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Abstract

Speech recognition systems with small and medium vocabularies are used as natural human
interface in a variety of real world applications. Though they work well in a laboratory environ-
ment, a significant loss in recognition performance can be observed in the presence of back-
ground noise. In order to make such a system more robust, the development of a neural
network based noise reduction module is described in this paper. Based on function approxi-
mation techniques using multilayer feedforward networks (Hornik et al. 1990), this approach
offers inherent nonlinear capabilities as well as easy training from pairs of corresponding
noisy and noise-free signal segments. For the development of a robust nonadaptive system,
information about the characteristics of the noise and speech components of the input signal
and its past and future context is taken into account. Evaluation of each step is done by a
word recognition task and includes experiments with changing signal parameters and
sources to test the robustness of this neural network based approach.

1.0 Introduction

Various methods have been developed for the enhancement of a noisy speech signal; for a
list of references see e.g. Sorensen (1991). The choice of a particular method highly
depends on the application at hand. The approach investigated in this work is to consider
noise reduction as a continuous mapping of the noisy input data space to a space of noise-
free output data. The optimal mapping function is unknown and can be continuous or dis-
continuous, linear or nonlinear and variant or invariant in time depending on the input signal
characteristics and the complexity of the task. Hornik et al. (1990) and Hecht-Nielsen (1989)
have shown that function approximation in high-dimensional spaces can be done by a three-
layer feedforward neural network theoretically within any predefined mean squared error
accuracy.

The results reported from recent applications are encouraging: Tamura et al. (1988, 1989
and 1990) successfully trained a four-layer connectionist model for noise reduction on the
speech signal waveform. As a result, they got improvements in listening tests as well as



from spectrogram analysis. The training was time-consuming and took three weeks on a
supercomputer. Less CPU-expensive approaches operate in different signal domains after
previous data rate reduction. Sorensen (1991) and Sorensen and Hartmann (1991) found a
significant increase in word recognition rate from neural network based noise reduction
using the noisy sequence of cepstral vectors as input signal representation, and Barbier and
Chollet (1991) concluded from experiments in the same signal domain that even a speaker-
insensitive noise reduction mapping might exist.

For a given problem, however, there are still open questions concerning the choice of design
parameters such as the optimal network topology, the selection of a representative training
data set, or the choice of the learning parameters. This paper focuses on the development
of a neural noise reduction network by considering the application-related requirements for a
word recognition task. In order to isolate the additive noise problem from connected phe-
nomena like the speaker-stress related Lombard effect, all experiments are done with addi-
tive noise from different sources.

In the next section, the general approach is described and the requirements to a noise
reduction system are summarized from a task-oriented point of view. Several network topol-
ogies and variants of the training method are evaluated and compared in section 3. Prob-
lems related to the robustness of neural noise reduction in changing signal environment are
addressed and evaluated in section 4. Finally, the results are summarized and conclusions
are drawn.

2.0 Approach

The motivation for this neural network based approach is twofold: 1. from a theoretical point
of view, neural networks with one hidden layer are universal approximators and can be
trained from example data, and 2. from a practical point of view there are application-related
requirements which can also be met by neural networks. In this section, both points of view
will be discussed.

2.1 Function Approximation and Noise Reduction

For the following considerations, we assume that all signals are processed framewise, and
each signal frame can be represented by a n-dimensional vector. The type of coefficients
and their number depend on the signal representation. If we have a corresponding n-dimen-
sional noise-free version y for each n-dimensional noisy vector X in the training set, we can
estimate the relation between both. However, we have only access to both versions during
training (see section 2.2.2); after the training is finished, we apply the mapping function
learned from the L training pairs (2(|, yl) , I =1, ...L, to the test data in order to map
each new noisy input vector X to ¥, an estimate of the noise-free version of X. For a discus-
sion about the influence of the training data on the approximation error, see Geman et al.
(1992).The optimal solution fopt to this problem in the mean squared error sense is the
regression of y on X,

fopt: fOpt (x) = E[Y‘ X] (EQ1)
the expected value of Y given X. An approximation to this regression can be learned by

feedforward networks from representative training examples (Hecht-Nielsen 1989) by mini-
mizing the squared output error. To calculate the output error, pairs of successive noisy fea-



ture vectors at the input and noise-free vectors at the output (target vectors) are presented
to the network. After the forward pass of each noisy input vector through the network, the
squared difference between output and target is used for weight modification towards the
steepest gradient descend. Using error backpropagation (EBP, Rumelhart et al. 1986), the
squared error is fed back through the hidden layer(s) until all weights are adjusted. This is
done repeatedly until the minimum is reached or no further improvement can be observed.

