
Queueing Delays in Rate Controlled Networks

Anindo Banerjea

The Tenet Group
Computer Science Division

University of California, Berkeley
and

International Computer Science Institute
Berkeley, California

Srinivasan Keshav

AT&T Bell Laboratories
600 Mountain Ave., Murray Hill NJ 07974

ABSTRACT

This paper addresses the problem of finding the worst case end-to-
end delay and buffer occupancy bounds in networks of rate-controlled,
non-work conserving servers.

The calculations are based on a simple fluid model, but care is taken so
that the computed delay and buffer occupancy values are upper bounds on
actual values. A simple algorithm is presented to perform these calcula-
tions in linear time.

Simulation results compare the computed worst case delays with the
actual delays obtained on some simple network topologies. The algorithm
is found to predict node delays well for bursty input traffic, but poorly for
smooth input traffic. Buffer requirements are predicted well in both cases.

�����������������������������������

A. Banerjea was supported by the National Science Foundation and the Defense Advanced Research Projects Agency
(DARPA) under Cooperative Agreement NCR-8919038 with the Corporation for National Research Initiatives, by AT&T
Bell Laboratories, Hitachi, Ltd., Hitachi America, Ltd., the University of California under a MICRO grant, and the Interna-
tional Computer Science Institute. The views and conclusions contained in this document are those of the authors, and
should not be interpreted as representing official policies, either expressed or implied, of the U.S. Government or any of the
sponsoring organizations.

1. Introduction
Recent work has shown that framed, non-work-conserving servers can provide end-

to-end delay bounds to users who need strict guarantees on network performance
[ZhaKes91]. By framed we mean that the servers work on the basis of an interval, called
the frametime, during which they allocate a number of transmission slots to each channel
being served. Each slot corresponds to the transmission of a fixed size packet or cell on
the output trunk. By non-work-conserving we mean that given enough cells in the queue,
the server will send out exactly the allocated number of cells (the chunksize) in each
frame, even if this will leave the output trunk idle. If there are fewer than chunksize cells
in the queue for the channel, the server will send out the available cells, then use the free
slots for non-real time traffic.

One example of such servers are those that obey the Hierarchical Round Robin
(HRR) service discipline [KKK90]. HRR servers maintain of a hierarchy of round robin
frames, so that a choice of frametimes is available during channel establishment. While
earlier work considered the behavior of a single HRR server [KKK 90], and of a channel
traversing a sequence of identical servers [ZhaKes91], the general case, where the frame-
time could be different at each server, and the input traffic could be bursty, was not
analyzed. This paper determines the upper bound on the end-to-end queueing delays and
buffer requirements of a simplex channel established over any sequence of HRR servers.
We present a novel graphical analysis technique and compare the predicted delay and
buffer requirements with simulation results. The analysis extends to a series of Stop-
and-Go servers [Gol90] as well.

2. Model of the Network
In our model a channel is associated with a static path through the network and has

state and reserved resources at each switch (node) along this path. We focus our atten-
tion on the performance of one channel in the network and will analyze the behavior of
this channel by induction. That is, given the traffic characteristics at the end of a section
of the channel consisting of the first i-1 nodes (denoted by channeli −1) and the node
characteristics of nodei , we will calculate the characteristics of channeli (Figure 1). We
develop our network model by modeling the input traffic, the nodes, and the traffic as it
flows through the network.

channeli−−1 nodei

Upstream Downstream

channeli

Figure 1. Network Model

2.1. Node Model
For each node j along the path of the channel, we know the following node characteris-
tics:
aj chunksize, the number of slots allocated to the channel per frame.

- 2 -

F j frametime, the duration of the frame.
B j reserved rate, the maximum rate at which the node can transmit cells on

this channel. (B j ≡ aj /F j)
Different channels through a given node will have different values for the above

parameters. Since we are concentrating on one channel, we will subscript the parameters
just by the node indices.

We assume the physical links between adjacent nodes are acting as constant delay
pipes with link delay between nodei −1 and nodei equal to ∆i .

2.2. Input Traffic Model
We characterize the traffic entering the channel as suggested in [Fer90, FerVer90]:

x min The minimum cell inter-arrival time.
xave The minimum average cell inter-arrival time, over any time interval of

length I.
I The averaging interval for calculating xave .
Recent work has shown that this model accurately describes most types of rate-controlled
traffic expected in high-speed networks [Ver91]. We assume that the user of the channel
is bound to obey these restrictions on the input traffic, and the delay and buffer values
calculated need only hold if these restrictions are not violated.

2.3. Fluid Approximation
Note that each server is rate-controlled and so will send cells from a channel at its

allocated rate until the channel’s queue is empty. A simple fluid model, where the output
from a server is modeled as a continuous flow at the rate B j , captures this behavior. This
is illustrated in Figure 2, where the X axis shows time elapsed, and the Y axis shows the
sequence number of cells sent from node j .

