

22

 OBJECTTYPE CatSpec_InstInstType SUBTYPEOF Metaclass_InstInstType;
 INTERFACE
 METHODS initCategoryOf(generalInst: OID) ;
 categorySpecializationOf(): OID ;
 IMPLEMENTATION
 EXTERN prints(s:STRING); endline();
 PROPERTIES categoryOfObj: OID;
 METHODS
 initCategoryOf(generalInst: OID) ;
 { categoryOfObj := generalInst; };
 categorySpecializationOf(): OID ;
 { RETURN categoryOfObj; };
 NOMETHOD

{ RETURN categoryOfObj–>currentMeth(arguments); }
 END;

END_SCHEMA;

Figure 12: Definition of the instance-instance-type of the metaclass CatSpecClass.

21

OBJECTTYPE CatSpec_InstType SUBTYPEOF Metaclass_InstType;

 INTERFACE
 METHODS defCategoryOf(genClass: OID, asp: AspectId) ;
 createCategoryOf(generalInst : OID) : OID ;
 checkIsCategoryOf(generalClass: OID): BOOL ;
 categoryOf() : OID ;

new() : OID;
 IMPLEMENTATION
 EXTERN prints(s:STRING); printo(o:OID); endline();
 PROPERTIES categoryOfCls: OID;
 aspect: AspectId;
 METHODS
 defCategoryOf(genClass: OID, asp: AspectId) ;
 { categoryOfCls := genClass;
 aspect := asp; genClass–>defHasCategory(SELF, asp); };
 createCategoryOf(generalInst : OID) : OID ;
 { VAR categoryObj : OID;
 IF NOT SELF–>checkIsCategoryOf(generalInst–>(OID)class())
 THEN { prints(’Such a category object cannot be created for this object.’);

 endline(); RETURN NULL; }
 END;
 IF generalInst–>(BOOL)checkHasCategory(aspect)
 THEN { prints(’Creation failed: category for this object already exists.’); endline();
 RETURN NULL; }
 END;
 categoryObj := SELF–>new();
 categoryObj–>initCategoryOf(generalInst);
 generalInst–>initHasCategory(categoryObj, aspect);
 RETURN categoryObj; };
 checkIsCategoryOf(generalClass: OID): BOOL ;
 { RETURN categoryOfCls == generalClass; };
 categoryOf() : OID ;
 {RETURN categoryOfCls; };

new() : OID;
{ VAR generalInst : OID;

generalInst := SELF–>(OID)categoryOf()–>(OID) new();
RETURN SELF–>(OID)createCategoryOf(generalInst); };

 END;

Figure 11: Definition of the instance-type of the metaclass CatSpecClass.

20

OBJECTTYPE GenCatSpec_InstType SUBTYPEOF Metaclass_InstType;
 INTERFACE
 METHODS defHasCategory(catClass: OID, aspect: AspectId) ;

 hasCategories(aspect: AspectId) : {OID} ;
 IMPLEMENTATION
 EXTERN prints(s: STRING); printo(i: OID); printi(i: INT); endline();

PROPERTIES hasCategoryCls: ARRAY [SUBRANGE ASPECTMIN .. ASPECTMAX]
 OF {OID};

 METHODS
defHasCategory(catClass: OID, aspect: AspectId) ;

 { INSERT catClass INTO hasCategoryCls[aspect] END; };
 hasCategories(aspect: AspectId) : { OID } ;
 { VAR emptySet : { OID} ;
 emptySet := {};
 IF (aspect < ASPECTMIN) | (aspect > ASPECTMAX)
 THEN {prints(’ERROR in <hasCategories>, invalid aspect id.’); endline();
 RETURN emptySet; }
 ELSE RETURN hasCategoryCls[aspect];
 END; };
 END;
 OBJECTTYPE GenCatSpec_InstInstType SUBTYPEOF Metaclass_InstInstType;
 INTERFACE
 METHODS checkHasCategory(aspect: AspectId) : BOOL ;
 initHasCategory(catObj: OID, aspect:AspectId) ;
 hasCategory(aspect:AspectId) : OID ;
 as(catCls:OID) : OID ;
 IMPLEMENTATION
 EXTERN prints(s: STRING); printo(i: OID); printi(i: INT); endline();
 PROPERTIES hasCategoryObj: ARRAY [SUBRANGE ASPECTMIN ..

 ASPECTMAX] OF OID;
 METHODS
 checkHasCategory(aspect: AspectId) : BOOL ;
 { RETURN hasCategoryObj[aspect] != NULL; };
 initHasCategory(catObj: OID, aspect:AspectId) ;
 { hasCategoryObj[aspect] := catObj; };
 hasCategory(aspect:AspectId) : OID ;
 { RETURN hasCategoryObj[aspect]; };
 as(catCls:OID) : OID ;
 { VAR cls : OID; result : OID;
 result := NULL;
 FOR I := ASPECTMIN BY 1 TO ASPECTMAX DO {

 IF hasCategoryObj[I] != NULL THEN { cls := hasCategoryObj[I]–>(OID)class();
 IF cls == catCls

THEN { result := hasCategoryObj[I]; }
 END; }
 END; } END;

RETURN result; };
 END;

Figure 10: Definition of instance-type and instance-instance-type of the metaclass GenCatClass.

19

[9] Wolfgang Klas, Erich J. Neuhold, Michael Schrefl: Metaclasses in VODAK and their Appli-
cation in Database Integration, Technical Report No. 462, Arbeitspapiere der GMD, Birling-
hoven, 1990.

[10] Wolfgang Klas, Erich J. Neuhold, Michael Schrefl: Using an Object-Oriented Approach to
Model Multimedia Data, Computer Communications, Special Issue on Multimedia Sys-
tems, Vol. 13, No. 4, pp. 204–216, May 1990.

