
Design of a Continuous Media Data
Transport Service and Protocol

�

Mark Moran
�

Bernd Wolfinger
�

TR-92-019

April 1992

Abstract
Applications with real-time data transport requirements fall into two categories: those

which require transmission of data units at regular intervals, which we call continuous
media (CM) clients, e.g. video conferencing, voice communication, high-quality digital
sound; and those which generate data for transmission at relatively arbitrary times, which we
call real-time message-oriented clients. Because CM clients are better able to characterize
their future behavior than message-oriented clients, a data transport service dedicated for
CM clients can use this a priori knowledge to more accurately predict their future resource
demands. Therefore, a separate transport service can potentially provide a more cost-
effective service along with additional functionality to support CM clients. The design of
such a data transport service for CM clients and its underlying protocol (within the BLANCA
gigabit testbed project) will be presented in this document. This service provides unreliable,
in-sequence transfer (simplex, periodic) of so-called stream data units (STDUs) between a
sending and a receiving client, with performance guarantees on loss, delay, and throughput.

�
This research was supported by the National Science Foundation and the Defense Advanced Research Projects

Agency (DARPA) under Cooperative Agreement NCR-8919038 with the Corporation for National Research Initiatives,
by AT&T Bell Laboratories, Hitachi, Ltd., Hitachi America, Ltd., Pacific Bell, the University of California under a
MICRO grant, and the International Computer Science Institute. The views and conclusions contained in this document
are those of the authors, and should not be interpreted as representing official policies, either expressed or implied, of the
U.S. Government or any of the sponsoring organizations.�

The Tenet Group, Computer Science Division, University of California, Berkeley, California 94720 and International
Computer Science Institute, 1947 Center Street Berkeley, California 94704, moran@tenet.berkeley.EDU�

University of Hamburg, Computer Science Department, Bodenstedtstr 16, D-2000 Hamburg 50,
wolfinger@rz.informatik.uni-hamburg.dbp.de

Table of Contents

1. Introduction

2. Description of the Continuous Media Transport Service

3. Underlying Service and Assumptions about Environment

4. CM Service Primitives and Formalized Service Description

5. Functional Description of CM layer and Specification of CMTP protocol

6. Implementation Considerations

7. References

ii

1. Introduction

Client applications, hereafter referred to sim-
ply as clients, with real-time data transport
requirements fall into two categories: those which
require transmission of data units at regular inter-
vals (hereafter referred to as continuous media or
CM clients), and those which generate data for
transmission at relatively arbitrary times
(hereafter referred to as real-time message-
oriented or simply message-oriented clients).
Examples of the former are video conferencing,
in which video frames (of fixed or variable
length) are sent from source to destination once
per frame time (e.g. 33 ms); voice communica-
tion, in which one sample is transmitted for every
sampling period (i.e. 125 µ sec); playback of
high-quality digital sound, which also must
transfer a fixed number of samples per second;
and transmission of sensor data which is meas-
ured and transferred with strict periodicity.
Examples of real-time message-oriented clients
are those which require urgent messages, such as
may be needed for building geographically distri-
buted applications; process control applications;
and a mail service with guaranteed delivery
latency.

It is generally accepted that dedicated tran-
sport protocols are necessary for high speed net-
works. Adaptation of existing transport proto-
cols, originally designed for lower speed net-
works (such as OSI Transport Protocol Class 4 or
TCP), to high speed environments is not straight-
forward, and may not provide satisfactory perfor-
mance to transport service users of future net-
works. Therefore, considerable research has been
conducted in the design of completely new tran-
sport protocols to support high speed end-to-end
communication between users. Surveys of the
general requirements these protocols must satisfy,
and of existing protocol proposals can be found in
e.g., [DDK90], [LaS91], [WrT90], [Zit91]. In
these publications, it is suggested that new algo-
rithms are needed to support basic transport pro-
tocol functionality (such as flow control, error
detection and correction, connection manage-
ment, etc.). In addition, the use of specific imple-
mentation techniques, e.g. parallel processing, is
advocated. Current transport protocols designed
for high speed networks include, e.g., Delta-t
Transport Protocol, cf. [Wat89], Network Block
Transfer Protocol (NETBLT), cf. [CLZ87], Ver-
satile Message Transaction Protocol (VMTP), cf.
[ChW89], Express Transport Protocol (XTP/PE),
cf. [Che88], and the protocol designed by Netra-

vali et al. and described in [NRS90].

The literature suggests general agreement
among network designers that transport protocols
should be tailored to meet the various transport
service requirements of end users. Requirements
of various users can be supported by using rather
general transport services and providing options
to flexibly adapt the service to the differing
requirements of users (e.g. during establishment
of a transport connection). On the other hand, it is
also possible to split the transport service a priori
into two (or more) different, cleanly separated,
services. Each service would support a class of
users with similar data transport requirements.
This second solution is chosen in this paper, as
we will describe a transport service designed for
continuous media clients, which we expect to
coexist with a transport service designed for
message-oriented clients. For surveys on the
requirements of continuous media applications
for data transport, the reader is referred to
[HSS90] and to [ITC91]. Requirements of video
transfer, in particular, can be found in [LiH91].
The remainder of this section details the argu-
ments in favor of a separate transport service for
CM clients.

Because CM clients are better able to charac-
terize their future behavior than message-oriented
clients, a data transport service tailored for CM
data can more accurately predict the future
resource demands of such clients and potentially
provide them with a more cost-effective service.

In addition to the predictability of data
transfer times mentioned above, CM clients have
data transfer requirements that cannot be
efficiently met by a service designed for
message-oriented clients. One such requirement
is the abstraction of logical streams.1 Because of
the periodicity of CM data transfer, data can be
logically delineated by time as well as by buffer
location (e.g. one video frame corresponds to the
data offered for transmission during a specific 33
ms interval). A (logical) stream then consists of a
time sequence of such data units. By making
such streams visible to the data transport service,
network and system resources can be conserved
between streams (e.g. reserved buffers can be
‘‘loaned’’ to other traffic until a new stream is
started). More importantly, some connection
�����������������������������������

1 It should be noted that the ‘‘streams’’ defined in this
document are not related to Unix (AT&T System V)
streams.

- 2 -

parameters may be redefined for the duration of a
stream, allowing resources to be conserved and
providing better coordination between sender and
receiver. For example, one technique for imple-
menting ‘‘freeze frame’’ and ‘‘slow motion’’ in a
video playback application would be to stop the
current stream, and to start a new, slower, stream.
Use of logical streams can also simplify the syn-
chronization of data from separate connections at
the receiver.

Another important difference between
message-oriented and CM clients is their error-
handling requirements. A message is generally
thought to be of no use if any part of it is lost, so
the entire message is often discarded in the case
of a partial loss of data. In addition, most
message-oriented clients cannot use corrupted
data, so corrupted data is discarded. Most CM
clients, however, can recover from partial data
loss, and therefore desire all data which has been
correctly received by the data transport service to
be delivered to the application, even if some data
is lost. In addition, many CM clients can utilize
corrupted data. CM clients would, therefore,
prefer a service that gives an indication of lost
data, delivers all correctly received data, and
optionally delivers corrupted data (along with an
indication that the data has been corrupted). Of
course, a message-based service could also imple-
ment these error-handling requirements, but they
would probably not be useful to traditional
message-oriented clients, which normally require
uncorrupted data.

The last difference between CM and
message-oriented clients discussed here is the
nature of the entity generating the data. For
applications that send messages, the data is
always generated by a client process, which can
initiate transmission of the data by contacting the
data service. However, for many CM clients, the
data is provided for network transfer by a
‘‘dumb’’ hardware device, such as a hardware
coder-decoder (codec) for compressed video.
Therefore, an additional user-level process would
have to intervene to schedule and initiate data
transmission.

The above differences in data transport
requirements between message-oriented and CM
clients justify a dedicated CM data transfer ser-
vice to provide better service for CM applications
in four ways: (1) a better traffic model for charac-
terizing CM traffic and specifying performance
requirements; (2) the abstraction of (logical)
streams, which are visible to the transport service;

(3) CM specific error handling including delivery
of all good data received and (possibly) corrupted
data, and of optionally replacing corrupted/lost
data with dummy data; and (4) the elimination of
the need for a synchronous rendezvous (e.g. via a
system call) between a client process and the ser-
vice for the transmission of each piece of data.

At this point, we would like to emphasize that
there is no fundamental reason a message-
oriented transport service could not offer a ser-
vice that included (1) - (3); however, as we
argued above, these capabilities are neither
required nor desirable for most message-based
applications, and hence it seems wiser to imple-
ment a new service to provide them to CM
clients. These CM specific capabilities will now
be discussed in more detail.

(1) Better characterization of CM traffic and
performance requirements. Any service which
provides real-time guarantees will require a client
to characterize its traffic and specify its perfor-
mance requirements. For a standard message-
based service, these specifications will be made in
terms of messages. One possible interface which
provides a good model for message-oriented
applications is described in [FeV90] and is
repeated below.

� Traffic parameters:

s max : maximum message size
x min : minimum spacing between messages
xave : maximum value of the average

spacing between messages
I : averaging interval for xave

� Performance parameters:

D: maximum end-to-end delay
J: maximum end-to-end delay jitter
Z: lower bound on probability of

satisfying the delay guarantee
U: lower bound on probability

of satisfying a probabilistic jitter guarantee
W: lower bound on probability of

delivering messages correctly

These parameters would then be translated
into parameters based on network-level packets to
implement the message-oriented service (cf. sec-
tion 3.1).

This characterization provides a good model
for an application which sends messages of rela-
tively fixed-size at somewhat arbitrary intervals
(limited by x min and xave). The characterization
of burstiness in data rate as a variation in the

- 3 -

speed of sending fixed-size messages seems to be
common to all message-oriented traffic models
with which we are familiar, e.g., [Cru87],
[AHS90]. However, this characterization does
not provide an adequate model for isochronous
(CM) applications, which transmit a variable
amount of data at fixed intervals. A canonical
example of such an application is a client
transmitting a compressed video stream. The
application might naturally choose to transmit
each (compressed) video ‘‘frame’’ as a message.
In the characterization above, we would have
x min = xave and there would be no way of charac-
terizing the burstiness of the data stream caused
by the variable compression from one frame to
another. Such a situation could greatly overesti-
mate the network resources required if the
compression ratio were highly variable, such as
when both inter-frame and intra-frame compres-
sion are used. [e.g. Leg91] Therefore, most
message-based traffic characterizations are inade-
quate and will cause more resources to be
reserved for the client than are needed to meet its
performance requirements.

This problem could be remedied by providing
an interface that allowed clients to model their
traffic as a fixed interval between messages
(x min), and a maximum (s max) and average mes-
sage size (savg). The translation from these
parameters to those defined for network packets is
straight-forward. However, such an interface
would not provide a good model for characteriz-
ing the traffic of most message-oriented applica-
tions. Therefore, to adequately characterize both
message-oriented and CM traffic, two models
would be required. In this proposal, we will pro-
vide a characterization similar to the one already
indicated here, but using parameters which better
characterize a stream of continuous media data
(and hence allow more efficient use of network
and host resources).

(2) Logical stream abstraction. The data
transmission of a CM client can be modelled as a
series of logical streams as described above. The
use of logical streams allows the sender to logi-
cally partition the data traffic on a network chan-
nel over time. (In this document, we will use
channel to refer to a simplex connection for
which network and system resources have been
allocated in order to provide performance guaran-
tees.) Because streams are seen by the transport
service, both the sending and receiving host and
(possibly) the network can allow resources allo-
cated to the channel to be used by other traffic

during streams with looser performance require-
ments, and between streams. It should be noted
that in order to conserve resources in the transport
level (or below) the streams must be visible to the
transport level, and hence cannot be provided as a
session level service. The stream abstraction also
allows closer coordination between the sender
and the receiver. For example, a source may wish
to inform the receiving client of different data
rates for different phases of a conversation (e.g.
as described above for ‘‘freeze frame’’ and
‘‘slow motion’’ in a video playback application).
Using streams would be preferable to releasing
and re-establishing a channel because defining a
new stream would incur less overhead and
latency, and because of the possibility that the
establishment of the new channel could fail
(assuming channels cannot be modified). Since
the underlying channel is not altered (i.e. no new
resources are allocated), only some of the channel
parameters can be respecified for the duration of a
stream and these can only be made less strict (e.g.
lower data rate).

Streams could also be used (e.g. with times-
tamps) to synchronize two or more channels, or to
indicate to the receiving client a change in the
final destination of the data (e.g. switch output
files). Since streams can be of any arbitrary
length and should be visible to the data transport
service, they could not be adequately supported
by a message-based transport service.

(3) CM specific error-handling. Because
many continuous media clients interact with
human users, they can often tolerate some loss of
transmitted data without suffering a perceived
loss in service quality. Traditional message inter-
faces are designed for transfer of file-like data
which cannot be used if it is not completely free
of errors. The strict delay requirements of real-
time traffic do not allow for sophisticated
retransmission strategies, so messages in which
some data is lost or corrupted will simply be dis-
carded.2 A service geared toward continuous
media should provide a mechanism for delivering
all data received by the transport service to the
user with an indication of any data lost because of
corruption or failure to arrive on time.

In addition, many CM applications can actu-
ally perform better if corrupted data is returned
(e.g. uncompressed video) or if some ‘‘dummy’’
data is substituted for lost or corrupted data (e.g.
[HTH89]). Such error handling capabilities
would have limited utility for message-oriented
applications.
�����������������������������������

2 Even for those applications in which delay require-
ments are loose enough that retransmissions could be at-

- 4 -

(4) No explicit interaction required for
transfer of data. Perhaps the greatest limitation
of a message-based service for CM clients is the
need for a user-level process to contact the ser-
vice in order to initiate each data transmission
(i.e. to call send). There are two problems with
this requirement:

� It introduces unnecessary system overhead
due to the requirement of a synchronous ren-
dezvous between the data transport service
and the client for each data send. (unneces-
sary because the time of the next send is
well-known for isochronous traffic!)

� It requires a client process to intervene
between data generation and data transmis-
sion.

If data is being generated by the client pro-
cess, the second requirement is not a limitation,
but if the CM data is generated by a hardware
device (e.g. video coder-decoder) or from a con-
tinuous media I/O server such as is described in
[AGH90], the client process adds programming
complexity as well as latency and system over-
head.

The most natural interface to such ‘‘dumb’’
clients is a shared circular buffer with a small
amount of (shared) state describing the amount of
data in the buffer. This is the service we propose
for CM. Library routines may be implemented on
top of this service to perform all synchronization
tasks and provide a more familiar send and
receive interface for client processes that generate
their own data. The library routines that imple-
ment the send and receive would operate as
user-level processes on behalf of the client.
Therefore, even for these clients, system over-
head would be reduced since a user-level process
would not need to cross a protection boundary
into the kernel (e.g., via a system call) after chan-
nel establishment; all interactions would take
place through the shared state.

Anderson et. al have developed a continuous
media I/O server that utilizes the additional infor-
mation associated with a CM stream to provide a
simple and efficient interface to a file system for
constant rate applications [AGH90]. The addi-
tional information implicit in an isochronous
stream of data can also be used in providing
�����������������������������������

tempted, we expect that the amount of data which would
need to be stored at the sender to enable it to retransmit
data across a high bandwidth-delay product network
would be prohibitive.

better functionality and more efficient service for
variable-rate applications transmitting data over a
network which provides real-time guarantees.
This document proposes a data transport service
for variable-rate continuous media clients to be
implemented on top of a real-time network ser-
vice such as that described in [FeV90]. The ser-
vice we propose provides better functionality for
continuous media clients without sacrificing
efficient utilization of network resources.

The service requirements to be supported by
the CM Transport Service, presented in this
paper, are motivated and introduced in detail in
section 2. Section 3 describes the assumptions
we have made regarding the functionality of the
underlying network service and the environment
in which the service will be provided. Section 4
defines abstract service primitives and uses them
to present a more formalized service description.
Section 5 describes the functionality of the con-
tinuous media transport layer and the protocol
defined for providing this functionality. Section 6
gives implementation considerations.

2. Description of the Continuous Media Tran-
sport Service

The CM transport service described in this
document provides unreliable, end-to-end,
sequenced, periodic transfer of stream data units
(STDUs) from a sender to a receiver (simplex)
with guaranteed performance. An STDU is a data
unit for which the client wishes the service to
maintain boundaries. If a client specifies that all
STDUs are one byte in length, the stream
becomes a byte stream. The CM transport service
packetizes STDUs and schedules packet transmis-
sion to efficiently utilize network resources while
meeting performance requirements. It also pro-
vides the receiving client with an indication of
lost or corrupted data. In this section we will first
describe the transport requirements of several
sample CM clients. Then we will describe our
service in more detail and demonstrate its use for
our sample clients.

2.1. Examples of CM clients

We now describe several representative CM
clients to motivate the design for our proposed
CM data transport service. All the applications
listed have strict delay requirements (which are
stated for each) in that data must be available by
the time it is needed, and strict delay jitter
requirements in that data cannot arrive so early
that it overflows buffers allocated to the client.