Observe that while the actual traffic is a step function, where one chunksize set of
cells are transmitted once every frametime, a fluid model is a straight line approximation
to it. Since the cells in each frame can be sent out at any time within the frame, we must
assume the worst case and correct for it. To get the maximum number of cells which
could have been sent out from node j by time t, we take value given by the straight line
approximation and apply the following function to it.

fluid_correction(y) ≡

��
�

��
� aj

y� ���
��
� + 1

���
	 aj

This gives us the value of the step immediately over the point on the straight line that we
are looking at. In terms of Figure 2, it raises the points on the straight line to the dotted
line above it. By taking floor and adding one we ensure that for the points of discon-
tinuity in the step function, we take the higher value.

3. Graphical Analysis of Worst Case Behavior
We now introduce a novel technique for analyzing the worst case behavior of a

series of rate-controlled servers. Consider the graph of the sequence number of a cell on
the output trunk of a node vs. time (as in Figure 2). We will use the fluid approximation
described earlier. We need only consider the output graph for the worst case arrival pat-
tern at the input, which will repeat every interval I, so the graphs are periodic with period
I, and we consider only one period.

The worst case traffic arrival pattern at nodei is the output graph corresponding to
nodei−1 . The service at nodei can be represented by a straight line with slope Bi . The
output from nodei is then the composition of the input graph and the service graph. The

- 3 -

Cells

Time

..

..

..
..
..

..

..
..
..

..

..

Figure 2. Actual Departure of Traffic vs. Fluid Model
graphical analysis technique can be viewed as a way to combine an input arrival curve
and a service curve to produce the output curve for a rate-controlled server. The tech-
nique is explained in detail in § 5.

The output graph for nodei encodes information about all the nodes "of interest" up
to and including nodei . To compute the worst case delay at the next node, we do not
need to keep information about all the previous nodes along the path. In the inductive
process some nodes cease to be of interest because their effect on the output of the chan-
nel is completely masked by a node somewhere downstream of them. For example, if a
nodei has a node j downstream of it, such that B j<Bi , then node j receives cells from
nodei at the higher rate Bi , and transmits them at its own lower rate B j . So nodes down-
stream of node j will not be affected by the output curve of nodei directly.

We use the term visible to refer to the set of nodes which cannot be neglected at any
given point in the channel. This set changes as we move downstream, since new nodes
which come into consideration make some of the earlier ones invisible.

We define the visible envelope at nodei as the worst case traffic that could come out
channeli (the portion of the channel consisting of the first i nodes) as a function of time.
It is represented by the output graph for nodei . It can also be thought of as a list of all the
nodes visible from this point on the channel, together with their reserved rates (B j) and
the period of time they can send data before they must wait from input from some previ-
ous node. The visible envelope for channeli summarizes the information we need to
know about the nodes preceding nodei . Given this, and the information about nodei +1 ,
we can calculate the maximum delay and buffer requirements at nodei +1 as well as the
visible envelope for channeli +1 .

3.1. Example
A simple example of a visible envelope is the description of the input traffic shown

in Figure 3. The traffic comes in the maximum possible rate, with inter-cell gaps equal to
x min . When I/xave cells have entered the channel, the input stops because any more cells
would violate the average rate restriction on the traffic. (This is often called on-off
traffic.)

We can think of this source to consist of one visible node, with a reserved rate of

1/x min which is throttled to rate of 0 after
xave

I * x min
� ������������� time units due to an empty queue.

- 4 -

Number of cells sent

Time

I

slope= 1/x min
I/xave

I*xmin

xave

Figure 3. Worst Case Input Pattern

This is the worst case input traffic within the constraints of the input traffic parameters.
The worst case traffic pattern is periodic with period I. To see this we only need

note that the restriction on xave is over any interval of length I. Thus if we have a burst of

traffic with inter-cell gaps equal to x min for a time period
xave

I * x min
� ������������� then we must have a

silent period of length I −
xave

I * x min
� ������������� immediately following it and immediately preceding

it. The worst case is to have another burst just before and after the silent period. Thus the
sequence of bursts repeat at intervals of length I.

3.2. Slippage
After the first cell of the input traffic arrives at an empty queue for the channel at a

given nodei , a maximum time Fi can elapse before the next frame begins and the channel
becomes active at nodei . By active we mean that the service mechanism on nodei is
aware of a non-empty queue for the channel, and by the definition of framed, non-work-
conserving servers nodei must send out the allocated number of cells in each frame from
this point in time until the queue becomes empty again. Then the server may put the
channel to a non-active status, and the first cell to arrive after that point may observe the
phenomenon of slippage again.

We use the term slippage to refer to the phenomenon and also to this time interval.
During this time, cells build up in the input queue at the rate determined by the graph for
the input traffic to nodei (which corresponds to the visible envelope of nodei −1). After
this time, the node starts sending out cells at its reserved rate Bi (or ai cells in every Fi
time units) and the visible envelope of channeli rises above the x-axis. Due to slippage
the x-intercept of the visible envelope of channeli is different from that of the visible
envelope of channeli −1 .