8 Appendix: Definition of Metaclasses

Figures 9, 10, 11, and 12 show the definitions of the classes, object types, and data types for the
metaclasses which implement the category-specialization modeling primitive as used in the ex-
ample of this paper. The implementation has been realized using the VODAK prototype version
1.0 at ICSI.

SCHEMA ObjectSpecializationMetaclasses
 DEFINE ASPECTMIN 1
 DEFINE ASPECTMAX 5
 DATATYPE AspectId = INT;

 CLASS GenCatClass METACLASS Metaclass
 INSTTYPE GenCatSpec_InstType
 INSTINSTTYPE GenCatSpec_InstInstType
 END;

 CLASS CatSpecClass METACLASS Metaclass
 INSTTYPE CatSpec_InstType
 INSTINSTTYPE CatSpec_InstInstType
 END;

Figure 9: Definition of the metaclasses GenCatClass and CatSpecClass providing the category-
specialization modelling primitive.

18

defining the sharing of objects as well as the persistence of objects. All instances are referenced by
oid’s, values of datatypes are referenced independently of the fact whether they are attached to
persistent objects (and are therefore persistent themself) or whether they are ”stand alone”. This
way VML supports class completeness which is the relevant requirement in an object-oriented
framework: the instances of all classes are persistent regardless of the corresponding object type.

VML provides operators manipulating the extension of a class (i.e. the set of existing instances at a
certain time). For example iterators can be defined for every set, including the extension of a class,
this way the expressiveness of a full query language is achieved. Furthermore, VML provides two
methods for deleting instances of classes, which are in the interface of every instance. These are
delete and deleteall. The first one does not guarantee referential integrity while the second does.
On the basis of these two methods, it is possible to define methods with a special delete semantics.

The implementation of task 3 is very simple, because the methods for mass and cost are already
included in the schema. In general one can say that application programs will be much shorter and
easier to write. This can also be seen from the implementation of task 4. Here, the method create is
used to record a new composite part. The implementation of the create method is based on the
method new, which creates simultaneously a base part and a part. This way the constraint that each
base part is also a part is satisfied and the application program is freed from the burden to check
semantic constraints.

7 References

[1] M.P. Atkinson and O.P. Buneman, Types and Persistence in Database Programming Lan-
guages, ACM Comput. Surv., 19(2):105–190, June 1987.

[2] S. Khoshafian and G. Copeland, Object identity, Proc. first ACM OOPSLA conference,
Portland, Oregon, September 1987.

[3] A. Goldberg and D. Robson, Smalltalk 80: The language and its implementation, Addison-
Wesley, Reading, MA, 1983.

[4] J.M. Smith, S. Fox and T. Landers, ADAPLEX: Rationale and Reference Manual, 2nd edi-
tion, Computer Corporation of America, Four Cambridge Center, Cambridge, Massachu-
setts 02142, 1983.

[5] The PS–Algol reference manual – 2nd edition, Department of Computing Science Persistent
Programming Research Group, University of Glasgow, Technical Report PPR–12–85, Glas-
gow G12 8QQ, Scotland, 1985.

[6] Klas W., E.J.Neuhold, R.Bahlke, P.Fankhauser, M.Kaul, P.Muth, T.Rakow, V.Turau: VML –
The VODAK Model Language. Technical Report. September 1991.

[7] Klas W.: A Metaclass System for Open Object-Oriented Data Models, Doctoral Thesis,
Technical University of Vienna, January 1990.

[8] Wolfgang Klas, Erich J. Neuhold: Designing Hypertext Systems using an Open Object-Ori-
ented Database Model, Technical Report No. 489, Arbeitspapiere der GMD, Birlinghoven,
1990.

17

OBJECTTYPE BasePart_OwnType
IMPLEMENTATION

METHODS // creates a new base part
create(id: STRING, name: STRING, supplier: Supplier,

purchaseCost : REAL, mass : REAL) : BasePart;
{ VAR newPartObj : Part; newBasePartObj : BasePart;

// first create both a base part object and a part object
newBasePartObj := self–>new(); // see CatSpec_InstType, appendix
newBasePartObj–>setSupplier(supplier);
newBasePartObj–>setCost(purchaseCost);
newBasePartObj–>setMass(mass);
// get the representation as Part; see CatSpec_InstInstType, appendix
newPartObj := newBasePartObj–>categorySpecializationOf();
newPartObj–>setName(name);
newPartObj–>setId(id);
return newBasePartObj; }

END

OBJECTTYPE CompPart_OwnType
IMPLEMENTATION

METHODS // creates a new composite part
create(id: STRING, name: STRING, initialSubparts : { Subpart },

assCost: REAL, totalMass: REAL) : CompositePart;
{ VAR newPartObj : Part; newCompPartObj : CompositePart;

// first create both a composite part object and a part object
newCompPartObj := self–>new(); // see CatSpec_InstType, appendix
newCompPartObj–>setAssemblyCost(assCost);
newCompPartObj–>setSubparts(initialSubparts);
newCompPartObj–>setMass(totalMass);
// get the representation as Part; see CatSpec_InstInstType, appendix
newPartObj := newCompPartObj–>categorySpecializationOf();
newPartObj–>setName(name);
newPartObj–>setId(id);
return newCompPartObj; }

END

Figure 8: Implementation of the object creation methods needed for a manufacturing step of a
composite object.