- 5 -

Since excessive delay jitter (i.e. delivery too
early) can be absorbed by buffering in the service
provider, delay jitter is not listed as a requirement
for the clients. However, as described in the sec-
tion on implementation considerations, compen-
sating for delay jitter can add to the end-to-end
delay of the channel and requires additional
buffer space to be allocated to the channel on the
receiving end-system.

2.1.1. Video conferencing

To simplify our example, we will only con-
sider transmission of the video portion of a
video-conferencing stream. The stream is charac-
terized as follows:

A. Video only, 1/4 screen (320x240, 24
bits per pixel = 1.84 Mbit or 225 KB
per frame).

B. 15 frames per second.

C. Minimum compression without inter-
frame coding is 20:1.

D. Minimum long-term average compres-
sion using inter-frame coding is 50:1.
We are assuming no scene changes in
video conferencing streams, so we can
assume we get ‘‘average’’ compression
over less than 8 frames.

E. The compression algorithm uses inter-
frame coding most of the time. Every
9th frame (600 ms), however, is sent
with no inter-frame dependencies so the
receiver can recover from data losses.

F. One-way delays of less than 300 ms are
acceptable.

G. Corrupted data cannot be used.

H. We assume that the compression algo-
rithm can maintain acceptable image
quality if at least 90% of the data for
each frame is delivered.

I. Video frame boundaries are delineated
within the data stream, and the
compression algorithm has mechanisms
for recovering after data loss; therefore,
there are no boundaries in the data
which need to be maintained by the
data transport service.

J. We will also assume that the compres-
sion algorithm recognizes some code
(we shall assume 16 or more consecu-
tive 0’s as a convenient code) to indi-
cate that a data loss of unspecified

length has occurred at that point in the
stream.

From this description, requirements can be
extracted which the client would like to commun-
icate to the data transport service:

� Periodicity of video frames will be 66.7
ms. (from B)

� No video frame will require more than
11.2 KB. (from A,C)

� The mean size of compressed video
frames (measured over a 600 ms inter-
val) is bounded above by 5.2 KB. (from
A,C,D,E)

� Delay of the stream should not exceed
300 ms. (from F)

� Corrupted data should be discarded and
considered lost. (from G)

� The granularity of data loss should not
be greater than 0.52 KB. (from
A,C,D,E,H)

� There is no need to maintain boundaries
of video frames in packetization, i.e.
byte-stream transfer can be used. (from
I)

� A special code (consisting of at least
two bytes of zeros) should be inserted
in the data stream whenever data is
missing for some reason. (from J)

� The video coder/decoder (codec) is a
hardware device which is capable only
of DMA transfer into a client’s address
space. A separate control program is
available to handle control functions
from time to time.

2.1.2. Multiplexed voice

Another client would like to send PCM voice:

A. Each sample is 8 bits (uncompressed).

B. 8000 samples per second.

C. Delays of up to 300 ms can be tolerated
(cf. voice channels via satellite links).

D. We will assume that loss of more than
100 consecutive samples (12.5 ms) per
second produces intolerable degrada-
tion.

E. The application can use an indication of
data loss to recover by interpolating for
the lost data.

- 6 -

The interpretation of this characterization is
straightforward.

2.1.3. Graphics/image window

Another type of stream that has much looser
real-time requirements is the transmission of
slowly changing images. ‘‘Slowly changing’’
could mean that only a small part of the image is
changing (e.g. someone writing on a ‘‘notepad’’
or ‘‘blackboard’’) or that the complete image is
replaced from time to time (e.g. slides). Such a
stream could have the following characteristics:

A. Images are full screen NTSC TV qual-
ity (640x480x24 = 900 KB)

B. Delay is not important (unless window
is synchronized with another stream)

For ‘‘notepad’’ images:

C1.Difference-frame encoding can be used
to get very high compression (probably
well above 100:1)

D1.Frequent updates are desirable (at least
2 per second)

For still images:

C2.Low-loss compression can be obtained
at a minimum compression ratio of 10:1

D2.Much slower rate of update

In general, transmission of still images does
not map well onto a continuous media service,
except in the case (described here) in which
images are sent with some regularity or the case
in which the images have to be synchronized with
a continuous media stream such as audio. If we
wanted to handle both of these types of images on
the same channel, we would have to use
variable-size data units and inter-frame coding.
In this case, we would like to communicate the
following requirements to the transport service:

� Periodicity is 0.5 seconds (C1)
� Maximum size of a compressed frame

is 90 KB (A,C2)
� ‘‘Average size’’ of a compressed frame

is 13 KB computed over 10 seconds
(A,C1,D1,C2,D2: 13 KB is the average
size of an update for the notepad ser-
vice, assuming a completely new
‘‘page’’ every 10 seconds. For still
images, we divide the maximum image
size (90 KB) by this average to get the
maximum transmission time for each

image (in this case about 7 periods or
3.5 seconds)

� Delay is not important (B)

2.1.4. Periodic sensor data

A client that periodically sends sensor data to
a central location (e.g. control of a nuclear power
plant) could advantageously use a CM data tran-
sport service. The size of messages would prob-
ably be constant, and high reliability would be
desired. Incorrect data could not be used, and
some indication would have to be given that data
was missing. The characterization would not add
anything not already covered above and hence is
omitted in the interest of brevity.

2.1.5. Multimedia International Classroom

The final example demonstrates the needs of
clients that require synchronization among a
number of streams and those that may wish to
multiplex a number of streams over time on the
same channel. The application transmits a
recorded or live lecture to remote locations and
optionally records the lecture at any of the sites.
Each receiving location has at least two display
‘‘windows’’: one on which moving images are
displayed, and another for slowly changing
images which may be graphics (e.g. transparen-
cies or live handwriting on a ‘‘notepad’’ as
described above) or still images of TV picture
quality, which will be changed infrequently, i.e.
less than once per 4 seconds. The application can
support interactive lectures in which students are
allowed to interact vocally with the instructor. In
this case, a return voice channel is established
from each site to the source of the lecture where it
is merged with the audio from the source. Each
site may optionally receive the instructor’s lecture
in another language, and sub-titles for recorded
movies.

Since only a subset of the streams described
above need to be transmitted at any one time, net-
work resource allocations can be minimized if
these streams are multiplexed over time onto a
smaller number of network channels. Therefore,
only certain combinations of the above streams
are supported, and a class meeting consists of a
number of consecutive phases. Switching
between phases is controlled from the source via
a simple menu and offers the following possibili-
ties:

- 7 -

� Lecture mode: Sending video of the
instructor in the video window along
with 128 kbps for the instructor’s audio
and an additional 128 kbps for a trans-
lation. The second window is handled
as the slowly changing still image win-
dow described above, supporting a
notepad or TV still images. Both the
instructor’s video and the image win-
dow are synchronized with the
instructor’s audio.

� Movie mode: Sending a moving video
with a stream of low-quality stereo
sound (128 kbps per audio channel) and
the option of textual subtitles in up to
two other languages. The video stream
is synchronized with any audio streams
and the subtitle stream if it exists.

These phases can be supported by five channels
of four separate types. The requirements of each
of these types is listed below:

1. Video channel: This channel will be used for
transmitting either video of the instructor in
lecture mode or the moving video in movie
mode. This channel is the same as the video-
conferencing example above except that in
movie mode the image is four times bigger,
will change at 30 frames per second, and may
experience up to one scene change per two
seconds. This channel must be synchronized
with the audio and/or images on the other
channel.

2. Audio channels (2): Two channels will be
established, each of which carries 128 kbps
audio. In lecture mode one audio channel is
used for the instructor’s audio and one for a
possible translation. In movie mode, each
channel will carry audio for the movie. These
channels must be synchronized with the video
window. Each channel has the following
requirements:

� Periodicity is 12.5 ms (100 samples of
16 bits each per period, chosen as a rea-
sonable tradeoff. A small period is
desirable to limit the amount of data
lost in a burst, but a large period is
desirable for efficiency.)

� Constant amount of data sent per period
is 200 bytes

� Maximum granularity of data loss is
200 bytes

� Indication of data loss is required

3. Notepad/Image Channel: This channel is
exactly as described in the previous example.
In lecture mode, it will carry either a notepad
(i.e. ‘‘blackboard’’) of color graphics, or a
still image that takes about 10 seconds to
change. In movie mode, it will carry two
streams of subtitles for the movie. This chan-
nel must be synchronized with the video
channel.

4. Return channel: This channel is only required
for interactive classrooms. It transmits 128
kbps of audio from each site back to the
source.

2.2. Definition of the CM data transport ser-
vice

We now define a service designed to meet the
needs of the types of CM clients described above.
As stated previously, the Continuous Media Tran-
sport Service (CMTS) provides unreliable,
sequenced transport (simplex, periodic) of stream
data units (STDUs) between a sending client (CS)
and a receiving client (CR), with performance
guarantees on loss, delay, and throughput. The
service optionally replaces each lost or corrupted
piece of data with a dummy piece of data
specified by the client during channel establish-
ment. Data is passed from CS to a CMTS entity
operating on the same end-system (CMS) via a
shared circular buffer. Synchronization between
CS and CMS is provided via traffic and perfor-
mance parameters established by both parties at
the beginning of the conversation, and through
explicit synchronization variables. The relation-
ship between these entities is shown in Figure 2.1.
(Refer to the section on implementation for more
details.)

CMS CMR

(e.g. Video Frames)
Client Data

STDUs

Sending Host

. .

Receiving Host

CMTP PDUs

CM Data Transport Service

STDUs

CRCS

Figure 2.1: Relationship between CM
and client entities

All traffic and performance parameters are
defined in relation to two basic units: the stream
data unit (STDU) and the periodicity of the

- 8 -

conversation (T). As previously stated, an STDU
is a data unit whose boundaries must be preserved
by the CMTS and indicated to CR. CS decides
how the stream to be transferred to CR is mapped
onto a sequence of STDUs as illustrated in Figure
2.2. Typically, for a CM application, the infor-
mation to be transmitted (e.g. voice signal,
sequence of images) is first digitized by a coding
process (or possibly a sequence of such
processes). The coding process maps a continu-
ous signal function (in the sense of coding theory,
e.g. voice, moving scene) onto a sequence of code
words (cf. coding theory again). A CM applica-
tion then has several options in mapping these
code words into a sequence of STDUs:

a) Sequence of code words mapped onto
sequence of bytes (byte stream), 1 byte
corresponding to 1 STDU;

b) one-to-one mapping of code words onto
STDUs;

c) concatenation of several code words to build
one STDU, e.g. in the case, where different
sub-streams are multiplexed (time-multiplex)
by an application to form one overall stream;

d) combination of a code word and a time-stamp
into one STDU (where a ‘‘time-stamp’’ is
some reference to the time interval the code
word represents); as would be required in
transmitting a stream, which had been stored,
along with information to reconstruct its origi-
nal timing.

The periodicity, T, of a stream can also be
specified by an application. The periodicity
characterizes the frequency of coding events
(typical values chosen for periods would be
T=k×0.125 ms in PCM-voice coding or
T =k×33 ms in transfer of a video stream,
where k is an integer). The data correspond-
ing to a time interval of length T then maps
into an integral number of STDUs. The
CMTS service recreates on the receiver, the
stream that had been seen on the sender at the
granularity (in time) of a period, T. If the time
on the sender is denoted by t, and the time on
the receiver is likewise denoted as τ, then this
definition of the service implies that data
corresponding to an interval ∆ti at the sender
must arrive before the beginning of the
corresponding interval ∆τi at the receiver.3

�����������������������������������

3 Of course | ∆ti | = | ∆τi | =T, for all i, if | I | denotes
the length of interval I.

CW4

CW3

CW3

CW2

CW2

CW2

CW1

CW1

CW1

CW3CW2
CW1STDU (

....CW4CW3CW2

Code "Words"

OR

OR

OR

Time
Timestamps

Plus

(byte stream)
1 Byte

Process
Coding

t

5
t4

t
32

t

∆t 1

t t
1

1 Code Word

Multiple

....

....

....

....Time

Signal
Function

Code Words

Code Words

) =

CW1()

Figure 2.2: Mapping of CM data into STDUs
Figure 2.3 illustrates the basic timing within
transfer of a sample stream. The time-shift
between the stream as seen at the sender and
the same stream as seen at the receiver is
defined to be Dstream , the end-to-end delay of
the stream.4 If the starting time of the stream
at the sender is denoted by t=t 0, and the start-
ing time at the receiver is denoted by τ0, then
Dstream is given by the absolute difference in
these starting times, or

Dstream = τ0−t 0,

providing clocks are synchronized (i.e. read
the ‘‘same’’ time). In order to maintain the
continuity of the stream, all STDUs legally
presented for transmission (i.e. without violat-
ing traffic characteristics) before the end of
the interval ∆ti , where ∆ti is the interval
[ti −1,ti), must be available for CR to read by
time τi −1, where τi −1 is the beginning of the
corresponding period on the receiver given by

τi −1 = τ0 + (i −1)T

= t 0 + Dstream + (i −1)T.

�����������������������������������

4 If the sender and the receiver were on the same
machine, the periodicity of the stream could be used to

- 9 -

(CMR /CR)

(CS /CMS)
......

......

Dstream

τ0 τ1

t 0 t 1 t 2 ti −1 ti

∆ti (t)Sender time

Receiver time
(τ)τi −1 τiτ2

∆τi

Actual delay of data fragments

τ = t+Dstream| ∆ti | = | ∆τi | =T, for all i
ti=t 0+iT ∆ti is the interval [ti −1 ,ti)
τi=τ0+iT ∆τi is the interval [τi −1 ,τi)

Guaranteed deadline for delivery of data

Receiver

Sender

Single data fragment
(whole or partial STDU)

presented for transmission in ∆ti

Figure 2.3: Timing diagram for Continuous
Media Transport Service

CS must inform CMS of the beginning and
end of each logical stream. As stated above,
the model we are using for interactions
between CS and CR is that the data generated
during an interval ∆ti by CS is needed by CR

during the corresponding interval ∆τi . There-
fore, after indicating the beginning of a logi-
cal stream, CS is obligated to ensure that all
the STDUs which CR will need during the
interval ∆τi , are in the shared buffer before
the end of the interval ∆ti on the sender.
Because a sender may have difficulty present-
ing data within the correct interval (e.g. due to
contention for the CPU or memory bus),
another parameter, SSslack , is defined to be the
number of bytes CS is allowed to provide to
CMS ahead of schedule, i.e. before ti −1 for
data which should be presented during ∆ti .
(This concept of allowing some workahead
for a sending CM client has been proposed by
others, e.g. [And90].) CS is also obligated to
obey the traffic characteristics specified for
the conversation and for the current stream.
The obligations of CS are summarized in
Table 2.1.

At the beginning of a logical stream, CS

may define new traffic and performance
parameters which will apply for the duration
of the new stream only. These must be no

�����������������������������������

achieve a simple producer/consumer synchronization by
delaying the stream seen by the receiver one period rela-
tive to the sender, giving Dstream = T.

more strict than the parameters of the actual
channel. Beyond this restriction, the parame-
ters of one stream have no relation to the
parameters defined for other streams that will
use the same channel (one at a time). The
stream parameterization may be used to assist
cooperation between CS and CR, since the
characterization of a stream can more accu-
rately represent current traffic and perfor-
mance needs than the long-lasting channel
parameters. The stream characterization may
also allow system and network resources to be
conserved (e.g. buffers could be ‘‘borrowed’’
from a channel which is between streams,
although they will be reclaimed when a new
stream begins). In addition, CS specifies the
startup delay (dstartup) and an upper bound on
the duration of the stream (duration). dstartup

is the time between the indication from CS

that a new stream is about to begin (tstart) and
the actual start of the stream (t 0). The inter-
val between tstart and t 0 is used by CS to pre-
load the shared buffer, subject to the max-
imum workahead indicated by SSslack . The
startup delay is not shown in Figure 2.3, but
would occur immediately before t 0 on the
sender’s time axis. Since dstartup occurs
before the stream actually ‘‘begins’’, it is not
included in the overall stream delay, Dstream

(cf. Figure 6.3). The upper bound (duration)
on the duration is passed to the receiving
client which may use it in allocating storage
resources at the receiver. It is an optional
parameter (the default value is 0, which
means the lifetime of the stream is
unbounded).

After being informed of the beginning of a
new logical stream, CMS is obligated to
cooperate with CMR to transfer all STDUs for
any interval ∆ti to CR soon enough to meet the
performance guarantees specified for the
current stream, provided that CS keeps its
contractual obligations. The obligations of
CMS are also listed in Table 2.1. Shared syn-
chronization variables are required to recover
from the possible failure of one of these enti-
ties to satisfy its requirements and because of
variability in the amount of data transferred
during each period.

The CMTS entity at the receiving end-
system (CMR) and CR also interact via a shared
circular buffer, stream parameters, and shared
synchronization variables. CMR must inform CR

of the beginning of a new logical stream, indi-

- 10 -

Table 2.1: Obligations between CS and CMS

� ���
Entity Obligations� �� ���
CS � Ensure that all STDUs associat-

ed with any interval ∆ti are in the
buffer prior to time t=ti , where ti
is the time at the end of the ith
interval, ∆ti .

� Ensure that no more that SSslack

bytes corresponding to intervals
∆tj , where j > i are in the buffer
before time t=ti .