- 5 -

4. Assumptions
The analysis in the following sections makes some assumptions which we shall state

and justify in this section. These are:
1. The reserved service rate at each nodei (Bi) is not less than the average input rate

(1 /xave).
2. The input pattern is the burstiest possible one, given the values of xmin, xave and I.
3. The slippage at each node is the maximum possible, Fi .
4. The effect of cells from previous intervals of time can be ignored in analyzing the

current interval of duration I.
The first assumption is required, since otherwise the defaulting node would quickly

overflow its buffers.
As the input pattern becomes more bursty, the queueing delays in the system

become larger. The second assumption means that we will do the analysis for the worst
case possible, given the input traffic specification. The burstiest possible input pattern is
shown in Figure 3. As described before it is periodic with period I. In § 7 we rigorously
prove that this pattern is indeed the burstiest possible.

Slippage occurs for the first cell sent by a channel. We assume the largest possible
slippage at each node. This allows the most initial build-up at this node, and conse-
quently the highest queue build-ups. It also introduces the highest end-to-end delay.
Further, this node will send out cells at its maximum rate Bi for the longest possible time
(because it had the largest possible queue build-up). This makes the situation the worst
for downstream nodes also. Thus we are correct in saying that assuming the largest pos-
sible slippage accounts for the worst case.

The fourth assumption is best justified after presenting the details of graphical
analysis in § 5. So, this justification is presented in § 7.

With these assumptions in hand, we now present the computation of the visible
envelope for a channel.

Number of cells sent

Time

slope= B 1

A

F1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.D

E

Initial build-up

B
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. C

Maximum queue

Figure 4. Worst Case Behavior at the Output of the First Node

- 6 -

5. Calculation of the visible envelope
Under the assumptions of the previous section, we shall present the analysis of the

queueing delays resulting from the input pattern of Figure 3, as it passes through the
nodes in the channel. We first consider the situation at the first node along the path.

5.1. Analysis of the first node
The worst case situation in the first node can be seen in Figure 4. The worst case

input pattern is shown as the input to node 1 as a dashed curve. After the first cell arrives
at the node, a maximum slippage time F 1 passes before the channel becomes active in
node 1 . During this time the cells build up in the queue at the channel’s rate of input to
the node. Then the node sends out cells at the rate B 1 until its queue becomes empty at
point A. From this point onwards the output rate from this queue is limited by input rate
to this queue. In this case, no more cells are output until the end of the interval I. The
solid line shows the visible envelope of channel 1 . It summarizes the worst case traffic
on the link downstream of node 1 .

The queue length at any time is given by the difference between the input and ser-
vice curves at that point on the time axis. Of course this is under the assumption of a
fluid model, and to get the actual number of cells which could have arrived in that time
we need to apply the fluid_correction defined in § 2.3 with j ≡ 0*. The buffer require-
ment is simply the maximum possible queue buildup at this node under worst case
assumptions, so we need to find the point on the visible envelope for which the above
function is maximized. In this case the maximum buffer required at this node is given by
fluid_correction(BC

� ���
).

The graph also tells us the worst case queueing delay at this node. There is a very
simple relationship between the queuelength of any point on the visible envelope and the
delay seen by a cell which arrived at that point. Let us say the queuelength is queuesize.
Now, in each frame time F 1 , a 1 cells are transmitted. So, the worst case time to empty

this queue is simply

���
a 1

queue_size�������������������
����

F 1 . The cells which arrive during slippage also suffer

an additional delay waiting for the server to become active. The worst slippage is for the
first cell from the channel to arrive at the node. For this cell the additional delay is F 1 .
In general the additional delay of a cell arriving at time t after the arrival of the first cell
is given by the time to the end of the slippage interval (F 1−t). Cells arriving after the
end of the slippage interval suffer no additional delay.

In this example the worst case delay also corresponds to point B and the value is���
a 2

fluid_correction(BC
� ���

)�����������������������������������
����

*F2 . In general if we calculate the delay and buffer values for

each point on the visible envelope and take the maximum of each over all the points on
the visible envelope we should have the worst case delay and buffer requirements.

5.2. Subsequent Nodes
Subsequent nodes can also be analyzed in the same way. For example the situation

for the second node is as shown in Figure 5. Data arrives at node 2 as described by the
graph for channel 1 (the dashed line in Figure 5). No service is received till point C,
which is the end of the slippage period. After that service is received at the rate B 2 until
the queue becomes empty at A. Here onwards the number of cells going out is limited by
the number of cells coming into the node. Thus the output curve for channel 2 follows
the visible envelope of channel 1 . The maximum queue build-up is fluid_correction(BC

� ���
),� ���������������������������

* For the purpose of calculating fluid_correction a 0 ≡ 1 (and thus F 0 ≡ x min).

- 7 -

Number of cells sent

Time

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

y= I/xave
. .

slope= B 2

A

B

C
.
.
.
.
.
.
.
.

F2

Figure 5. Worst Case Behavior of Second Node

and

the maximum delay is the greater of

���
a 2

fluid_correction(BC� ���)
�����������������������������������

����
*F2 (corresponding to point

B) or

���
a 2

fluid_correction(0)
�������������������������������

����
*F2 + F 2 (corresponding to the first cell to arrive). In gen-

eral, we must compute the delays for all the points separately, and choose the maximum.
Notice that the dotted part of the graph is irrelevant as far as the analysis of node 2

goes. The worst case behavior of channel 1 (the channel up to and including node 1) is
summarized by the visible envelope of Figure 4, shown in Figure 5 as a dashed line. The
behavior of channel 2 is summarized by the visible envelope of Figure 5. This is all that
is needed for subsequent nodes, the rest of the information can be discarded.