6 Conclusions.

This paper has presented the principles of handling persistent objects in the object-oriented data-
base programming language VML. The first design criteria was that programming code should be
free from statements to initiate or organize the transfer of objects from/to the persistent store.
Thus, the code is written in a form, which can work with persistent or transient data. This persist-
ence independent programming is achieved by taking the distinction of types and classes as the
basis for defining persistence in VML. Instances of classes are always persistent and those of data
types are always transient. Thus, the distinction between types and classes serves as a platform for

16

stances of that class, i.e. Part–>allInstances() is the set of all instances of the class Part. The data-
type of the return value is {Part}. This value can then be processed with the operations available
for sets (e.g. intersection, iterators, etc.). Another category of bulk operations is given by the query
language (see [6]).

Example Task 4

The implementation of task 4 defined in section 1, is given in Figure 7. First, three base parts are
created: a button, a case, and a cable. The variables part1, part2, and part3 represent the quantity
of the usage of these base parts in a composite part ”Mouse”, which is manufactured from the three
base parts. The implementation of the methods create defined for the classes BasePart and
CompPart are given in Figure 8. These methods create both a general representation of the base
parts and the composite part as instances of class part and the base part or composite part represen-
tation through instances of BasePart and CompositePart employing the method new provided
with the metaclass CatSpecClass. The create methods return the newly created instance of either
BasePart or CompositePart. The categorySpecializationOf method returns the corresponding in-
stance of class Part the receiver object is a categorization of.

// DATATYPE Subpart = [comp: Part; quantity : 1 .. MAXQUANTITY]
VAR part1, part2, part3 : Subpart;
// Create a few base parts

part1.comp := BasePart–>create(”BTN 90–020/C”, ”Button”, // $20, 10 g
 ”SunMiircoSystems”, 20, 10)–>categorySpecializationOf();

part1.quantity := 3;
part2.comp := BasePart–>create(”CC 90–020/D”, ”Case”, // $80, 200 g

 ”SunMiircoSystems”, 80, 200)–>categorySpecializationOf();
part2.quantity := 1;
part3.comp := BasePart–>create(”CC 90–020/D”, ”Cable”, // $2, 15 g

 ”SunMiircoSystems”, 2, 15)–>categorySpecializationOf();
part3.quantity := 1;
CompPart–>create(”MSC 90–001/A”, ”Mouse”, {part1, part2, part3}, 30, 250); // $30, 250g

Figure 7: VML implementation of task 4, i.e., record in the database a new manufacturing step,
i.e., how a new composite part is manufactured from subparts.

15

5 Manipulation of the Extension of a Class.

As already stated above the extension of a class (i.e. all instances of a class) is persistent. This
extension will change during the lifetime of a database. The main operations to manipulate the
extension of a class are creating new instances, deleting existing instances and updating properties
of existing instances. The first operation is accomplished by the new operator. This operator
creates a new object as an instance of a class.Consider the following program segment:

VAR obj : Part;
obj := Part–>new();

The variable obj gets assigned an instance of the class Part. This instance is newly created with the
new operator. After the execution of the program segment the extension of the class Part contains
one additional element. All the properties of this new instance have the value NIL.

The deletion of existing objects has far more consequences than creation of an object. The main
issues are referential integrity and complex objects. Is it possible to delete an instance which is
referenced by other instances and if so, what happens to the references? Furthermore, is it possible
to delete a complex object as whole (i.e. an instance with all the objects it references)?

One approach is to define persistence with the help of a ”reachability relation”. Each object which
is reachable from the database root is persistent. If an object is referenced by another object, then it
is possible to remove the former object from the extension of its class. But the object is still in the
database, because it is still referenced by an object reachable from the database root. Hence, the
instance is still present but not as a member of the extension of its class. To avoid this anomalous
situation a different approach is used in VML.

VML provides two methods for deleting instances of classes, which are in the interface of every
instance. The first one is called delete. If this method is sent to an instance of a class, the instance is
deleted from the extension of its class if this object is not reference directly by another object.
Otherwise nothing is done. In the former case, the instance is removed from all sets it is contained
in. Hence, this method guarantees referential integrity. The second method to delete objects is
called deleteall. If this method is sent to an instance of a class, the instance is removed from the
extension of its class and all references to it are set to NIL. Furthermore, the instance is removed
from all sets it is contained in. So this method also guarantees referential integrity. The implemen-
tation of deleteall is based on a technique called ”lazy deletion”.

On the basis of these two methods, it is possible to define methods with a special delete semantic
(for example to delete an object and all the objects it references, etc.)

In VML we have adopted the following strategy which is called lazy deletion. The deleteall meth-
od marks the object identifier such that a successive attempt to access this object realizes that the
object is deleted. The object itself is not immediately deleted. The marked objects are deleted at
the end of a transaction. Any attempt to access a deleted object through a reference from an exist-
ing object will be recognized, because every object access method checks the object whether it is
marked or not.

As already mentioned bulk operations are needed in database applications. Therefore, VML pro-
vides a method allInstances in the interface of every class. The method returns the set of all in-

14

OBJECTTYPE CompPart_InstType
IMPLEMENTATION

PROPERTIES subparts : { Subpart };
deltaMass : REAL;
assemblyCost: REAL;

MEtHODS
compositeMass() : REAL; // returns the mass of a composite part

{ VAR aSubpart : Subpart;
totalMass: REAL;

totalMass := 0;
FORALL aSubpart IN subparts DO

 totalMass = totalMass + aSubpart.comp–>mass() ∗ aSubPart.quantity;
END
return totalMass }

mass() : REAL; { return self–>compositeMass() + deltaMass; }
cost() : REAL; // returns the total cost of a composite part

{ VAR aSubpart : Subpart;
totalCost: REAL;

totalCost := assemblyCost;
FORALL aSubPart IN subparts DO

 totalCost = totalCost + aSubPart.comp–>cost() ∗ aSubPart.quantity;
END
return totalCost }

END

OBJECTTYPE Part_InstType
IMPLEMENTATION

PROPERTIES name: STRING;
id: STRING;

METHODS
cost() : REAL; { return self–>hasCategory()–>cost(); }
mass() : REAL; { return self–>hasCategory()–>mass(); }

END

OBJECTTYPE BasePart_InstType
IMPLEMENTATION

PROPERTIES supplier: Supplier;
purchaseCost: REAL;
mass: REAL;

METHODS
mass() : REAL; { return mass; }
cost() : REAL; { return purchaseCost; }

END

Figure 6: VML implementation of the methods cost() and mass() used in task 3. Only the relevant
fragments of the implementation of the object types are shown.