� Obey maximum and average
throughput limits defined below.� ���

CMS � Send data fast enough to ensure
that at time t=ti −1 there is
enough room in the shared buffer
for all the data which could le-
gally be presented in interval ∆ti .
This amount of data is deter-
mined either by the maximum
amount of data which CS may
present in any period, or the
amount of data which CS may
present in the next period
without violating average
throughput constraints. In either
case this amount is known to
CMS.

� Transfer data to CMR fast
enough to meet stream delay re-
quirements.� ���

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

cating duration and a modified dstartup . After
that, CMR is obligated to put data in the shared
buffer before the beginning of the interval in
which it will be needed (i.e. before time τ=τi −1

for interval ∆τi), and CR is obligated to remove
from the shared buffer all the STDUs corres-
ponding to an interval before the end of that
interval (i.e. before time τ=τi for interval ∆τi).
Since a receiver may have difficulty removing
data exactly during its corresponding interval,
the value SRslack is defined at the receiver to indi-
cate how far CR can fall behind without data
being lost due to buffer overflow at the receiver.
More precisely, CR can leave up to SRslack bytes
corresponding to times τ<τi −1 in the buffer if the
receiver is in the ith interval, i.e., τi −1≤τ<τi . As
at the sender, the first period is defined to begin

at time τ0=τstart+dstartup , where dstartup is a
parameter of the stream as described above (and
may have been altered by CMR). In addition to
the above requirements, CMR must indicate data
loss and corrupted data in a manner agreed upon
at the beginning of the conversation. In the
implementation sketched in section 6, a struc-
tured buffer is used to maintain STDU boun-
daries and descriptors are used to indicate errors.
The contractual obligations between CMR and
CR are listed in Table 2.2.

Table 2.2: Obligations between CR and CMR
���

Entity Obligations��
CR � Ensure that no more than SRslack

bytes corresponding to any time
τ<τi remain in the buffer after
time τ=τi , where τi marks the
end of the ith period, ∆τi .���

CMR � Put all data needed during inter-
val ∆τi into the buffer before the
beginning of that interval, i.e.
before time τ=τi −1.

� Honor traffic characteristics of
the current stream across the
CMR /CR interface.

� Inform CR of data errors.���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

In order to meet guarantees regarding buffer
overflow and starvation avoidance at the receiv-
ing client, all four entities must be involved in a
handshake at the beginning of the conversation so
that each may approve traffic and performance
parameters. At this time some of the entities will
reserve system and network resources to ensure
that they will be able to fulfill their contractual
obligations. This handshake is accomplished as
follows: CS presents a proposed set of parameters
to CMS. If CMS accepts these, it passes them on
to CMR, with some possible modifications and
additions. If CMR accepts the (revised) parame-
ters, it passes a (possibly) revised version of the
original set to CR. If CR accepts the conversation
request, it informs CMR, who informs CMS, who
informs CS. The parameters of the handshake
before a conversation are described below for the
CS /CMS interface. Parameters for the handshake
between other entities are analogous to those
described here.

- 11 -

Traffic parameters

The traffic parameters listed below were
chosen to capture those traffic characteristics of
continuous media traffic that have the greatest
impact upon resource requirements.

STDU max: Maximum size of an STDU (bytes),
i.e. maximum size of a logical unit for which
boundaries must be maintained. (STDU max =
1 is allowed as a special case, leading to a
transparent byte stream data transfer).

CONST_SIZE : A boolean to indicate whether
STDUs are constant length.

CONST_NUM : A boolean to indicate whether a
constant number of STDUs will be sent each
period. This parameter is only considered if
CONST_SIZE = TRUE.

T: Periodicity of the CM data stream (µs).

N max: The maximum number of STDUs associ-
ated with a period. (This parameter is ignored
if CONST_SIZE = TRUE, since it is redun-
dant with the information provided by S max

and STDU max).

S max: The maximum number of bytes required to
represent the input signal in one period.

Savg: Upper limit on the mean number of bytes
per period required to represent the input sig-
nal.

Iavg: The size of any averaging interval (in
periods) over which Savg is calculated.

S min : This parameter limits the burstiness of the
stream by providing a lower bound to the
expected transmission per period. Although
less data may actually be generated by CS

during the period, the average rate control
mechanisms will always assume that at least
S min bytes are sent during every period. (See
discussion below for a more thorough descrip-
tion.)

SSslack : At the sender, SSslack specifies the max-
imum number of bytes which CS is allowed to
put in the shared buffer early, i.e. before the
beginning of the period to which the data
correspond. (At the receiver, SRslack specifies
the maximum number of bytes which CR may
leave in the buffer after the end of the corres-
ponding period without risking data loss.
SRslack is a parameter of the CR /CMR inter-
face, not of the CS /CMS interface.)

Buffer: A structure indicating the location of the
shared buffer provided by the client
(Buffer.ptr) and its size (Buffer.size).

The motivation for including T has already been
described. STDU max is also an obvious choice
since it determines the (maximum) size of a data
unit for which logical boundaries must be main-
tained. CONST_SIZE and CONST_NUM allow
the client two options in specifying a variable
data rate: either a constant number of variable-
size STDUs or a variable number of constant-
size STDUs may be sent in each period. We con-
tend that, if a client wishes to send a variable
number of variable-size STDUs per period, then
it is probably not a CM client. N max specifies the
maximum number of STDUs to be sent each
period. For streams of variable-size STDUs
(CONST_SIZE = FALSE), N max is given as an
input parameter; however, for streams of
constant-size STDUs, the input parameter is
ignored and N max is calculated from S max and
STDU max .

S max is used in allocating buffer space for
smoothing, fragmentation, and reassembly at the
source and destination end-systems. Savg and Iavg

are used to determine the long-term average
throughput requirements of the stream, which
influence the resources required for network
transmission. The burstiness of the stream also
influences resource requirements in the network,
so CMTS may choose to smooth transmission of
bursty data over several periods to reduce bursti-
ness.

S min is included to provide a reasonable limit
on the burstiness of CM traffic. The rate control
mechanism will assume that at least S min bytes
were transmitted in every period. Therefore, if
less data is actually transmitted in some period,
∆ti , the average number of bytes transmitted in
every averaging interval that contains ∆ti will be
less than Savg . The potential benefit of including
this parameter is demonstrated in Figure 2.4. The
stream depicted in (a) is a stream in which the
variability of the data transmitted per period exhi-
bits its own (longer) periodicity. One common
example of such a stream is a compressed video
stream that consists of an initial frame
compressed with intra-frame encoding, followed
by several frames that achieve higher compres-
sion using inter-frame encoding ([e.g., Leg91]).
Without the extra limit on burstiness provided by
S min , such a stream could not be differentiated
from a stream that is much more bursty. For
example, the original stream and the more bursty
stream shown in (b) would have identical traffic
characterizations. However, a suitable choice for
S min allow a model stream that more closely

- 12 -

(c)

(a)

Smin

(per period)

Bits
Transmitted

Transmitted
Bits

(per period)

t
(b)

t
T

Iavg

.

.

.

.

.

.

.

T

Iavg

.

.

.

.

.

.

.

.

.

.

.
.
.
.

T

Iavg

Smin

(per period)
Transmitted

Bits

t
...

...

Figure 2.4: (a) Actual stream to be transmitted
(b) Worst-case stream of model without S min

(c) worst-case stream of model including S min

approximates the actual stream, as can be seen in
(c). We would expect most applications to be
able to define some non-zero minimum amount of
data expected each period, since otherwise they
would not be isochronous. This bound on bursti-
ness provided by S min is missing from other
traffic models with which we are familiar. The
inclusion of S min and the characterization of
burstiness via a variable message size (as opposed
to fixed message size and variable rate of mes-
sages) more closely models the actual data pro-
duction model of an isochronous client. There-
fore, we expect such a model to better predict the

resource requirements of CM streams and hence
to allow more efficient allocation of network and
end-system resources.

On most systems, memory allocation is best
performed by the client, which then allows the
service to share the allocated buffer. Therefore,
the client must provide a structure (Buffer) giving
the location and size of this buffer. User-level
library routines can be provided to allow the
client to query as to the minimum buffer size
required for its requested channel.

Quality of service parameters

The parameters for indicating the quality of
service (QOS) desired were chosen to sufficiently
communicate the needs of most CM clients. The
basic model of the CMTS service is that the
stream on the sending end-system will be
recreated on the receiving end-system at the
granularity of a period. The service handles
delay-jitter for the client (where delay-jitter is
defined as the variability in delay) by ensuring the
shared buffer at the receiving end-system is large
enough to tolerate maximum possible jitter
without overflow. Because there are no explicit
interactions between the client and the service,
the implications of delay-jitter on timing of the
stream do not apply.

Quality of service parameters for this model are
described below.

Dstream: The maximum acceptable delay of the
stream, where the delay of a stream, Dstream , is
defined as the time between the the start of a
stream at the CS /CMS interface (t 0) and the
start of the stream at the CR /CMR interface
(τ0). Dstream implies a deadline for data
arrival at the receiver, since all data associ-
ated with the ith interval on the sender, ∆ti ,
must arrive at the receiver before the begin-
ning of the same period at the receiver, i.e.
before τi −1.

Serr: The maximum granularity of data error due
to either data loss or corruption (in bytes).

Werr: A lower bound on the probability that a unit
of data transfer (of size ≤Serr) is correctly
delivered to the receiving interface. It should
be noted that this probability accounts only
for losses due to dropped or delayed data.
CMTS requires all packets on a stream to
have the same value of Werr .

REPLACE: A boolean that indicates whether cor-
rupted data should be replaced with dummy

- 13 -

data instead of being delivered as it is
received.

Dummy : Dummy is a pointer to a buffer of size
Serr which is used to replace each lost or cor-
rupted packet if REPLACE=TRUE.

Dstream is the (constant) delay of each period, i.e.
the actual time difference between the beginning
of a period on the sending end-system and the
beginning of the same period on the receiving
end-system. This parameter is important to
clients with latency requirements, e.g. interactive
video conferencing. Serr and Werr describe the
‘‘burstiness of errors’’, since locality of errors is
as important as frequency of errors for many CM
clients. REPLACE and Dummy allow the client
to specify a dummy packet to be substituted for
lost and (optionally) corrupted packets. This ser-
vice is useful for in-band signalling of data loss
and for filling in holes in the data stream.

2.3. Use of service for sample CM streams

Since the multimedia international classroom
application includes the other sample streams, it
suffices as an example. We will calculate the
relevant parameters for each of its four types of
channels.

1. Video channel: We will use a byte-stream for
the video channel, which can be written directly
into the shared buffer by the codec (video coder-
decoder) at the sender and read from the shared
buffer by the codec at the receiver.

STDU max = 1

CONST_SIZE = TRUE

CONST_NUM = FALSE

T = 33.3 ms

N max input parameter is ignored

S max = 46,080 bytes

Savg = 18,400 bytes

Iavg = 60 periods

S min = 2000 bytes

SSslack =
STDU max

S max
� ��������������� = 46,080bytes

Dstream = 300 ms

Serr = 1840 bytes

Werr = 95% (< 1 packet per period)

REPLACE = TRUE

Dummy = 1840 bytes of 0’s

Savg is larger for this video stream than for the
video conferencing stream because this stream
uses a larger image and anticipates more scene
changes. Iavg is chosen as 60 periods because
scene changes are expected, on the average, once
every 2 seconds. S min and Savg should be meas-
ured for typical streams; here we will assume a
reasonable value for both. S min is not an absolute
minimum, but an indication of the minimum
amount of data to be expected per period if the
average data rate is fully utilized. Although some
periods may generate less data than S min , any
averaging interval containing them would also
then give an average less than Savg because of the
manner in which S min is defined (and enforced).
Dummy is chosen to indicate lost data to the
codec.

2. Audio channels: The audio channels will be
like voice channels, except as noted above

STDU max = 200 bytes

CONST_SIZE = TRUE

CONST_NUM = TRUE

T = 12.5 ms

N max input parameter is ignored

S max = 200 bytes

Savg = 200 bytes

Iavg = 1

S min = 200 bytes

SSslack =
STDU max

S max
� ��������������� = 1

Dstream = 300 ms

Serr = 200 bytes

Werr = 99% (lose ≤ 1 packet per period)

REPLACE = FALSE

Dummy = null (do not replace lost data)

3. Notepad/Image Channel:

STDU max = 1 byte

CONST_SIZE = TRUE

CONST_NUM = FALSE

T = 0.5 sec

N max input parameter is ignored

- 14 -

S max = 90 KB

Savg = 13 KB

Iavg = 20 periods

S min = 0

SSslack = 90 KB

Dstream = 300 ms (video stream)

Serr = 1300 bytes

Werr = 95%

REPLACE = TRUE

Dummy = all 0’s

4. Return channel is the same as the audio chan-
nels

3. Requirements of Underlying Service and
Execution Environment

Before the function of the CM layer can be
described, assumptions about the underlying ser-
vice and the execution environment must be
stated.

3.1. Underlying Data Transfer Service

The CM layer will be built upon a internet-
work layer data transfer service. CM requires the
following minimum functionality from the under-
lying data transmission service:

� At least simplex data transmission
� Guaranteed minimum throughput
� Guaranteed maximum end-to-end delay
� Guaranteed maximum packet loss rate
� Lower layer returns some mechanism for dis-

covering lost and mis-ordered packets (e.g.
sequence number)

In addition to these requirements, the following
characteristics are highly desirable (either for an
easier/more efficient implementation or for added
functionality):

� Corrupted data returned by underlying service
(The functionality of CMTS is reduced
without this capability, but it is not a funda-
mental requirement.)

� Underlying service indicates when it is return-
ing corrupted data

� Underlying service indicates when data is lost
� Delay jitter can be limited by the underlying

layer

� Underlying service can assemble packets for
transmission from separate buffers, i.e.
headers and data do not need to be contiguous
in the same buffer

� Underlying service performs smoothing on
packets delivered in bursts, e.g. leaky bucket.
(We should note that the underlying service
provides smoothing of packet transmission
times, whereas CMTS provides smoothing of
the data rate, i.e. a large burst is smoothed
over a number of periods. CMTS must pro-
vide this smoothing of the data rate so that
data can remain in the shared buffer and slow
down a client that is sending too fast. How-
ever, smoothing of packet transmission times
is best performed by only one layer, hence the
lower level service.)

� Underlying service tries to schedule packet
transmission according to times passed in by
CM

The underlying service for network transmis-
sion in our prototype will be the Real-Time Inter-
net Protocol (RTIP), which is described fully in
[ZhV91]. RTIP provides all the required func-
tionality and also returns corrupted data without
indicating whether data is corrupted (it does not
protect the data field), can limit delay jitter, and
performs smoothing of packet transmission
according to times passed in by the upper layer.
RTIP clients describe their traffic characteristics
and performance requirements using the follow-
ing parameters.

Traffic Characteristics:

s max:
Maximum size of data to be sent on the inter-
network channel (i.e. maximum size of a
internetwork service data unit)

x min :
Minimum spacing between packets

xave:Upper limit on the average spacing between
packets

I: Averaging interval for xave

Performance Requirements:

D: End-to-end delay bound

Z: Lower bound on the probability that a packet
arrives within its delay bound

J: Delay-jitter bound (i.e. bound on the spread
between the minimum and maximum delays
of all packets sent on the channel which arrive

- 15 -

within the delay bound)

U: Lower bound on the probability that a packet
satisfies its jitter bound

W: Lower bound on the probability that a packet
arrives at the destination (i.e. is not dropped
due to buffer overflow)

The send interface provided by RTIP is as fol-
lows (from [ZhV91]):

rtip_send(lcid, pkt, len,
eligib_time, higher_level_encaps),

where lcid is the local channel identifier for
the channel, pkt is the actual data to be
transferred, and len is its length.
eligib_time is the time at which RTIP will
assume the data was presented for delivery,
although it may have actually been presented ear-
lier. This allows the upper layer to use the traffic
smoothing of RTIP instead of implementing its
own timers for smoothing.
higher_level_encaps can contain some
information from the upper layer which needs to
be carried on a per-packet basis. Although this
feature is mentioned in the original RTIP design,
it is not expected to be supported in future
designs (including the prototype implementation),
and hence will not be used by CMTS.

RTIP calls the function
rtip_indication() to inform the upper
layer at the receiver that data has arrived. This
function is provided by the upper layer (i.e., by
CMTS). Its syntax is as follows:

rtip_indication(lcid, pkt, len,
pkt_seq_no, higher_level_encaps),

where lcid, pkt, len, and
higher_level_encaps are the same as
described above for rtip_send();
pkt_seq_no is the sequence number of the
current packet. It is provided to allow the upper
layer to detect missing packets (mis-ordered
packets are discarded by RTIP).

RTIP channels will be established and admin-
istered by the Real-Time Channel Administration
Protocol (RCAP), described in [BaM91a]. RCAP
establishes channels and manages resources to
ensure that RTIP can meet the guarantees made to
its clients.

3.2. Execution Environment

The CMTS requires certain functionality from
the operating system and hardware upon which it
is running. Implementation of full functionality is
not possible if the following requirements are not
met:

� Pages of virtual memory can be locked into
physical memory (for the shared buffer).

� CM can share memory pages with clients
without requiring that the clients’ execution
state be loaded in order for shared pages to be
accessed.