Notice also that the visible envelope consists, in effect, of a list of all the visible
nodes (each segment of the envelope with a constant slope corresponds to a visible node)
together with information about the node bandwidth (the slope of the segment) and the
length of time the node can transmit at its reserved rate before it must slow down for
some previous node.

One point to bear in mind is that the delay over the physical link must also be
accounted for while adding up the end to end delays. However, it does not enter the cal-
culation for queue build-ups and queueing delays, if we assume links are behaving as
constant delay pipes. The time nodei receives the first cell is ∆i after the time that
nodei −1 actually sends the cell out, where ∆i is the link delay over the link from nodei −1
to nodei . However, since the second (and all subsequent) cells also get delayed by the
same amount, it does not affect the queue build-ups. In terms of the graphical analysis,
the action at the second node occurs shifted to the right on the time axis by ∆i , but since
all events at nodei are shifted identically, we can ignore this effect in calculating the
queue build-ups and the queueing delays. We must, of course, add the physical delay in
when we are adding up the end to end delay.

- 8 -

6. Formal Algorithm
The visible envelope for channeli is represented as a list of the points on the

envelope (<x,y > coordinate pairs), sorted by y coordinates. The initial envelope describ-

ing the worst case input traffic contains three points: (0,0), (
xave

I x min
����������� ,

xave

I
�������), and (∞,

xave

I
�������).

To simplify calculations and reduce the number of points we need to carry in the visible
envelope, we normalize the envelope on starting the calculations for each node so that
the x-intercept of the output envelope is always at the origin. The calculation of the visi-
ble envelope for nodei consists of the steps described in the pseudocode of Figure 6.

7. Graphical Justification for Assumptions
Two of the assumptions made in § 4 can be better justified using graphical ideas

developed in the preceding discussion. These are:
� The input traffic is the burstiest possible.
� The effect of cells from previous intervals can be ignored.

We first justify our choice of input pattern. In terms of the graphical analysis, we
can think of all other input patterns as derivable from the pattern of Figure 3 by shifting
the pattern along the x axis, or lowering the envelope of the input pattern by reducing the
slope of the input.

Shifting the pattern does not change the behavior of the system because we can shift
the origin of the analysis. The restriction on the input traffic, that the average cell interar-
rival time over any interval I must be no less than xave , implies that no more cells can
enter the system after I/xave have arrived, regardless of where we place the origin.

Changing the slope of the input can only move the curve of the input within the
envelope of Figure 3. Consider the effect of this on some nodei . If the change moves the
input curve above the visible envelope of channeli −1 then there is no effect on the
behavior of nodei . If the new input curve touches the visible envelope of channeli −1 ,
lowering it will cause the visible envelope of nodei to lower. This will cause the queue
lengths at nodei to go down.

Once the source has sent a burst of
xave

I
������� cells it cannot send any more cells for the

remaining portion of the period of length I. We also could not have received any cells in
the previous period of the same length. By the arguments of the preceding paragraphs,
an identical burst in the next and preceding interval is worst for this channel. This shows
that the worst case input is periodic with period I and has the shape shown in Figure 3.

We have also neglected the effect of cells from the previous interval on the current
one. Because of the periodic nature of the pattern, we might equally well consider the
effect of this interval on the next one. We now show that for the worst case input pattern,
cells of the current interval do not interfere with the cells of the next interval.

The last cell of this interval is transmitted from nodei at the time corresponding to
the x coordinate of the point where the visible envelope touches the horizontal line
y=I/xave . The first cell of the interval is transmitted at the x-intercept of the envelope.
These two points are joined by a series of segments each with a slope B j for each node j .
Since each node is assumed to have B j> 1/xave , the interval between the time the node
transmits the first cell of this interval, and when it transmits the last cell of this interval is
less than I. Thus by the time the first cell of the next interval arrives, the last cell of this
interval must have left. Thus for the worst case input, the cells of one interval do not
interfere with the cells of the next interval. Thus neglecting the effect of other intervals
does not make our analysis invalid.

- 9 -

#define fluid_correction(y) (

���
ai −1

y� �������
��� + 1)*ai −1

max_buffer = max_delay = 0;
for p = each point in the visible_envelope, having coordinates x and y {

q = previous_point (p)
p.x = p.x - Fi /* Normalize the point, Fi is the slippage */
if (p.x<0) {

/* delay of cells that arrive before start of service */

buffer = fluid_correction(p.y)

delay =

�
�� ai

buffer�����������
�
�� *Fi − p.x /* -p.x adds the remaining slippage */

}
else if (p.x >0 and q.x ≤0) {

/* For the point over the origin */

buffer = fluid_correction(
p.x −q.x

p.x*q.y −q.x*p.y���������������������������)

delay =

�
�� ai

buffer�����������
�
�� *Fi

}
else if (p.x<∞) {

/* for all other valid points */
buffer = fluid_correction(p.y)−Bi*p.x
if (buffer<0)

break

delay =

�
�� ai

buffer�����������
�
�� *Fi

}
max_delay = max(max_delay, delay)
max_buffer = max(max_buffer, buffer)

