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Abstract
Optical interconnection networks, in which each processor contains a set of lasers for
communication with other processors, have long been studied. In the “regular optics”
model of Murdocca [5] a bounded number of planar mirrors are used to redirect light
beams, and each processor has a bounded number of lasers directed at a fixed set of
angles, independent of the processor.

It is theoretically interesting to ignore diffraction, and assume that lasers beams
travel in a straight line. In the regular optical model, we present elegant layouts for
processor networks including the shuffle, grids, and Margulis’ expander graph. We
also disprove the existence of a certain kind of 3-dimensional layout for shuffles.

Using slightly more complicated optical devices, such as beam splitters, we design
a “light guide,” which allows simultaneous broadcasts, subject only to the limitations
of light sensors. In particular, the light guide can perform single broadcasts. Given
accurate enough clocks, it can perform arbitrary permutations.
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1. Introduction

Good introductions to optical computing can be found in [4, 5]. Lasers can be made
very small and very fast, and experimental technology is improving rapidly. At least
in theory, it now appears that optical computing may scale down better than electrical
computing for very large-scale integration.!

Current gallium-arsenide technology yields lasers several microns in diameter with
switching times of several picoseconds. Unfortunately, the light from such lasers
diffracts at a 30-degree angle. Gas lasers produce light beams with virtually no
diffraction; however, they are too large to be useful in the production of large-scale
circuits.

While current technology does not support a model of large-scale integrated optical
computing in which laser beams travel in a straight line, there is already pressure
to produce tiny lasers with smaller diffraction angles than are currently produced.
Therefore we think it is theoretically interesting to consider optics without diffraction.
After all, it is not unusual for theory to precede technology.

Previous papers have shown how to lay out processor-memory interconnects opti-
cally using lasers, light sensors, lenses, prisms, holograms, and mirrors. In this paper
we will be concerned with laying out networks of processor-to-processor connections.
We will lay out several processor networks using only lasers, light sensors, and mir-
rors. Our layouts are simpler than those for processor-memory interconnects. The
mirrors redirect light beams according to the usual law of reflection: the angle of
reflection equals the angle of incidence. Most of the layouts involve a small constant
number of mirrors and a small constant number of lasers per processor. All processors
have their lasers pointing at the same set of angles, which simplifies manufacturing.
In many cases, the layouts have all their hardware on the boundary (the interior is
occupied only by light beams), which may facilitate cooling.

2. Shuffles

The shuffle exchange graph? consists of processors numbered 0, ..., n for some odd n
and two kinds of connections, called “shuffle” and “exchange.” The shuffle connections
are t — 2t mod n for : = 1,...,n— 1. The exchange connections are ¢ — ¢+ 1 mod n
for : = 0,...,n. Sometimes the graph is considered to be undirected, that is, con-
taining the inverse of each of those connections as well.

The shuffle exchange is useful for communication, sorting, and permutations.
However its layout with wires is considered impractical.

Tt has been noted that the RC constant, which is proportional to time in the VLSI model, does
not continue to decrease as wire length and width become very small. It may even increase.

2Some researchers prefer to number the processors from 1 to a power of 2. We find that the
formulas are simpler mathematically if we number the processors starting from 0. The number of
processors can be any even number.



As an interconnection network, the shuffle exchange has been implemented opti-
cally [5], though the implementation involves a beam splitter and 50% loss of energy.
The shuffle exchange processor network has also been implemented with holograms [2].
We will lay out the shuffle exchange processor network elegantly, without energy loss,
using mirrors rather than more complicated optics.

We will place the processors in a line. The exchange connections of the form
t — ¢ + 1 for 2 < n are then trivial, though the wraparound connection n — 0 takes
special consideration. For the moment, we will consider only the shuffle connections.

The connections ¢ — 2¢ for 0 < ¢ < n/2 can be performed by transmitting light
perpendicular to the line of processors, and bouncing it off of a single mirror set at
a 30-degree angle. The connections ¢ — 27 — n for n/2 < i < n are equivalent to
n—j—n—2j5for 0 <j < n/2 sothey can be handled be a second mirror at a
30-degree angle. The layout for n = 9 is shown in Figure 1. Because there are no
electrical components in the layout interior, this layout is easy to cool.
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Figure 1: The shuffle connection : — 2z mod 9

Note that each processor uses just one laser for the shuffle connection, and this
laser is perpendicular to the line of processors, i.e., 90 degrees. The exchange connec-
tions, except for the wraparound, can be performed by a laser pointing directly from
t to 2+ 1. The inverses of the connections can be performed by pointing lasers in the
direction of the incoming signals, i.e., £30 degrees or 0 degrees.