� A real-time clock with high precision timer
(typically about 1 msec) is available. (We
expect the requirements of the underlying ser-
vice to be more strict in this regard.)

� Real-time scheduling of CPU and network is
available, i.e. the latency between the time the
CM process requests to run and the actual
time the process runs can be bounded by a
‘‘reasonable’’ value. The same holds for net-
work transmission.

� End-systems can provide a guaranteed
minimum amount of processing time to CM
during a specified interval.

� Similar guarantees on latency and CPU time
are also provided for CM clients.

� Clock drift between communicating hosts is
not ‘‘too great’’. (If delay requirements and
buffer availability allow, clock drift can be
tolerated by the workahead given by SSslack

and SRslack .)

As with the underlying service, there are also
several characteristics which would be advanta-
geous, but are not strictly required:

� Clocks on communicating hosts are synchron-
ized. (Additional buffer space and part of the
end-to-end delay can be used to tolerate lack
of synchronization between clocks.)

� Virtual copying of memory pages can be
implemented efficiently via page re-mapping.

� Memory sharing can be controlled on a per-
page basis.

We have not yet found a Unix-like operating sys-
tem that provides all the features we require
without prior modification. Work is currently in
progress to modify Ultrix (DEC) and HP-UX
(HP) to support our real-time protocols.

- 16 -

4. CM Service Primitives and Formalized Ser-
vice Description

This section introduces abstract service primi-
tives and specifies their intended usage to more
formally define the CM data transfer service.
First, we will define the primitives for channel
establishment and their use. Then, we will define
primitives for sending and receiving streams of
CM data and their use.

4.1. Service primitives for channel establish-
ment and tear-down5

To transmit CM data from CS to CR with per-
formance guarantees, a connection must be esta-
blished between these entities, and network and
system resources must be allocated to this con-
nection. As previously stated, such a connection
with associated resource allocations is termed a
channel. Channel establishment for CM channels
is managed by the Real-Time Channel Adminis-
tration Protocol (cf. [BaM91a] and [BaM91b] for
a more detailed description of RCAP).

In this document we will describe the calcula-
tions and reservations necessary for the CM layer,
i.e. for transporting data from the sending client,
CS, to to the receiving client, CR via a guaranteed
real-time internetwork service. The internetwork
service we will use is provided by the Real-Time
Internet Protocol (RTIP) and is described in
[ZhV91] and [BaM91a]. Although this document
will describe the channel administration functions
(including channel establishment and teardown)
of the CM service, it should be remembered that
this functionality will be provided by the RCAP
module, which will also provide channel adminis-
tration for the message-oriented service, RMTP
(also described in [ZhV91]).6 RCAP will need to
translate traffic and quality of service (QOS)
parameters from those specified at the CM/client
interface to those supported by the internetwork
service, and request both processing time and
buffer space on both the sending and receiving
end-systems for CM functions (i.e. fragmentation,
and scheduling calculations). The primitives
which support this service are described below.
�����������������������������������

5 It is assumed that creation of continuous media
channels can only be initiated by the source.

6 It should be noted that the CM transport service will
be implemented using the same real-time internetwork
service primitives as are used by RMTP and described in
[ZhV91]; hence, CM channels will not differ from
message-oriented channels at or below the upper inter-
face of the internetwork layer.

Data types are as described in [BaM91b]. For
convenience, the description is repeated here.
Unless otherwise noted, the RCAP user interface
uses four-byte (32-bit) integers for communica-
tion between RCAP and the user. The parameters
use the native byte-ordering in each network
node; they are converted (if necessary) to net-
work byte-ordering before transmission to other
RCAP modules on other nodes.

Parameters representing time are expressed in
units of 2−16 seconds. This format permits the
representation of times as short as 15
microseconds and as long as 18 hours (for 32-bit
representations). Quantities in this representation
are said to be expressed in ‘‘standard temporal
units.’’

Parameters expressing probabilities are
expressed in ten-thousandths (10−4). Values
greater than 10,000/10,000 generate an error.
Quantities expressed in this representation are
said to be in ‘‘standard probabilistic units.’’

We use a C-like pseudo-code in the interface
descriptions and data structure definitions below.
By definition, u_int refers to a 4-byte unsigned
quantity, u_short refers to a 2-byte unsigned
quantity, and u_char refers to a 1-byte
unsigned quantity.

4.1.1. Channel Establishment (Sender)

A sending client (CS) requests a CM channel
by invoking the RcapCmEstablish-
Request() primitive:

u_int RcapCmEstablishRequest(
cmParmblock *parms, u_int *lcid,
struct in_addr *ipAddr);

This primitive implies that all entities
involved in supporting a possible CM channel
(i.e. the internetwork layer, CMS, CMR, and CR)
are contacted. A channel is established only if all
entities agree that sufficient resources are avail-
able to ensure that the traffic and QOS parameters
the client specified for the channel can always be
satisfied. The primitive is blocked until an
answer is known about the results of the estab-
lishment request. In the case of successful estab-
lishment, the local channel ID is returned in
lcid along a return value of success. If the
establishment fails, the reason for the failure is
returned. In addition to the general failure codes
listed in [BaM91b], CM channel establishment
could generate the following failure codes:

- 17 -

fail_SendClientBuf Maximum buffer
size specified by
CS is too small.

fail_RecClientBuf Insufficient buffer
space available on
receiving host.

fail_RecClient Channel refused by
receiving client.

The contents of the data structures are explained
below.

Parameter Block

typedef struct {
rcapCmTraffic *CmTraffic;
rcapCmRequirements *CmRequirements;
rcapAddress *destination;
rcapUserControl *control;

} cmParmblock;

A cmParmblock consists solely of pointers
to the other data structures needed in order for
channel establishment to take place.

Traffic Characteristics

The sender must specify its traffic characteris-
tics using the following parameters:

typedef struct {
u_int STDUmax;
bool CONST_SIZE;
bool CONST_NUM;
u_int T;
u_int Nmax;
u_int Smax;
u_int Savg;
u_int Iavg;
u_int Smin;
u_int S_Sslack;
struct BufferStruct *Buffer;

} rcapCmTraffic;

These parameters are defined in section 2.2.
CS must specify the characteristics of a channel in
order to cover the requirements of all future
streams which may be mapped onto this channel
(cf. section 4.2)

Quality of Service Parameters

The sending client specifies its QOS require-
ments for the CM channel according to the data
structure described below:

typedef struct {
u_int Dstream;
u_int Serr;
u_int Werr;
bool REPLACE;
char *Dummy;

} rcapCmRequirements;

These parameters are also defined in section
2.2 above. Addressing and user control informa-
tion are handled exactly as described in
[BaM91b].

4.1.2. Channel Establishment (Receiver)

Channel establishment takes place in three
steps at the receiver. First, the client informs the
RCAP module that it is willing to accept channel
requests on a specified port number by invoking
the RcapRegister() primitive:

u_int RcapRegister(u_short port,
u_int queue_length)

Port numbers are maintained by RCAP and
must be globally unique on each end-system. To
communicate with a receiver, the sender will
have to know the correct port number already,
either through prior communication through use
of ‘‘well-known’’ port numbers for standard ser-
vices, or through use of a network name server.
This primitive registers the port number with the
RCAP module and specifies a maximum queue
length for channel requests on the port. It returns
one of two values:

success Client registered at
requested port.

err_port_in_use Port already in use.

A channel establishment request which arrives for
a port that is not registered, or for which the
queue is full, will be returned to the sender.
Queues and port numbers are released by the
RcapUnregister() primitive:

u_int RcapUnregister(u_short port,
u_int queue_length)

After registering a port number, the receiving
client can obtain requests on the port for CM
channels by invoking the RcapCmReceive-
Request() primitive:

u_int RcapCmReceiveRequest(
u_short port, cmParmblock *parms,
rcapAddress *source, u_short *lcid)

- 18 -

This primitive is the same as the Rcap-
ReceiveRequest() primitive described for
the message service, except that parms refers to
the parameters described above for a CM chan-
nel. The reader is directed to [BaM91b] for more
detailed information.

CR uses the characterization of the proposed
channel, the source address and its own
knowledge of available resources to determine
whether to accept or reject the request. In partic-
ular, CR looks at the size of the buffer, given by
the Buffer.size parameter. CR tries to allo-
cate a buffer that is at least Buffer.size +
S_Rslack bytes, where S_Rslack is chosen
by CR. If a large enough buffer cannot be allo-
cated, CR rejects the channel request. CR informs
RCAP of its decision via the RcapCmEsta-
blishReturn() primitive:

u_int RcapCmEstablishReturn(
u_short lcid, u_short result,
u_short reasonCode,
rcapUserControl *control
cmParmblock, *parms)

This primitive is the same as the Rcap-
EstablishReturn() primitive defined in
[BaM91b] for RMTP, except that the parameter
block is also returned. Since CR is responsible for
allocating the shared buffer on the receiving host,
it must return the Buffer field to CM to indi-
cate the location of the shared buffer. Rather than
returning only part of the parameter block, the
entire block is returned.

4.1.3. Channel Teardown

Channel teardown for a CM channel is the
same as channel teardown for a message channel,
except that additional resources must be
reclaimed at the sending and receiving hosts, e.g.,
the shared buffer. The RcapCmClose-
Request() call initiates channel teardown from
either the source or the receiver. The primitive is
specified as follows:

u_int RcapCmCloseRequest(
u_short lcid,
u_short reasonCode)

Except that it causes additional resources to be
reclaimed at both the sending and receiving hosts,
this call is the same as the RcapClose-
Request() call described in [BaM91b].

4.1.4. Channel Status Request

The RcapStatusRequest() primitive
provides the performance statistics maintained by
the channel. It is described in [BaM91b].

4.2. Service primitives for data transmission

Data transmission corresponds to sequences
of streams, where a stream consists of the
periodic transmission of stream data units
(STDUs) from CS to CR. The traffic and QOS
characteristics of each stream may be redefined,
subject to certain restrictions: the basic nature of
the communication cannot change (e.g.,
constant-size STDUs, variable number of STDUs
per period), and the new characterization cannot
exceed the resource demands of the actual chan-
nel. The actual channel need not be modified;
rather, this mechanism allows the CMTS to possi-
bly optimize its handling of the stream (e.g.,
allow some buffers to be borrowed by other
traffic) and allows for better coordination
between CS and CR. The following primitives
will be used to describe the CM data transmission
service:

cmOpenStream(u_short lcid,
cmParmblock *stparms,
u_int duration,
u_int d_startup,
struct userDataBlock *clientData)

cmWaitForOpen(u_short lcid,
cmParmblock *stparms,
u_int duration,
u_int d_startup,
struct userDataBlock *clientData)

cmWriteSTDU(
struct StduStruct *stdu)

cmReadSTDU(BufferStruct *buf)
cmCloseStream(u_short lcid)
cmWaitForClose(u_short lcid)

CS invokes cmOpenStream() to indicate
that a new stream is about to begin on the chan-
nel. lcid is the local channel ID on which
data will be sent. stparms are the traffic and
QOS parameters as redefined for the stream. As
mentioned earlier, only a subset of all channel
parameters may be altered and these may only be
altered in a restricted manner. Parameters for
which the stream parameter may be larger than
the value guaranteed by the channel are T,
Smin, and Dstream. Parameters for which the
stream parameter may be smaller than the value
guaranteed by the channel are Nmax, Smax,
Savg, and Werr.

- 19 -

The duration parameter specifies a max-
imum duration after which the stream will expire
as if a cmCloseStream() primitive had been
invoked. This parameter is passed on to CR

which may use it in allocating resources for the
stream, e.g. a file. If a duration of 0 is used,
the lifetime of the stream is unbounded. On the
sender, d_startup is the time between the
indication of the start of the data stream (i.e. the
cmOpenStream() invocation) and the start of
the first period of the stream on the sender (at
time t 0). It is specified by CS and, as explained in
section 2, d_startup is not included in the
overall stream delay Dstream. The parameter
clientData contains a variable-length field
which is passed from CS to CR without any
interpretation by the CMTS. One important
example of the kind of data which may be con-
tained in this field is a timestamp to be used in
synchronizing two streams. If an illegal value is
specified for any of the stream parameters, the
cmOpenStream() primitive fails.

A receiving client indicates that it is prepared
to receive a stream by invoking the cmWait-
ForOpen() primitive, which will block until the
next stream is started. Use of the cmOpen-
Stream() primitive on the sending host causes
the cmWaitForOpen() primitive of the cor-
responding receiving client to unblock, indicating
that data transmission is about to begin and com-
municating the stparms, duration,
d_startup parameters and any client data to
the receiving client. The value of d_startup
will have been modified by CM as described in
the implementation section. On the receiver,
d_startup is the time between the return from
the cmWaitForOpen() call and the start of
the stream on the receiving host. Therefore, after
returning from the cmWaitForOpen() call,
CR must wait for the time indicated by
d_startup before reading data from the shared
buffer (to avoid starvation).

CS uses the cmWriteSTDU() primitive to
transfer STDUs from CS to CR. The stdu
parameter is the STDU to be transmitted. Since
no explicit interaction between CS and CMS is
required, this primitive is actually a pseudo-
primitive, and consists of merely writing data into
the shared buffer in time for transmission. The
service reserves space for S_Sslack extra
bytes in the buffer, so that CS may pre-load that
much data in the buffer early, i.e. before the
beginning of the corresponding period (time
t=ti −1 for interval ∆ti). As a result of the invoca-

tion of the cmWriteSTDU() primitive, STDUs
will be retrieved from the buffer and transmitted
to CR before the corresponding period begins on
the receiver (i.e. τi −1, cf. section 2.2), while
honoring traffic parameters specified at the begin-
ning of the stream by means of the cmOpen-
Stream() primitive.

CR uses the cmReadSTDU() pseudo-
primitive to retrieve STDUs sent from CS. The
buf parameter is a pointer to a buffer in which
the STDU is to be placed. Actually, it is the next
location in the shared buffer (i.e. the area follow-
ing the most recent STDU in the buffer).
Because these buffers are pre-allocated, all data
associated with a period should be read by CR

before the end of the corresponding period so that
the buffer space can be reused for incoming data.
However, extra buffer space is provided so that
CR can fall slightly behind without losing data.
As described in section 2.2, CR can leave up to
S_Rslack bytes in the buffer after they should
have been read (recall that S_Rslack is chosen
by CR). The cmReadSTDU() primitive
requires that STDUs from CS be put into the
shared buffer (by CMR) before the beginning of
the period in which they are to be read.

CS invokes the cmCloseStream() primi-
tive to indicate the end of a stream. This primi-
tive will cause an invocation of the cmWait-
ForClose() primitive to complete at the
receiver, indicating the end of the stream to CR.

4.3. Formalized service definition according to
service primitives

We are now prepared to formalize our service
definition according to the service primitives
defined above. The states for a CM channel are
listed in Table 4.1. State transitions are shown in
Figure 4.1 for events at the sending host, and in
Figure 4.2 for events at the receiving host.

4.3.1. Service as seen by the sending client

Before sending CM data, a client must first
request that a CM channel be established to the
receiver by invoking the RcapCmEstablish-
Request() primitive. When this primitive is
invoked, the channel will change from the
UNDEF state to the SETUP state. If a channel is
successfully established, the primitive will return
the local channel ID (lcid) of the channel,
which will be used in all further interactions.
Successful channel establishment causes a chan-
nel to make a state transition from SETUP to

- 20 -

Table 4.1: Legal states for CM channels
� ���

State Description� ���
UNDEF Channel is undefined
SETUP Channel is being established
DELETION Channel is being torn down
IDLE Channel is defined, but

between streams
PREPARE Channel is preparing for

data transfer
SEND Channel is currently

transmitting a stream of
data

RECEIVE Channel is currently receiv-
ing a stream of data� ���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

IDLE.

SEND

UNDEF

RcapCmCloseRequest()
completes

DELETION SETUP

IDLE

accepted
RcapCmEstablishRequest

cmCloseStream()

cmWriteSTDU()

PREPARE

cmOpenStream()

d_startup
passed

RcapCmCloseRequest()

RcapCmEstablishRequest()

denied
RcapCmEstablishRequest

(Channel Establishment)RCAP

to DELETION

RcapCmCloseRequest()

(Stream Transmission)CMTS

Figure 4.1: Transitions of channel state at the sender

After a channel has been successfully esta-
blished, data transfer can begin. The sending
client (CS) must signal the beginning of a logical

stream before it can begin sending data. The
cmOpenStream() primitive is invoked for this
purpose. When invoking this primitive, CS has
the option of altering some of the traffic and QOS
parameters and of specifying additional parame-
ters as described in the preceding section. The
cmOpenStream() primitive will cause the
receiving client’s invocation of the cmWait-
ForOpen() primitive to complete, informing
the receiving client (CR) that data transmission is
about to begin (see below). cmOpen-
Stream() can only be invoked when the chan-
nel is in the IDLE state. Successful completion of
the primitive causes the state of the channel to
change from the IDLE state to the PREPARE
state. The stream bit is changed to indicate a new
stream (cf. section 5.2).

In the PREPARE state, CS prepares for
transmission by pre-filling the shared buffer.
After the time indicated by d_startup, the
channel changes from the PREPARE state to the
SEND state and data transmission can begin.