The approximation capability of the network is closely related to Kolmogorov’s superposition
theorem, which states that any continuous function with multiple inputs is representable by
sums and superpositions of continuous functions of only one variable (Kurkova 1991).
Because the mapping between vector pairs can be considered as a superposition of n map-
ping networks with n inputs and one single output for each coefficient, it is sufficient to look
at only one of these networks (figure 1). The signal representation at the outputs of the hid-
den layer units is a nonlinear function of a weighted sum of the inputs plus an additive con-
stant term (not shown in figure 1). The desired output function is finally obtained from a
linear combination of the weighted outputs of the hidden units. The relation between the
input vector and the output for one coefficient f (X) in a network with h hidden layer units
is then

h n
fo(x) = ZVjﬂpSEWjiD(i+big, (EQ2)
j i=1

=1

with X as input vector, W;; as connection weights between input and hidden layer, the offset
bi as the additional input to the hidden units, Y( ) as the nonlinear hidden layer activation
function, and V; as weights from the hidden units to the output. A common choice for () is
e.g. a sigmoid-{ype function. One single hidden layer unit is shown in figure 2. Its contribu-
tion to the whole network is the calculation of the nonlinear activity function of the weighted
sum of its inputs plus an additional offset.

Some important hints for the practical realization of an appropriate network topology can be
found in Hecht-Nielsen (1989): the units of subsequent layers should be fully connected with
each other, and three layers are - at least theoretically - sufficient. An upper limit for the
number of hidden units his h<2n+ 1.

2.2 Application-Related Requirements

2.2.1 Application Environment and System Properties

Some properties of the noise reduction system can be formulated by considering the char-
acteristics of the input signal components, the complexity of the task, and the application
related design goals. They are shown in table 1 and affect the network development as fol-
lows:

* Signal complexity determines the linearity or nonlinearity of the task to be learned.
Analysis of the signal segment based squared error and experimental word recognition
results with different network types were used to develop an appropriate network struc-
ture.

» Context dependency of the present signal segment from its past and future neighbors
may require a network topology with a temporal input window for adjacent signal seg-
ments, leading to larger networks with more units and connections.
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Figure 2: The I-th hidden layer unit with nonlinear activation function U1}



» Signal dynamics and robustness of the pretrained network against parameter changes
determine the need for either adaptive or nonadaptive networks. Tests with different sig-
nal-to-noise ratio (SNR) levels of the noisy speech signal and changing signal sources
after training show the performance of nonadptive neural noise reduction in vaying signal
environment.

» Realtime capability requires a moderate network size and low data rate to limit the com-
putational power needed for the mapping. Therefore, a feature vector domain based
approach was chosen which leads to a continuous mapping of relatively small amounts
of already preprocessed input data.

Signal Properties System Requirements

Signal Complexity (Non)linearity
Context Dependency Temporal Input Window

Signal Dynamics (Non)adaptivity, Robustness

Application Environment

Minimal System Complexity

Realti ilit
ealtime Capability (Signhal Domain, Data Rate)

Segment Based Processing,

Application Ind d imizati
pplication Independence Task Independent Optimization

Table 1: System requirements derived from the signal properties and
the application environment.

e Conceptual application independence can be reached by a frame-based mapping
before signal segmentation into task dependent linguistic units. During training, the mean
squared error function is used as a task independent objective function.

2.2.2 Signal Characteristics and Noise Reduction Mapping

As we want the data rate as low as possible, we chose to perform noise reduction in the
domain of the domain of Ipc-cepstral coefficients. After segmentation and signal preprocess-
ing, we denote Y, the noise-free and X, the noisy feature vector in the k-th signal segment.
The optimal noise reduction mapping between the noisy and noise-free vector pairs is then
given by (EQ 1).

