categoryOfCls == generalClass; };
categoryOf() : OID ;
{RETURN categoryOfCls; };
new() : OID;
{ VAR generalinst : OID;
generallnst := SELF—>(OID)categoryOf()—>(OID) new();
RETURN SELF—>(OID)createCategoryOf(generallnst); };
END;

Figure 11: Definition of the instance-type of the metaclass CatSpecClass.

20

OBJECTTYPE GenCatSpec_InstType SUBTYPEOF Metaclass_InstType;
INTERFACE
METHODS defHasCategory(catClass: OID, aspect: Aspectid) ;
hasCategories(aspect: Aspectld) : {OID} ;
IMPLEMENTATION
EXTERN prints(s: STRING); printo(i: OID); printi(i: INT); endline();
PROPERTIES hasCategoryCls: ARRAY [SUBRANGE ASPECTMIN .. ASPECTMAX]
OF {OID};
METHODS
defHasCategory(catClass: OID, aspect: Aspectid) ;
{ INSERT catClass INTO hasCategoryCls[aspect] END; };
hasCategories(aspect: Aspectid) : { OID } ;
{ VAR emptySet : { OID} ;
emptySet = {};
IF (aspect < ASPECTMIN) | (aspect > ASPECTMAX)
THEN {prints(CERROR in <hasCategories>, invalid aspect id.”); endline();
RETURN emptySet; }
ELSE RETURN hasCategoryCls[aspect];
END; };
END;
OBJECTTYPE GenCatSpec_InstinstType SUBTYPEOF Metaclass_InstinstType;
INTERFACE
METHODS checkHasCategory(aspect: Aspectid) : BOOL ;
initHasCategory(catObj: OID, aspect:Aspectid) ;
hasCategory(aspect:Aspectld) : OID ;
as(catCls:0ID) : OID ;
IMPLEMENTATION
EXTERN prints(s: STRING); printo(i: OID); printi(i: INT); endline();
PROPERTIES hasCategoryObj: ARRAY [SUBRANGE ASPECTMIN ..
ASPECTMAX] OF OID;
METHODS
checkHasCategory(aspect: Aspectld) : BOOL ;
{ RETURN hasCategoryObij[aspect] != NULL,; };
initHasCategory(catObj: OID, aspect:Aspectld) ;
{ hasCategoryObj[aspect] := catObj; };
hasCategory(aspect:Aspectld) : OID ;
{ RETURN hasCategoryObij[aspect]; };
as(catCls:0ID) : OID ;
{ VAR cls : OID; result : OID;
result := NULL;
FOR | := ASPECTMIN BY 1 TO ASPECTMAX DO {
IF hasCategoryObj[l] '= NULL THEN { cls := hasCategoryObij[l]->(OID)class();
IF cls == catCls
THEN { result := hasCategoryObij[l]; }
END; }
END; } END;
RETURN result; };
END;

Figure 10: Definition of instance-type and instance-instance-type of the metaclass GenCatClass.

19

[9] WolfgangKIlas, ErichJ. Neuhold, Michael Schrefl: Metaclassesin VODAK andtheir Appli-
cationin Database I ntegration, Technical Report No. 462, Arbeitspapiereder GMD, Birling-
hoven, 1990.

[10] Wolfgang Klas, Erich J. Neuhold, Michael Schrefl: Using an Object-Oriented Approach to
Model Multimedia Data, Computer Communications, Specia Issue on Multimedia Sys-
tems, Vol. 13, No. 4, pp. 204-216, May 1990.

8 Appendix: Definition of M etaclasses

Figures 9, 10, 11, and 12 show the definitions of the classes, object types, and data types for the
metaclasses which implement the category-specialization modeling primitive as used in the ex-
ample of this paper. Theimplementation has been realized using the VODAK prototype version
1.0a ICSl.

SCHEMA ObjectSpecializationMetaclasses
DEFINE ASPECTMIN 1
DEFINE ASPECTMAX 5
DATATYPE Aspectid = INT;

CLASS GenCatClass METACLASS Metaclass
INSTTYPE GenCatSpec_InstType
INSTINSTTYPE GenCatSpec_InstinstType
END;

CLASS CatSpecClass METACLASS Metaclass
INSTTYPE CatSpec_InstType

INSTINSTTYPE CatSpec_InstinstType

END;

Figure 9: Definition of the metaclasses GenCatClass and CatSpecClass providing the category-
specialization modelling primitive.

18

defining the sharing of objectsaswell asthe persistence of objects. All instancesarereferenced by
oid’'s, values of datatypes are referenced independently of the fact whether they are attached to
persistent objects (and are therefore persistent themself) or whether they are”stand alone”. This
way VML supports class completeness which is the relevant requirement in an object-oriented
framework: theinstances of all classes are persistent regardless of the corresponding object type.

VML providesoperatorsmanipul ating theextension of aclass(i.e. theset of existing instancesat a
certaintime). For exampleiteratorscan bedefined for every set, including the extension of aclass,
thisway the expressivenessof afull query languageisachieved. Furthermore, VML providestwo
methods for deleting instances of classes, which are in the interface of every instance. These are
delete and deleteall. The first one does not guarantee referential integrity while the second does.
Onthebasisof thesetwo methods, it ispossibleto define methodswith aspecial del ete semantics.

The implementation of task 3 isvery ssimple, because the methods for mass and cost are already
included in the schema. In general one can say that application programswill be much shorter and
eas er towrite. Thiscan a so be seen from theimplementation of task 4. Here, themethod createis
used to record a new composite part. The implementation of the create method is based on the
method new, which creates simultaneously abase part and apart. Thisway the constraint that each
base part isalso apart is satisfied and the application program is freed from the burden to check
semantic constraints.

7 References

[1] M.P Atkinson and O.P. Buneman, Types and Persistence in Database Programming Lan-
guages, ACM Comput. Surv., 19(2):105-190, June 1987.

