
1

Proposal of an External
Processor Scheduling in

Micro-Kernel based
Operating Systems*

Winfried Kalfa

TR-92-028

May, 1992

Until now, the management of resources was a task of the operating systems kernel. The
applications running on the operating system were in general, similiar to each other. Thus the
limited policy of the resource manager could satisfy the demands of applications. With the advent
of computer systems capable handling new applications such as multi-media and of new
operating systems based on micro-kernels and supporting object paradigm in a distributed
environment, an external resource manager became important for both traditional operating
systems like UNIX with new applications and new object oriented and micro-kernel based
operating systems. In this paper an approach to an external scheduling on the basis of the
operating system BirliX is given. The proposal is based on a scheduler implemented in the user
space. Problems of the implementation are described by means of the operating system BirliX as
an example. Because the operating system is a distributed object-oriented operating system, our
proposal deals with local and distributed managers. Coming from a system model of the BirliX, a
resource model, and a process model, the scheduling model is developed.

* This research is supported by the Deutsche Forschungsgemeinschaft, and the International Computer Science
Institute. The views and conclusions contained in this document are those of the author, and should not be
interpreted as representing official policies, either expressed or implied, of any of the sponsoring organizations.
+ The Tenet Group, Computer Science Division, Department of EECS, University of California, Berkeley, and
International Computer Science Institute. On sabbatical leave from Dresden University of Technology, Germany.

2

1. Introduction
The increased performance of computer hardware enables one to use computers for up to now

not usable applications. For example, recent applications are large scale production control and

multi-media systems. The latter is characterized by support of audio and video input/output.

These continuous media have strong constraints. Traditional operating systems, such as UNIX,

will still be used a long time because of the large number of software running on these operating

systems. The current common purpose operating systems cannot satisfy these special constraints.

The increased performance is not so large, that the scheduling of resources does not play a role.

Figure 1 shows a situation in which applications are possible, but in which resources are scarce.

not sufficient
resources

scarce
resources

sufficient
resources

1980 1990 2000 year

video
interactive

high fidelity
audio

data access
via network

remote terminal
access

performance
demands

Figure 1: Performance requirements of applications/1/

That means the resource management needs a redesign. With regard to the existing software,

the operating system interface must not change. This allows only a realization of the new

resource management outside of the kernel in the user space with the additional advantage that

there is no switching between kernel and user address space.

On the other side, the micro-kernel based operating systems pertain to state-of-art operating

systems, such as Mach/2/, Amoeba/3/, LOCUS/4/, Chorus/5/, Clouds/6/, PEACE/7/, DIMOS/8/,

and BirliX/9/. These operating systems are characterized by keywords such as "micro-kernel",

"distributed", and "object-oriented". "Object-oriented" means there is a rough granularity in the

user space. All of the relations in the user space concern objects. But the objects consist of

resources and activities. The kernel manages the objects as well as the resources and activities.

3
The resource management is often very simple and does not meet the demands of the application,

hence it seems to be a good idea to schedule all or a portion of the resources outside the kernel in

the user mode. This paper deals with the scheduling of the processor in the operating system

BirliX. The present approach can also be used for the modification of old fashioned operating

systems, in principle.

In our approach the applications themselves estimate the scheduling strategy as far as the

resources suffice. The approach includes three phases:

1. In the first phase the application negotiates with the operating system to determine whether

sufficient resources are available and whether the restricted quality of service will be guaranteed.

This phase is not time critical.

2. The second scheduling phase is time critical.

3. The third phase terminates the resource scheduling for the application. The resource can

now be scheduled for another application.

The next chapter presents a system model of BirliX, Chapter 3 the process model, and Chapter

4 the resource model. Chapter 5 discusses our approach of the external processor management.

2. System model
All of the above quoted systems are similar. Therefore, the operating system BirliX is given as

an example of that class of operating systems. On the other hand we will implement a prototype

using our approach.