The training task is to find an approximation f to the optimal unknown mapping function
fopt to obtain an estimation S/k of the noise-free feature vector of segment K

fo 9. =1% . (EQ 3)
and the approximation f can then be learned from representative example data (see section
2.1).

If we assume that the (nonlinear) approximation to be found is continuous and differentiable,
we know from series expansion techniques that it can be separated into a linear part |i and
a nonlinear part nl as follows:



F(x) = 1i0g) +nl(x) . (EQ 4)

As speech is only stationary in short segments and important information is contained in the
dynamics of the speech signal, adjacent past and future segments also bear information
about the present one. Therefore, it is expected to be advantageous to look at a wider con-
textual input window when restoring the present segment of the noise contaminated speech
signal. In this case, (EQ 4) can be modified for a time window containing i future and j past
signal segments as input. The result is the context dependent mapping function

fcon: yk = fCOﬂ(Xk+i!"'ani--HXk_j) . (EQ 5)

The mapping function in (EQ 5) can be separated into a linear and a nonlinear component in
the same way as in (EQ 4). (EQ 5) represents an interpolation task in which a current signal
segment is estimated by considering the present signal segment as well as its signal envi-
ronment. The separation of the linear and the nonlinear part is independent of a particular
realization; it is known from optimal filter theory that for linear problems the Wiener filter
approach (e.g. Reich 1985) represents the optimal solution of the problem in the least mean
squared error sense. However, there are reasons to assume that parts of the problem are of
nonlinear nature. Townshend (1991) has shown that nonlinear systems work better than lin-
ear ones for the prediction of future signal samples, and this might also be true for the resto-
ration of a present speech segment from its distorted context dependent input. Furthermore,
additional nonlinearities are introduced by the signal preprocessing. Hence the complexity of
the noise reduction task is unknown and should not be restricted to linear systems. In the
experiments described below, the capability of neural networks to model linear as well as
nonlinear problems is used to compare the performance of both for the given application.

3.0 Network Design

Based on the general considerations above, different noise reduction experiments for the
isolated word recognition task are described in this section. Their goal is to answer the ques-
tions abol6ut the network topology, the training algorithm and training data selection and
presentation. The test environment is shown in section 3.1. Though developed in parallel,
the network topology related experiments (section 3.2) are described separately from the
training algorithm related experiments (section 3.3).

3.1 Test Environment

The multi-speaker database used in all experiments contains 30 isolated German words: 20
words from an office environment and the ten digits. They were spoken by five male and five
female speakers, with five noise-free repetitions for each speaker. In order to obtain a Lom-
bard-free noisy speech signal, printer noise and computer room noise were recorded, digi-
tized and added to the speech signal samples with different SNR'’s in the time domain. For
comparison reasons, computer generated white noise was also added to the noise data-
base. All signals were lowpass filtered with a cutoff frequency of 3.4 kHz, and ten LPC-cep-
stral coefficients were extracted every 10 ms from overlapping time segments.

After feature extraction the feature vector sequence is passed to the neural noise reduction
network, noise-reduced and finally segmented into a word sequence. After time normaliza-
tion to 40 feature vector long units, speaker dependent word classification is done using a
previously trained neural network with “scaly” architecture. A detailed description of this net-



work as well as its word recognition results were described by Krause and Hackbarth
(1988). The architecture of the test environment is depicted in figure 3.

The speech data set was divided into three partitions; the first two repetitions of the 30
words of each speaker were used as training set for both the mapping and the classification
network. The third repetition was taken as verification set for the cross validation test (CV,
e.g. Morgan and Bourlard 1989) during training (see section 3.3), and repetitions four and
five were used as a test set for the evaluation of the noise reduction and the classification
net. Therefore, all error rates shown in the result tables are obtained from 60 test words per
speaker and averaged over 10 speakers. For all topology and training algorithm related
experiments additive printer noise was chosen as noise signal; verification of these results
was done with computer room noise and computer generated white noise. The signal wave-
forms and the spectra of a printer noise and a computer room noise segment are plotted in
figure 4.