After the channel enters the SEND state, CS

may send a stream of data to CR by ‘‘invoking’’
the cmWriteSTDU() pseudo-primitive (i.e. by
writing data into the shared buffer). The
cmWriteSTDU() primitive transmits STDUs
from CS to CR in such a manner as to honor all
QOS and traffic parameters specified for this
stream. The channel will remain in the SEND
state after completion of this primitive. If the
stream is terminated by a channel teardown prim-
itive (i.e. RcapCmCloseRequest()), the
channel will change to the DELETION state; if
the stream is terminated by invocation of a
cmCloseStream() primitive, the channel will
change to the IDLE state.

CS may invoke the cmCloseStream()
primitive for any channel in the SEND or
PREPARE states. Completion of this primitive
will cause the channel to change from its current
state to the IDLE state and will cause the corres-
ponding cmWaitForClose() to complete at
the receiver.

When the sending client is finished with the
channel, it can be torn down by invoking the
RcapCmCloseRequest() primitive. Invoca-
tion of this primitive causes the channel state to
change from any state (besides UNDEF) to the
DELETION state. When the primitive completes,
the channel changes from the DELETION state to
UNDEF. The channel could also be torn down by
the network or receiving client, in which case the

- 21 -

sending client would be informed that the channel
no longer exists.

4.3.2. Service as seen by the receiving client

Before a client can receive data, a channel
must be established to it from a sender. First, the
receiving client CR informs the RCAP module
that it is willing to receive channel establishment
requests on a specified port via the Rcap-
Register() primitive. After that, CR may
receive requests for channels by invoking the
RcapCmReceiveRequest() primitive.
When a channel request is received, the channel
enters the SETUP state, matching the state at the
sender (see above). CR then decides whether it is
willing to accept the request and indicates its
decision using the RcapCmEstablish-
Return() primitive. If CR denies the request,
the sender’s establishment request fails and the
state of the channel changes from SETUP to
DELETION at both sender and receiver. If CR

accepts the channel, it is established, causing the
state of the channel to change from SETUP to
IDLE at both the sender and the receiver.

After a channel has been successfully esta-
blished, data transfer can begin. Upon entering
the IDLE state, CR immediately invokes the
cmWaitForOpen() primitive, which will com-
plete when a new stream is begun at the sender
via the cmOpenStream() primitive. Comple-
tion of the cmWaitForOpen() primitive
causes the traffic and QOS parameters, the
duration value, and the d_startup value
for the new stream to be delivered to CR along
with the clientData field, and causes a state
transition from IDLE to PREPARE.

In the PREPARE state, CR prepares to receive
STDUs. When this state is entered, CR immedi-
ately invokes the cmWaitForClose() primi-
tive. This primitive will return only when the
stream has been closed. After the time indicated
by d_startup, the channel changes from the
PREPARE state to the RECEIVE state and CR is
allowed to begin reading data.

After the channel enters the RECEIVE state,
CR may receive STDUs from CS by invoking the
cmReadSTDU() pseudo-primitive. Actually,
‘‘invocation’’ of this primitive consists of reading
from the shared buffer and updating the descrip-
tors. The channel will remain in the RECEIVE
state after completion of this primitive. The
stream may be terminated by a cmCloseS-
tream() invocation at the sender, which will

RECEIVE

deny
RcapCmEstablishRequest

returns

completes
RcapCmReceiveRequest()

UNDEF

RcapCmCloseRequest()

DELETION SETUP

RcapCmCloseRequest()

(Channel Establishment)RCAP

IDLE

PREPARE

d_startup
passed

DELETION

RcapCmCloseRequest()

(Stream Transmission)CMTS

RcapCmEstablishRequest
accept

returns
cmWaitForClose()

cmWaitForOpen()
returns

cmReadSTDU()

to

Figure 4.2: Transitions of channel state at the receiver

cause the call to cmWaitForClose() to
return; or by a RcapCmCloseRequest() by
either the source, the destination, or the network,
as described above for cmWriteSTDU().

The receiving client may tear down a channel
by invoking the RcapCmCloseRequest()
primitive. Initial invocation causes channel state
to change from any state (other than UNDEF) to
DELETION. After the tear down primitive com-
pletes, the channel state is changed to UNDEF.
The channel could also be torn down by the send-
ing client or the network, in which case the
receiving client would be informed that its chan-
nel no longer exists.

4.4. Timing of Stream at Receiver

The processing of data by the receiving client
must be synchronized in some way with data pro-
duction by the sending client. Several possible

- 22 -

mechanisms could be used for communicating
timing information between CS and CR. In this
section we would like to analyze the suitability of
CMTS for each of the four mechanisms of which
we are aware.

First we define

r (∆τi)
∆= Function determining timing of

STDU consumption at the receiver.

Table 4.2: Possible definitions for r (∆τi)
� ���

I. Known a priori for the duration of
the stream, e.g. uncompressed
voice → 1 byte per 125 µsec for
each voice channel in PCM coding.� ���

II. Direct function or consequence of
the decoding process at the rec-
eiver, e.g., compressed video
transferred as a byte stream in
which the frame boundaries
embedded in the compressed
stream.� ���

III. STDUs contain explicit ‘‘time-
stamps’’ added by the sending
client. These are passed directly on
to the receiving client as part of the
CM data. This kind of timing infor-
mation is particularly relevant for
stored streams.� ���

IV. Timing is generated by arrival pro-
cess of STDUs at the sender
(λ[∆ti]), which must be recon-
structed at the receiver. This case
includes those receiving applica-
tions which do not perform any
timing functions themselves, but
rely on the arrival of STDUs for
timing.� ���

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

I-III above are directly supported by CMTS.
We chose not to support option IV directly in the
CMTS layer because such a service would only
be required by a fraction of CM clients and can
be implemented as a local service on top of
CMTS using option III with timers to schedule
when to ‘‘deliver’’ the next STDU to the client.

5. Functional Description of CM layer and
Specification of CMTP protocol

This section describes the functionality of the
CM layer and the Continuous Media Transport
Protocol (CMTP) which facilitates communica-

tion between CMTS peers to provide this func-
tionality.

5.1. Functionality of CMTS layer

The functionality of the CM layer consists of
the functions performed by the CM entities at the
sending (CMS) and receiving (CMR) end-systems.

Sending host (CMS)

The CMTS entity on the sending side (CMS)
must perform functions for connection establish-
ment and teardown and for data transport.

Channel establishment (handled by RCAP on
behalf of CMS):

� Translate parameters from CM to net-
work characterization

� Acquire resources on sending end-
system for CM channel

� Acquire a suitable real-time network
channel

� Forward channel request to peer on
receiving host (CMR)

� Set up data structures required for data
transport

Channel teardown (handled by RCAP on behalf
of CMS):

� Release resources and network channel

Data Transport (sending):
� Notify peer on receiving host (CMR) of

start of a new stream (*)
� Get data from sending client
� Packetize data
� Schedule transmission of data units

and send to peer (*)
� Notify peer on receiving host (CMR) of

end of stream (*)

Receiving host (CMR)

Channel establishment (handled by RCAP on
behalf of CMR):

� Perform tests to determine whether
requested channel can be serviced

� Pass on request to receiving client (CR)
� Acquire resources on receiving end-

system for CM channel
� Set up data structures required for data

transport

- 23 -

Channel teardown (handled by RCAP on behalf
of CMS):

� Release resources and network channel
� Notify client (CR)

Data Transport (receiving):
� Notify receiving client (CR) of start of

a new stream
� Verify packet sequence number to

detect lost data
� Verify checksum to detect corrupted

data
� If data is corrupted or lost and replace

option has been specified, replace each
missing packet with Dummy

� Unpacketize data and put in shared
buffer

� Update descriptor with condition of
data (valid, corrupt, lost)

� Signal client of receipt of data if client
is waiting for data

� Notify receiving client of end of
stream

To perform those tasks marked with a (*), a
protocol must be defined to allow CMS to com-
municate with CMR.

5.2. Continuous Media Transport Protocol
(CMTP)

The first version of the CMTP protocol could
be kept relatively simple. This simplicity results
primarily from the fact that several of the com-
munication functions needed in conventional data
communication (in particular, retransmissions for
error correction, flow control, etc.) are not
required in order to provide the CMTS service.
Regarding retransmissions, we take the position
(stated in [FeV90]) that most real-time applica-
tions will not be able to wait for retransmissions,
and even if they could, the amount of data which
would need to be stored to perform retransmis-
sions on a high bandwidth-delay product network
could not be justified for CM clients, which do
not require perfectly reliable service. Similarly,
resetting a data stream to an earlier status (period)
is not possible as the resource requirements
needed to set check-points in general are prohibi-
tive for storing an intermediate status of a stream.
Therefore in the case of a serious protocol error,
channel tear-down and establishment of a new
channel (with a new stream) seem to be the most
appropriate measures.

The simplex nature of the real-time connec-
tions used also constrains the potential dialog
between sender and receiver within such a con-
nection, allowing a simpler protocol to suffice. In
the design of the CMTP protocol, we have
assumed that a data stream between CS and CR is
transmitted via exactly one (uni-directional) con-
nection between CS and CR. This connection thus
represents a data connection. As no multiplexing
takes place in the CM transport layer, a one-to-
one mapping of the addresses of communicating
clients to the address of the network connection
(connection-id provided by RCAP in the case of
XUNET II) can be used to solve the addressing
problem.

As an extension to the current design, we
assume that CMS and CMR are able to (reliably)
exchange control information concerning the state
of the data connections presently established
between them. In a similar way, we assume that
the CMTS service reliably transfers client-control
information between CS and CR to support an
application-defined protocol between them
(separate communication, in addition to the
exchange of a data stream). This solution can be
viewed as an "out-of-band-signaling" between the
communicating CM clients.

Until now, the CMTP protocol has only been
specified for communication within the data con-
nection. Experiences of the CMTS implementa-
tion are considered to be indispensable prior to a
protocol extension and will be taken into account
in the completion of the CMTP protocol.

Specification of a communication protocol
must cover three fundamental aspects (cf.
[Wol81]):

� syntax of Protocol Data Units (PDUs)
exchanged, i.e. data formats

� semantics of PDUs, i.e. their meaning for the
communicating entities

� possible sequences of PDUs exchanged over
time (timing)

The CMTP protocol is based on the use of
three types of protocol data units: ON_PDU,
OFF_PDU, and DATA_PDU. Each PDU is car-
ried in exactly one network packet, i.e. PDUs are
not fragmented. Because PDUs are not frag-
mented, the len parameter returned by the
underlying internetwork protocol (cf. section 3.1)
can be used to indicate the length of variable-size
packets. Therefore, no length field is transported
by CMTP, even though CMTP PDUs may be of

- 24 -

variable length. The syntax of the three types of
PDUs is shown in Figure 5.1 and their semantics
are described below.

stream bit

stream bit

Variable length client data

Variable length client data

checksum (optional)

checksum

.....
31

Variable length client data

last STDU no.10100000

Savg

Nmax

Werr

Smax

Smin

DstreamT

Data_PDU: stream bit

reserved for optional timestamp
no. of fragmentsfragment ID

type:00000000

On_PDU:

10010000 Reserved for future use
3115 2370

.

.

.

.

.

3115 2370
.
.
.
.
.

initial STDU no.typetype initial STDU no..
.
.
.
.

dstartup

duration

Off_PDU:
0 7 2315

checksum

Packet contains exactly one entire STDU

00000100 Several (constant-size) entire STDUs

Final fragment of fragmented STDU00000010

Non-final fragment of fragmented STDU00000001

Reserved for future use

(fragment ID = no. of fragments)

(fragment ID < no. of fragments)

Figure 5.1: Format of CMTP PDUs

The ON_PDU signals CMR that a new stream
is about to begin on the channel. Each stream is
identified by an alternating stream bit, which
ensures that, even if an OFF_PDU and both sub-
sequent ON_PDUs are lost, a new stream will be
noted because of the change in the stream bit.
The stream bit is therefore carried in each PDU.
In DATA_PDUs and OFF_PDUs, the stream bit
is the most significant bit in the STDU number
field (see Figure 5.1). Additionally, the ON_PDU
contains those traffic and QOS parameters whose
values are allowed to be modified for the duration
of the stream. As described in section 2, each
parameter can only be varied in one direction
with respect to the channel characteristics. This
restriction simplifies validity checking and
ensures that changing one parameter will not
invalidate a parameter which has not been
changed.

The ON_PDU also contains two additional
parameters, dstartup and duration, which are not

parameters of the channel, but are specified by the
client at the beginning of each stream as
described in the previous section. dstartup is the
amount of time between the cmOpen-
Stream() call made by CS

7 and the beginning
of the stream at the CS /CMS interface. This time
is used by CS to pre-fill the buffer at the sender.
dstartup is transferred to the receiver, because CR

must wait at least as long as dstartup after the
receipt of the OPEN_PDU by CMR before it is
allowed to start reading data. Of course dstartup

must be included in the end-to-end delay seen by
the application, but, as described in section 2, this
delay is outside the realm of the CM service
because it occurs before the beginning of the
stream (on both the sender and receiver); there-
fore, it is not included in the end-to-end stream
delay, Dstream .

If the ON_PDU is lost, these stream parame-
ters are unknown at the receiver. Therefore, the
ON_PDU is sent twice during the startup time
(given by dstartup).8 In the unlikely occurrence that
both ON_PDUs are lost, the only solution in the
current design is for CMR to tear down the chan-
nel. Future work will add a full duplex control
channel that can be used to recover from a lost
ON_PDU more gracefully. The control connec-
tion is described in more detail at the end of this
section.

The sending client may optionally specify the
duration of the stream. The CM layer notes this
parameter and passes it on to the receiving client,
which may use it for resource allocation (e.g.
files) or its own timing. The client data field is
for control data that CS may wish to pass on to
CR, such as a timestamp to allow the beginning of
two streams arriving from the same host to be
synchronized. An optional checksum protects the
entire packet.

The OFF_PDU is used to signify the end of
the stream. It specifies the number of the last
STDU in the stream, so that lost STDUs can be
detected at the end of the stream.

The DATA_PDU carries data from the shared
buffer. Figure 5.2 depicts the mapping of STDUs
into DATA_PDUs (which also specifies the map-
ping into packets, as each PDU is transported in
exactly one packet). Depending on the type of
�����������������������������������

7 Where the ‘‘time of the call’’ is defined to be the
time when the client’s call returns.

8 Of course the value of dstartup and duration must be
modified appropriately in the second ON_PDU.

- 25 -

Concatenation:
(byte stream only)

STDU per packet:

Fragmentation:

J

K

....

....

....

N : 1

1 : M

1 : 1

STDU Packet

fragments for STDU

KSTDU

STDU
J

STDU

1STDU STDU
N

NSTDUSTDU21STDU

Figure 5.2: Mapping of STDUs into packets
(DATA_PDUs)

stream, a single DATA_PDU may contain one
STDU, a fragment of an STDU, or multiple
STDUs (only if the stream is a byte stream). The
type field indicates the exact nature of the data in
the PDU. The initial STDU number indicates the
number of the first STDU contained in the packet.
This is also the only STDU in the packet unless
the channel is carrying a byte stream. For a
stream that is not a byte stream, the no. of frag-
ments field indicates the number of fragments
which comprise the current STDU and the frag-
ment ID indicates the fragment number of the
enclosed fragment within the current STDU. For
a byte stream, the no. of fragments field indicates
the number of bytes in the packet and the frag-
ment ID field is unused. The optional timestamp
is used by CM for debugging and to collect per-
formance statistics. In the current design, neither
this timestamp nor the statistics are available to
the client.

Figure 5.3 shows a typical sequence of events
on a CM channel. It maps the actions performed
by entities to each type of PDU. This figure
shows two successive streams, s 0 and s 1, on the
same channel. A cmOpenStream() call by

.............................

.............................

.............................

.............................

.............................

..............................

.............................

cmOpenStream

(client primitive) (protocoldata unit) (client primitive)

cmOpenStream

cmCloseStream

(duration of
stream expires)

Italics indicate pseudo-primitive

......
read(STDU1)

read(STDUm)

cmWaitForClose

cmWaitForOpen

returns

returns

returns

cmWaitForClose

......

read(STDUn)

read(STDUn −1)

read(STDU3)

read(STDU2)

read(STDU1)U

CMRCMSCS

distance

U_ PDFOF

DATA_PDU

UDP_ATAD

UDP_TAAD

N_ P
P_N

time

s 0

s 1

A PD

. .

write(STDUn)

write(STDU 3)

write(STDU 2)

write(STDU 1)

......

. .

. .

. .

D A _ PDTA

AT DP_A

DPATA _D

. .

. .

. .

. .

write(STDUn −1)

TAD _ U

D
U

U

OFF

. .

_PDU

O
O

DU
DU

. .

. .

write(STDU 1)

write(STDUm)
......

. .

. .

O
UDN

N_ PDO
U

_ P

cmWaitForOpenreturns

CR

. .

.

