[17]

[18]
[19]

M. 5. Manasse, L. A. McGeoch, and D. D. Sleator, Competitive Algorithms for On-line
Problems, Proceedings of the 18th ACM Annual Symposium on Theory of Computing,
May 1988, 322-333.

M. S. Manasse, L. A. McGeoch, and D. D. Sleator, Competitive Algorithms for Server
Problems, Journal of Algorithms 11, 2, 1990, 208-230.

N. J. Nilsson, Principles of Artificial Intelligence, Springer Verlag, (1982).

R. Reiter, A Theory of Diagnosis from First Principles, Artificial Intelligence 32,
(1987), 57-95.

R. Rivest, On Self-Organizing Sequential Search Heuristics, Communications of the

ACM 19, 2 (February 1976), 63-67.

D. D. Sleator, and R. E. Tarjan, Amortized Efficiency of List Update and Paging
Rules, Communications of the ACM 28, 2 (February 1985), 202-208.

R. E. Tarjan, Amortized Computational Complexity, SIAM J. Alg. Disc. Meth. 6, 2
(April 1985), 306-318.

13

References

[1]
[2]

[13]

[14]

[15]

Y. Azar, U. Nanni, personal communication, 1991.

S. Ben-David, A. Borodin, R. Karp, G. Tardos, and A. Wigderson, On the Power
of Randomization in On-Line Algorithms, in Proceedings of the 20th ACM Annual
Symposium on Theory of Computing, May 1990, 379-386.

J. L. Bentley, and C. McGeogh, Amortized Analyses of Self-Organizing Sequential
Search Heuristics, Communications of the ACM 28, 4 (April 1985), 404-411.

J. R. Bitner, Heuristics that Dynamically Organize Data Structures, STAM J. of
Computing 8, 1 (February 1979), 82-110.

A. Borodin, S. Trani, P. Raghavan, B. Schieber, Competitive Paging with Locality of
Reference, in Proceedings of the 21th ACM Annual Symposium on Theory of Com-
puting, 1991, 249-259.

F. d’Amore, U. Nanni, and A. Marchetti-Spaccamela, Robust Algorithms for Diag-
nosis, Technical Report, Dipartimento di Informatica e Sistemistica, Univ. of Roma
“La Sapienza”, 1991.

A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D. Sleator, N. E. Young, Compet-
itive Paging Algorithms, Journal of Algorithms 12, (1991), 685-699.

S. Gnesi, U. Montanari, and A. Martelli, Dynamic programming as graph searching;:
An algebraic approach, Journal of ACM 28, (1981), 737-751.

J. H. Hester, and D. S. Hirschberg, Self-Organizing Linear Search, ACM Computing
Surveys 17, 3 (September 1985), 295-311.

M. Hofri, H. Shachnai, On the limited utility of auzxiliary information in the list update
problem, manuscript, 1991.

S. Irani, Two Results on the List Update Problem, Technical Report TR-90-037,
Computer Science Division, U. C. Berkeley, California, August 1990.

S. Irani, A. R. Karlin, S. Phillips, Strongly Competitive Algorithms for Paging with
Locality of Reference, to appear in Proceedings of the 3rd ACM-SIAM Annual Sym-
posium on Discrete Algorithms, Orlando, January 1992.

S. Irani, N. Reingold, J. Westbrook, and D. D. Sleator, Randomized Competitive
Algorithms for the List Update Problem, Proceedings of the 2nd ACM-STAM Annual
Symposium on Discrete Algorithms, San Francisco, CA, January 1991, 251-260.

A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D. Sleator, Competitive Snoopy
Catching, Algorithmica 3, 1, 1988, 79-119.

R. Karp, P. Raghavan, unpublished result, 1990.

12

Theorem 4.2 In the wasted cost model, for any non-modifiable tree T' and any sequence o
of requests:

CMTFr(o)<2-LAZY(T,0),
E{RMTFr(c)} <2-LAZY1(0).

Proof. What asserted follows by theorems 3.1, 3.2 and 4.1. O
On the base of what seen we can extend the result on the non-competivity of MTF.

Theorem 4.3 In the wasted cost model, for any ¢ > 0 there exists a non-modifiable tree T
and a sequence o of requests such that:

MTFr(o) > c¢-LAZY7(0) .

Proof. The thesis holds by virtue of theorem 3.3 and the observation that any instance of
weighted list update problem can be transformed into an instance of tree update problem
(using a tree of depth 1). O

5 Conclusions

The question of whether c-competitive algorithms exist for the weighted list update problem
against a strong adversary is still open. Another basic problem is finding some randomized
algorithms better than 2-competitive against an oblivious adversary.