Two different performance measures were used to evaluate the experiments: the frame-
based squared error signal and the error rate from the word classification task. The advan-
tage of the frame based error is its independence from the classification system; however,
we are also interested in evaluating the influence of modifications to the noise reduction net-
work in terms of word error rates. For comparison of both error measures, several noise
reduction experiments with different network topologies were evaluated in terms of the aver-
aged squared frame error and the word error rates as well. Preliminary results for test data
with 10 dB SNR indicate, that both performance measures are closely correlated. Therefore
only the word error rates are shown in the following result tables.

The notation for the network topologies and activation functions described in this paper is as
follows: “50-20-10 sig, sig” e.g. denotes a three layer network with 50 input units, 20 hidden
units and 10 output units; the units in the hidden layer and in the output layer have sigmoid
activation functions in this example.

3.2 Topology

The linear part |i (X,) in (EQ 4) is a first order approximation of f (X, ) , and additional accu-
racy can be obtained from the nonlinear part nl (z(k) . To compare the performance of
purely linear versus nonlinear systems with and without context input for the current task,
two groups of word recognition experiments with different mapping network topologies were
made: 1. noise reduction of single input vectors with linear and nonlinear networks and 2.
the same experiments with past and future input context. According to the signal representa-
tion, all networks have ten output and a multiple of ten input units depending on the number
of context vectors. Linear networks with just one input and one output layer and linear activ-
ity function as well as nonlinear networks with one or two hidden layers, different number of
hidden units and sigmoid activity functions were evaluated. After initial tests, it was found
that one hidden layer with 20 hidden units and sigmoid output activation function are appro-
priate for the nonlinear context dependent network. Five input frames worked fine, and fur-
ther increase of the number of input context frames gave only little improvement.

Training was performed by using EBP together with CV, variable learning rate and random
presentation of noisy and noise-free vector pairs with or without input context. Both training
and verification data sets were contaminated with additive printer noise at SNR levels of 20,
10 and 6 dB for each recording. The results in table 2 are grouped into categories to allow
for easy comparison of the different experiments: the first row shows the word error rates
without noise reduction, and rows 2 and 3 the results from the basic linear and nonlinear net-
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Figure 3: Signal preprocessing and test environment for the neural noise reduction experi-
ments.



works without context input. Significant reduction of the word error rate could be obtained

network _ test data SNR [dB]
topology . 20 10 6 0
no noise reduction - 30| 127 | 28.2 | 58.2
linearity
10-10 lin 7 2.0 4.3 88| 315
10-10-10 sig,sig 90 1.7 4.2 75| 285
context
50-10 lin 6 1.7 3.3 6.7 | 25.8
50-20-10 sig,sig 71 1.6 1.7 35| 16.5

Table 2: Comparison of different noise reduction network
topologies in terms of word error rates [%]. Test conditions
see text.

with both noise reduction networks, with better performance for the nonlinear network espe-
cially for low SNR. The impact of context input is shown in rows 4 and 5, with high improve-
ment over both context-free networks. In total, the word error rate could be reduced by more
than 40% in average for printer noise contaminated speech with 0 dB SNR.

However, the performance increase from the linear network without context input to the net-
work with the highest performance is computationally expensive, because the number of
training iterations (see table 2, column 2) increases with the network complexity. A rough
measure for the comparison of the training times is the number of connections multiplied by
the number of training iterations. Normalization of this measure to the result for the linear 10-
10 network leads to an increase in training time by a factor of approximately 4 for the linear
50-10 net, and factors of 26 and 122 for the nonlinear 10-10-10 and 50-20-10 networks,
respectively.

3.3 Training

The accuracy of the approximation highly depends on the selection of representative train-
ing data and the correct estimation of its parameters such as the SNR. However, every devi-
ation from the optimal mapping function can be considered as a source of additional
distortions in the feature vector domain. Possible origins are parameter misestimation as
well as specialization on the training data and hence insufficient generalization ability of the
network. Their impact on the word error rate is determined by the system'’s tolerance against
parameter variations during test. One of these varying parameters is the training data SNR
which was initially set to 10 dB after preliminary tests. In this section, results from different
variants of the EBP algorithm for the function approximation task with the 50-20-10 sig,sig
network topology are compared.