Service primitives

Flow of data
Responses to service primitives

Figure 5.3 Sequence of events for a typical stream

the client marks the beginning of s 0, and, causes
CMS to send an ON_PDU to CMR, which then
unblocks the call CR made to cmWaitFor-
Open(). After dstartup has passed, CMS periodi-
cally transfers data written into the shared buffer
by CS to CMR via DATA_PDUs. Upon receipt of
this data, CMR puts it into the buffer it shares with
CR. A cmCloseStream() call by CS or
expiration of the duration of the stream, causes
CMS to send an OFF_PDU to CMR, which then
unblocks the call CR made to cmWaitFor-
Close(), indicating the end of the stream to CR.

A more formalized description of the proto-
col, including its basic timing, is given by the
state diagrams at the sender and receiver shown
in Figures 5.4 and 5.5 respectively. These
diagrams are similar to the state diagrams shown
in the previous section, except that they have
been extended to include sending of protocol data
units on the sender and the effect of receiving

- 26 -

IDLE

SEND

PREPARE1. Send
OFF_PDU

(from client)
cmWriteSTDU

2. Set timer for dstartup

expires
stream duration

OFF_PDU
1. Send

cmCloseStream
(from client)

(from client)

cmOpenStream

dstartup passed

(from client)
OR

1. Send data to CMR

Event

Action

3.Send second ON_PDU

1. Send ON_PDU

cmCloseStream

Figure 5.4: Channel state transitions at CMS

(data connection only)

Receive ON_PDU (from CMS)

PREPARE

RECEIVE

1. Return from

1. Ignore it

cmWaitForOpen
2. Return from

2. Return from
cmWaitForOpen

dstartup passed

IDLE

1. Set timer for dstartup

cmReadSTDU
(by CR)

Receive OFF_PDU

1. Put data in shared buffer

Event

Action

cmWaitForClose

Receive second
ON_PDU

Receive OFF_PDU
(from CMS)

Figure 5.5:Channel state transitions at CMR

PDUs on the receiver, as well as some other basic
actions of CMS and CMR. It should be noted that
these diagrams are incomplete since the states and
actions required to recover from protocol errors
has been omitted for the sake of clarity. A
refinement of the actions actually taken by these
CM entities is given in section 6.2. States and
transitions relating to channel establishment and
teardown have been omitted. As in section 4, a

channel is in the IDLE state when it is between
streams, in the PREPARE state during the startup
delay (dstartup) and in the SEND or RECEIVE
state when sending or receiving CM data respec-
tively.

As mentioned above, we propose a future
extension of the design which includes a control
connection. Such a connection would be a low-
throughput, duplex connection offering minimal
or no performance guarantees, except reliable
transfer. Two types of control messages would
be carried on the connection:

1. User-control information which the clients
(CS, CR) could use to implement their own
bi-directional protocol

2. CM-CM control information, which could
consist of the following possibilities (details
to be determined through experimentation
with the prototype).

� ACK/NAK of ON_PDU. Ack-
nowledgement of ON_PDUs would
eliminate uncertainty at the sender as to
the state at the receiver. Negative ack-
nowledgement of reception of
ON_PDUs (CMR has noticed a new
stream either because of reception of an
OFF_PDU or new stream bit, but didn’t
receive the ON_PDU) allow the sender
to stop sending the current stream and
start again.

� ACK of OFF_PDU to eliminate uncer-
tainty.

� Indication of buffer overflow at the
receiving interface.

� PING to check if sender is still alive
when no data is has been received for a
given interval and no OFF_PDU has
been received.

� Other possible error situations
discovered through experimentation
with the prototype implementation.

6. Implementation Considerations

This section will describe a framework for an
implementation of the continuous media transport
service. Although the service could be imple-
mented differently, it was designed with this
implementation in mind. We first list some of the
basic problems any implementation of a data
transport service must solve. We then describe a
proposed implementation for solving these prob-

- 27 -

lems, taking into account the periodic nature of
CM to eliminate synchronous interactions
between the client and the service provider. We
would like to emphasize at this time that we want
to provide a basic service suitable for many dif-
ferent kinds of CM clients. Although most clients
will want to use the features of CMTS directly,
we expect that thin layers of library routines
would be implemented to provide an interface
tailored to the needs of less sophisticated clients.
At the end of this section, we will sketch a few
examples of these layers.

One of the fundamental goals of the realiza-
tion of the CM Transport Service has been to use
buffers in the source and destination nodes to
smooth variations both in the arrival process of
data to be transmitted and in network delays. The
motivation behind this decision is the expectation
that buffers will be relatively inexpensive com-
pared with the total network resources (including
throughput, buffers, scheduling, etc.) conserved
by smoothing the data traffic.

6.1. Problems to be solved in the implementa-
tion

Inherent to any transport service are a number
of problems which have to be solved in the imple-
mentation. In the description that follows, the
problems are described in terms of producers and
consumers of data at the interface between
clients and the service. Therefore, a producer
refers to either CS or CMR. It then follows that in
this description, CR is a consumer of data ‘‘pro-
duced’’ by CMR (and not by CS). The following
are some of the most important problems to be
solved:

(P1) How does a producer of data tell a consu-
mer where to find it?

This problem is referred to as the data loca-
tion transfer problem in [GoA91]. The loca-
tion of data to be consumed can be transferred
from producer to consumer either via an
explicit interaction on each data transfer or
via shared state, or it can be implied by an
earlier agreement.

(P2) How is data transferred from producer to
consumer?

This problem is referred to as the data
transfer problem in [GoA91]. It requires
either physical copying or VM remapping.

(P3) How are producers and consumers syn-
chronized with each other?

As stated above, we are referring to producers
and consumers across the client/service inter-
face, not between sending and receiving
clients. Therefore, we must be sure that the
producer does not produce data too quickly, in
which case some might be dropped due to
buffer overflow; and the consumer must not
try to consume invalid data (i.e. data which
has yet to be produced). The problem of
producer/consumer synchronization in access-
ing the shared buffer is referred to as the syn-
chronization problem in [GoA91].9 The syn-
chronization problem manages the availability
of either data or empty buffer space (i.e. with
the implementation of the cmReadSTDU()
and cmWriteSTDU() pseudo-primitives)
as well as the beginning and end of streams
(i.e. implementation of the cmOpen-
Stream(), cmWaitForOpen(),
cmCloseStream() and cmWaitFor-
Close() primitives).

(P4) How is the time for data transmission
chosen?

This is essentially the control problem of
[GoA91], which deals with the issue of I/O
initiation. This problem cannot be isolated
from the actual network transmission, as
transfer of data across the sending-
client/service interface results in a corres-
ponding data transmission on the network,
which will then cause a data transfer across
the service/receiving-client interface. For
standard event-driven services, transfer of
data across the client/service interface at the
sending host occurs when data availability is
explicitly signalled by the sending client (i.e.
via a send call). Then, the time for network
transmission is chosen to be the next available
time as implemented via queueing at the net-
work interface. At the receiving host, transfer
of data across the service/client interface
occurs when data has been received from the
network and the receiving client has requested
data via a synchronous request (i.e. receive).
Since we wish to eliminate synchronous
client/server interactions, data transfer across
the sending client/service interface must be
arranged in advance by some kind of agree-
ment between the producer and the consumer.

�����������������������������������

9 The synchronization and control problems are
described as one combined problem (the synchronization
and I/O initiation problem in [GoA91].

- 28 -

Then each can act according to the agreement,
without requiring synchronous interactions.
Solutions to satisfy these requirements will
need operating systems support.

(P5) How are errors in the data indicated to
the receiving client?

Some mechanism must exist for communicat-
ing the location of data errors and the type of
error (i.e. data not delivered vs. data cor-
rupted).

6.2. Framework for a proposed implementa-
tion

The framework for the proposed implementa-
tion will be described in three parts: (1) the gen-
eral structure of the solution; (2) setup and tear-
down of a connection for transferring CM data;
(3) steps involved in the actual transfer of data.
Throughout this section we will refer to the prob-
lems (P1, ... , P5) described in the previous sec-
tion.

6.2.1. General structure of the solution

To allow for data transfer between producers
and consumers without explicit interactions on
each transfer, the location of the data to be
transferred (P1) must be known ahead of time by
both parties, i.e. implied due to an earlier agree-
ment. To solve this problem and to minimize
physical copying in data transfer (P2), a shared
circular buffer is used for transferring data
between producers and consumers. Figure 6.1
gives a conceptual illustration of the shared buffer
at the sending-client/service interface (BS).

(CS or CMR)
(CMS or CR)

- - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - -

- - -- - -- - -

- - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

Available for writing by CS (CMR)

- - - - - - - - - - - - - -

- - - - - - - - - - - - -

Available for

- - - - - - - - - - - - -

writing

- - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -
...- - - - - - - - - - - - - - - - -- - - -

currentp

Nwritten

‘‘Consumer’’

.

.

.

.

.

.

.

.

.

Nread

currentc

Available for
reading

Data in buffer

Available for reading by CMS (CR)

- ...

-- -
--

...

.

- - -
- --
- - -

‘‘Producer’’

- - - - - - - - - - - - - - -

BS (BR)

Figure 6.1: Conceptual view of shared circular buffer

Synchronization between sender and receiver
can take place using the two shared synchroniza-

tion variables Nread and Nwritten (P3). Nread is
updated by the consumer to indicate the number
of bytes read from the buffer, and Nwritten is
updated by the producer to indicate the number of
bytes written into the buffer. Each entity keeps
its own pointer into the buffer to indicate its
current location (currentc for the consumer and
currentp for the producer). For variable-size
STDUs, (and optionally for constant-size STDUs)
STDU boundaries are indicated by descriptors
(one per STDU). At the sender, the descriptors
include a pointer to the start of each STDU in the
buffer, a length field, and a flag to indicate
whether the data is present or absent. At the
receiver, the flag is extended to indicate error
conditions (P5), as well as the presence/absence
of data. The structure of the buffer shared at the
receiver (BR) is shown in Figure 6.2. Of course,
these descriptors must reside in memory shared
by the service and the client.

00

11
10
01

Not delivered (lost)
Corrupted
Empty (not yet expected)
Full (and correct)

BR

length2

length1

length2

length1

Code:

Figure 6.2: Shared buffer with descriptors (receiver shown)

For channels transferring constant-size
STDUs with a size of 1 byte (byte stream), an
optimization is made by allowing each descriptor
to cover a range of STDUs with identical flag
values. In this case, the length field indicates the
length of the range in bytes (or STDUs).

In order to eliminate synchronous
producer/consumer interactions during data
transmission, we use the knowledge we have
about the CM stream to schedule the time at
which data is transferred between CS and CMS,
rather than requiring an explicit interaction (P4),
i.e. CMS checks the shared buffer for data at the
beginning of each period. Network transmission
of all packets to be sent during that period is
scheduled at that time. When data arrives on a
channel, CMR stores it immediately into the
shared buffer, and CR is free to get the data when-
ever it wants, as long as it meets the obligations

- 29 -

specified in earlier sections. In this implementa-
tion, we make no assumption about clocks being
synchronized, but only assume that the relative
drift between clock rates of different machines is
negligible.

6.2.2. Connection establishment and teardown

Connection establishment consists of three
steps: (1) translating CM-layer parameters into
network-layer parameters; (2) reserving end-
system resources (buffers and CPU time) for
CM-layer activities; and (3) acquiring a network-
layer channel with the required parameters.

6.2.2.1. Translation of parameters

The parameters for the network-layer service
described in section 3 (s max, x min , xave , I, D, Z, J,
U, and W) must be derived from the parameters
specified for the CM-layer service described in
section 2.2 (STDU max, CONST_LEN,
CONST_NUM, T, N max, S max, Savg , Iavg , S min ,
SSslack , Dstream , Serr , Werr , REPLACE, Dummy, and
Buffer). For simplicity, the prototype will use
only the network-layer service which provides
deterministic delay bounds without controlling
delay-jitter.10

In translating parameters from the CMTS
model to the RTIP model, a decision must be
made as to how the burstiness of the CM stream
will be managed. One possibility is to simply
reserve resources based on some aggregate data
rate and then accept some loss during bursts of
high data rate. This solution, however, will be
unacceptable to a large range of clients who do
not wish the quality of service provided to
decrease during bursts of high data rates. There
are three possibilities for reducing the probability
of data loss due to burstiness: (1) Smooth out the
burst by spreading its transmission over a number
of periods (thus incurring additional delay and
buffer requirements at the sender); (2) reserve
extra network throughput to be used to transmit
bursts (expensive if network throughput is a
scarce resource); (3) adapt the coding process to
network conditions. (Network conditions can
cause the shared buffer at the sender to become
�����������������������������������

10 Simplicity only in avoiding the calculation of J, the
requested delay-jitter bound (i.e. in deciding how to par-
tition resources between buffering at the receiver and
buffering, delay, and delay-jitter bounds in the network).
Other than that, incorporating the jitter bound requires no
extra work or complexity, as described in the following
paragraphs.

full or empty. On detecting one of these states,
the sender may be able to adjust its coding algo-
rithm to decrease or increase its data rate. Like-
wise, a receiver may be able to adjust its rate of
consumption of data, when it notices the buffer it
shares with CMR is becoming full or empty.)

As mentioned above, the method used to
reduce data loss for a bursty stream may affect
the end-to-end delay of the stream. This fact
points out the general problem we have in parti-
tioning the end-to-end delay bound, Dstream ,
among its component delays as specified in the
equation below,

Dstream= dnmax+ dsm+ dj, (i)

where dnmax is an upper bound on the total time
spent in the network, consisting of propagation
delay, service times in the nodes (including
transmission delays), and queueing delays; dsm is
the delay allowed for smoothing the traffic pattern
at the sender; and dj is the delay introduced in
compensating for delay jitter, where delay jitter is
defined as the difference between the maximum
delay and minimum delay experienced by packets
on the channel. The maximum value of delay
jitter is therefore bounded by dnmax− dnmin, where
dnmin is a lower bound on the total time spent in
the network, consisting of only the minimum pro-
pagation delay and service times.

t 0

τ0

d_sm d_startup

d_startup

d_j

t

τ

ON_PDU

CS /CMS

CR /CMR

where d_startup2 =
cmWaitForOpen(d_startup2),

cmOpenStream(d_startup)

d_startup + d_j + d_sm

Figure 6.3: Timing diagram of start of stream

If an OPEN_PDU would travel with delay
dnmin, a later data packet with a delay greater than
dnmin would cause short-term starvation in the
stream, resulting in a gap in the stream as seen by
CR, even if the network delay of the packet is less
than the delay bound, dnmax. However, if CMR

delays the start of the stream at the receiver by an
additional time equal to dnmax− dnmin, CR will
never starve due to delay jitter (See Figure 6.3).
In other words, we must reduce the total delay
available, Dstream , by an amount dj , which can
then be used to compensate for delay jitter as just
described.11 Therefore,
�����������������������������������

11 We should mention that if the clocks on the two
end systems are synchronized to within some given

- 30 -

dj= dnmax− dnmin.

If the network provides a bound on delay jitter,
dnmin is higher, and hence dj becomes lower, leav-
ing more of the delay allocation for the network
and conserving buffer space at the receiver.

The preceding paragraphs describe the kind of
tradeoffs which exist and have to be solved when
partitioning the end-to-end delay into its com-
ponent delays. Several criteria should be con-
sidered in deciding on this partitioning for a given
channel: Dstream , the maximum end-to-end delay
for the channel; BS and BR, the amounts of buffer
space available in the sending and receiving end-
systems respectively; the expected delay-jitter in
the end-systems themselves; and the relative
‘‘cost’’ of network throughput, delay-guarantees,
delay-jitter guarantees, and buffer reservations
within the network. In particular, CMTS may
decide to smooth the data stream of a client in
order to decrease its throughput requirements;
thereby requiring tighter delay and (possibly)
delay-jitter bounds from the network than if the
traffic were not smoothed (because of the delay
incurred for smoothing). On the other hand, an
application with tight delay bounds (i.e. close to
the bound provided by the network alone) or
which is operating on an end-system with limited
buffer space available, may not be able to afford
smoothing.

It is clear that the tradeoffs involved are com-
plex and some kind of cost model must be
developed in order to intelligently partition the
end-to-end delay. Future work will address this
problem. To simplify the initial design and
implementation, we will assume dnmin = 0 and try
to allocate delay evenly between network delay,
delay-jitter compensation, and smoothing (i.e. we
will choose dj = dnmax and define the propor-
tionality constants knmax = ksm = kj = 1). The
smoothing interval, Ism, is defined to be the
number of periods over which smoothing of data
transmission occurs, i.e. all data presented for
transport within the interval ∆ti (= [ti −1, ti)), will
be sent before ti + (Ism × T). However, Ism is an
integer (signifying an integral number of periods),
and since there is no point in making Ism larger
than the averaging interval Iavg , Ism is calculated
as follows,

Ism= min

����
Iavg,

���
(knmax+ksm+kj)T

Dstream
� �������������������������

���
���
	

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

amount of time tsynch , then the maximum uncertainty in
the delay of the OPEN_PDU is tsynch , and hence the com-

= min

�
���

Iavg,

���
3T

Dstream
� �����������

���
���
	 ,

dsm= T× Ism

and (as a consequence of the assumption that
dnmin = 0 and that knmax = kj = 1),

dnmax = dj =
2knmax

Dstream − dsm
� �������������������

=
2

Dstream − dsm
� ������������������� (ii)

The traffic pattern seen by lower levels will
depend on the rate control mechanisms imple-
mented in the CM layer. Leaky bucket smooth-
ing and rate control will be implemented using a
credit scheme for packets. A sample of the credit
scheme described below is given in Figure 6.4.