Objects in the user or application space of BirliX are instances of abstract data types. The

implementation structure of each instance is a so-called team. The teams consist of activities

(light-weight processes = threads), and resources. Applications in BirliX are sets of interacting

teams distributed among several loosely coupled nodes. Teams are the smallest units of

identification, distribution, and communication. A distributed naming and locating service

identifies and locates the teams. Teams communicate by (remote) procedure calls between agents

(the light-weight processes in the team). This communication represents the functionality of the

applications. From the view point of teams, BirliX pretends to be a single large system providing

all of the resources. The teams are implemented in a persistent memory, so that the status

diagram in Figure 3 describes the status of a team. Teams exist forever opposite to processes in

traditional operating systems which exist only during their run time. Teams can either be active

or passive.

Passive teams have a persistent data representation (program code, descriptor tables, access

tables, and data) in the persistent memory. They continue to exist as long as they are referenced,

and they can only be destroyed by an explicit service. As far as teams are passive they need only

the persistent memory as a resource. As teams become active they need more resources, a

4
processor, and ports for the communication, to run the processes in the team and to provide the

functionality. The idea of BirliX does not consider such resources as files, devices, signals, or

messages. The first two can be delivered by teams, the last two are reduced to the remote

procedure call mechanism.

team
descriptor

agents

access
descriptor

program
code

data
team
descriptor program

code
data

access
descriptor

team

team
manager memory

control

processor
scheduling

port
management

user space

kernel space

Figure 2: Objects in BirliX

create

existent

non
existent

active

destroy

close

open

Figure 3: State diagram of teams

5
Thus we get the system model in Figure 4 for the goal of this paper. The teams need the

resources

- processor

- memory

- message passing system.

This paper deals with the resource processor; the other resources and their possible interaction

remain for further works. The teams require the resource processor including special quality

parameters. The resource management has to provide the resource with the required quality or

reject the resource demand.

team
resources
methodes

team
resources
methodes

team
resources
methodes

SAP
ideal world
for each
object

tough real world

non-objects
but hierarchy of layers

infinitely fast processor
infinitely persistent memory
infinitely fast message passing

one or more processors per node
finite physical memory
finitely fast channels

Figure 4: System model

3. Resource model
Let us assume the team activity as given. We will discuss it in the next chapter. If activities

have all of the needed resources, they can continue. Activities and resources must belong to the

same layer in a system. Activities in the application layer of traditional operating systems know

6
files, but no tracks on a storage medium. In contrast, an interrupt activity in the operating system

kernel knows the signals of a controller, but no files. A resource is considered as a dupel

resource ::= (identifier, value).

Because computers carry out operations in discrete moments we mention time as a period of

more than one such moment.

There are re-usable resources (processor, memory) and consumable resources (signals,

messages) with regard to time. Re-usable resources have unique identifiers and variable values.

The values of re-usable resources are time independent, but variable (processor register, memory)

or a function of time (transmission lines, buses). Consumable resources are produced and

consumed, the identifier as well as the value.

Any resource able to change values of itself or another resource is called a processor. These

processors are driven by a "hard-wired" control (clock) or a programmable control (CPU, I/O-

controller) and operate independently of each other. The processors, like some other resources

(transmission line, printer) need be used exclusively, because the simultaneous usage by more

than one activity could cause irregularities. Thus, there are in computer systems many activities

simultaneously, but at one time one processor belongs only to one activity. Processors can only

be multiplexed in time, i.e. in one time the processors belongs to one activity, in another time to

another activity. Other ressources can be used by more activities at the same time, either the

activity reads only values (counter of a clock) or the resource is divisible in more parts assigned

to distinct activities.

Resources are characterized by a lot of features:

• address space of own variables or the variables of other resources: processor

• value space (grain) : memory

• transformation (values per sec) : processor

• transmission (values per sec) : transmission line

• exchange of values of own variables (values per sec) : processor

• instruction set : processor

We mention that the resources are of a different kind in a computer system. A good way to

describe this is with a hierarchical layer model /10/.

7

r

r

SAP

r

r

-1

SAP

SAP

L

i

i-1

0

L

L

send
receive

control

demand

assign

= interrupt system

assign

demand

control

control

control

control

service

service

service

service

control

Hierarchy of virtual machines

one and only one process in this layer
Who should control the others ?