[2] S. Khoshafian and G. Copeland, Object identity, Proc. first ACM OOPSLA conference,
Portland, Oregon, September 1987.

[3] A.Goldbergand D. Robson, Smalltalk 80: Thelanguage and itsimplementation, Addison-
Wesley, Reading, MA, 1983.

[4] JM. Smith, S. Fox and T. Landers, ADAPLEX: Rationale and Reference Manual, 29 edi-
tion, Computer Corporation of America, Four Cambridge Center, Cambridge, Massachu-
setts 02142, 1983.

[5] ThePS-Algol reference manual —2"d edition, Department of Computing Science Persistent
Programming Research Group, University of Glasgow, Technical Report PPR-12-85, Glas-
gow G12 8QQ, Scotland, 1985.

[6] KlasW., E.J.Neuhold, R.Bahlke, P.Fankhauser, M.Kaul, PMuth, T.Rakow, V.Turau: VML —
The VODAK Model Language. Technical Report. September 1991.

[7] Klas W.: A Metaclass System for Open Object-Oriented Data Models, Doctoral Thesis,
Technical University of Vienna, January 1990.

[8] WolfgangKlas, Erich J. Neuhold: Designing Hypertext Systems using an Open Object-Ori-
ented Database Model, Technical Report No. 489, Arbeitspapiere der GMD, Birlinghoven,
1990.

17

OBJECTTYPE BasePart_OwnType
IMPLEMENTATION
METHODS// creates a hew base part
create(id: STRING, name: STRING, supplier: Supplier,
purchaseCost : REAL, mass : REAL) : BasePart;
{ VAR newPartObj : Part; newBasePartObj : BasePart;

/I first create both a base part object and a part object
newBasePartObj := self—>new(); // see CatSpec_InstType, appendix
newBasePartObj—>setSupplier(supplier);
newBasePartObj—>setCost(purchaseCost);
newBasePartObj—>setMass(mass);
/I get the representation as Part; see CatSpec_InstinstType, appendix
newPartObj := newBasePartObj—>categorySpecializationOf();
newPartObj—>setName(name);
newPartObj—>setld(id);
return newBasePartObj; }

END

OBJECTTYPE CompPart_ OwnType
IMPLEMENTATION
METHODS// creates a new composite part
create(id: STRING, name: STRING, initialSubparts : { Subpart },
assCost: REAL, totalMass: REAL) : CompositePart;
{ VAR newPartObj : Part; newCompPartObj : CompositePart;
/I first create both a composite part object and a part object
newCompPartObj := self->new(); // see CatSpec_InstType, appendix
newCompPartObj—>setAssemblyCost(assCost);
newCompPartObj—>setSubparts(initialSubparts);
newCompPartObj—>setMass(totalMass);
/I get the representation as Part; see CatSpec_InstinstType, appendix
newPartObj := newCompPartObj—>categorySpecializationOf();
newPartObj—>setName(name);
newPartObj—>setld(id);
return newCompPartObj; }
END

Figure 8: Implementation of the object creation methods needed for a manufacturing step of a
composite object.

6 Conclusions.

This paper has presented the principles of handling persistent objectsin the object-oriented data-
base programming language VML. Thefirst design criteriawasthat programming code should be
free from statements to initiate or organize the transfer of objects from/to the persistent store.
Thus, the codeiswritten in aform, which can work with persistent or transient data. This persist-
ence independent programming is achieved by taking the distinction of types and classes as the
basisfor defining persistencein VML. Instances of classesare alwayspersistent and those of data
typesareawaystransient. Thus, thedistinction between typesand classes servesasaplatform for

16

stances of that class, i.e. Part—>allInstances() isthe set of all instances of the class Part. The data-
type of thereturn valueis{ Part}. Thisvalue can then be processed with the operations available
for sets(e.g. intersection, iterators, etc.). Another category of bulk operationsisgiven by thequery
language (see [6]).

Example Task 4

Theimplementation of task 4 defined in section 1, isgivenin Figure 7. First, three base parts are
created: abutton, acase, and acable. Thevariablespartl, part2, and part3 represent the quantity
of the usage of thesebase partsinacompositepart”Mouse” , whichismanufactured fromthethree
base parts. The implementation of the methods create defined for the classes BasePart and
CompPart are given in Figure 8. These methods create both a general representation of the base
partsand the composite part asinstancesof class part and thebase part or composite part represen-
tation through instances of BasePart and CompositePart employing the method new provided
with the metaclass CatSpecClass. The create methods return the newly created instance of either
BasePart or CompositePart. The categorySpecializationOf method returnsthe corresponding in-
stance of class Part the receiver object is a categorization of .

/I DATATYPE Subpart = [comp: Part; quantity : 1 .. MAXQUANTITY]
VAR partl, part2, part3 : Subpart;
/I Create a few base parts

partl.comp := BasePart—>create("BTN 90-020/C”, "Button”, /1 $20, 10 g
"SunMiircoSystems”, 20, 10)—>categorySpecializationOf();

partl.quantity := 3;

part2.comp := BasePart—>create("CC 90-020/D", "Case”, /1 $80, 200 g
"SunMiircoSystems”, 80, 200)—>categorySpecializationOf();

part2.quantity := 1;

part3.comp := BasePart—>create("CC 90-020/D”, "Cable”, 11$2,15¢9
"SunMiircoSystems”, 2, 15)—>categorySpecializationOf();

part3.quantity := 1;

CompPart—>create("MSC 90-001/A", "Mouse”, {partl, part2, part3}, 30, 250); // $30, 2509

Figure 7: VML implementation of task 4, i.e., record in the database a new manufacturing step,
i.e., how anew composite part is manufactured from subparts.

15
5 Manipulation of the Extension of a Class.