4

decrj = max (decrmin,nj)

incrj=decr (j −Iavg +1)

decrmin = 1

creditsj = creditsj −1 − decrj + incrj

incrjdecrjat tj −1
in buffer
Packets

tj
Time creditsj

nj

1
4

0
2

1
4

210+2=2
11+3=4

0+3=3
1

0+1=1
0+4=4
0+0=0

2
2
4

2
1
4

---1

4
1
2

ti +5

ti +4

ti +3

ti +2

ti +1

ti

‘‘Arrival’’ of data (measured as packets) in shared buffer at sender
"Sliding window"

ti −1 ti ti +1 ti +2 ti +3 ti +5ti +4

. ..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

∆ti

Iavg

Iavg =
T
I
 = 3

Figure 6.4: Implementation of rate control scheme
using credits

To send a packet, a channel must spend one
packet credit from its total, which is indicated by
the state variable credits. Packets can only be
sent as long as credits>0. Since S min is defined
as the minimum number of bytes expected to be
transmitted in each period, credits is decremented
by at least decr min each period, where

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

ponent of Dstream due to delay jitter is also equal to tsynch .

- 31 -

decr min = f (S min),

even if less data is actually sent. Each period,
credits is incremented by an amount incri , which
is calculated to ensure that the client does not
exceed its average rate characterization specified
using Savg and Iavg . Recall that the average rate
characterization must be valid for any observation
interval of length Iavg which starts at the begin-
ning of a period. In other words, the characteri-
zation of average rate defines a ‘‘sliding win-
dow’’ of length Iavg , which ‘‘slides to the right’’
(i.e. in the direction of increasing time) one
period at a time. At no time may the amount of
data contained in this sliding window exceed
Iavg× Savg bytes. Similarly, the number of packets
constructed by the CM layer cannot exceed
I / xave packets within a sliding window of length
I. Since there is no point in having two different
averaging intervals, we will choose I = T× Iavg ,
and the two sliding windows are identical. The
sliding window is shown in several positions in
Figure 6.4.

If the number of credits in the first position of
the sliding window is valid, we can guarantee it
remains valid in all succeeding positions by incre-
menting credits by the amount of data that ‘‘falls
out’’ of the left hand side of the window when it
moves to the right. In other words, if credits 0 is
‘‘valid’’, and

creditsi = creditsi −1 − ni + n (i −Iavg +1)),

(where creditsi is defined to be the number of
credits remaining after the interval ∆ti , i.e. at time
ti , and ni is defined to be the number of packets
sent in interval ∆ti) then the following equation
always holds at time ti ,

creditsi +
j =i −Iavg +2

Σ
i

nj ≤ Iavg× Savg.

The inequality can be made an equality if we
increment credits by the same amount as it had
been decremented at the end of the interval which
is now falling out of the window.12 So, if credits 0

is ‘‘valid’’, and

creditsi = creditsi −1 − decri + decr (i −Iavg +1),

where decri = min (decrmin, ni), then

creditsi +
j =i −Iavg +2

Σ
i

nj = Iavg× Savg.

Therefore, each period, credits is incremented by
�����������������������������������

12 Because decri = min (decrmin, ni), decri≥ni .

the exact amount it had been decremented at the
start of the period which is now falling out of the
window. In other words,

incri = decr (i −Iavg +1), (iii)

where the interval ∆t (i −Iavg +1) is falling out of the
sliding window after the interval ∆ti has passed.
To completely specify the credits scheme, we
must determine the minimum decrement per
period (decr min), the initial value of credits
(credits 0), and initial values for incri (i.e. for
incr 1, incr 2, ...,incr (Iavg−1)).

To ensure that all data is sent with a smooth-
ing delay less than or equal to dsm, it is sufficient
to ensure that all data presented by CS during any
interval of length dsm (= Ism× T) is sent by the end
of the interval. We can use the average rate
parameters (Iavg , Savg , and S min) to calculate the
maximum number of bytes which could be
presented for transmission during a smoothing
interval. See Figure 6.5 for the relationship
between Iavg and Ism.

T

Iavg

Ism Iavg−Ism

Figure 6.5: Relationship between Ism and Iavg

The maximum number of bytes which could
correspond to a smoothing interval is calculated
by subtracting the minimum amount of data
which can be expected within Iavg , but not within
Ism (i.e. S min× (Iavg− Ism)) from the maximum
amount of data which may be presented in Iavg

(i.e. Savg× Iavg). Therefore, the amount of data
which could be required to be sent within any
smoothing interval is given by

Savg× Iavg− S min× (Iavg− Ism).

From this formula, we see that the smoothing
delay bound can be met if at least Strans bytes are
sent per period, where

Strans= min

���
Ism

Savg× Iavg− S min× (Iavg− Ism)
� ��� ,S max

� �	
Note that if Ism = Iavg , then Strans = Savg . We can
now calculate the parameters for the network-
layer service.

- 32 -

(a) Traffic and performance parameters for
byte stream (STDU max = 1)

The maximum packet size, s max is limited by
the maximum packet size supported by the net-
work layer, which we will call snet , as well as by
the user-specified error control size, Serr , so that

s max= min(snet ,Serr) (1a)

x min depends on the largest number of packets,
ntrans , which may need to be transmitted during a
period in order to keep the smoothing delay under
dsm.

ntrans=

�
�� s max

Strans
� �������

�
�� (2a)

x min=
ntrans

T
� ������� (3a)

As previously stated, the averaging interval I is
the same as Iavg except that I is expressed in terms
of units of time and Iavg is expressed in periods.
To calculate xave , we first calculate navg ,13 the
maximum number of packets we might need to
send in an averaging interval. A byte stream
could result in at most one partially filled packet
per period, or Iavg partially filled packets in the
interval; all other packets must be maximum size
packets. Therefore,

I= Iavg× T (4a)

navg= Iavg +

���
s max

Iavg× Savg − Iavg× 1 byte
� �������������������������������������

��� (5a)

xave=
navg

I
� ����� (6a)

To conform to these parameters, we must calcu-
late the parameters for rate control. To allow the
most data possible to be sent right away, we want
credits 0 to be as large as possible and hence incri

must be as small as possible. Therefore, initial
values are chosen as follows

decr min=

�
�� s max

S min
� �������

�
�� (7a)

incr 1= incr 2= . . . = incr (Iavg− 1) = decr min(8a)

credits 0 = navg− decr min× (Iavg− 1) (9a)

Given the assumptions made above, we can
make a first approximation (not considering pro-
cessing latency) to the delay parameter of the
�����������������������������������

13 Note that ntrans is defined for a period, while navg is
defined for an averaging interval of Iavg periods.

requested internetwork channel as

D = dnmax= dj =
2,

Dstream − dsm
� ������������������� (10a)

The loss rate for the requested network channel
will be the same as the loss rate the client
requested for packets

W = Werr (11a)

(b) Traffic and performance parameters for
constant-size STDUs with STDU max > 1

Since no packet needs to be larger than the
largest possible STDU, the equation for calculat-
ing s max becomes

s max= min(snet ,Serr ,STDU max) (1b)

ntrans depends on the maximum number of
STDUs in a period (N max) as well as the
minimum amount of data which should be given
to the network layer in a period (Strans). If there is
no fragmentation, ntrans = N max.14 If there is frag-
mentation, we can only have one non-maximal
packet per STDU (each containing at least one
byte); all others must maximum size. A packet
containing data from a constant-size STDU with
STDU max > 1, may not contain data from any
other STDU. Therefore, packetizing Strans bytes
will result in no more than

ntrans
′ =

�
�� STDU max

Strans
� ���������������

�
��

non-maximal packets (essentially one per STDU).
The rest of the packets must then be of maximum
size. Therefore, we can calculate ntrans as fol-
lows,

ntrans =

��� ��
ntrans

′ +

���
s max

Strans−ntrans
′

��� ��� � ��� ��� �

��� , STDU max>s max

N max , STDU max=s max

(2b)

Similarly, navg can be calculated as

�����������������������������������
14 Recall from section 2 that for constant-size

STDUs, Nmax is calculated from other input parameters,

i.e. Nmax =
STDUmax

Smax� ��������������� .

- 33 -

navg =

�
�� ��

navg
′ +

���
s max

Iavg×Savg−navg
′

� �����������������������

��� , STDU max≥s max,

N max× Iavg , STDU max=s max,

(5b)

where

navg
′ =

�
�� STDU max

Iavg×Savg
� ���������������

�
��

The calculation for decr min also becomes more
complex due to fragmentation. The minimum
number of STDUs generated in a period is calcu-
lated from S min . This quantity is multiplied by
the size of the (constant-size) STDUs to get the
minimum number of bytes to be transmitted.15

Then decr min is the minimum number of packets
required to transmit this number of bytes.

decr min=

�
���� s max

STDU max ×

���
STDU max

S min
� ���������������

���
� ���������������������������������������

�
����

(7b)

Equations (3), (4), (6), and (8)-(11) are
unchanged and are not repeated here.

(c) Traffic and performance parameters for
variable-size STDUs with STDU max = s max

For variable-size STDUs, the equations for
calculating the network-layer traffic and perfor-
mance parameters are more complicated. s max is
calculated as in equation (1b).

If s max= STDU max (no fragmentation), the
maximum number of packets which may be sent
in a period is simply N max,16 so

ntrans= N max (2c)

and

navg= Iavg× N max (5c)

Equations (3), (4), and (6) are unchanged, thus

x min= xave=
N max

T
� �������

�����������������������������������

15 which may be less than Smin, if Smin is not a multi-
ple of STDUmax .

16 Recall from section 2 that if a client requests a
variable-size STDU, the number of STDUs per period is
assumed to be constant.

To perform rate control, credits is set to N max at
the beginning of each period, so

decr min= N max (7c)

which implies that, for all i,

incri = credits 0 = N max

Equations (8)-(11) are also unchanged and are not
repeated.

(d) Traffic and performance parameters for
variable-size STDUs with STDU max > s max

The number of packets which could be
required to transmit the maximum allowable data
in a smoothing interval of Ism periods can be cal-
culated as nsm

′ = Ism× N max non-maximal packets
(one per STDU) and���

s max

Ism× Strans−nsm
′

� �����������������������

���
maximum size packets. Then the largest number
of packets which must be sent in any smoothing
interval of length Ism is given by

nsm
′ +

���
s max

Ism× Strans− nsm
′

� �������������������������

���
Therefore,

ntrans= N max +

�
�� Ism

1
����� ×

���
s max

Ism× Strans− nsm
′

� �������������������������

���
�
�� (2d)

The number of packets required in an averaging
interval of Iavg periods can be divided into
navg

′ = Iavg× N max non-maximal packets and���
s max

Iavg× Savg− navg
′

� �������������������������

���
maximum-size packets. Therefore,

navg = navg
′ +

���
s max

Iavg× Savg− navg
′

� �������������������������

��� . (5d)

Finally, decr min can be calculated as

decr min= N max+

���
s max

S min− N max
� �����������������

��� (7d)

Equations (3), (4), (6), and (8)-(11) are
unchanged and are not repeated here.

6.2.2.2. Allocation of resources to CM layer

The remaining CM-layer parameters are used
to determine the buffer requirements of the chan-
nel.

- 34 -

Buffer size required at the sending host

The shared buffer BS is provided by the user
as a parameter of the channel establishment
request. CM then uses the following equations to
verify that the buffer provided is large enough to
meet the performance requirements of the chan-
nel (i.e. to ensure that no packets are lost due to
overflow of CM buffers). At the sender, the size
of the shared buffer is determined by the require-
ments for holding working data, for smoothing,
for allowing CS to be early, and for compensating
for alignment of STDUs in the buffer. The
minimum buffer requirement, bS, is conserva-
tively estimated below:

bS = 2 × S max (current and next periods) (12)

+ SSslack (workahead for CS)

+ bsm (for smoothing)

+ balign (for aligning STDUs)

If the buffer provided by the client is smaller than
bS, the channel establishment fails.

� Constant-size STDUs:

For constant-size STDUs, one conservative
upper bound on the amount of buffer space
needed for smoothing (bsm

′) can be calculated by
assuming that up to S max bytes can be placed in
the buffer during a period, while a maximum of
Strans bytes are removed for network transmission.
Therefore, the calculation allocates S max − Strans

bytes of buffer space for each period in any
smoothing interval. This analysis gives the fol-
lowing upper bound on bsm:

bsm
′ = STDU max×

�
�� STDU max

(S max− Strans) × Ism
� �����������������������������

�
�� (13b)

For a byte stream channel this equation simplifies
to

bsm
′ = (S max− Strans) × Ism (13a)

Another conservative upper bound is given by the
maximum amount of data which could be
presented in the entire smoothing interval.

bsm
′′ = STDU max×

�
�� STDU max

Ism× Strans − Strans
� ���������������������������

�
�� (14b)

And for a byte stream

bsm
′′ = Ism× Strans − Strans (14a)

Of these, the best upper bound will, necessarily,
be the minimum of the two

bsm = min (bsm
′ ,bsm

′′) (15)

Since constant-size STDUs do not have any
alignment problem in the buffer,

balign = 0 (16a,b)

� Variable-size STDUs:

For a channel upon which variable-size
STDUs are transmitted, bsm is calculated in the
same manner as for constant-size STDUs with
STDU max > 1. Therefore, equations (13c,d) and
(14c,d) are the same as (13b) and (14b) respec-
tively.

Additional buffer space is needed because of
possible alignment problems in the buffer. We
have chosen to require that an STDU be contigu-
ous in the shared circular buffer (i.e. a single
STDU cannot ‘‘wrap-around’’ from the bottom of
the ‘‘circular’’ buffer to the top.) Therefore, up
to STDU max bytes could be wasted in the buffer at
any one time. Hence,

balign = STDU max (14c,d)

Buffer size required at the receiving host

At the receiver, buffer space is needed to
account for the total workahead up to that point in
the stream. This includes the workahead
specified across the CS/CMS interface (SSslack) and
the workahead across the CMR/CR interface
(SRslack). If both were positive workahead, the
buffer space required would be the largest of the
two. However, the workahead across the
CMR/CR interface is in addition to the workahead
specified for CS since it defines the amount CR

can fall behind, not the amount CMR can be
ahead. Additional buffer space is also needed
because of the delay dj , which is introduced by
CMR to tolerate delay jitter in the network. The
buffer space for compensating for delay jitter is
estimated by computing the number of periods
included in the time 2× dj

17 assuming S trans bytes
are presented in each period. Therefore, the
amount of buffer space required at the receiver
can be conservatively estimated as

�����������������������������������

17 Buffer space due to delay jitter is twice dj because
we delay the stream by dj at the start to avoid starvation
which could occur because delay jitter introduces uncer-
tainty as to the exact starting time of the stream on the re-
ceiver, and because data could arrive as much as dj ear-
lier than its deadline.

- 35 -

bR = 2 × S max (current and next periods) (17)

+ SSslack (workahead at the sender)

+ SRslack (amount CR can be late in consuming)

+ bsm

+balign

+ S trans× 2 ×

�
�� T

dj
� ���

�
�� (compensate for delay jitter)

where bsm and balign are as calculated for bS.
Equation (17) gives an upper bound on the
amount of buffer space needed to protect against
packet loss in the CM buffers. However, there is
no reason for CMR to know SRslack , which is
chosen by CR. Therefore, CMR will calculate b′R,
the amount of buffer space required at the
receiver without considering workahead:

bR
′ = 2 × S max (current and next periods) (18)

+ SSslack (workahead at the sender)

+ bsm

+balign

+ S trans× 2 ×

�
�� T

dj
� ���

�
�� (compensate for delay jitter)

This value is passed on to CR, who then calculates

bR = b′R + SRslack (19)

If CR is unable to allocate a buffer of this size or
greater, the channel establishment fails.

The processing requirements of the CM enti-
ties can be calculated as a function of a fixed
amount of processing each time CM runs, CPUf ,
and a variable amount, CPUv , which depends on
the number of packets sent each time CM runs.
The maximum delay between the beginning of a
period and the time CM runs in that period, dCMS

,
must be estimated and included in Dstream . Thus,
equation (10) must be extended to become

D= dnmax=
2

Dstream − dsm− dCMS
− CPUSmax

� ��� ,(10’)

where CPUSmax
= CPUf + CPUv(ntrans) at the

sender.

6.2.2.3. Acquisition of network channel

CM requests a network layer channel with the
parameters given by equations (1), (3), (4), (6),
(10’), and (11) above and passes STDU max,
CONST_LEN, T, S max, Strans , Ism, dj , Savg , Iavg ,

Serr , REPLACE, and Dummy on to CMR. At the
receiver, CMR then makes its CPU reservation
and checks that

(dCMR
+ CPURmax

) ≤Dremaining

remaining delay, where dCMR
is an estimate of the

maximum CPU latency on the receiving host, and
CPU maxR

is an estimate of the maximum process-
ing time for CMR. As stated previously, CMR

calculates a suggested buffer size, b′R which it
passes on to CR. If CR is able to allocate the
required buffer (of size bR = b′R + SRslack), and
sufficient CPU resources are available on the
receiving host, the establishment succeeds.