Many possible generalizations of the proposed algorithms for the weighted list update
problem might be considered to deal with some of the open problems. In order to gain
advantage against an oblivious adversary, CMTF may be modified by introducing a random
initialization of the counters: this makes it similar to the COUNTER algorithm [13]. The
random resources are required only in the initialization of the data structures, and not
for the whole length of the sequence. Moreover, we observe that RMTF can be used for
unweighted lists by moving accessed items to the front of the list with constant probability
p. Using p = 1/2 we conjecture this algorithm to be as good as the BIT algorithm, which
is 1.75-competitive against any oblivious off-line adversary [13].

Some of the current research trends in on-line algorithms (and in particular the paging
problem) are based on the access graph [5, 12] to restrict the arbitrariety of the adversary in
generating sequence of requests. An important issue would be to extend these approaches
toward weighted versions of the problem to make them better suited for the requirements
of applicative environments. Weighted counters and biased coins are candidates to tackle
with this kind of problems.

Acknowledgements

We like to thank Mike Luby for constructive discussions helpful to improve an earlier version
of the paper.

11

lists, corresponding to as many weighted lists to update. We can apply one heuristic for
the WLUP to update each of these lists.

In the following, A7 denotes the algorithm for the tree update problem obtained by
applying the WLUP algorithm Ar, to each of the |x(r;)| lists, ¢ = 1,2, ..., according to the
proposed strategy, and Ar(o) denotes its wasted cost to process a sequence o of requests
on the tree T'.

The next theorem motivates this approach.

Theorem 4.1 Given an algorithm Ajp for the weighted list update problem, for any non-
modifiable tree T', and any sequence o of requests:

Ar(o) = Y Ar(L(vr),w®),0y)
v €T

in the wasted cost model, where:

o Ar(L(u),w,o) denotes the cost incurred by the WLUP algorithm Ay, applied to the
list L(u) of the children of u, with a weight function w and a sequence of requests o,

and, for any vertex vy € T:

o w¥) is the weight function such that, for any child u of vy, w*)(u) = |5 (u)|, that is
the size of the subtree rooted at u;

e oy is the sequence of requests restricted to the items belonging to S(vy).

Proof. The theorem follows from the fact that rearranging the children of a vertex v can
only affect the cost of finding vertices in S(v).
Let us introduce the following quantities:

s = { 1 if v, € (ry)

0 otherwise

Let us denote as Wy the wasted work charged to any vertex z; € 7(r;) while searching
T for ry, due to the wrong choices made before finding the right child zx41:

Wi = Z w(k)(u).

u<t=lag g

Using the introduced notation, the theorem can be obtained as follows:

Ar(o) = Z Z Wi = Z Z @ iWryt = Z Z Qe i Wryt = Z Z Wit

Tt€0 ypEm(re) rt€o v eT v, €T Tt€0C vy €T rt€0K
O

Theorem 4.1 allows to extend to the tree update problem any result regarding the
competitiveness of heuristics for the weighted list update problem.

For example it is easy to obtain the performance of RMTF and CMTF against the lazy
adversary, using the optimal static arrangement of the tree.

Let n(v) be the number of occurrences of the descendants of » (including v) in o. The
optimal static arrangement for a non-modifiable tree is such that for any two siblings u and
v we have that u < v in the adjacency list of their parent only if w?(") n(v)

S)) 2 w(50)"

10

4 Algorithms for Non-Modifiable Trees

A tree T is said to be non-modifiable if the parent-child relationships cannot be modified.
Such a structure is interesting when the father-child relationships capture relevant aspects of
reality. For example, in decision trees the father-child relationships have a precise meaning
and the order of the children of a vertex can affect only the complexity of discovering
something, not the result of the search, in the case that there is only one vertex to be
found.

The Tree Update Problem is the following. A sequence o = (rq,rq,73,...) of requests has
to be answered on-line, and each request consists in specifying a vertex to be found within
a non-modifiable tree by means of a leftist depth first search. The only allowed update
operation consists in changing the order of the children of a vertex, i.e. changing the order
by which its subtrees are searched. The goal, again, is to minimize the total cost of answering
all the requests. The wasted cost is assumed to be the number of vertices unsuccessfully
“visited” while searching for some other vertex. Of course this simply generalizes to the
case where each vertex is weighted, that is it has its own visiting cost.