}
/* Throw away all points below the line y =Bx */
visible_envelope = p
/* Find the intersection of the envelope with the line y =Bx */
q = previous_point(p)

i.x =
q.y −p.y+Bi*(p.x −q.x)

p.x*q.y−q.x*p.y�	�����������������������������������
i.y = Bi * i.x
add_to_envelope(i)
add_to_envelope(point(0,0))

Figure 6. Calculations for nodei

8. Discussion of Pessimistic Assumptions
The assumptions we have made for our analysis are worst case assumptions but they

account for a case which will almost never happen in practice. For one thing, by adding
up the worst case delays for each node, we get an upper bound on the worst case end to
end delay, but in practice the same cell will not suffer the worst case at each node, so the
sum of the per node worst case delays will be a loose upper bound on actual end to end
delays.

- 10 -

In addition we have assumed in our analysis that the cells that arrive during the slip-
page period suffer the maximum slippage (Fi) and also get transmitted at the end of
their transmission frames, leading to a delay of 2Fi . To suffer a slippage of Fi the first
cell must come right at the start of the frame of the node, and to suffer and additional Fi
delay it must get transmitted at the very end of its frame. The only way this could hap-
pen in an HRR server is if all the other conversations at that server also have empty input
queues, and cells for those conversations arrive before this cell, but after the start of the
frame (which means almost simultaneously because we assumed the cell arrived very
close to the start of the frame), causing them to be put in the list of conversations to be
served ahead of the conversation we are interested in. This is a very unlikely event.

To get feel for what kind of maximum delays would be observed in practice we
turned to simulation.

9. Simulation Results
The previous sections have presented a worst case analysis of the queueing delays

suffered by the cells of a virtual circuit passing through a series of non-work conserving,
rate-controlled switches. In this section, we compare the results of the analysis with
simulation results for a conversation that sends data through a series of HRR switches. In
addition, simulations allow us to determine the average case delay, which in many cases
is more important, as well as the delay jitter introduced by HRR switches (which is not
computed by our analysis).

We study three metrics in our simulations:

a) the ratio of the mean delay to the computed delay bound.
b) the ratio of the worst observed delay to to computed delay bound.
c) the delay jitter.

The first metric tells us how pessimistic the worst case computation is. The second
metric tells us how tight the analysis is. The delay jitter corresponds to the buffering that
is needed at the end system - the larger the delay jitter, the larger the buffering that is
needed by a destination that removes data from the network at a constant rate. Since
HRR servers do not provide delay jitter guarantees, we would like to see how much delay
jitter is introduced by doing HRR instead of, say, Stop-and-Go service.

All simulations were performed using the REAL simulator [Kes88]. The simulation
topology is simple - a series of switches from a source to a destination (Figure 7).
Sources send rate-controlled traffic, that is, traffic that can be characterized by the param-
eters x min , xave and I. Node 1 is a rate-controlled source that sends data on-off, with an
adjustable peak rate, average rate and averaging interval. Nodes 2, 3 and 4 are switches
that do HRR service. Node 5 is the destination. At each switch, there is cross traffic
from sources 6 and 8. These sources are also rate controlled, but within these con-
straints, they send data at random intervals of time to corresponding destinations 7 and 9.

All cells are 100 bytes, and all lines are 400,000 bits/sec (500 cells/sec). Switches
are assumed to have infinite buffering, but the buffers used are traced for comparison
against the predicted buffer requirements. Since end-to-end delays and jitters are com-
puted using a histogram with a bucket size of 15ms, the values presented are accurate
only to plus or minus 15ms (= 0.015s). The delay values at an individual switch are
accurate to 1µs.

There are several factors that can affect the actual end-to-end delay of a cell. These
include: the ratio of x min to xave at the source (since reservations are made at the average
rate), the averaging interval I, the number of hops from the source to the destination, the
ratio of the frame times at adjacent switches, and the intensity of cross traffic (which
affects the delay within a frame). It is impractical to study the effect of all the parame-
ters at the same time, so we study a base case, then vary one parameter at a time and note
its effect.

- 11 -

1 2 3 4 5

6

7

8

9

25 50 25
Source Destination

Cross traffic sources

Figure 7. Simulation Scenario

One tricky problem with running a simulation is to know when to stop. We deter-
mine the length of the simulation by looking at the end-to-end delay frequency polygons
(which are obtained by joining midpoints of histogram bars) over a series of time periods
(this is shown in Figure 8 for the base case defined below, and cross traffic intensity of
0.5 of the link bandwidth).