From a hardware designer’s point of view we would prefer to dispense with pro-
cessors 0 and n entirely, and do without the wraparound connection. However, we
can achieve the connection by including an additional mirror and slightly altering the
placement of processors 0 and n and having processor n transmit at at 150 degree
angle. This is shown in Figure 2. An alternative to the third mirror would be to
bounce a beam off of one of the first two mirrors at an ad hoc angle.

Another alternative is to modify the standard folding trick of VLSI design. We
identify processor ¢ with processor n — 2 for « = 0,...,n and lay out the processor
network as shown in Figure 3. A single processor may simulate two virtual processors
by slicing up time or by including message headers to indicate which virtual processor
is to receive the message.



Figure 2: Including the exchange connections

Figure 3: A folded-over shuffle exchange network



Having said more than we care to about the wraparound connections, let us re-
consider the shuffle connections. The only special thing about placing mirrors at
30-degree angles is that it allows the lasers to be set at 90 degrees. Any mirror angle
between 30 and 90 degrees works as well. See Figure 4. Furthermore, the layout area
approaches linear as the mirror angle tends to 90 degrees. The tradeoff is that the
laser beams travel closer and closer together.

Figure 4: Larger mirror angles can reduce the layout area

3. Margulis’ Expander

Expander graphs have good communication properties and are also suited to certain
algorithms. Paturi et al [6] describe several applications of expanders and implement
a layout in their optoelectronic model, which uses holograms. In this section we
describe a regular layout using mirrors.

Margulis’ expander graph contains processors numbered (z,y) for 0 < z,y < n.
There are uninteresting connections (z,y) — (x & 1 mod n,y + 1 mod n). The inter-
esting connections are (z,y) — (z,2 + y mod n) and (z,y) — (¢ + y mod n,y). We
show how to lay out the (z,y) — (z,2 + y) connections in 3 dimensions in Figure 5.
The (x,y) — (x,x +y —n) connections can be obtained by rotating this construction
180 degrees, using a second mirror as in the shuffle example.

We can lay out the (z,y) — (z 4+ y mod n,y) connections by rotating the con-
struction above by 90 degrees. The y-direction connections can be laid out above the
plane of processors, and the z-direction below. One drawback is that the processors
are in the network’s interior, which is not as easy to cool as the exterior.

4. Are there 3-dimensional shuffle layouts?

It would be nice to exploit three dimensions in laying out the shuffle network by
placing the processors in a square grid. If the processors are numbered in row major
order, then the shuffle connection is a dilation of each quadrant of the square. A
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Figure 5: The (z,y) — (x,2z 4 y) connections in Margulis’ expander.



dilation can be performed using lenses or a central projection. For example, Stirk
et al [8] and Lohman [3] use lenses to implement the shuffle as a processor-memory
interconnect. In this section we consider whether such a layout is possible using only
lasers and mirrors.

The natural 3-dimensional generalization of our 2-dimensional layout permits us
to shuffle along either dimension. Thus the shuffle can be performed in two steps.
We show that a single step does not suffice under reasonable restrictions. To be
specific, assume the processors are at positions (z,y) for 0 < z,y < n, and number
the processors nx +y. We call this the standard processor placement. For z,y < n/2,
the shuffle connection is (z,y) — (2z,2y). The other 4 quadrants may be handled
similarly.

If we allow light beams to pass through processors, then it is possible to lay out
the connections (x,y) — (2¢ mod n,y/2 mod n) by shuffling in the a-direction above
the plane of processors and unshuffling in the y-direction below the plane. We call
this the shuffle-unshuffle network.

Using four conical mirrors, Cohen and Rajagopalan [1] have shown how to lay
out (z,y) — (22 mod n,2y mod n) with lasers pointing in the z direction. Although
conical mirrors are a very reasonable extension of the model, their layout does not
include the inverse connections, which would require lasers pointing in an unbounded
number of directions.

Under a reasonable restriction, we show that the standard processor placement
does not permit a layout of the shuffle connections. Recall that Reif [7] has shown
that if light may reflect an unbounded number of times then the destination may be
undecidable. Furthermore it is known that a light beam projected at a random angle
in a square traces out a dense set. Thus it is reasonable for us to assume that light
beams reflect a bounded (O(1)) number of times.

Let us classity light beams according to the initial direction and the sequence
of mirrors reached. Since there are a bounded number of mirrors and a bounded
number of reflections per beam, there are a bounded number of classes of beams.
Consider a single class. If we reflect space though the mirrors (as it appears when we
look into one) and let light beams travel straight through, then we find that every
class of beams performs a parallel projection. This observation alone rules out any
transformation that is not affine, i.e., that does not map lines to lines. However, it
takes a bit of work to rule out nontrivial dilations.