6.2.3. Actions during data transfer

This section describes the actions of each of
the entities while data transfer is occurring.

� CS:

1. Indicate new stream via cmOpenStream()
call

2. Check for room in buffer, either by checking
descriptors or by checking if

(currentp − Nread + Buffer.size) mod Buffer.size

< data_size.

3. Put data in shared buffer

4. Update flags in descriptor and Nwritten to indi-
cate new data is present

5. Goto 2 until end of stream

6. Indicate end of stream via cmClose-
Stream() call

7. On initiation of a new stream, goto 1
� CMS:

Upon cmOpenStream() call from CS:

1. Read clock and record time of cmOpen-
Stream() call (tstart)

2. Verify and record stream parameters

3. Determine time at the beginning of the first
period (t 0 = tstart + dstartup)

4. Send OPEN_PDU to CMR including dstartup

5. Set credits = credits 0; initialize incr 0, incr 2,
..., incr (Iavg−1)

6. Schedule self to run again at beginning of the
first period

nextTime = t 0 = tstart + dstartup

- 36 -

After startup delay:

7. Compute the number of STDUs in the buffer
(NumSTDUs).18 Packetize all complete
STDUs in the buffer as specified by the fol-
lowing pseudo-code:

[* This pseudo-code will determine

* packet boundaries for all STDUs

* in the buffer and schedule the

* process to run again the next

* time it can legally send more data.

*]

Initialize(Smin:integer;)

begin

decr_min := f(Smin);

credits := credits_0;

for i := 0 to (Iavg - 1) do

incr[i] := decr_min;

...........................

end;

[* The function Packetize takes data

* from the shared buffer determines

* boundaries for network packets.

*

* numSTDUs is the number of STDUs in

* the buffer

* BufPtr points to the next STDU in

* the buffer

* decr_min is the same as in

* Figure 6.4

* current is the number of the next

* STDU to be packetized

*]

Packetize(numSTDUs:integer;

BufPtr:ˆSTDU; credits; decr_min;

current:integer)

numPackets: integer;

[* num pkts in period *]

i:integer;

begin

[* packetize all STDUs in buffer *]
�����������������������������������

18 For a connection which is used to transport
variable-size STDUs, the buffer descriptors must be
checked to determine the number of STDUs in the buffer.
In that case, the next descriptor is checked for a complete
STDU instead of checking whether NumSTDUs > 0. For
constant-size STDUs, the number of STDUs in the buffer
can be inferred from Nwritten − Nread .

while (NumSTDUs > 0) do

begin

[* STDUs for "current" period *]

numPackets := 0; [* reset cnt *]

while ((credits > numPackets)

and (NumSTDUs > 0)) do

begin

Make_next_packet(BufPtr);

Update_BufPtr();

numPackets := numPackets + 1;

if (last_packet_of_STDU) then

NumSTDUs := NumSTDUs - 1;

end;

[* set up state to either run in

* next period (if all STDUs in

* buffer have been packetized)

* or continue packetizing using

* credits from the next period

*]

[* time in next period *]

nextTime := nextTime + T;

[* add credits from next period *]

decr := max(decr_min, numPackets);

credits = credits - decr

+ incr[current];

incr[current+Iavg-1] := decr;

current := current + 1;

end;

end;

8. Update descriptor flags and Nread

9. Schedule self to run again at nextTime, con-
tinuing at step 7.

Upon receipt of a cmCloseStream() call:

10. Record current ending location of data in the
buffer.

11. Continue steps 7-9 until data is sent up to
location recorded in 10.

12. Send CLOSE_PDU to CMR

13. Sleep until next cmOpenStream() call.
� CMR:

Upon receipt of an OPEN_PDU from CMS:

1. Read clock to establish beginning of stream
(τstart)

2. Record new stream parameters

3. Indicate beginning of stream to CR by return-
ing from cmWaitForOpen() call, passing

- 37 -

delay = dstartup+ dj as a return parameter.

4. Record starting time of stream on receiving
host:

τ0 = τstart + delay

5. Sleep until DATA_PDU or CLOSE_PDU
arrives.

Upon receipt of DATA_PDU:

6. Check for room in shared buffer by checking
whether

(currentp − Nread + data_size) mod Buffer.size

< Buffer.size.

If there is room, put data into shared buffer;
otherwise throw away the new data. If data is
corrupted and REPLACE has been defined to
be true, replace data with the Dummy data
defined at channel establishment.

7. Update flags indicating condition of new data
(and possible packet losses discovered upon
receipt of new data) and Nwritten .

Upon receipt of CLOSE_PDU:

8. Record ending location of data in the buffer.

9. Indicate end of stream to CR by returning
from cmWaitForClose() call, passing
data location recorded above as a return
parameter.

10. Sleep until next OPEN_PDU
� CR:

Upon returning from cmWaitForOpen():

1. Make non-blocking call to cmWaitFor-
Close().

2. Begin reading data from buffer after delay has
elapsed

3. Change flag bits and Nread when data has been
read

Upon return from cmWaitForClose():

3. Read data up to location specified in
cmWaitForClose() return (as specified in
step 8 of CMR actions).

4. Make blocking call to cmWaitForOpen().

6.3. Examples of local adaption layers for
unsophisticated clients

The service is designed to be used directly by
CM applications, however some applications may
not be able to or desire to perform all the func-
tions required to access the service. This section
will briefly demonstrate the universality of the

interface we have described, by presenting two
sample interfaces for such clients, which may be
implemented on top of CMTS with little
difficulty.

6.3.1. DMA client

A client may wish to transfer data into the
shared buffer via DMA without requiring a CPU
interrupt per period or per STDU. A thin layer is
needed to manage the structured buffer. The
channel would be set as a byte stream and the
buffer would be split in two, with the DMA dev-
ice writing into one half at a time. When it fills
its half, the CPU is interrupted, causing the local
adaption layer to run again. The actions of this
layer are described below:

At beginning of stream:

1. Configure DMA device to write into
top half of buffer. Check for room in
buffer.

2a. Indicate new stream via cmOpen-
Stream() call to CMS

3. Wait for interrupt from DMA device.

Upon interrupt from DMA device:

4. Set flags of filled buffer to indicate
data is present and update Nwritten

5. Check that other half of buffer is
empty

6a. If not, block DMA device and sleep
for one period and check again until
other half of buffer is empty.

6b. When second half is empty,
configure DMA device to write into
other half

7. Sleep until next interrupt from DMA
device (continue at step 4) or
close() call from the user to close
the stream (continue at step 8).

Upon close request from user:

8. Indicate end of stream to CMS via
cmCloseStream() call.

9. On initiation of a new stream, goto 1

The steps taken by a local adaption layer at
the receiver for a similar device would be analo-
gous and are not given here.

- 38 -

6.3.2. Send/Receive interface

Those clients which are user processes gen-
erating data for transmission may prefer a more
familiar send/receive interface with variable-size
messages. This service will use a channel of
variable-size STDUs. Copying is used to emulate
standard send/receive buffer management seman-
tics. The advantage for CM clients of using this
scheme over a message scheme is that smoothing
and rate control are performed automatically by
the service, and user-kernel interactions are
diminished (send () causes a user-level library
routine to be invoked, but may not result in a ker-
nel call. The kernel call is unnecessary because
CMS will check the shared buffer for data once
each period.)

Upon send call by the user:

1. Check whether there is room in the
shared buffer for this new STDU (as
described above).

2a. If not, sleep for some time (e.g.
T / N max) and check again, until
enough buffer space is freed.

2b. Copy from the user-supplied buffer
into the shared buffer.

3. Update flags in buffer and Nwritten

4. Return to user

Upon a receive call at the receiver:

1. If no data is present, the receive
returns with zero data.

2. Copy from shared buffer into the
user-supplied buffer.

7. Summary

We have presented a design and implementa-
tion considerations for a Continuous Media
Transport Service (CMTS), a data transport ser-
vice designed specifically for delivery of continu-
ous media. This service takes advantage of the
higher predictability of CM streams to (poten-
tially) provide the same service while allocating
less network resources. In addition, CMTS pro-
vides a logical stream abstraction to aid in manag-
ing data transmission on a CM channel and an
error-handling mechanism, which can be adapted
flexibly to the typical demands of CM applica-
tions.

The basic concepts introduced, such as the
notion of stream data unit, as well as the large

variety of parameters offered at the service inter-
face can be used by communicating CM applica-
tions for a relatively flexible characterization of
(e.g. voice or video) streams. This flexibility is
also provided for the mapping of STDUs onto
packets of an underlying network service (1:1,
fragmentation or concatenation as options), where
the mapping may even be controlled by the trans-
port service users (e.g. to limit the negative
consequences of a data loss).

We should note that the solution chosen also
does offer the possibility to allow a (de-) coding
process to react to the state of the communication
system, as suggested e.g. in [GiG91]. The com-
munication system’s state might be considered to
be reflected by the actual occupancy of the shared
buffers (BS and BR) on the sending and receiving
end-systems, which could lead to a variation of
the (de-)coding rate.

For a completion of the present design it will
still be necessary to integrate the experiences
gained in the prototype implementation of CMTS
in an extended service/protocol design. The
extensions will have to specify, in particular,
additional possibilities of reacting to protocol
errors as well as the exchange of different types
of control information.

Limitations of the solution primarily concern
the buffer requirements in the end-systems, which
may become significant in those cases, when
delay jitter within the network and within the
end-systems will become large and additionally
large traffic fluctuations exist within the arrival
process of the stream. However we believe that in
future computer systems (even in workstations
and personal computers) we can expect provision
of communication buffers in the range of (a few)
MByte at least for CM applications, if this yields
to significant simplifications and performance
improvements. Realization of multi-point con-
nections (e.g. required in video-conferencing) by
means of (a possibly large number of) point-to-
point connections, which would be the solution
based on the CMTS service, may also lead to
some inefficiencies.

In parallel to the CMTS prototype implemen-
tation, presently a modeling study is carried out in
order to get some insight in the impact, which
configuration parameters of end-systems (such as
buffer sizes, run-times of communication
software, etc), properties of the underlying net-
work service (such as packet delay jitter, packet
loss rate, etc.) and the local load of the end-

- 39 -

systems may have on the quality of the CMTS
service as observed by CM clients (e.g. expressed
by the probability of a buffer overflow with
resulting loss of data and/or by the probability of
late arrival of data in the BR buffer).

8. Acknowledgements

The authors would like to express their partic-
ular gratitude to Amit Gupta and Francesco
Maiorana for their engagement in the implemen-
tation of the CMTS prototype and to Eckhardt
Holz for his detailed simulation study to analyze
the behavior of the CMTS service under various
boundary conditions. In addition, Amit Gupta
contributed to the design of the credit scheme for
rate control, and the correction and revision of
several formulae.

A large number of in-depth discussions with a
lot of resulting stimuli have taken place during
the CMTS design within Tenet research team at
International Computer Science Institute and
University of California/Berkeley. In particular,
Prof. Domenico Ferrari as head of Tenet team and
the group members Riccardo Gusella, Bruce
Mah, Hui Zhang and Dinesh Verma have pro-
vided very valuable suggestions during the
preparation of this report. This support is sin-
cerely acknowledged by the authors.

Special thanks also go to Prof. David Ander-
son and Ramesh Govindan for their comments
which helped to improve an earlier version of this
report.

9. References

[And90] D. P. Anderson, ‘‘Meta-Scheduling
for Distributed Continuous Media’’,
UC Berkeley, EECS Dept., Technical
Report No. UCB/CSD 90/599, (Oct.
1990).

[AGH90] D. P. Anderson, R. Govindan, G.
Homsy, ‘‘Design and Implementa-
tion of a Continuous Media I/O
Server’’, Proc. 1st Internat.
Workshop on Network and O.S. Sup-
port for Dig. Audio and Video, ICSI
TR-9-062, International Computer
Science Inst., Berkeley, CA, (Nov.
1990).

[AHS90] D. P. Anderson, R. Herrtwich, C.
Schaefer, ‘‘SRP: A Resource Reser-
vation Protocol for Guaranteed-
Performance Communication in the
Internet,’’ Int. Comp. Sci. Inst.,
Technical Report No. ICSI TR-90-
006 (1990).

[BaM91a] A. Banerjea, B. Mah, ‘‘The Real-
Time Channel Administration Proto-
col’’, Proc. 2nd Int. Workshop on
Network and Operating System Sup-
port for Digital Audio and Video,
Heidelberg (November, 1991).

[BaM91b] A. Banerjea, B. Mah, ‘‘The Design
of a Real-Time Channel Administra-
tion Protocol,’’ internal document
(1991).

[Che88] G. Chesson, ‘‘XTP/PE Overview,’’
13th Conf. on Local Computer Net-
works, IEEE Comp. Soc. (October
1988), 292-296.

[ChW89] D. R. Cheriton, C.L. Williamson,
‘‘VMTP as the Transport Layer for
High-Performance Distributed Sys-
tems,’’ IEEE Commun. Magazine,
Vol. 27, No. 6 (1989), 37-44.

[CLZ87] D. D. Clark, M. L. Lambert, L.
Zhang, ‘‘NETBLT: A High-
Throughput Transport Protocol,’’
ACM SIGCOMM Workshop on
Frontiers in Computer Netw. (1987).

[Cru87] R. L. Cruz, ‘‘A calculus for Network
Delay and a Note on Topologies of
Interconnection Networks’’, Ph.D.
Dissertation, Report no. UILU-
ENG-87-2246, University of Illinois,
(July 1987).

[DDK90] W.A.Doeringer, D. Dykeman, M.
Kaiserswerth, B.W. Meister, H.
Rudin, R. Williamson, ‘‘A Survey of
Light-Weight Transport Protocols for
High-Speed Networks,’’ IEEE Trans.
on Commun., Vol. 38, No. 11 (1990),
2025-2039.

- 40 -

[FeV90] D. Ferrari and D. Verma, ‘‘A
Scheme for Real-Time Channel
Establishment in Wide-Area Net-
works,’’ IEEE J. Sel. Areas in
Comm. SAC-8 (April 1990).

[GiG91] M. Gilge and R. Gusella, "Motion
Video Coding for Packet Switching
Networks: An Integrated Approach,"
SPIE Conf. on Visual Commun. and
Image Processing, Boston
(November, 1991).

[GoA91] R. Govindan and D. Anderson,
‘‘Scheduling and IPC Mechanisms
for Continuous Media,‘‘ Proc. of
Sym. on Operating System Princi-
ples, pp.68-80, October 1991.

[HTH89] P. Haskell, K. H. Tzou and T. R.
Hsing, "A Lapped-Orthogonal-
Transform Based Variable Bit-Rate
Video Coder for Packet Networks,"
Int. Conf. on Acoustics, Speech and
Signal Proc., Glasgow, Scotland,
May 23-26, 1989.

[HSS90] D. Hehmann, M. Salmony, H.J.
Stuettgen, ‘‘Transport Services for
Multi-Media Applications on Broad-
band Networks,’’ Computer Com-
mun., Vol. 13, No. 4 (1990), 197-
203.

[ITC91] Proc. Workshop on ‘‘Continuous
Time Media’’, Information Technol-
ogy Center, Carnegie Mellon Univer-
sity, Pittsburgh (June, 1991).

[LaS91] T. F. La Porta, M. Schwartz, ‘‘Archi-
tectures, Features, and Implementa-
tion of High-Speed Transport Proto-
cols,’’ IEEE Network Magazine,
Vol. 5, No. 3 (1991), 14-22.

[Leg91] D. Le Gall, "MPEG: A Video
Compression Standard for Mul-
timedia Applications," Commun. of
the ACM, Vol. 34, No. 4, (1991).

[LiH91] M. Liebhold, E. M. Hoffert,
‘‘Toward an Open Environment for

Digital Video,’’ Commun. ACM,
Vol. 34, No. 4 (1991), 104-112.

[NRS90] A.N. Netravali, W.D. Roome, K.
Sabnani, ‘‘Design and Implementa-
tion of a High Speed Transport Pro-
tocol,’’ IEEE Trans. on Commun.,
Vol. 38, No.11 (1990), 2010-2024.

[Wat89] R. W. Watson, ‘‘The Delta-t Trans-
port Protocol: Features and Experi-
ence,’’ Proc. IFIP workshop on Pro-
tocols for High-Speed Networks,
North-Holland (1989), 3-18.

[Wol81] B. Wolfinger, ‘‘Das Model-
lierungssystem MOSAIC zur
Analyse und Optimierung hierar-
chisch organisierter Kommunikation-
sprotokolle in Rechnernetzen,’’ Elek-
tronische Rechenanlagen, Vol. 23,
No. 5 (1981), 199-211 (in German).

[WrT90] D. J. Wright, M. To, ‘‘Telecommuni-
cation Applications of the 1990s and
their Transport Requirements,’’ IEEE
Network Magazine, Vol. 4, No. 2
(1990), 34-40.

[ZhV91] H. Zhang and D. Verma, ‘‘Design
Documents for RTIP/RMTP,‘‘, inter-
nal document (1991).

[Zit91] M. Zitterbart, ‘‘High-Speed Trans-
port Components,’’ IEEE Network
Magazine, Vol. 5, No. 1 (1991), 54-
63.