13

VAR compPart : CompositePart;
compPart := CompositePart–>findPart(”Ship”);
IF (compPart != NULL) THEN

PRINT << ” Cost: ” << compPart–>cost() << NEWLINE;
PRINT << ” Mass: ” << compPart–>mass() << NEWLINE;

END

Figure 5: VML implementation of task 3, i.e., print the total cost and total mass of a composite
part.

cost and mass of the composite part and, subsequently, to print the results. The implementation of
the methods cost() and mass() are given with the object type CompPart_InstType associated with
class CompPart (see Figure 6).

The method cost() computes the total cost by adding up the assembly cost and the cost of the sub-
parts times the number of subparts. The cost of each component is computed by the method cost()
which is sent to every subpart referred to by the property subparts which is defined for composite
parts with type CompPart_InstType. Every subpart is an instance of class Part (compare the data
type definition SubPart). Hence, at this point, the method cost() implemented for parts, i.e., the
method implemented with type Part_InstType is executed. This method in turn calls the method
cost() which is either the cost method implemented for base parts, i.e., implemented with type
BasePart_InstType, or the cost method implemented for composite parts.

The total mass of a composite part is computed in a similar manner to the total cost by the method
mass() defined for composite parts and it is not further explained.

12

VAR impPart, aPart: BasePart;
FORALL impPart IN { aPart IN BasePart–>allInstances() | aPart–>cost() > 100 } DO

PRINT << ”Name: ” << impPart–>name() << NEWLINE;
PRINT << ”Cost: ” << impPart–>cost() << NEWLINE;
PRINT << ”Mass: ” << impPart–>mass() << NEWLINE;
impPart–>setCost(impPart–>cost() * 1.1);

END

Figure 4: VML implementation of task 2, i.e., print the name, cost, and mass of all imported parts
that cost more than $100.

The variable declaration ”VAR compPart : CompositePart” denotes a location for an instance of
the class CompositePart (which must be defined previously) with the name comPart (see fig-
ure 5). Initially the location contains the value NIL. For another example consider the following
record type: DATATYPE Subpart = [comp: Part; quantity : 1 .. MAXQUANTITY] (see figure
1). A variable declaration of the form ”VAR aSubpart : Subpart” sets aside space for a handle to an
instance of the class Part and for a value of the domain of the integer subrange type 1 .. MAX-
QUANTITY (see figure 6).

The assignment operator := is provided to change the value of a location in the store. An assign-
ment to a variable changes the value of the corresponding location but has no effect on the object
being assigned or on the previous value of that location. For example an assignment of the form
compPart := CompositePart–>findPart(”Ship”); retrieves an instance of the class CompositePart
with name ”ship” and assigns this object to the location named compPart (see figure 5).

The statement compPart := CompositePart–>new() generates a new persistent object. The assign-
ment of an instance to a location has no effect on the instance itself (i.e. the value of its attributes
are unchanged etc.). Thus, if the variable compPart gets a new value assigned, the former object is
not changed (see for example the variable impPart in the implementation of task 2; figure 4). If the
data type of a variable is a class identifier, the declaration has the effect of supplying space for the
persistent handle for an instance of the class Part. In contrast to this the operator new generates a
new instance of a class, makes this instance persistent and returns this new object. Hence, the new
operator and the declaration of a variable have totally different semantics.

The equality operator which is defined for variables of the same data type compares the contents
of the corresponding locations. As a consequence in case the datatype of a variable is a class identi-
fier the object identifiers are compared. This is called identity in the literature about object-ori-
ented programming languages [2]. To achieve the semantics of shallow or deep equality, a user has
to write appropriate methods using the system provided equality operators in the implementation.

Example Task 3

The implementation of task 3 defined in section 1, is given in Figure 5 . First, a part called ”Ship” is
selected and its representation as a composite part is then assigned to the variable compPart. Then
the methods cost() and mass() are sent to the object referred to by the variable to compute the total

11

4 Variables and Assignments.

In VML a variable is introduced with a variable definition clause of the form:

VAR identifier : datatype;

where VAR is a keyword. This clause introduces a variable with name identifier. The variable is
constrained to assume values from the domain of the specified type. There are basically three pos-
sibilities for datatypes: primitive types, structured types and class identifiers. The structured types
are build with the following type constructors: record, variant, set and array. These type construc-
tors can be nested to any depth and their basic ingredients are the primitive types (Boolean, Inte-
ger, etc.) and the class identifiers. The domains of these types are the usual for primitive types and
for class identifiers they consist of the set of possible instances of the corresponding classes. The
domains of the structured types are defined on the basis of the above defined domains in the usual
manner for each constructor individually. All the domains contain an element NIL. For example in
the implementation of the method cost() for the class CompositePart the two variables aSubpart
and totalCost are declared (see figure 6). The first one is of the type Subpart which is a record type
(note the type of the first field is a class, see figure 1) and the type of the second is the primitive type
REAL.