Our basic idea consists in using a heuristic for weighted lists to modify the relative
ordering among siblings, taking into account both the frequence of requested vertices in
any subtree and the size of the subtree itself. This section describes this approach and
provides a general analysis of the competitivity of heuristics for the tree update problem
using a weighted list heuristics.

Any requested vertex r; univocally characterizes a path from the root of the tree to r;
itself. Let 7(r;) = (20, 21,...,25—1 be the vertexes preceding r, = 2, along this path.

Moreover, for any vertex u, let S(u) be the subtree rooted at u and |S(u)| be its size.
The wasted cost for searching for r; by a leftist depth first search is given by:

> > 1S,

crp€m(re) u=<t—lwpyq

where v; < vy means that v; precedes its sibling v, after the i-th request has been
served (<’ is a partial order only defined between pairs of siblings). In other words the cost
incurred by the depth first search for r; can be charged to the vertices belonging to 7(r;):
more precisely, each « € 7(r;) is charged the sum of the sizes of the subtrees whose roots
are children of z € 7(r;) and are visited without finding ;.

The tree can be managed by means of any algorithm for the weighted list update prob-
lem. For example, in the case of RMTF, we perform the following steps. For any request
ry in o we search the tree by means of a left dfs. Once r; has been found we consider the
path 7(r;). For any z; € 7w(r;) we toss a coin, whose probability of a positive answer is
proportional to 1/]5(z)| in order to decide whether 2 must be moved before all its siblings
in the list of children of zx_y. In the case of CMTF, for any 2 € 7(r;) we increment its
counter by a quantity proportional to 1/]|5(zx)|, and if the counter reaches or exceeds 1
then we subtract 1 to it and move x; before all its siblings.

In general, after the t-th requested item r; has been found, for each xp € w(r¢), we
consider the list £!=1(2y) of its children before the request r; is served. So, we have |x(r;)]

Also in this case it is worth observing that any choice of py, proportional to 1/w; would
satisfy the theorem. So, we could choose p, = wWmin/ws for maximizing the probability
of moving items to the front of their lists, in order to obtain the minimum value for the
additive term f(w).

Unfortunately, in the wasted work model, CMTF and RMTF are not ¢-competitive, for
any constant ¢, against an oblivious adversary that uses the optimal off-line algorithm. In
order to show this, it suffices to show that CMTF is not c-competitive against an adversary
who uses MTF (which is not better than the optimal off-line algorithm).

Consider the case in which there are only three items and both CMTF and MTF
start working on two initially identical lists, containing the items in the following order:
(e1,€2,e3). Moreover suppose that wy > wy > ws. Thus, counters ¢;, ¢z and ¢35 will
be respectively incremented by the quantities ws/wy, ws/we and 1. For the sequence
o = e3 - eylw2/wsl g [wl/wf’], we have the following costs:

wy

CMTF (o) = (w1 + wz) + (w3 + w1) [%-‘ + (wq 4 w3) [—-‘

3 w3
MTF(o) = 2(w1 + we + w3) .

It is immediate to verify that the ratio CMTF(o)/ MTF (o) can be made greater than any
fixed .

It is possible to show that CMTF is not c-competitive against the lazy adversary in the
wasted cost model as well [1].

In the next theorem we prove that MTF is not c-competitive for any constant value ¢
with respect to the lazy adversary for the weighted list update problem.

Theorem 3.3 For each list of n > 2 items and for any c there exist a weight function w
and a sequence o of requests such that, in the wasted cost model:

MTF(w,o) > c- LAZY (w,0).

Proof. Let us consider the set § = {e1, ez}, with w; < wq, and the sequence o = (ezeq)°.
The optimal static ordering is (e1, e2) and the wasted cost to the lazy adversary consists in
visiting the item e; while looking for ey, that is:

LAZY (w,0) = cwy .
The Move-To-Front heuristic swaps the two items for any request and then:
MTF(w,0) = ¢(wy + ws) .
The theorem holds for any choice for the weight function such that e >c— 1 |

In general, that is for longer lists, we have that the expression of the processing cost
in the wasted cost model to the lazy adversary LAZY (w, o) does not depend on w, (the
weight of the last element in the optimal static ordering), while MTF(w, o) does. Therefore
the competitivity factor can be made greater than any constant value by choosing a suitable
value for w,,.

Hence inequality (1) holds, with:
w;w;
=2 ¥
1<i<j<n

if the two lists have the same initial arrangement, or the double of this quantity, with any
initial arrangement. |

Note that the theorem is true for any choice of the value of the constant ¢ not greater
than wmin (in order to make inequalities (2) and (3) true). The choice ¢ = wyin minimizes
the additive term f(w) in inequality (1).