0 0.1 0.2 0.3 0.4

0

500

1000

1500

2000

Count
(packets)

End-to-end delay (seconds)

End-to-end delays vs. time
Frequency Polygons at time 10, 20, 50, 100 and 200

Figure 8. Frequency polygons for end-to-end delays vs. time

Note that a) the polygon does not spread with time, only the central part of the
polygon rises as the simulation proceeds and b) the relative heights of each part of the
polygon are constant at each time interval. Observation (a) indicates that the delay jitter
value stabilizes by 10 seconds, and observation (b) shows that mean delay also stabilizes
by this time. For all the scenarios we found that the corresponding polygons show this
behavior well before 50 seconds of simulated time, so all the results are shown for

- 12 -

simulations that run for 50 seconds. (These observations were also confirmed numeri-
cally.)

9.1. The base case
In the base case, the source sends data at a constant rate of one 100 byte cell every

40ms (25 cells per second). The frame time at switches 2 and 4 is 50ms, corresponding
to 25 slots, and the frame time at switch 3 is 100ms, corresponding to 50 slots. The
results for the base case, with cross traffic intensity of 0.5 of the line bandwidth are
shown in Table 1.
���

Scenario Mean Max. observed Jitter Max. computed Mean/computed Max/computed
(s) (s) (s) (s) (ratio) (ratio)��

Base 0.12 0.18 0.09 0.46 0.24 0.39���
�
�
�
�

�
�
�
�

Table 1. Base case end-to-end delay results

We note that the observed worst case delay is much smaller than the computed
worst case delay. This is because of two reasons.
� The input is perfectly smooth, at a rate less than or equal to the allocation at each

switch. Thus the slippage delay is the dominant factor in the calculated value, and
the worst case slippage is very unlikely (§ 8).

� The worst case computation assumes that the same cell could get the worst possible
delay at each switch. In practice, different cells get the largest possible delay, and
so the bound is higher than it need be. This is clear when we compare the worst
case observed delay at each switch with the worst case computed delay at each
switch.

���
Switch # Max. observed Max. computed Ratio��

2 0.055 0.100 0.55
3 0.098 0.210 0.46
4 0.094 0.150 0.63���

��
�
�
�
�

��
�
�
�
�

Table 2. Maximum Delay at Each Switch

From the table we see that the computed values better approximate the worst case
delay than is apparent from comparing the sum. Our pessimistic assumption that the
same cell could suffer the worst delay at each switch leads to the problem. This effect is
seen in all the simulations. Since, in practice, we are more interested in the accuracy of
the end-to-end delay computation, we will not show per-node accuracy for the other
cases.

Also note that in the base case, the jitter is around 90ms (the accuracy of the histo-
gram used to compute jitter is only ±15 ms). This is much smaller than twice the largest
frame time (= 2* 100 = 200ms). So, we find that the delay jitter provided in this case by
HRR is comparable to that of Stop-and-Go, which would have provided a tight delay
jitter bound of 200ms.

9.2. Effect of cross traffic
We now study the effect of cross traffic on queueing delays. Table 3 shows the

observed and computed values of delays as the cross traffic intensity increases.
We see that as the cross traffic increases, the mean delay increases. The reason is

that at switch 3, cells from source 1 are allocated slots after cells from the cross traffic
source 6 (since the setup packet from source 6 reaches the switch first). As the volume of
cross traffic increases, the number of slots allocated to it increases, and so the cells from

- 13 -

� ���
Cross traffic Mean Max. observed Jitter Max. computed Mean/computed Max/computed� �� ���

0.1 0.11 0.15 0.09 0.46 0.25 0.32
0.2 0.11 0.18 0.12 0.46 0.23 0.39
0.3 0.11 0.18 0.12 0.46 0.23 0.39
0.4 0.11 0.18 0.11 0.46 0.24 0.39
0.5 0.12 0.18 0.09 0.46 0.26 0.39
0.6 0.13 0.18 0.06 0.46 0.27 0.39
0.7 0.13 0.18 0.06 0.46 0.28 0.39
0.8 0.13 0.18 0.06 0.46 0.29 0.39
0.9 0.14 0.18 0.06 0.46 0.29 0.39� ���

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

Table 3. Effect of cross traffic

source 1 are served later and later in the frame. Clearly, this leads to increased queueing
delay at that switch. However, the delay jitter does not appreciably increase, and stays
within 120ms.

Since the cells from source 1 are always served after all the cells from the cross
traffic source, we are, in some sense, simulating the worst case behavior at the switch. In
reality, source 1 cells would be interleaved with the cells from all the other cross traffic
sources. However, cross traffic sources would probably send data independently, so the
amount of jitter introduced in source 1 cells in these simulations due to cross traffic is
roughly the same as it would be in the average case. So, we do not expect appreciably
higher delay jitters than shown in these simulations.

Since the effect of cross traffic is small and predictable, we did the remaining exper-
iments only for a cross traffic intensity of 0.5 of the link bandwidth. The results for
higher intensities are similar.

9.3. Effect of bursty sources
In the base case, the source sends a continuous stream of data, a cell every 40ms.

Since HRR switches make bandwidth reservations for the average rate of a conversation,
if a source is bursty, the queueing delay (due to smoothing at the first few switches)
increases. This section examines the increase in delay due to bursty sources.