In VML variables can be regarded as locations for values of the corresponding datatype. These
locations reside in a time varying store and introduce modifiability in the language. For example,
the variable declaration ”VAR totalCost : REAL” denotes a location for a value of the domain of
REAL. If the datatype of the variable is a classidentifier then the location for a variable can hold a
handle to an instance of the corresponding class. Since the handles to instances of classes are the
object identifiers, this location will eventually contain an oid. But from a users’ point of view it
will be the instance itself, because the set of methods applicable to that variable are exactly those
defined for the instances of the corresponding class. Furthermore, any update of a property of that
instance is also an update of the persistent object. This concept is illustrated in the implementation
of task 2, which is given in figure 4. This concept implies that the sizes of the locations for vari-
ables with datatype a class identifier are always the same and are known at compile-time.

The implementation of task 2 defined in section 1, is given in figure 4. The names, cost, and mass
of all imported parts that cost more than $100 are printed within a loop over the set of the appropri-
ate objects. Within this loop the costs of the parts are increased by 10%. This increment is achieved
with the method setCost(). In case a method is sent to an object and this method changes the state
of the object, this is automatically propagated to the persistent store. Thus, sending the method
setCost() to a variable of type BasePart updates automatically the property purchaseCost of the
instance hold by that variable in the database (the implementation of the method setCost() is
omitted in figure 6). Hence, the user is freed from the burden of taking care that the updates of
properties are correctly accomplished in the database.

10

PROGRAM CreateManufactureDatabase;
CREATE DATABASE ”ManufacturingDatabase” SCHEMA Manufacturer;

END;

PROGRAM BuildUpManufactureDatabase;
DATABASE PartDB SCHEMA Manufacture;

OPEN PartDB DATABASE ”ManufacturingDatabase”
// Statements which create base parts and composite parts. An example is given
// later in chapter 5.
FORALL p in { PartDB.Part–>allInstances() } DO

PRINT << p–>name(); << NEWLINE;
END
CLOSE PartDB;

END;

Figure 3: The creation, opening and closing of a database in VML.

In addition to this user level naming scheme, the system is based on a uniform method for naming
persistent objects. This relies on the use of unique object identifiers (oid’s) that are guaranteed to
be unique throughout the system. An oid is never used twice in the lifetime of a database. Further-
more, oid’s are immutable i.e. they cannot be changed once they have been created and bound to
an object, neither by the user nor by the system. They are the handles to persistent objects and are
invisible in an application program. Therefore, oid’s allow persistence independent programming
in VML. This is because all references to instances of classes in the code of a method are made
implicitly through them. This aspect of VML is discussed in detail in the next section. Object iden-
tifiers allow the VODAK object manager to locate the objects in the persistent store.

So far we have described persistent objects, but there are situations where transient values are
needed (for example in the body of a method). In VML values of datatypes are not persistent.
Hence, in a body of a method it is possible to define structured datatypes and to use them freely.
The scope of their existence is then the enclosing method body. Of course, when a value of such a
datatype is assigned to a property of a persistent object, these values will be persistent.

9

defined via reachability (e.g. CODL), that is the collection of objects form a directed graph where
the edges are established through references and the root is the database. All objects which are
reachable from the root object are automatically persistent.

Our approach differs in certain aspects from this graph based approach. In our model there are
several directed graphs whose entry points are the databases. From the roots the classes can be
reached and from there the instances and from those via the properties other instances of classes,
which are also referenced by their classes. Hence, everything which is reachable from a root is also
persistent. But this is a consequence of our definition and not the definition itself. Another differ-
ence is that in our model there is no need for garbage collection, this is because an object disap-
pears only if it was deleted explicitly. The deletion of an object will never have the consequence
that other object are no longer reachable, as it is the case in these graph based models where gar-
bage collection is necessary.

A consequence of this decision is that VML does not need an explicit operator for making objects
persistent. In case a language doesn’t provide a mechanism for automatically making objects per-
sistent, there must exist procedures for doing this (e.g. PS–Algol [5]). If the language does not
provide overloading this will be cumbersome, because there must be such a procedure for every
type used in the schema. In VML the creation of a new instance of a class automatically implies
that this instance will be inserted into the database. This is achieved by a new operator (see Table 1
andTable 2). This is similar to the approach taken in Adaplex [4].

In any system that supports some form of persistence, a mechanism is needed to enable a user of
that system to name, and subsequently access persistent objects. Hence there must exist a binding
between symbols in the program and objects in the persistent store. In a language without persist-
ence, the long term store has traditionally been implemented by files. The persistent name space
consists of the file names maintained by the operating system. To access persistent objects in this
case, a run time call to a system routine establishes the binding between the program and the file
and read/write calls perform the actual access. In VML the persistent resources are the instances of
the classes. Hence, mechanisms are needed to allow the user of a persistent object to specify the
object in such a way that the system can locate the object and load it. The persistent name space
consists of names of databases and of names of classes. As shown in figure 1 the names of classes
are declared within a schema definition.

Database names are defined when a database is created for a specific schema by the CREATE DA-
TABASE statement (see figure 3). Existing databases can be used in a VML program by associat-
ing it to a database variable. The declaration of a database variable specifies the schema name of a
database which can be bound to the database variable by a subsequent OPEN statement. This
mechanism allows to open several databases within one program.

A database variable provides the root to access the objects of a database. The only objects which
can be accessed directly from a database variable are those objects which represent a class. Access
is performed by using the class name qualified with the name of the database variable, e.g., in our
example program PartDB.Part or PartDB.BasePart. The qualification of a class name can be
omitted, if the class name is unambigous, i.e. if there is at most one database variable of each sche-
ma and if the class names of different schemata are disjoint. All other objects, i.e. instances in a
database which are not classes, can be accessed only starting from a class object using the methods
defined in the interface.

8

Method Receiver Semantics Defined by

new()
instances of
metaclass

CatSpecClass

creates a new instance of the re-
ceiver class as a category-special-
ized object of a general instance
which is automatically created too.
Returns the object identifier of the
newly created category specialized
instance.