Figure 5: Hierarchical layer model of activities and resources

For example the resource file on the highest layer is transformed down on tables (e.g. i_nodes

in UNIX) and external storage, the kinds of resources in different layers are different. In another

example only the attributes of the resource are changed. The processor of the layer S i-1 with the

transformation rate 10 mips is divided in 10 virtual processors in the layer S i with the rate 1 mips

to each virtual processor. An alternative approach consists in a 1:1 transformation from S i-1 to S
i and a scheduling of the only resource to the activities. We will discuss both approaches in

Chapter 4.

8

Figure 6: (a) Transformation, (b) scheduling of the resource processor

Because an activity must have all needed resources, there are interferences between the

assignments of resources. In this paper we will not take this into account. We will deal only with

the processor characterized by the following attributes:

• fixed identifier

• re-usable

• exclusively usable

• multiplexing in time

• m units of interchangeable processors

• further special attributes.

4. Process model
Activities in the teams of BirliX are the so-called natives and agents. Natives only need the

processor, memory for program code and data, and special hardware resources dedicated to the

native. Agents use as resources additional access tables and ports. All activities of a team are

running in the same address on one and only one processor. In this manner they are light-weight

processes, so that we will refer to them as processes. The syncronization of all teams and natives

is realized by the team itself, e.g. by a monitor.

We consider a process as a sequence of actions. Each process has at any one time a vector of

resource demands R D and a vector of resource assignments R A. If

R D ≤ R A

is true, the process is running. We presume the process has all other resources without the

processor. The interdependence of demands of more than one resource is subject to further

research in the future, especially the interdependence between processor scheduling and

pagefault handling. Another subject is to include parallel running processes in one team. But we

will consider more than one processor in a node, and the kernel processes as well.

9
The input/output processes need the CPU and an input/output processor. In fact there are two

communicating processes (Figure 7). One process needs the CPU processor, and the other the

input/output processor. The communication happens by means of a shared memory, e.g.,

registers in the controller or in the CPU address space mapped memory on the controller. The

interrupt system or a polling procedure manages the protocol between both processes. Thus each

process needs only one processor.

I/O
procedure

protocol

shared
memory

I/O
controller

CPU
ISR

interrupt
system

Figure 7: Separation of input/output processes in two processes

(ISR: interrupt service routine)

In order to decide when and how long a processor is to assign to a process, the scheduler

needs some information provided by the processes. The laxity for the scheduler can only arise

from the processes themselves, i.e., the applications.

Let us follow the notification in /11/ in the description of time parameters illustrated in Figure

8.

At the arrival time (creation of a new process or demand of a running process for a new

scheduling strategy) a process tells the scheduler about its existence and all information of the

future demands on processors. The more information and the earlier the process provides the

information, the better the scheduler can make a schedule. Because our system is an open system,

in which new processes are created and existing processes ended, we exclude making a complete

schedule before the first process runs.

10

execution

response T

max.response Tmax

arrival ready start completiondeadline

execution

∑ RADRDR RA

process 2

process 1

t

• • •

Figure 8: Time parameters of a process

With regards to the completion time we classify the processes (better the applications)

according with /10/ an /12/ in

 priority

real time processes T ≤ T max 1

work ahead processes T ≤ T max | T max - t > T 2

interactive processes T ≤ T max 3

background processes T ≤ ∞ 4

These unequations determine the goal of scheduling from site of the processes. Real time

processes have to supply deterministic information, but it is hard for the process to predict in

detail when, how long, and with what deadline they need the processor. In a large number of

applications the same process recurs with a previously known period. Work ahead processes

have a deadline, but are not critical to the time point t . Interactive processes supply only

probabilistic information, and it is forbidden to background processes to put demands on the

completion time.

5. Scheduling model
The demands of application for more flexibility led to operating systems with a microkernel

and the object paradigm. New functions are simple introduced by creation of a new object class.

But such systems, especially if they are distributed, are open systems with a permanent

interaction with the environment. Contrary to technical systems, in with the goals are known, a

priori, natural systems react on unexpected events with a change of goals and a reorganization.