As already stated above the extension of aclass (i.e. all instances of a class) is persistent. This
extension will change during the lifetime of a database. The main operations to manipulate the
extension of aclassare creating new instances, del eting existing i nstances and updating properties
of existing instances. The first operation is accomplished by the new operator. This operator
creates anew object as an instance of a class.Consider the following program segment:

VAR obj : Part;
obj := Part—>new();

Thevariableobj getsassigned aninstance of the classPart. Thisinstanceisnewly created with the
new operator. After the execution of the program segment the extension of the class Part contains
one additional element. All the properties of this new instance have the value NIL.

The deletion of existing objects has far more consequences than creation of an object. The main
issues are referential integrity and complex objects. Isit possible to delete an instance which is
referenced by other instancesand if so, what happensto thereferences? Furthermore, isit possible
to delete a complex object aswhole (i.e. an instance with all the objects it references)?

Oneapproachisto define persistencewiththe help of a” reachability relation” . Each object which
isreachablefrom the databaseroot ispersistent. If an object isreferenced by another object, thenit
ispossibleto removethe former object from the extension of itsclass. But the object isstill inthe
database, because it is still referenced by an object reachable from the database root. Hence, the
instanceisstill present but not asamember of the extension of itsclass. To avoid thisanomal ous
situation a different approach isused in VML.

VML provides two methods for deleting instances of classes, which arein the interface of every
instance. Thefirst oneiscalled delete. If thismethod issent to an instance of aclass, theinstanceis
deleted from the extension of its classif this object is not reference directly by another object.
Otherwisenothingisdone. Intheformer case, theinstanceisremoved from all setsit iscontained
in. Hence, this method guarantees referential integrity. The second method to delete objectsis
called deleteall. If this method is sent to an instance of aclass, the instance is removed from the
extension of itsclassand all referencesto it are set to NIL. Furthermore, the instance is removed
fromall setsitiscontainedin. Sothismethod also guaranteesreferential integrity. Theimplemen-
tation of deleteall is based on atechnique called ”lazy deletion”.

On the basis of these two methods, it is possible to define methods with a special del ete semantic
(for example to delete an object and all the objects it references, etc.)

InVML wehaveadopted thefollowing strategy whichiscalled lazy deletion. Thedel eteall meth-
od marksthe object identifier such that asuccessive attempt to access this object realizes that the
object isdeleted. The object itself is not immediately deleted. The marked objects are deleted at
the end of atransaction. Any attempt to access a del eted object through areference from an exist-
ing object will be recognized, because every object access method checks the object whether itis
marked or not.

Asaready mentioned bulk operations are needed in database applications. Therefore, VML pro-
vides a method alllnstances in the interface of every class. The method returns the set of al in-

14

OBJECTTYPE CompPart_InstType
IMPLEMENTATION
PROPERTIES subparts : { Subpart };
deltaMass: REAL;
assemblyCost: REAL;
MEtHODS
compositeMass() : REAL; /I returns the mass of a composite part
{ VAR aSubpart : Subpart;
totalMass: REAL;
totalMass = 0;
FORALL aSubpart IN subparts DO
totalMass = totalMass + aSubpart.comp—>mass() JaSubPart.quantity;

END
return totalMass }
mass() : REAL; { return self—>compositeMass() + deltaMass; }
cost() : REAL; /I returns the total cost of a composite part

{ VAR aSubpart : Subpart;
totalCost: REAL;
totalCost := assemblyCost;
FORALL aSubPart IN subparts DO
totalCost = totalCost + aSubPart.comp—>cost() OaSubPart.quantity;
END
return totalCost }
END

OBJECTTYPE Part_InstType
IMPLEMENTATION
PROPERTIES name: STRING;

id: STRING;
METHODS
cost() : REAL; { return self—>hasCategory()—>cost(); }
mass() : REAL; { return self—>hasCategory()—>mass(); }

END

OBJECTTYPE BasePart_InstType
IMPLEMENTATION
PROPERTIES supplier: Supplier;
purchaseCost: REAL,;
mass: REAL;
METHODS
mass() : REAL; {return mass;}
cost() : REAL; { return purchaseCost; }

END

Figure6: VML implementation of the methodscost() and mass() used intask 3. Only therelevant
fragments of the implementation of the object types are shown.

13

VAR compPart : CompositePart;
compPart := CompositePart—>findPart("Ship”);
IF (compPart '= NULL) THEN
PRINT << ” Cost: ” << compPart—>cost() << NEWLINE;
PRINT << ”Mass:” << compPart—>mass() << NEWLINE;
END

Figure5: VML implementation of task 3, i.e., print thetotal cost and total mass of acomposite
part.

cost and mass of the composite part and, subsequently, to print the results. Theimplementation of
the methods cost() and mass() are given with the object type CompPart_|nstType associated with
class CompPart (see Figure 6).

Themethod cost() computesthetotal cost by adding up the assembly cost and the cost of the sub-
partstimesthe number of subparts. The cost of each component iscomputed by the method cost()
whichissent to every subpart referred to by the property subpartswhich isdefined for composite
partswith type CompPart_InstType. Every subpart isan instance of class Part (compare the data
type definition SubPart). Hence, at this point, the method cost() implemented for parts, i.e., the
method implemented with type Part_InstType is executed. This method in turn calls the method
cost() which is either the cost method implemented for base parts, i.e., implemented with type
BasePart_InstType, or the cost method implemented for composite parts.

Thetotal mass of acomposite part iscomputed in asimilar manner to thetotal cost by the method
mass() defined for composite parts and it is not further explained.

12

VAR impPart, aPart: BasePart;

FORALL impPart IN {aPart IN BasePart—>allinstances() | aPart—>cost() > 100 } DO
PRINT << "Name:” << impPart—>name() << NEWLINE;
PRINT << "Cost:” << impPart—>cost() << NEWLINE;
PRINT << "Mass:” << impPart—>mass() << NEWLINE;
impPart—>setCost(impPart—>cost() * 1.1);

END

Figure4: VML implementation of task 2, i.e., print the name, cost, and mass of all imported parts
that cost more than $100.