CatSpecClass
(instance-type)

defCategoryOf(inst) – ” –

defines the receiver class to be a
category-specialization class of the
general class identified by the first
parameter with respect to the as-
pect identified by the second pa-
rameter.

– ” –

hasCategory()

instances of a
class with
metaclass

CatSpecClass

returns the identifier of that in-
stance which represents the receiv-
er object in the appropriate catego-
ry with respect to the aspect identi-
fied by the parameter.

CatSpecClass
(instance-ins-
tance-type)

categorySpecializationOf() – ” –
returns the identifier of that in-
stance of which the receiver object
is a category specialization.

CatSpecClass
(instance-ins-
tance-type)

Table 2: Specific methods defined for the semantic relationship category specialization as far as
they are needed in the examples. There are additional methods available with that semantic rela-
tionship but they are not discussed here.

3 Persistence in VML.

The term persistence is used to describe that property of data that determines how long it should be
kept. It is an orthogonal property of data, that any data item may exist for an arbitrarily long time
(e.g. longer than the duration of one program execution). Some form of orthogonal persistence
exists for some time in other systems [3]. It consists of a mechanism to save and restore the current
workspace (so-called all–or–nothing persistence). Procedures can be saved in files and read in
again in some subsequent session. Problems of scale, lack of a transaction mechanism, and lack of
adequate mechanism for the independent development of program and data are the chief prob-
lems.

The starting point for defining persistence in VML is the distinction of types and classes. Roughly
speaking instances of classes are always persistent and those of data types are always transient.
Thus, the distinction between types and classes serves as a platform for defining sharing of objects
as well as persistence of objects. This decision was motivated by the general modelling philoso-
phy that every interesting entity of the domain of interest should become a class. As a consequence
all interesting entities are persistent and can be shared. This way VML does not fully support data
type completeness but it supports class completeness which is the relevant requirement in an ob-
ject-oriented framework: the instances of all classes are persistent regardless of the corresponding
object type. This approach towards persistence differs from other systems where persistence is

7

Method Receiver Semantics Defined by

class() objects,
classes

returns the object identifier of the re-
ceiver’s class

system predefined

new() classes
creates a new object as an instance of
the class and returns the object identifi-
er of the newly created object

system predefined

allInstances() classes returns the set of object identifiers of
all instances of the class

system predefined

delete(instance) classes
removes and destroys that instance of
the class which is identified by the pa-
rameter.

system predefined

isInstance(instance) classes
tests whether the object identified by
the parameter is an instance of the class
or not.

system predefined

Table 1: Methods defined for all objects, i.e., classes and their instances unless elsewhere rede-
fined.

Specific Metaclasses for Category Specialization

VML constitutes a kernel model which can be tailored to specific application needs. It provides a
few predefined metaclasses for specific semantic modelling primitives such as object specializa-
tion, object generalization and aggregation. As previously mentioned, the metaclasses GenCat-
Class and CatSpecClass provide the necessary behavior for classes and their instances which are
categorized into several disjoint sets by appropriate method definitions. A detailed description of
these two metaclasses including their definition in VML is given in [6]. In this paper we only de-
scribe the relevant part of the interface provided by the metaclasses in order to explain the various
tasks defined in section 1. Table 2 shows the specific methods provided for classes and instances
which are categorized into several disjoint sets as far as needed for our examples.

With the INIT-clause of a class definition one can specify some methods to initialize the class. In
our example (Figure 1) the classes BasePart and CompositePart are initialized by the method def-
CategoryOf to be a category specialization of the class Part. The method defCategryOf is pro-
vided by the metaclass CatSepcClass and is defined for classes1.

1. In the actual implementation of the metaclass CatSpecClass (as shown in the appendix) the method defCategory-
Of takes a second argument which is used to distinguish between several categorization criteria, e.g., parts can
be categorized into base and composite parts with respect to their composition, but they also can be categorized
into licensed and non-licensed parts with respect to the licence status of a part. But as we do not need this feature
in this paper we do not describe it in more detail and ignore it in the description herein.

6

ported from the VML schema ObjectSpecializationMetaclasses. The class Part has associated the
metaclass GenCatSpecClass which provides the semantics and behavior needed to categorize the
class into other classes. The classes BasePart and CompositePart have associated the metaclass
CatSpecClass which provides the semantics and behavior needed to define both classes as a cate-
gorization of the class Part. Details about the specific methods provided for classes and their
instances by the metaclasses GenCatSpecClass and CatSpecClass are given later.

CatSpecClassGenCatClass

PART

instance-ofinstance-of

Figure 2: Category specialized classes BasePart and CompositePart are disjoint partitions
of class Part with respect of the composition of a part. That is, an instance of class PART is
categorized as an instance of either class BasePart or clas CompositePart

BasePart

CompositePart

category specialization of

cat.spec.of

instance-of

instance-of

Message Passing and Method Execution

The properties of an object can be accessed (read or manipulated) only through the execution of
methods defined for it. The execution of a method m is invoked by sending a message
rcvr–>m(arguments) to the object rcvr.

The semantics of sending a message rcvr–>m(arguments) to an object are as follows:

• If the method m is defined for the object rcvr, the code specified for m is executed.

• If the method m is not defined for the object rcvr, the message rcvr.inheritanceBehavior(m,
arguments) is executed, where the method m and its arguments are passed as arguments to
the user specifiable method inheritanceBehavior. The implementation of this method deter-
mines the future execution of the method m within the scope of other objects existing in the
database that may even be members of other object classes.

The delegation of messages to other objects via the method inheritanceBehavior allows, as we
shall see in the next chapter, the specification of a particular inheritance behavior for semantic
relationships such as category specialization between objects. The method inheritanceBehavior
is implemented by a metaclass for the instances of a class. In particular, this ability has proven
useful, when adding specialized modelling primitives for hypermedia and argumentative net-
works [8] and for database integration [9] to VML. Table 1 shows all the predefined methods de-
fined for classes and their instances.