Sources can be bursty due to one of two reasons: the peak to average ratio can be
large, or the interval over which the averaging is done can be large. In terms of x min ,

xave and I, this corresponds to a larger
x min

xave
� ������� ratio or a larger I. We examine both cases

below. First consider the situation where
x min

xave
� ������� is fixed at 20, and I increases from 1

through 4 seconds. The results are shown in Table 4.
� ���

I Mean Max. observed Jitter Max. computed Mean/computed Max/computed� �� ���
1 0.59 1.00 0.90 1.2 0.49 0.83
2 0.99 1.70 1.60 1.95 0.51 0.87
4 1.79 3.40 3.40 3.5 0.51 0.97� ���

��
�
�
�
�

��
�
�
�
�

Table 4. Effect of increasing averaging interval

We see that as the interval increases, the observed and the computed delays
increase. This is due to the smoothing that happens at the first few switches - other
switches have roughly the same worst case delay. To see this, compare the maximum
observed delays at each switch as I increases in the table below.

- 14 -

� ���
I Switch 2 Switch 3 Switch 4� �� ���
1 0.59 .30 0.09
2 1.14 .50 0.09
4 2.29 .95 0.09� ���

��
�
�
�
�

��
�
�
�
�

Table 5. Maximum observed delays at each switch as I increases

Note that by the time the third switch in the path is reached, there are no more
smoothing delays. In general, smoothing delays will be seen only at the set of switches
from the source onwards that have strictly non-increasing bandwidth allocations.

In Table 4 we note that a) the prediction accuracy is high for bursty sources and b)
the prediction accuracy increases as the input becomes more bursty. The reason for (a) is
that the algorithm assumes that the input is the worst possible. In the base case, the
source was smooth, and so the observed delay was not as much as it could have been.
Here, the source behaves on-off, which is the worst that it could, and so the prediction is
correspondingly better.

The reason for (b) is that the computation of the smoothing delays is the most accu-
rate part of the algorithm. As the interval size increases, the smoothing delay dominates
all the other delays, and so the algorithm becomes more and more accurate.

Finally, we see that the delay jitter for bursty sources is very large (it is almost as
large as the end to end delay). This is because of the effect of traffic smoothing. The
first cell that goes through smoothing has no queueing delay, while the last cell has the
most, so that the delay jitter and queueing delays are about the same. This jitter can be
avoided by reserving bandwidth at the peak rate (which is wasteful). We believe that it is
impossible for any realizable scheme to reserve bandwidth at the average rate and still
avoid the delay jitter due to smoothing the input (of course, if the input is assumed to be
smooth, as in the earlier case, then delay jitter is hardly a problem. So, schemes like
Stop-and-Go that postulate smooth input traffic seem to be avoiding the difficult problem
of delay jitters due to smoothing!).

The effect of increasing the peak to average rate ratio is observed by keeping I as 1
sec, and increasing the ratio from 2 to 20 (Table 6).
� ���

Ratio Mean Max. observed Jitter Max. computed Mean/computed Max/computed� �� ���
2 0.35 0.50 0.35 0.75 0.47 0.67
5 0.53 0.80 0.70 1.05 0.50 0.76
10 0.57 0.90 0.80 1.15 0.50 0.78
20 0.59 1.00 0.90 1.20 0.49 0.83� ���

��
�
�
�
�
�

��
�
�
�
�
�

Table 6. Effect of increasing peak to average ratio

We see that as the ratio increases, the observed end-to-end delay increases. How-
ever, the increase is not as pronounced as with increasing the averaging interval. This
suggests the burstiness caused by changing the peak to average ratio is not too important
for HRR networks. The reason is simple: because of per-channel queueing, each conver-
sation sees the server as a dedicated server with vacations. As long as arrivals happen
during the vacation, the effective end-to-end delay is constant. Thus, even as the ratio
increases, there is no appreciable change in the delay or the jitter. Further, as in the ear-
lier case, as the source becomes more bursty, the prediction accuracy improves. The
explanation is exactly as before.

- 15 -

9.4. Effect of increasing frame ratios
In this set of experiments the ratio of frame sizes at switches 2 and 4 to the frame

size at switch 3 is varied from 1:1 to 1:10. As the frame size of switch 3 increases, we
expect the smoothing delays at switch 4 to increase, leading to an increased end-to-end
delay. One way to view this is to see that a when a large frame is followed by a smaller
frame, it introduces burstiness within the network. The greater the ratio, the more the
burstiness, and the greater the smoothing delay. The results of the experiments are sum-
marized in Table 7.
� ���

Ratio Mean Max. observed Jitter Max. computed Mean/computed Max/computed� �� ���
1 0.13 0.17 0.09 0.30 0.44 0.55
2 0.12 0.18 0.09 0.46 0.39 0.53
5 0.26 0.36 0.19 0.85 0.42 0.56
10 0.53 0.75 0.40 1.50 0.35 0.50� ���

��
�
�
�
�
�

��
�
�
�
�
�

Table 7. Effect of increasing frame size ratio

From Table 7, we see that expected increase does happen. The increase is small for
a ratio of 2, but the delay doubles at a ratio of 5. Further, the delay jitter also rises. Thus,
we recommend that conversations be placed at similar frame times at consecutive
switches.