Theorem 3.2 In the wasted cost model, for any weight function w and any sequence o:
E{RMTF(w,0)}<2-LAZY(w,0)+ f(w),
where f(w) has a value not depending on o.

Proof. The proof is very similar to that of theorem 3.1. The statement to be proved,
due to the pairwise independence property, and to the same kind of fragmentation, is the
following;:

84,5 Si,3
> Y E{RMTF(w;j,of)} <2 Y > E{LAZY(wij,of)}+ f(w).
1<i<j<n k=1 1<i<j<n k=1

Note that here s; ; and the length of any fragment are random variables, but the sum in

the right hand side is deterministically determined by o; ;. Also in this case we prove a
k.

sufficient condition, relative to the single fragment o;;:

E{RMTF(w;;,0f,)} <2 E{LAZY (w;;,0f;)}.
for any k = 2,3,...,5s; ; — 1. Note that the cost to the lazy adversary of a single fragment

is a random variable, too.

The quantities af, a;?, bf are defined as in the proof of the previous theorem, and their

expected values are subject to the following inequalities, analogous to the (2) and (3):
k Wi k Wy ko pk Wy

The expected cost to process a single fragment o; ; is for the two algorithms:

w;w;

E{RMTF(w;;,0%,)} = E{afw; + bhw;} < 2

w;w;

E{LAZY(wm,Uffj)} = E{a?wi + bfwl} > pa

The value of the term f(w) is due to the cost of the partial fragments and is bounded by
the expected cost of a single fragment. |

If s;; is the number of fragments of o, ;, and Uf‘fj denotes the k-th fragment of o, ;,
inequality (1) can be rewritten as:

84,5 Si,3
Y Y OMTF(w;j0f) <2 > > LAZY(w;j,0f)+ f(w).
1<i<j<n k=1 1<i<j<n k=1

and the theorem can be proved by showing that it holds

CMTF(w; ;, Uf’j) <2-LAZY (w;;, Uf’j) ,
for any kK =2,3,...,s;; — 1, and that the processing cost of the first and the last fragment
of o; ; to CMTF can be bounded by a function of the weights in the list.

Let us define the following quantities, relative to the particular fragment Uf‘f i

aF

7 is the number of occurrences of e; in the first portion of the fragment (i.e. while

e; < €);
is the number of occurrences of e; in the first portion of the fragment;

b* is the number of occurrences of e; in the second portion of the fragment (i.e. while
e; < €j, just as in LAZY’s list).

Due to the behavior of CMTF, for any fragment of; we have that e; (resp. €;) is not
moved to front until the first (second) portion of the fragment ends, therefore the following
inequalities hold:

a; S 7 and b] S 7) (2)
and, moreover:
%+@2f, (3)

because the first member represents the number of occurrences of e; between two (not
necessarily consecutive) move to front of item e;.

Since e; < e; in the optimal static list, in the wasted cost model the lazy adversary will
be charged the quantity w; any time that e; is requested. The cost to CMTF is w; for any
request of e; in the first part of the fragment, and w; for any request of e; in the second
part.

Hence, if Uﬁj is the generic k-th fragment of o; ; we can bound the processing cost of
the two algorithms as follows:

CMTF(w; j,0f;) = afw; 4+ bw; <2 TJ

WW;
LAZY (w; ;, O'Zk) = a;‘?wi + bfwz- >
; c

J

As far as the partial fragments is concerned, we have that the first and last partial
fragments cannot cost to CMTF more that one fragment. On the other hand, the initial
partial fragment of o; ; has the same cost to CMTF and LAZY, if the two lists have the
same initial arrangement.

In the next theorems we use the pairwise independence property pointed out, for example,
in [3]. It can be described as follows. The number of times e; is examined while searching
for e; starting from any given initial arrangement of the list depends only on the relative
position of the occurrences of e; and e; in 0. In order to compute such contribution to the
total cost, we can consider, for any ¢ and j, the compressed sequence o; ; obtained from o
by deleting all the elements out of e; and e;, and a list containing only these two items.
The wasted cost for a generic algorithm *MTF to answer a sequence o of requests can be
rewritten as:

n—1 n
MTF(w,0)=>_ > *MTF(wi;,0i;)
=1 j=i+1

where w; ; denotes the weight function w restricted to the domain {e;, ¢;}.

The following theorems prove that RMTF and CMTF are 2-competitive against the lazy
adversary.