5

SCHEMA Manufacturer
IMPORT GenCatClass, CatSpecClass FROM ObjectSpecializationMetaclasses
DEFINE MAXQUANTITY 200 // maximum number a part can be used as a subpart
DATATYPE Subpart = [comp: Part; quantity : 1 .. MAXQUANTITY];

CLASS Part METACLASS GenCatClass
OWNTYPE Part_OwnType

METHODS findPart(name: STRING) : Part; // returns the part with that name
INSTTYPE Part_InstType

METHODS name() : STRING; // returns the name of the part
setName(aValue: STRING); // assigns a name to the part
id(): STRING; // returns the identifier of the part
setId(aValue: STRING); // assigns an identifier to the part
cost(): REAL; // returns the total cost of the part
mass() : REAL; // returns the mass of the part

END

CLASS BasePart METACLASS CatSpecClass
OWNTYPE BasePart_OwnType

METHODS create(id: STRING, name: STRING, supplier: Supplier,
 purchaseCost : REAL, mass : REAL) : BasePart;

findPart(name: STRING) : Part; // returns the part with that name
INSTTYPE BasePart_InstType

METHODS mass() : REAL; // returns the mass of the part
setMass(aValue: REAL); // assigns the mass
supplier() : Supplier; // returns the supplier of a base part
setSupplier(aValue: Supplier); // assigns the supplier to a b. part
cost() : REAL; // returns the cost of the base part
setCost(aValue: REAL); // assigns the cost of a base part

INIT defCategoryOf(Part)
END

CLASS CompositePart METACLASS CatSpecClass
OWNTYPE CompPart_OwnType

METHODS // creates a new composite part
create(id: STRING, name: STRING, initialSubparts : { Subpart },

 assCost: REAL, totalMass: REAL) : CompositePart;
findPart(name: STRING) : Part; // returns the part with that name

INSTTYPE CompPart_InstType
METHODS mass() : REAL; // returns the mass of a composite part

setMass(aValue: REAL); // assign the total mass of a comp. part
deltaMass() : REAL; // returns the (de-) or increment of mass
setDeltaMass(aValue : REAL); // assigns the de/increment of mass
cost() : REAL // returns the total cost of a composite part

INIT defCategoryOf(Part)
END

CLASS Supplier
INSTTYPE Supplier_InstType // not further specified here

END

Figure 1: VML schema for the example database.

4

database schema Manufacturer contains the definitions for four classes: Part, BasePart, Compo-
sitePart, and Supplier amongst the definition of a constant and a data type. The description of this
database, which provides a solution for task 1, is shown in Figure 1.

Objects, Classes, and Types

Classes collect objects of the same type. Every class has associated an object type as its instance-
type which specifies the structure of the class’s instances and the methods defined to operate on
these instances. For example, the class Part has associated the instance-type Part_InstType which
specifies a few general methods defined for parts, e.g., name() retrieving the name of a part, id()
retrieving the unique part identifier, and cost() retrieving the total cost of a part. Optionally, a class
may have associated an object type as its own-type which specifies properties and methods of the
class itself. Usually, own-types specify specific methods to create and initialize new instances.

In general, object types associated with classes specify methods and properties. In Figure 1 only
the interface specification is shown. The properties and the implementations of the methods are
given later. The interface specifications consist of the signatures of the methods, i.e., the method
name, a (possibly empty) list of formal parameters and their domains, and, optionally, the domain
of the result returned by the method.

Every class is a first class object and is an instance of another class, called its metaclass. Treating
classes as regular objects allows to apply the same mechanisms defined for instances also to
classes. In our sample database schema the classes are instances of either the metaclass specified
with the METACLASS-clause or a predefined default metaclass if no such clause is specified as in
the definition of the class Supplier. Further details on metaclasses are given in the following.

Semantic Modeling Primitives and Metaclasses

VML provides a specific mechanism which allows to tailor the data model to meet specific re-
quirements. Specific modelling primitives can be introduced into the data model by defining ap-
propriate metaclasses. Every class has associated such a metaclass. A metaclass defines specific
methods for the class and its instances it is associated to. The set of methods defined for a class C
consists of the methods provided with the associated metaclass and the own-type of C. The set of
methods defined for the instances of the class C is determined by the methods provided by the
metaclass and the instance-type of C. Hence, the class and its instances are able to behave accord-
ing to the semantics provided by the metaclass.

In our example we have to model parts which can be simple base parts bought from a supplier or
composite parts manufactured from other parts. To reflect this situation we define a class Part
which is categorized into two disjoint sets with respect to the composition of parts. These sets are
represented by the classes BasePart and CompositePart. More precisely, we define the classes
BasePart and CompositePart to be category specializations of the class Part. That is, every part is
either a base part (i.e., instance of class BasePart) or a composite part (i.e., instance of class Com-
positePart). As an instance of class Part a part is represented just as a general part abstracting from
its categorization into base part or composite part. The semantics, i.e., the behavior, associated
with the semantic modelling primitive category specialization is provided by the metaclasses
GenCatSpecClass and CatSpecClass. In our sample database schema these two classes are im-

3

tional power of the database programming languages Adaplex, PS-algol, and Galileo. This gives a
good framework for comparing VML with existing work.