Lemma 1. There exists a parallel projection that maps a unit square to an a X b
rectangle if and only if

e a<lorb<l, and

ea>1orb>1.



Proof: To obtain the “if” direction, start with two planes identically oriented
and perpendicular to the projection. Tilt the source place about the y axis so that
projection decreases z-directional lengths by any desired factor. Tilt the destination
plane about the x axis so that y-directional lengths are increased by any desired
factor.

The “only if” direction can be obtained by straightforward, but tedious analytic
geometry. U

Lemma 2. Let A, B, and C be three non-collinear points. There ts no parallel
projection that maps the triangle ABC to a stmilar, but non-congruent triangle.

Proof: A parallel projection is determined by the images of any three non-collinear
points. If the projection is a non-trivial dilation when restricted to A, B, C then it is
a non-trivial dilation, contradicting Lemma 1. O

Consider any three-dimensional layout of the shuffle using the standard place-
ment. Consider only the processors (x,y) where x,y < n/2 so that the connection is
(z,y) — (2x,2y), a nontrivial dilation. By Lemma 2, each class must consist entirely
of collinear points, so each class contains at most n/2 points. Therefore there must
be at least n/2 classes.

It is an open question to find an alternative numbering of processors placed in a
grid such that the shuffle connections and the exchange connections can be performed
with a bounded number of mirrors and a bounded number of reflections per beam. We
conjecture that this is not possible. It seems unlikely that the information-theoretic
techniques used for VLSI lower bounds will be applicable here, because the two-
dimensional layout is possible and also because other high-bandwidth networks like
the shuffle-unshuffle can be laid out easily with the processors in a grid.

5. Multi-dimensional Grids

The optical layout of grids is fairly obvious and undoubtedly well known. If we
number processors in the natural way, then for each direction in a multi-dimensional
grid there is a number ¢ such that the edges belong to the mapping + — x + . If the
processors are placed in a line, this mapping is easily performed with a single mirror
parallel to that line (Figure 6). One laser is required for each dimension, but the same
mirror may be reused. When laying out a hypercube for example the mappings take
the form z — = + 27. A superset of the hypercube connection is shown in Figure 7.
In general, each processor has one or two lasers per dimension, depending on whether
the inverse connections are desired.

Three-dimensional layouts may be obtained by treating a multidimensional grid
as the cross product of two lower dimensional grids, which is quite standard. Only a
single planar mirror is needed.
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Figure 6: Laying out the connections x — = + 4
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Figure 7: A superset of the 16-node hypercube.

6. The Light Guide

In this section we use slightly more interesting optical devices in order to construct
much more powerful networks. A beam splitter (also called a partially silvered mirror)
reflects only a fraction of the light hitting it (according to the usual rule), and it
allows the remaining fraction of light to pass straight through. In Figure 8, we show
a beam splitter mirror (dotted) and an ordinary mirror (solid) placed parallel to a
line of processors. A single light beam from processor 1 reaches all of the processors
numbered 2 through 12. If the beam splitter lets only 1/n of the light through
then processor 2 receives almost all of the beam from processor one, and the amount
reaching processors 3 through 12 is ©(1/n?). This disparity in signal can be alleviated
by using only the odd number processors; however, 1 — 1/n of the energy is wasted.?

In similar fashion, processor ¢ can broadcast to processors numbered ¢ + 1,...,12.
By using the inverse connections, processor ¢ can broadcast to processors 1,...,72— 1.
Thus any single broadcast is possible.

The time for a beam to travel from processor ¢ to processor j is proportional to
|7—1|. Thus, if processors broadcast simultaneously, each processor can determine the
sender of each message based on the message’s arrival time. If the processors have

3In order to reduce energy waste, it would be desirable if the beam splitter were more reflective
on the side near the mirror than on the side near the processors. We do not know how to produce
such a splitter.



Figure 8: The Light Guide

accurate enough clocks then simultaneous broadcasts are possible. Unfortunately,
light sensors may have a refractory period which prevents them from receiving closely
spaced messages. It may be more reasonable to have each receiver pay attention
only to messages from a single sender. Then accurate clocks permit us to perform
an arbitrary permutation. The permutation can be programmed by adjusting the
time at which each processor looks for a message. Hence the light guide can simulate
programmable permutation networks.

7. Further Work

The networks described in this report have not yet been implemented, as far as we
know. A practical obstacle to their implementation is the diffraction of light beams in
free space. Because the diffraction angle is constant, beams spread out in proportion
to the distance traveled. Therefore our networks do not scale up past a number of
processors that is dependent on the laser technology. With current technology, this
number of processors is ridiculously small. Other researchers overcome the diffraction
problem by using lenses to refocus light beams. It is not clear whether that will be
possible for our layouts.
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