Initial experiments lead to a single frame error based weight modification after each forward
pass (per sample learning) instead of the accumulated error after the presentation of the



whole training set (batch learning). The following additions to EBP training were made: 1.
variable learning rate (var LR) to allow for larger weight modification steps at the beginning
and smaller steps as training proceeds, and 2. CV in order to test the generalization ability
after each iteration on the verification set and as stop criterion. Hence, weight modification is
determined by the training set error and the adjustment of the learning rate as well as the
stop criterion by the verification set error. As soon as the squared error difference after two
subsequent training iterations indicates the neighborhood of a minimum, the search is con-
tinued after dividing the learning rate by two. The results for this initial configuration are
shown in table 3, row 2.

Several modifications were made which affect the learning algorithm as well as the training
data selection and presentation. These modifications include:

 Random pattern selection instead of sequential presentation of adjacent frame pairs:
this technigue has only minor effect on the mapping performance (see table 3, row 3), but
reduces the training time by more than a factor of two because of faster convergence as
can be seen from the number of iterations in column 2.

* Multi-SNR training: instead of applying noisy speech recordings at only one average
SNR level as training data, random pattern selection allows for increasing the variance of
parameters such as the SNR in the training set by randomly selecting frame pairs from
differently distorted recordings. As a result, the word error rates decreased in the whole
range of test data SNR’s (table 3, row 4). However, this could only be reached by
increasing the amount of training data by a factor of three, because the whole training set
was presented with additive noise at 6, 10 and 20 dB SNR levels. At the same time the
number of training iterations remained nearly the same, which led to an increase in train-
ing time roughly by a factor of three.

training i test data SNR [dB]
algorithm 20 10 6 0
no mapping - 30| 127 | 28.2| 58.2
EBP+var LR+CV 192 2.0 25 47 | 205
+ rand. present. 82 2.0 2.0 49| 205
+ multi SNR 71 1.6 1.7 35| 165

Table 3: Comparison of different training variants in terms of
word error rates [%] and number of training iterations.

Two additional modifications were investigated: Weight averaging (Guillerm and Cotter
1990) in order to smooth the effect of gradient descent into direction of local error decay, and
a modified sigmoid prime (Fahlman 1988) to avoid the problem of “flat spots” during the
search for a minimum in the error function by introducing an additive term (set to 0.1) in the
sigmoid prime. However, the results from these experiments were in the same range as
those shown in the last row of table 3.
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3.4 Verification with Additional T est Data

The experiments described above were done in order to examine the performance of the
noise reduction mapping and also to optimize the network topology and the training algo-
rithm. However, the optimization should not be dependent on a particular type of noise.
Therefore, the experiments were repeated with two different noise signal components. The
nonlinear 50-20-10 network, which was optimized for printer noise, was taken for these
experiments and no further design parameter modification was made. The two additional
noise signal components used for these tests were the recording of computer room noise
and the computer generated white noise already mentioned in section 3.1. As can be seen
from the plots in figure 4, the main differences in the spectrum between noise signals are the
harmonics, which can be noticed in the printer noise spectrum. The computer room record-
ing consists of superposed components from multiple noise sources like hard disk drives,
ventilation, air condition and others, whereas the printer noise is generated by one single
source. Their main similarity is the spectral shape with a decay towards the high frequen-
cies. White noise is different from both. It has a flat spectrum, and adjacent noise samples
are not correlated with each other. The signal waveforms as well as the spectra of the printer
and the computer room noise segments are shown in figure 4.
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Figure 4: Time signal and spectra of computer room noise (left) and printer noise (right).

As can be seen in table 4, the noise reduction experiments were successful for the two addi-
tional test signals at different SNR levels. The word error rates after noise reduction were
similar for printer noise and computer room noise. Since the original error rates for the
printer noise signal were higher, the impact of noise reduction was slightly higher in this
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Test Data SNR[dB] | 20 | 10 6 0

Printer
No Noise Reduction 3.0 12.7 | 28.2 | 58.2
With Noise Reduction 1.6 1.7 3.5 16.5

Computer Room

No Noise Reduction 2.2 78| 17.0| 482
With Noise Reduction 1.7 2.7 35| 161
White Noise
No Noise Reduction 95| 46.2 | 61.0| 835