Thevariable declaration” VAR compPart : CompositePart” denotes alocation for an instance of
the class CompositePart (which must be defined previously) with the name comPart (see fig-
ure5). Initially the location contains the value NIL. For another example consider the following
record type: DATATY PE Subpart = [comp: Part; quantity : 1.. MAXQUANTITY] (seefigure
1). A variabledeclaration of theform” VAR aSubpart : Subpart” setsaside spacefor ahandletoan
instance of the class Part and for a value of the domain of the integer subrange type 1 .. MAX-
QUANTITY (seefigure 6).

The assignment operator :=is provided to change the value of alocation in the store. An assign-
ment to avariable changes the val ue of the corresponding location but has no effect on the object
being assigned or on the previous value of that location. For example an assignment of the form
compPart := CompositePart—>findPart(” Ship”); retrieves an instance of the class CompositePart
with name " ship” and assigns this object to the location named compPart (see figure 5).

The statement compPart := CompositePart—>new() generatesanew persistent object. Theassign-
ment of an instanceto alocation has no effect on theinstanceitself (i.e. the value of its attributes
areunchanged etc.). Thus, if the variable compPart getsanew value assigned, theformer objectis
not changed (seefor examplethevariableimpPart intheimplementation of task 2; figure4). If the
datatypeof avariableisaclassidentifier, the declaration hasthe effect of supplying spacefor the
persistent handle for an instance of the class Part. In contrast to this the operator new generates a
new instance of aclass, makesthisinstance persistent and returnsthis new object. Hence, the new
operator and the declaration of avariable have totally different semantics.

The equality operator which isdefined for variables of the same data type compares the contents
of thecorrespondinglocations. Asaconsequencein casethe datatypeof avariableisaclassidenti-
fier the object identifiers are compared. Thisis called identity in the literature about object-ori-
ented programming languages|2]. To achievethe semanticsof shallow or deep equality, auser has
towrite appropriate methods using the system provided equality operatorsintheimplementation.

Example Task 3

Theimplementation of task 3definedinsection 1,isgiveninFigure5. First, apart called” Ship” is
selected and itsrepresentation asacomposite part isthen assigned to the variable compPart. Then
themethods cost() and mass() are sent to the object referred to by the variableto computethetotal

11

4 Variables and Assignments.

In VML avariableisintroduced with a variable definition clause of the form:
VAR identifier : datatype;

where VAR isakeyword. This clause introduces a variable with nameidentifier. Thevariableis
constrai ned to assume valuesfrom the domain of the specified type. Therearebasically three pos-
sibilitiesfor datatypes: primitivetypes, structured typesand classidentifiers. Thestructured types
are build with thefollowing type constructors: record, variant, set and array. Thesetype construc-
tors can be nested to any depth and their basic ingredients are the primitive types (Boolean, Inte-
ger, etc.) and the classidentifiers. The domainsof thesetypesarethe usual for primitivetypesand
for classidentifiersthey consist of the set of possibleinstances of the corresponding classes. The
domainsof the structured types are defined on the basis of the above defined domainsin the usual
manner for each constructor individually. All thedomainscontain an element NIL. For examplein
the implementation of the method cost() for the class CompositePart the two variables aSubpart
and total Cost aredeclared (seefigure6). Thefirst oneisof thetype Subpart whichisarecordtype
(notethetypeof thefirstfieldisaclass, seefigure 1) andthetypeof thesecondistheprimitivetype
REAL.

In VML variables can be regarded as locations for values of the corresponding datatype. These
locationsresidein atimevarying store and introduce modifiability in thelanguage. For example,
thevariable declaration ” VAR total Cost : REAL” denotes alocation for avalue of the domain of
REAL. If the datatype of the variableisaclassidentifier thenthelocation for avariable can hold a
handl e to an instance of the corresponding class. Since the handlesto instances of classesarethe
object identifiers, this location will eventually contain an oid. But from ausers' point of view it
will betheinstanceitself, because the set of methods applicableto that variable are exactly those
defined for theinstances of the corresponding class. Furthermore, any update of aproperty of that
instanceisalso an update of the persistent object. Thisconceptisillustrated in theimplementation
of task 2, which isgiven in figure 4. This concept implies that the sizes of the locations for vari-
ables with datatype a class identifier are always the same and are known at compile-time.

Theimplementation of task 2 defined in section 1, isgiveninfigure4. The names, cost, and mass
of al imported partsthat cost morethan $100 are printed within aloop over the set of the appropri-
ate objects. Withinthisloop the costsof the partsareincreased by 10%. Thisincrement isachieved
with the method setCost(). In caseamethod is sent to an object and this method changesthe state
of the object, thisis automatically propagated to the persistent store. Thus, sending the method
setCost() to avariable of type BasePart updates automatically the property purchaseCost of the
instance hold by that variable in the database (the implementation of the method setCost() is
omitted in figure 6). Hence, the user is freed from the burden of taking care that the updates of
properties are correctly accomplished in the database.

10

PROGRAM CreateManufactureDatabase;
CREATE DATABASE "ManufacturingDatabase” SCHEMA Manufacturer;
END;

PROGRAM BuildUpManufactureDatabase;
DATABASE PartbB SCHEMA Manufacture;

OPEN PartbB DATABASE "ManufacturingDatabase”
/I Statements which create base parts and composite parts. An example is given
/I later in chapter 5.
FORALL pin { PartDB.Part—>allinstances() } DO
PRINT << p—>name(); << NEWLINE;
END
CLOSE PartDB;
END;

Figure 3: The creation, opening and closing of a databasein VML.