The prediction accuracy does not improve much for increasing frame sizes. This is
because the source is sending perfectly smooth traffic.

9.5. Effect of increasing number of hops
In this experiment, we increase the number of hops in the network. This is done by

adding two switches to the path of source 1, with frame times of 100ms and 50ms respec-
tively. At each new switch, there is a cross traffic source with intensity 0.5. The results
are presented in Table 8.
� ���

hops Mean Max. observed Jitter Max. computed Mean/computed Max/computed� �� ���
4 0.12 0.18 0.09 0.46 0.39 0.53
6 0.32 0.36 0.12 0.90 0.36 0.40� ���

�
�
�
�

�
�
�
�

Table 8. Effect of increasing number of hops

From Table 8, we see that as the number of hops increases, the observed delay and
delay jitter increase. The increase in mean delay is because of the additional smoothing
delay at the second of the added switches. This smoothing also increases the delay jitter.
The conclusion is clear: as the length of a path in a HRR network increases, both the
delay and delay jitter are bound to increase. Thus, routing algorithms have an added
incentive to find shortest paths, or better, paths along which frame times are non-
decreasing, so that smoothing delays are avoided. Again, in this experiment the source is
sending perfectly smooth data, leading to low prediction accuracy. Further, note that the
accuracy of the algorithm decreases with the length of the path, reinforcing our belief
that it best models bursty sources.

9.6. Buffer size prediction
We compare the buffer sizes predicted by the algorithm to the simulated buffer

occupancies for two of the above experimental set ups. For the base case:

- 16 -

� ���
Switch # Computed buffers Observed buffers� �� ���

2 2 2
3 4 3
4 3 3� ���

��
�
�
�
�

��
�
�
�
�

Table 9. Base case: buffer occupancies

Table 9 shows buffer sizes in cells. For the base case the observed buffer occupan-
cies are rather small so the scope for the algorithm to be wrong is also limited. Therefore
we look at the buffer predictions for the bursty input traffic where the queueing delays
should cause high buffer occupancies. For the experiment with averaging interval I=4,

with
x min

xave
� ������� fixed at 20 (section 8.3), we observe:

� ���
Switch # Computed buffers Observed buffers� �� ���

2 94 92
3 28 28
4 3 3� ���

��
�
�
�
�

��
�
�
�
�

Table 10. Buffer Occupancy for Averaging Interval I =4

Buffer requirement predictions look satisfactory. This reinforces our belief that the
smoothing delay and buffering portion of our calculation is the most exact part of our
analysis, and the looseness in our calculation comes from the approximation of the slip-
page delay.

10. Conclusions
We have presented an algorithm to compute worst case queueing delays and buffer

requirements for a conversation that sends data through a series of non-work conserving,
rate-controlled switches. This requires at most O (n) computation at each node. The
actual computation should be less, because many (invisible) nodes need not be con-
sidered.

The analysis is tight, in the sense that pathological cases can be constructed such
that at least one cell suffers the predicted delay at each node. However, since the same
cell will not suffer the worst case delay, in general the ratio of end to end observed worst
case delay to computed delay is not too high, especially for sources transmitting smooth
traffic.

The prediction accuracy improves as the source becomes more bursty, since the
algorithm assumes the worst case input. If sources are sending data smoothly within
their traffic constraints, the worst case delay they receive can be as little as 40% of the
computed worst case. It rises to 70 to 90% for bursty sources. However, prediction of
buffer requirements is accurate, for both smooth and bursty sources.

11. Acknowledgments
We would like to thank C.R. Kalmanek, H. Kanakia and D. Ferrari for their advice

and helpful comments.

12. References
[Fer90] D. Ferrari, ‘‘Client Requirements for Real Time Communication Ser-

vices,’’ IEEE Communications Magazine, 28(11), November 1990, also
RFC 1193.

- 17 -

[FerVer90] D. Ferrari and D. Verma, ‘‘A Scheme for Real-Time Channel Establish-
ment in Wide-Area Networks,’’ IEEE Journal on Selected Areas in Com-
munications, 8(3):368-379, April 1990.

[Gol90] S.J. Golestani, ‘‘A Stop-and-go Queueing Framework for Congestion
Management,’’ Proc. ACM SigComm 1990,pp 8-18, Philadelphia,
Pennsylvania, September 1990.

[KKK90] C. R. Kalmanek, H. Kanakia and S. Keshav, ‘‘Rate Controlled Servers for
Very High Speed Network,’’ Conference Record, GlobeComm ’90, San
Diego, December 1990, pp. 300.3.1-300.3.9.

[Kes88] S. Keshav, ‘‘REAL: A Network Simulator,’’, CS Tech. Report 88/472,
December 1988.

[Ver91] D. Verma, ‘‘Guaranteed Performance Communication in High-Speed Net-
works,’’ PhD Thesis, University of California at Berkeley, November
1991.

[ZhaKes91] H. Zhang and S. Keshav, ‘‘Comparison of Rate-Based Service Discip-
lines,’’ Proc. ACM SigComm 1991, September 1991.