The example database represents the inventory of a manufacturing company. In particular it repre-
sents the way certain parts are manufactured out of other parts: the subparts that are involved in the
manufacture of a part, the cost of manufacturing a part from its subparts, the mass increment or
decrement that occurs when the subparts are assembled. Manufactured parts may themselves be
subparts in a further manufacturing process. Hence, the subpart relation forms an acyclic graph. In
addition, certain information must be held on the parts themselves: their name, identifying num-
ber and, if they are imported, (i.e. manufactured externally) the supplier and purchase cost. As in
[1] we present a solution for the following four tasks which we have slightly extended:

1. Describe the database.

2. Print the names, cost and mass of all imported parts that cost more than $100. Furthermore,
increment the costs of each of these parts by 10%.

3. Print the total mass and total cost of a composite part.

4. Record in the database a new manufacturing step, i.e. how a new composite part is manufac-
tured from subparts.

This example covers certainly only very few aspects of what would actually be involved in a man-
ufacturing database, but it covers all those aspects needed to illustrate the features of VML with
respect to the above listed requirements.

The paper is organized as follows: Section 2 briefly describes those features of VML which are
relevant to understand the example and to illustrate the concept of persistency. Section 3 focuses
on the concept of persistent objects, and section 4 discusses transient values and their relationships
to persistent objects. Section 5 discusses the notion of persistency in the context of a class exten-
sion, and section 6 concludes the paper. The appendix shows the complete implementation of
some classes used in the sample schema.

2 The VODAK Model Language (VML).

The VODAK Model Language (VML) [6] is an open object-oriented data model. It provides con-
cepts for the definition of database schemas, object classes, properties, and methods. The concept
of metaclasses [7] allows to define specific semantic modelling constructs, such as specialization,
aggregation, component-of, which can be plugged in to the kernel model. This openness of VML
allows to tailor the model to specific application needs ([8], [9], [10]). In this section we only de-
scribe the relevant concepts of VML with respect to persistence. In the following the concepts are
illustrated by the database schema of our sample database.

Database Schemas

A VML database schema contains the definition of classes, object and data types, constants, and
the implementations of the methods defined for the instances of classes. Furthermore, a database
schema can specify some definitions to be imported from another database schema. Our sample

2

1 Introduction.

There are two main roots for object-oriented database systems: the development of semantic data
models and the development of abstraction-based programming languages. This is reflected in the
two different approaches to build an object-oriented database. The bottom-up approach tries to
extent conventional database technology to become object-oriented by introducing richer data
models including facilities for describing the operational semantics of the entities. The top-down
approach tries to enrich object-oriented programming languages by database features such as per-
sistence and object sharing.

The aim of the VODAK project at GMD–IPSI is to develop an object-oriented database system.
The database programming language of VODAK is called VML (Vodak Modelling Language).
VML is an object-oriented language based on a system of meta classes. In a programming lan-
guage offering or manipulating persistent objects, there are many design issues which must be
resolved. Over the time several requirements with regards to persistent programming languages
evolved.

The first one is ”persistence independent programming”. A language should be defined that a pro-
cedure or a method may be written without knowing whether it will be supplied with persistent or
transient data as the actual values of its parameters (i.e. code used to manipulate a value should not
depend on its persistence). This implies that the programmer is freed from the burden to include
explicit statements to initiate or organize transfer of data objects in the code. The required trans-
fers between stores should be inferred from the operations on the data.

The second one is ”data type completeness”. All data types must enjoy equal status within the lan-
guage and the rules for using the data types must be complete. In existing persistent programming
languages some data types have been allowed to have only persistent instances, others have been
allowed only transient instances. Data type completeness implies that type checking rules can be
applied and programs carry with them enough information that they can be understood without
recourse to other texts. Data type completeness is best explained with the help of type construc-
tors, i.e. types that are parameterized by other types (e.g. set, array, ..). If the language allows a
set(t) construct, then it should allow any type for t (e.g. set(set(array-of integer))). Whether the set
of type constructors should be fixed in the language or whether the user should be allowed to de-
fine new constructors is still open. Maybe the ”right” set of type constructors is sufficient for data-
base work.

The third requirement concerns operations on objects. Programming languages are predominant-
ly restricted to operations only on their basic data types (integers, reals, ..) and tend to rely on pro-
cedural abstraction to provide operations on the composite data items. In database systems, bulk
operations are considered very useful (e.g. select, join, ..). Thus, operations manipulating the ex-
tension of a class (i.e. the set of existing instances at a certain time) as a whole are needed. For
example iterators over the extension of a class are indispensable.

The purpose of this paper is to describe the design of VML with regards to the above requirements.
In order to illustrate these issues we have chosen an example. The example is taken from [1] and
covers the relevant aspects. This example is used in [1] to compare the modelling and computa-

1

Persistence in the Object-Oriented

Database Programming Language VML

Volker Turau
GMD-IPSI

Integrated Publication and
Information Systems Institute

Dolivostr. 15, D–6100 Darmstadt, FRG
e-mail: turau@darmstadt.gmd.de

Wolfgang Klas �
International Computer Science Institute

1947 Center Street, Suite 600
Berkeley, CA 94704, USA

e-mail: klas@ICSI.Berkeley.EDU

Abstract

In this paper the principles of handling persistent objects in the object-oriented database program-
ming language VML is presented. The main design criteria of VML with respect to persistence
were: persistence independent programming, data type completeness and operations manipulat-
ing the extension of a class. After defining the above mentioned concepts an example is used to
compare the modelling and computational power of VML with the database programming lan-
guages Adaplex, PS-algol, and Galileo. The distinction of types and classes is the basis for defin-
ing persistence in VML. Instances of classes are always persistent and those of data types are al-
ways transient. All instances are referenced by object identifiers, values of datatypes are
referenced independently of the fact whether they are attached to persistent objects (and are there-
fore persistent itself) or whether they are ”stand alone”.

� On leave from GMD-IPSI, Dolivostr. 15, D–6100 Darmstadt, Germany; e-mail: klas@darmstadt.gmd.de