In addition to thisuser level naming scheme, the system isbased on auniform method for naming
persistent objects. Thisrelies on the use of unique object identifiers (oid’s) that are guaranteed to
be unigquethroughout the system. Anoid isnever used twiceinthelifetime of adatabase. Further-
more, oid'sareimmutablei.e. they cannot be changed once they have been created and bound to
an object, neither by the user nor by the system. They are the handlesto persistent objectsand are
invisibleinan application program. Therefore, oid’ sallow persistenceindependent programming
in VML. Thisis because all references to instances of classes in the code of a method are made
implicitly through them. Thisaspect of VML isdiscussedin detail inthe next section. Object iden-
tifiers allow the VODAK object manager to locate the objects in the persistent store.

So far we have described persistent objects, but there are situations where transient values are
needed (for example in the body of a method). In VML values of datatypes are not persistent.
Hence, in abody of amethod it is possible to define structured datatypes and to use them freely.
The scope of their existence isthen the enclosing method body. Of course, when avaue of sucha
datatypeis assigned to a property of a persistent object, these values will be persistent.

9

defined viareachability (e.g. CODL), that isthe collection of objectsform adirected graph where
the edges are established through references and the root is the database. All objects which are
reachable from the root object are automatically persistent.

Our approach differsin certain aspects from this graph based approach. In our model there are
several directed graphs whose entry points are the databases. From the roots the classes can be
reached and from there the instances and from those viathe properties other instances of classes,
whicharea soreferenced by their classes. Hence, everything whichisreachablefromarootisalso
persistent. But thisisaconsequence of our definition and not the definitionitself. Another differ-
enceisthat in our model there is no need for garbage collection, thisis because an object disap-
pearsonly if it was deleted explicitly. The deletion of an object will never have the consequence
that other object are no longer reachable, asit isthe case in these graph based modelswhere gar-
bage collection is necessary.

A consequence of thisdecisionisthat VML doesnot need an explicit operator for making objects
persistent. In case alanguage doesn’t provide amechanism for automati cally making objects per-
sistent, there must exist procedures for doing this (e.g. PS-Algol [5]). If the language does not
provide overloading thiswill be cumbersome, because there must be such a procedure for every
type used in the schema. In VML the creation of a new instance of a class automatically implies
that thisinstancewill beinserted into the database. Thisisachieved by anew operator (seeTable 1
andTable 2). Thisis similar to the approach taken in Adaplex [4].

In any system that supports some form of persistence, amechanism is needed to enable a user of
that system to name, and subsequently access persistent objects. Hence there must exist abinding
between symbolsin the program and objectsin the persistent store. In alanguage without persist-
ence, the long term store has traditionally been implemented by files. The persistent name space
consists of the file names maintained by the operating system. To access persistent objectsinthis
case, arun time call to a system routine establishes the binding between the program and thefile
and read/write callsperformtheactual access. In VML the persistent resourcesaretheinstancesof
the classes. Hence, mechanisms are needed to allow the user of apersistent object to specify the
object in such away that the system can locate the object and load it. The persistent name space
consistsof names of databases and of names of classes. Asshown infigure 1 the namesof classes
are declared within a schema definition.

Database names are defined when adatabaseiscreated for aspecific schemaby the CREATE DA-
TABA SE statement (seefigure 3). Existing databases can beusedinaV ML program by associat-
ing it to adatabase variable. The declaration of adatabase variable specifiesthe schemanameof a
database which can be bound to the database variable by a subsequent OPEN statement. This
mechanism allows to open severa databases within one program.

A database variable provides the root to access the objects of adatabase. The only objects which
can beaccessed directly from adatabase variabl e are those objectswhich represent aclass. Access
isperformed by using the class name qualified with the name of the database variable, e.g., in our
example program PartDB.Part or PartDB.BasePart. The qualification of a class name can be
omitted, if theclassnameisunambigous, i.e. if thereisat most one database variabl e of each sche-
maand if the class names of different schemata are digoint. All other objects, i.e. instancesin a
databasewhich arenot classes, can beaccessed only starting from aclassobject using themethods
defined in the interface.

Method

Receiver

Semantics

Defined by

new()

instances of
metacl ass
CatSpecClass

creates a new instance of the re-
ceiver class as a category-special-
ized object of agenera instance
which is automatically created too.
Returns the object identifier of the
newly created category specialized
instance.

CatSpecClass
(instance-type)

defCategoryOf(inst)

definesthe receiver classto bea
category-specialization class of the
general classidentified by the first
parameter with respect to the as-
pect identified by the second pa-
rameter.

hasCategory()

instances of a
class with
metaclass

CatSpecClass

returns the identifier of that in-
stance which represents the receiv-
er object in the appropriate catego-
ry with respect to the aspect identi-
fied by the parameter.

CatSpecClass
(instance-ins-
tance-type)

categorySpecializationOf()

returns the identifier of that in-
stance of which the receiver object
is acategory specidization.

CatSpecClass
(instance-ins-
tance-type)

Table 2: Specific methods defined for the semantic relationship category specialization asfar as
they are needed in the examples. There are additional methods available with that semantic rela
tionship but they are not discussed here.

3 Persistencein VML.

Theterm persistenceisused to describethat property of datathat determineshow longit should be
kept. Itisan orthogonal property of data, that any dataitem may exist for an arbitrarily long time
(e.g. longer than the duration of one program execution). Some form of orthogonal persistence
existsfor sometimein other systems[3]. It consistsof amechanism to saveand restorethe current
workspace (so-called all-or—nothing persistence). Procedures can be saved in filesand read in
againin some subsequent session. Problemsof scale, lack of atransaction mechanism, and lack of
adequate mechanism for the independent development of program and data are the chief prob-
lems.