Theorem 3.1 In the wasted cost model, for any weight function w and any sequence o:
CMTF(w,0)<2-LAZY (w,0)+ f(w),
where f(w) has a value not depending on o.

Proof. The lazy adversary is supposed to use use the optimal static arrangement. Without
loss of generality we assume that the elements in § are numbered according to the optimal
static ordering, that is ¢ < j if and only if e; < e; in the static list.

In order to prove the theorem, we will separately examine (by virtue of the pairwise
independence property) the contribution of any pair e;, e; to the global cost while processing
the entire sequence o.

Hence the theorem can be restated as

Z CMTF(QUZ'J', Uiﬂ') <2 Z LAZY(QUZ'7]', Uiﬂ') + f(w) (1)
1<i<j<n 1<i<j<n

Therefore we separately consider the cost of the two algorithms while processing the
sequence o; ; and handling a two-elements list containing only the items e; and e;. Let £; ;
be thelist handled by CMTF. The lazy adversary keeps the position of the two elements fixed
according the optimal static ordering (say e; < €;). CMTF instead repeatedly exchanges
the position of the two elements in £; ;, according to the described strategy.

The compressed sequence o; ; can be subdivided into fragments on the basis of the
behavior of CMTF, namely on the basis of the presence of e; before e; (and vice versa) in
L; ;. Each fragment begins when e; is moved to precede e; (in opposite arrangement with
respect to the LAZY’s list): note that this can happen only if e; is moved to the front by
CMTF. After some requests the two elements are switched again, and in this second portion
of the fragment e; precedes e;, just as in the optimal static list used by the adversary. We
remark that at the beginning and at the end of o; ; there are partial fragments, and that
the number s; ; of fragments in o; ; depends on the indices ¢,j. Now we compute the cost
paid by either algorithms to process a generic single fragment within o; ;.

where e; <’ e; means that e; is stored in £ before e;. In the total work model the summation
is extended to the elements e; < e; (i.e. including e; itself).

The lazy adversary is supposed to use the optimal static ordering that, for any sequence
of requests and any weighted lists, is obtained by sorting the items by non increasing values
of n; /w;, where n; is the number of occurrences of e; in o. Such an ordering meets the one
pointed out in [3] for unweighted sequential lists.

Let LAZY‘C(U) the cost of processing the sequence o by a lazy adversary using the
static arrangement L. If Lopt is the optimal static ordering and does not respect the
above condition, then there exist two consecutive items e;, e;41 such that:

ng < 41
w; Wit1

Let L’ be the list obtained by swapping the two consecutive items e;, e;41. Since swapping
e; and e; 4 only affects the cost of searching for e; and e;41, we have, for both the considered

cost models:
LAZY* (0) — LAZY*9PT (0) = njwiyy — nip1w; < 0 ;

hence the arrangement £’ would be cheaper for the lazy adversary.

The Counting Move-To-Front (CMTF) heuristic is deterministic and uses counters to
decide when moving items. Any element ey has an associated counter ¢ with real values
in [0,1+4 d/wg) (which, in all practical cases, is contained in [0,2). After a searched item
er has been found, ¢ is increased by d/wy and if it reaches 1 or more, e is moved to the
front of the list and the counter is decreased by 1. The best choice for the constant d, as it
will be seen later, is to take d = wmin. This is also the maximum value for d to make the
frequency of move to front of any item proportional to the ratio between its frequency in
the sequence and cost.

Note that the number of occurrences of a generic item e in ¢ between two consecutive
“move to front” of item ey is not more than [wy/d]| and not less than |wy/d]. Due to the
way the counter is handled, over many requests for e, this actually occurs wg/d times in
the average.

The Random Move-To-Front (RMTF) heuristic is randomized and uses biased coins
instead of counters. After a searched item e, has been found, a biased coin is tossed in
order to decide whether moving e; to the front of the list or not. Such a coin has a
probability pr = d/wy to give a positive answer, where d = min; w;. In this case the
expected number of occurrences of an item e; in ¢ between consecutive positive answer of
the coin (and consequent movement to the front) is w;/d.

Comparing the two proposed algorithms we have that in the general case CMTF requires
real valued counters (and arithmetics), but they can be truncated down to a reasonable
number of bits without affecting the substantial behavior of the heuristic in most practical
cases. Hofri and Shachnai [10] present a study of the error introduced by truncating integer
counters in the context of the frequency count approach for the list update problem. On the
other side RMTF replaces counters by random resources, but pseudo-randomness should
not introduce substantial error against a non truly malicious adversary.