With Noise Reduction 1.8 3.5 82| 32.1

Table 4: Word Recognition error rates from speech with
additive noise from different noise sources.

case. This might be due to the optimization of the network to the printer noise signal. Sin-
cethe goal of the experiments is to develop a robust noise reduction system, no attempt was
made to further optimize the network for the new test data. For additive white noise, the ini-
tial error rate without noise reduction is significantly worse. Though the performance gain
obtained from noise reduction was the highest of all three test signals (up to 52%), the final
word error rates are still the worst among the results from differently distorted speech sig-
nals in the experiments. These results confirm, that noise reduction with neural networks is
highly effective in stationary signal environments. This was shown for experiments with
speech and different types of computer-added noise signals.

3.5 Automatic network design

So far, network development has been a time-consuming and experiment-driven process.
Two development steps were necessary: at first the choice of an appropriate network topol-
ogy and second, the adjustment of the weights. The future goal is the automatic design of an
appropriate network structure and the training of its weights in one step. Two different
classes of automatic network design algorithms are known from literature, namely algo-
rithms with constructive and with destructive strategy. Algorithms of the first class add hid-
den units and layers automatically to an already existing initial network and train the
appropriate weights according to a given error criterion until no further improvement is
obtained. Examples for this class are Cascade Correlation (Fahlman and Lebiere 1989) and
Recurrent Cascade Correlation (Fahlman 1990). For the second class of algorithms, a tem-
porary network topology is trained initially and optimized afterwards by applying rules for
deleting or merging connections in order to minimize the number of free parameters in the
network and also enhance the generalization ability. Representants of this technique are
Optimal Brain Damage (Le Cun and Denker 1989) and Soft Weight Sharing (Nowlan and
Hinton 1991).

Because of its similarity with the experiment-driven approach described in the last few
sections and its promising results in different applications, the group of constructive
algorithms seems more promising for the current approach. According to comparisons with
MLP’s (Fahlman and Lebiere 1989), the Cascade Correlation algorithm is also expected to
give improvements over MLP’s in terms of computing time and network size.

12



4.0 Robustness of Neural Noise Reduction

The robustness of the nonadaptive noise reduction network can be defined as insensibility
against changes of the input signal parameters after the training is completed. Since later
adaptation is impossible for nonadaptive systems, its operation is only reliable as far as a
certain parameter range is not exceeded. Outside this range the system has either to be
adapted, or it must be switched off in order to avoid a decrease of performance. The experi-
ments related to SNR changes have already been evaluated and shown in section 3. The
following experiments cover changes of the noise component as well as of the speech com-
ponent of the input signal.

The following two questions arise in connection with the use of nonadaptive systems for
noise reduction: 1. what happens if the signal context changes after the training is com-
pleted?, and 2. can we already cover expected changes in the input signal during the train-
ing of the network? A change in a signal component between training and test time is
denoted as “cross-signal” test in the following experiments ( “signal’ is either related to the
noise or to the speech component), and the inclusion of various signal characteristics in the
training data set is denoted as “signal-pool”-experiments. All these experiments were done
with the 50-20-10 network already described in section 3. An upper and a lower limit for the
experimental results are given by the “signal’-dependent training mode and the “no noise
reduction” results, respectively.

4.1 Noise Signal Variability

The experiments in this sections are performed in changing noise environment. Results from
three different training situations are compared to the word error results without noise reduc-
tion. According to the prior knowledge we have about the expected noise environment dur-
ing test, we can either include different expected signal sources into the training data (noise
pool tests), or a change to a non-trained noise signal source causes complete misestimation
of the noise signal properties during training (cross-noise tests. The training set for the
noise-pool experiments contains a mixture of all three noise signal types. All three training
data sets contain additive noise at a 20, 10 and 6 dB SNR levels, and the results shown in
table 5 were averaged over five male and five female speakers. Printer noise as well as
white noise distorted speech were chosen as test signals.