Thestarting point for defining persistencein VML isthedistinction of typesand classes. Roughly
speaking instances of classes are always persistent and those of data types are always transient.
Thus, thedistinction between typesand classes servesasapl atform for defining sharing of objects
aswell as persistence of objects. This decision was motivated by the general modelling philoso-
phy that every interesting entity of thedomain of interest should becomeaclass. Asaconsequence
al interesting entities are persistent and can be shared. Thisway VML doesnot fully support data
type completeness but it supports class completeness which isthe relevant requirement in an ob-
ject-oriented framework: theinstancesof all classesare persistent regardless of the corresponding
object type. This approach towards persistence differs from other systems where persistence is

Method Receiver Semantics Defined by
class() %llaj ects, thl\J/rer:s Stf(\f acs)gj ect identifier of there- system predefined

creates a new object as an instance of
new() classes the class and returns the object identifi- | system predefined
er of the newly created object

returns the set of object identifiers of
all instances of the class

allinstances() classes system predefined

removes and destroys that instance of
delete(instance) classes the class which isidentified by the pa- | system predefined
rameter.

tests whether the object identified by
isInstance(instance) classes the parameter is an instance of the class | system predefined
or not.

Table 1: Methods defined for all objects, i.e., classes and their instances unless elsewhere rede-
fined.

Specific M etaclasses for Category Specialization

VML constitutesakernel model which can betailored to specific application needs. It providesa
few predefined metaclasses for specific semantic modelling primitives such as object specializa-
tion, object generalization and aggregation. As previously mentioned, the metaclasses GenCat-
Class and CatSpecClass provide the necessary behavior for classes and their instanceswhich are
categorized into several digoint sets by appropriate method definitions. A detailed description of
these two metaclassesincluding their definitionin VML isgivenin[6]. Inthis paper we only de-
scribetherelevant part of theinterface provided by the metaclassesin order to explain thevarious
tasksdefined in section 1. Table 2 shows the specific methods provided for classes and instances
which are categorized into several digoint sets as far as needed for our examples.

With the INIT-clause of aclass definition one can specify some methodsto initialize theclass. In
our example (Figure 1) the classes BasePart and CompositePart areinitialized by the method def-
CategoryOf to be a category specialization of the class Part. The method defCategryOf is pro-
vided by the metaclass CatSepcClass and is defined for classest.

1. Intheactua implementation of the metacl ass CatSpecClass(asshownintheappendix) the method defCategory-
Of takes a second argument which is used to distinguish between several categorization criteria, e.g., parts can
be categorized into base and composite parts with respect to their composition, but they also can be categorized
into licensed and non-licensed partswith respect to thelicence status of apart. But aswe do not need thisfeature
in this paper we do not describeit in more detail and ignore it in the description herein.

6

ported fromtheV ML schemaObjectSpecializationMetaclasses. TheclassPart hasassociated the
metacl ass GenCatSpecClass which provides the semantics and behavior needed to categorizethe
classinto other classes. The classes BasePart and CompositePart have associated the metaclass
CatSpecClasswhich providesthe semantics and behavior needed to define both classesasacate-
gorization of the class Part. Details about the specific methods provided for classes and their
instances by the metaclasses GenCatSpecClass and CatSpecClass are given later.

GenCatClass CatSpecClass

A 7
Instance-of [instance-of

PA‘RT cat.spec.of Basepa,rt

AAST— o :

v category specialization of ’4 :
instance-of ! \ CompositePart

Lo A

. e — . instance-of

- —*

Figure 2: Category specialized classes BasePart and CompositePart are disjoint partitions
of class Part with respect of the composition of apart. That is, an instance of class PART is
categorized as an instance of either class BasePart or clas CompositePart

M essage Passing and M ethod Execution

The properties of an object can be accessed (read or manipulated) only through the execution of
methods defined for it. The execution of a method m is invoked by sending a message
rcvr—>m(arguments) to the object rcvr.

The semantics of sending a message rcvr—>m(arguments) to an object are as follows:
e If the method mis defined for the object rcvr, the code specified for mis executed.

e If themethod misnot defined for the object rcvr, the message revr.inheritanceBehavior (m,
arguments) is executed, where the method m and its arguments are passed as arguments to
the user specifiable method inheritanceBehavior. Theimplementation of thismethod deter-
mines the future execution of the method mwithin the scope of other objectsexisting inthe
database that may even be members of other object classes.

The delegation of messages to other objects via the method inheritanceBehavior allows, aswe
shall see in the next chapter, the specification of a particular inheritance behavior for semantic
relationships such as category specialization between objects. The method inheritanceBehavior
isimplemented by a metaclass for the instances of aclass. In particular, this ability has proven
useful, when adding specialized modelling primitives for hypermedia and argumentative net-
works[8] and for database integration[9] to VML. Table 1 shows all the predefined methods de-
fined for classes and their instances.

SCHEMA Manufacturer
IMPORT GenCatClass, CatSpecClass FROM ObjectSpecializationMetaclasses
DEFINE MAXQUANTITY 200 /l maximum number a part can be used as a subpart
DATATYPE Subpart = [comp: Part; quantity : 1 .. MAXQUANTITY];

CLASS Part METACLASS GenCatClass
OWNTYPE Part_OwnType
METHODS findPart(name: STRING) : Part; // returns the part with that name
INSTTYPE Part_InstType

METHODS name() : STRING; [returns the name of the part
setName(aValue: STRING); /[assigns a name to the part
id(): STRING; /I returns the identifier of the part
setld(aValue: STRING); /I assigns an identifier to the part
cost(): REAL; I returns the total cost of the part
mass() : REAL; I returns the mass of the part

END

CLASS BasePart METACLASS CatSpecClass
OWNTYPE BasePart_OwnType
METHODS create(id: STRING, name: STRING, supplier: Supplier,
purchaseCost : REAL, mass : REAL) : BasePart;
findPart(hname: STRING) : Part; // returns the part with that name
INSTTYPE BasePart_InstType

METHODS mass() : REAL; I returns the mass of the part
setMass(aValue: REAL); [/l assigns the mass
supplier() : Supplier; I returns the supplier of a base part
setSupplier(aValue: Supplier); // assigns the supplier to a b. part
cost() : REAL; I returns the cost of the base part
setCost(aValue: REAL); /I assigns the cost of a base part
INIT defCategoryOf(Part)