Therefore distributed object-oriented operating systems should not have a rigid resource

11
management, but should be able to react upon new objects with new goals and in connection

with them with a new resource management.

demands
goals

attributes
goals

optimzation manager

Figure 9: Scheduling model

The objects require resources with certain attributes. Their objective of optimization is to meet

all of their requirements. On the other side the physical layer provides resources with the goal of

maximum throughput. Thus the application of the system needs a manager to agree with both

contrary goals. The manager is split in two parts, one transforms the physical resources to virtual

resources, and the other part controls the assignment of the virtual resources to the processes. The

management needs information, so there are two phases:

1. notification of later use of resources

2. scheduling

In traditional operating systems the scheduler follows rigid given algorithms. Perhaps some

parameter, e.g., the priority, or the wanted class, e.g., "real time" or "background", can be

specified, but not more.

Before a process will be running the resource manager has to know the scheduler. In the first

negotiation phase, the process, calling the creation of the new process, requires a special virtual

processor. Otherwise a running process wants to exchange the scheduling strategy. Thus the

process negotiates with the processor manager. The required virtual processor is represented by a

scheduling team. Before using a scheduler it must exist in the system (Figure 3). After its

12
opening the schedule team negotiates the opportunities of later scheduling with the calling

process. The result is "yes", if the processor capacity is sufficient, or "no" in the opposite case.

In the second phase, the scheduling phase, the assignment of the processor to the process is

managed, whenever an event appears. Such events are "soft" from another process or "hard"

events from another processor. Especially, deadline scheduling or time slice algorithms need a

clock processor. Input/output processors provide events as well.

6. Implementation

scheduler

attributes

virtual
processor

shared
memory

kernel
switch

user space

kernel space

hardware

scheduler

attributes

virtual
processor

clock
processor

master

Figure 10: Implementation of the scheduler in BirliX

The schedulers are implemented as teams. Because the change of the address space is only

possible in the kernel model the switching of it remains in the kernel. The information about all

13
scheduled processes is retained in a shared memory of all schedulers, master scheduler and kernel

switch. The master scheduler negotiates with the processor requiring processes in the first phase.

Specifically, it creates or opens a new necessary scheduler.

With that framework of scheduling we will have a testbed for

• implementation of distinct scheduling strategies

• measurements of the strategies

• classification of applications

• investigations of centralized and distributed scheduling

• investigations of interferences between scheduling distinct resources.

7. References
/1/ D.P.Anderson and R.G.Herrtwich: Resource Management for Digital Audio and Video.

IEEE Workshop on Real-Time Operating Systems and Software, Charlottesville, May

1990.

/2/ M.Young, et al.: The Duality of Memory and Communication in the Implementation of a

Multiprocessor Operating System. ACM Operating System Review, 21, 5.

/3/ S.T.Mullender, et al.: Amoeba: a Distributed Operating System for the 1990's. Computer

23,5.

/4/ G.Popek, B.J.Walker; The LOCUS Distributed System Architecture. MIT Press, 1985.

/5/ M.Rozier, et al.: Chorus Distributed Operating System. Computing Systems J. 1,4.

/6/ J.M.B.Auban: The Architecture of Ra: A Kernel for Clouds. Georgia Institute of

Technology, Techn. Rep. GIT-ICS-88/25.

/7/ R.Berg, et al.: The PEASE Family of Operating Systems. GMD First Techn.Rep. 1991.

/8/ F.Krause, U.Schneider: Gestaltung des Kerns des verteilten Betriebssystems DIMOS. TU

Dresden Proc. of the Workshop "Entwicklungstendenzen von Rechnernetzen" 1991.

/9/ H.Härtig, et al.: Architecture of the BirliX Operating System. Techn. Rep. GMD

Birlinghoven, 1991.

/10/ W.Kalfa: Betriebssysteme. Berlin, Akademie-Verlag, 1990.

/11/ R.G.Herrtwich: An Introduction to Real-Time Scheduling. ICSI Berkeley Techn. Rep.

TR-90-035 1990.

/12/ D.P.Anderson, R.Govindan: Scheduling and IPC Mechanisms for Continuous Media.

Proc. of the 13th ACM Symposium on Operating Systems Principle 1991.

/13/ D.P.Anderson: Meta-Scheduling for Distributed Continuous Media. UC Berkeley EECS

Dept. Techn.Rep. UCB/CSD/90/599 1990.