The results from noise dependent training are already described in section 3.4 (table 5, rows
4 and 8).In both cases, the noise-pool results give a reasonable improvement over the word
error rates without mapping, see rows 3 and 6. On the other hand, considerable losses com-
pared to the noise dependent situation have to be taken into account. Not surprisingly, the
results from cross-noise reduction are worse. Whereas they are still better than without
noise reduction for noise signals with similar spectral shape (row 2), completely different
noise sources during test and training result in a decrease of performance (row 6). From the
comparison of the noise dependent results with the noise-pool and cross-noise results it is
obvious, that adaptive networks were required for further improvement of the noise reduc-
tion performance in these situations. On the other hand, noise-pool training seems to be a
good compromise if the test signal environment is only partly known.
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Test data SNR [dB] 20 | 10 6 0

Test data: printer noise

no noise reduction 30| 12.7 | 28.2 | 58.2
cross-noise reduction (computer room) 25 53| 17.0| 475
noise-pool reduction 2.2 3.3 50| 21.7
noise dependent reduction 1.6 1.7 35| 165
Test data: white noise
no noise reduction 95| 46.2 | 61.0| 835
cross-noise reduction (computer room) 105 | 46.2 | 64.7 | 84.2
noise-pool reduction 15 53| 135 | 46.0
noise dependent reduction 1.8 3.5 82| 321

Table 5: Noise variability tests for printer noise and white noise. For the
description of the experiments see text.

4.2 Speech Signal Variability

Similar to the noise variability experiments, noise reduction tests with changing speakers
and stationary noise component were performed. These experiments help to clarify ques-
tions concerning noise reduction in speaker-dependent and speaker-pooled recognition sys-
tems. Table 6 shows the results: the speaker-pooled noise reduction mapping (row 2) was
trained from all ten speakers in the data base and gives already good results in comparison

Test data SNR [dB] 20 10 6 0
Test noise: printer
no noise reduction 3.0| 127 | 28.2| 58.2
one speaker pool 2.2 3.7 6.0 | 24.0
gender dependent speaker pool 1.7 2.6 40| 22.6
speaker dependent 1.6 1.7 35| 165

Table 6: Speech variability tests with different speakers during
training and test. explanations see text.

to the tests without noise reduction. Additional knowledge about the speech signal proper-
ties, e.g. the gender of the speaker, can help to improve the mapping. As with noise depen-
dent mapping, the best results are obtained when speech and noise signal characteristics
are known in advance (row 4).
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5.0 Summary

Mapping neural networks represent an efficient approach for the reduction of stationary
additive noise in the feature vector domain. They are able to approximate the unknown opti-
mal mapping function between the noisy and the noise-free signal space by learning from
representative examples. Training data selection and presentation is crucial, since robust-
ness against parameter variations can be enhanced significantly by incorporating them into
the training set. Tests with different SNR’s during training and test suggest that the network
be trained from noisy speech signals at multiple SNR levels. At the same time, training
speed can be accelerated by applying random pattern presentation.

The topology of the network is determined by the signal representation and the need of con-
textual input information. Though linear mapping already gives a reasonable first order
approximation for low distorted speech, the nonlinear capability highly improves noise
reduction performance especially in connection with context input. However, the training
time increases by two orders of magnitude between a single input frame based linear and a
context dependent nonlinear mapping. Network development is still an iterative heuristic
process, and automatic network design would be desirable. Since the training of these sys-
tems is time consuming, acceleration by applying faster training algorithms would be helpful.

This approach is conceptually application independent, since the optimization criterion dur-
ing training is the squared frame-based error; no segmentation into linguistic units is neces-
sary and speech pause detection is only required during the supervised training.

The robustness of the approximation learned during training is of crucial importance in a
changing signal environment. In order to determine the operation range, tests with changing
speech and noise component characteristics were performed separately. “Cross noise” and
“noise pool” experiments include either different or additional noise sources during training
and recognition in order to test the system behavior in unexpected signal environment. Fur-
thermore, expected changes can be included into the training set in advance. In general, the
results from these noise robustness tests were surprisingly good. Speaker variations can be
dealt with by including several speakers into the training set. Additional knowledge such as
gender or the data of a particular speaker helps to further improve the mapping results. In
some cases, adaptive systems are necessary to deal with a changing signal environment
such as a change between completely different noise sources during training and test. The
development of such networks will be a matter of future work.
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