END

CLASS CompositePart METACLASS CatSpecClass
OWNTYPE CompPart_OwnType
METHODS // creates a hew composite part
create(id: STRING, name: STRING, initialSubparts : { Subpart },
assCost: REAL, totalMass: REAL) : CompositePart;
findPart(hname: STRING) : Part; // returns the part with that name
INSTTYPE CompPart_InstType

METHODS mass() : REAL; /I returns the mass of a composite part
setMass(aValue: REAL); // assign the total mass of a comp. part
deltaMass() : REAL; /I returns the (de-) or increment of mass
setDeltaMass(aValue : REAL); // assigns the de/increment of mass
cost() : REAL /l returns the total cost of a composite part

INIT defCategoryOf(Part)

END

CLASS Supplier
INSTTYPE Supplier_InstType /I not further specified here

END

Figure 1: VML schema for the example database.

4

database schema Manufacturer containsthe definitionsfor four classes: Part, BasePart, Compo-
sitePart, and Supplier amongst the definition of aconstant and adatatype. The description of this
database, which provides a solution for task 1, is shown in Figure 1.

Objects, Classes, and Types

Classes collect objects of the sametype. Every class has associated an object type asitsinstance-
type which specifies the structure of the class's instances and the methods defined to operate on
theseinstances. For example, the class Part hasassociated theinstance-type Part_InstTypewhich
specifiesafew general methods defined for parts, e.g., name() retrieving the name of apart, id()
retrieving the unique part identifier, and cost() retrieving thetotal cost of apart. Optionally, aclass
may have associated an object type asits own-type which specifies properties and methods of the
classitself. Usually, own-types specify specific methods to create and initialize new instances.

In general, object types associated with classes specify methods and properties. In Figure 1 only
the interface specification is shown. The properties and the implementations of the methods are
given later. Theinterface specifications consist of the signatures of the methods, i.e., the method
name, a(possibly empty) list of formal parametersand their domains, and, optionally, thedomain
of the result returned by the method.

Every classisafirst classobject and isan instance of another class, called its metaclass. Treating
classes as regular objects allows to apply the same mechanisms defined for instances also to
classes. In our sample database schemathe classes areinstances of either the metaclass specified
withthe METACLASS-clause or apredefined default metaclassif no such clauseisspecified asin
the definition of the class Supplier. Further details on metaclasses are given in the following.

Semantic Modeling Primitives and M etaclasses

VML provides a specific mechanism which alows to tailor the data model to meet specific re-
quirements. Specific modelling primitives can be introduced into the data model by defining ap-
propriate metaclasses. Every class has associated such a metaclass. A metaclass defines specific
methodsfor the classand itsinstancesit is associated to. The set of methods defined for aclassC
consists of the methods provided with the associated metaclass and the own-type of C. The set of
methods defined for the instances of the class C is determined by the methods provided by the
metaclass and theinstance-type of C. Hence, the classand itsinstances are able to behave accord-
ing to the semantics provided by the metaclass.

In our example we have to model parts which can be simple base parts bought from a supplier or
composite parts manufactured from other parts. To reflect this situation we define a class Part
whichis categorized into two digoint setswith respect to the composition of parts. These setsare
represented by the classes BasePart and CompositePart. More precisely, we define the classes
BasePart and CompositePart to be category specializationsof theclassPart. Thatis, every partis
either abasepart (i.e., instance of classBasePart) or acomposite part (i.e., instance of class Com-
positePart). Asaninstanceof classPart apartisrepresented just asageneral part abstracting from
its categorization into base part or composite part. The semantics, i.e., the behavior, associated
with the semantic modelling primitive category specialization is provided by the metaclasses
GenCatpecClass and CatSpecClass. In our sample database schema these two classes are im-

3

tional power of the database programming languages Adaplex, PS-algol, and Galileo. Thisgivesa
good framework for comparing VML with existing work.

The exampledatabaserepresentstheinventory of amanufacturing company. In particular it repre-
sentstheway certain partsare manufactured out of other parts. the subpartsthat areinvolvedinthe
manufacture of a part, the cost of manufacturing a part from its subparts, the mass increment or
decrement that occurs when the subparts are assembled. Manufactured parts may themselves be
subpartsin afurther manufacturing process. Hence, the subpart relation formsan acyclic graph. In
addition, certain information must be held on the parts themselves: their name, identifying num-
ber and, if they areimported, (i.e. manufactured externally) the supplier and purchase cost. Asin
[1] we present a solution for the following four tasks which we have slightly extended:

1. Describethe database.

2. Print the names, cost and mass of all imported partsthat cost more than $100. Furthermore,
increment the costs of each of these parts by 10%.

Print the total mass and total cost of a composite part.

4. Recordinthedatabase anew manufacturing step, i.e. how anew composite part ismanufac-
tured from subparts.

Thisexample coverscertainly only very few aspects of what would actually beinvolved inaman-
ufacturing database, but it covers all those aspects needed to illustrate the features of VML with
respect to the above listed requirements,

The paper is organized as follows:. Section 2 briefly describes those features of VML which are
relevant to understand the example and to illustrate the concept of persistency. Section 3 focuses
ontheconcept of persistent objects, and section 4 discussestransient valuesand their rel ationships
to persistent objects. Section 5 discusses the notion of persistency in the context of a class exten-
sion, and section 6 concludes the paper. The appendix shows the complete implementation of
some classes used in the sample schema.

2 The VODAK Mode Language (VML).

TheVODAK Model Language (VML) [6] isan open object-oriented datamodel. It providescon-
ceptsfor the definition of database schemas, object classes, properties, and methods. The concept
of metaclasses[7] allowsto define specific semantic modelling constructs, such asspecialization,
aggregation, component-of, which can be plugged in to the kernel model. This opennessof VML
allowsto tailor the model to specific application needs([8], [9], [10]). In thissection we only de-
scribetherelevant concepts of VML with respect to persistence. In thefollowing the conceptsare
illustrated by the database schema of our sample database.

Database Schemas

A VML database schema contains the definition of classes, object and datatypes, constants, and
the implementations of the methods defined for theinstances of classes. Furthermore, adatabase
schema can specify some definitions to be imported from another database schema. Our sample

1 Introduction.

There aretwo main rootsfor object-oriented database systems: the devel opment of semantic data
model sand the devel opment of abstracti on-based programming languages. Thisisreflectedinthe
two different approaches to build an object-oriented database. The bottom-up approach triesto
extent conventional database technology to become object-oriented by introducing richer data
modelsincluding facilitiesfor describing the operational semantics of the entities. The top-down
approach triesto enrich object-oriented programming languages by database features such asper-
sistence and object sharing.

The am of the VODAK project at GMD—PSI isto develop an object-oriented database system.
The database programming language of VODAK iscaled VML (Vodak Modelling Language).
VML is an object-oriented language based on a system of meta classes. In a programming lan-
guage offering or manipulating persistent objects, there are many design issues which must be
resolved. Over the time severa requirements with regards to persistent programming languages
evolved.

Thefirst oneis” persistenceindependent programming”. A language should be defined that apro-
cedure or amethod may be written without knowing whether it will be supplied with persistent or
transient dataasthe actual valuesof itsparameters(i.e. code used to manipul ate aval ue should not
depend on its persistence). Thisimpliesthat the programmer isfreed from the burden to include
explicit statementsto initiate or organize transfer of data objectsin the code. The required trans-
fers between stores should be inferred from the operations on the data.

Thesecond oneis” datatype completeness’. All datatypesmust enjoy equal statuswithinthelan-
guage and therulesfor using the datatypes must be complete. In existing persistent programming
languages some data types have been allowed to have only persistent instances, others have been
allowed only transient instances. Data type compl eteness impliesthat type checking rules can be
applied and programs carry with them enough information that they can be understood without
recourse to other texts. Data type completenessis best explained with the help of type construc-
tors, i.e. types that are parameterized by other types (e.g. set, array, ..). If the language allows a
set(t) construct, thenit should allow any typefor t (e.g. set(set(array-of integer))). Whether the set
of type constructors should be fixed in the language or whether the user should be allowed to de-
finenew constructorsisstill open. Maybethe” right” set of type constructorsissufficient for data-
base work.

Thethird requirement concerns operations on objects. Programming languages are predomi nant-
ly restricted to operationsonly ontheir basic datatypes (integers, reals, ..) and tend to rely on pro-
cedural abstraction to provide operations on the composite dataitems. In database systems, bulk
operations are considered very useful (e.g. select, join, ..). Thus, operations manipulating the ex-
tension of aclass (i.e. the set of existing instances at a certain time) as a whole are needed. For
example iterators over the extension of aclass are indispensable.

The purpose of thispaper isto describethedesign of VML with regardsto theaboverequirements.
In order to illustrate these issues we have chosen an example. The exampleistaken from[1] and
coversthe relevant aspects. This exampleisused in [1] to compare the modelling and computa-

Persistencein the Object-Oriented
Database Programming Language VML

Volker Turau
GMD-IPSI
Integrated Publication and
Information Systems Institute
Doalivostr. 15, D—6100 Darmstadt, FRG
e-mail: turau@darmstadt.gmd.de

Wolfgang Klas i
International Computer Science Institute
1947 Center Street, Suite 600
Berkeley, CA 94704, USA
e-mail: klas@ICSl.Berkeley.EDU

Abstract

Inthispaper the principlesof handling persistent objectsin the obj ect-oriented database program-
ming language VML is presented. The main design criteria of VML with respect to persistence
were: persistence independent programming, data type completeness and operations manipul at-
ing the extension of aclass. After defining the above mentioned concepts an exampleis used to
compare the modelling and computational power of VML with the database programming lan-
guages Adaplex, PS-algol, and Galileo. Thedistinction of typesand classesisthe basisfor defin-
ing persistencein VML. Instances of classes are always persistent and those of datatypesare al-
ways transient. All instances are referenced by object identifiers, values of datatypes are
referenced independently of thefact whether they are attached to persistent objects (and arethere-
fore persistent itself) or whether they are " stand alone”.

¥ Onleavefrom GM D-1PSI, Dolivostr. 15, D—6100 Darmstadt, Germany; e-mail: klas@darmstadt.gmd.de

INTERNATIONAL COMPUTER SCIENCE INSTITUTE

1947 Center Street @ Suite 600 @ Berkeley, California 94704 e 1-510-642-4274 e FAX 1-510-643-7684

Persistence in the
Object-Oriented Database
Programming Language VML

Wolfgang Klas *, Volker Turau
TR-92-045
July 1992

Abstract

In this paper the principles of handling persistent objects in the object-oriented
database programming language VML is presented. The main design criteria of VML
with respect to persistence were: persistence independent programming, data type
completeness and operations manipulating the extension of a class. After defining
the above mentioned concepts an example is used to compare the modelling and
computational power of VML with the database programming languages Adaplex,
PS-algol, and Galileo. The distinction of types and classes is the basis for defining
persistence in VML. Instances of classes are always persistent and those of data
types are always transient. All instances are referenced by object identifiers, values
of datatypes are referenced independently of the fact whether they are attached to
persistent objects (and are therefore persistent itself) or whether they are "stand
alone”.

*On leave from GMD-IPSI, Dolivostr. 15, D-6100 Darmstadt, Germany; e-mail: klas@darmstadt.gmd.de
tGMD-IPSI, Dolivostr. 15, D-6100 Darmstadt, Germany; e-mail: turan@darmstadt.gmd.de