In the following we prove that both CMTF and RMTF are 2-competitive against a lazy
adversary, while MTF does not share this property in the case of weighted lists.

Hence adversaries are classified on the basis of both the knowledge he has about the
behavior of the algorithm A and the features of his own algorithm B.

Several adversaries have been considered in the literature to analyze performance of
heuristics for on-line problems [14, 2]: the oblivious off-line (week) adversary, the adaptive
on-line (medium) adversary, the adaptive off-line (strong) adversary.

In the context of server problems a lazy strategy for the adversary consists in moving
a server only when it is strictly required to serve a request [16, 7]. In the case of the list
update problem, since it is not strictly required to move anything to serve a request, we call
lazy adversary one that uses a static arrangement of the list, without resorting the list after
each request. Of course a lazy adversary is supposed to use the optimal static ordering,
which can be computed off-line.

Using the terminology introduced so far, Bentley and McGeoch [3] proved that MTF
for the unweighted list update problem is 2-competitive against the lazy adversary. Sleator
and Tarjan in [21] proved MTF to be 2-competitive against the strong adversary as well.
Indeed MTF has been proved to be be optimal among all the deterministic heuristics for
this problem [15, 11] with a tight competitivity bound of O(Lz—-ﬁ) The lower bound is stated
showing an example where the adversary uses a static arrangement of the list: it turns out
that moving items does not help the adversary for this problem.

In general it is not known whether an adaptive on-line adversary is actually weaker than
the strong one: for the unweighted list update problem the answer is no [13].

In [11, 13] randomized algorithms for the list update problem are presented with a
competitive ratio less than two. The best competitivity factor is v/3 (about 1.73). The
lower bound for randomized algorithms is about 1.27 [15, 13].

3 Algorithms for Weighted Lists

In this section we show that in the weighted case the competitivity of the Move-To-Front
heuristic against the lazy adversary cannot be made independent from the distribution of
weights. We propose two 2-competitive heuristics for the weighted list problem, consisting
of suitable extensions of MTF.

In the weighted version of the problem the cost of visiting an item of the list depends
on the element itself. To the best of our knowledge this problem has never been studied. In
[21] a cost model was considered in which the cost of an element depends on its position.

Suppose we are given a pair (S, w), where S is a set § = {ey,eq,...,€e,} of elements
and w: § — RT is a total function mapping the elements of S into the set of positive reals
R*. In what follows we will denote by w; the value of w(e;).

Two cost models can be considered to compute the work done by an algorithm to answer
one request: they are analogous to the i — 1 and 7 cost functions used in [13]. In the wasted
work model the cost of accessing the i-th item of £! (where £ denotes the list after the
i-th request has been served) is given by

E wy ,

e;<te;

reduce the overall cost of processing a sequence of searches over the tree. We prove that,
given a heuristic for the WLUP which is c-competitive against an adversary, it is possible
to devise a heuristic for the Tree Update Problem which is ¢-competitive against the same
adversary. For example AND-OR trees, problem solving [18, 8] and diagnosis [19] are some
of the areas which could exploit efficient solutions for the WLUP [6].

The paper is organized as follows. In the next section the concepts of adversary and
c-competitivity are discussed, the weighted list update problem is formally stated and two
cost functions for this problem are considered.

In section 3 we present two algorithms, CMTF and RMTF, and prove that both of
them are 2-competitive against a static algorithm. CMTF is a deterministic algorithm
which makes use of auxiliary memory (one counter per item), while RMTF is a randomized
variant which uses no extra space and has expected cost equal to that of CMTF. We also
prove that MTF is not c-competitive in the same situation.

Section 4 describes the application of the weighted list update problem to the Tree
Update Problem.

2 Preliminaries

An on-line problem requires to serve a sequence of requests so that each request has to be
answered before the following one is known.

The general framework to analyze the behavior of an on-line algorithm A requires an
adversary who generates a sequence o of requests and is charged the cost of processing the
sequence by means of his own algorithm B.

An algorithm A is c-competitive against an adversary using the algorithm B if for each
weighted list £ and for each sequence o of requests:

A(o) < e Blo)+ f(L),

where f does not depend on the sequence chosen by the adversary but only on the handled
list £ [14]. This definition has been generalized to randomized algorithms [16], and in that
case the first member of the above inequality is the expected cost of the algorithm, taken
with respect to the random choices made by the algorithm.

Adversaries can be classified from various points of view.

An off-line adversary has the advantage to process all the requests after the end of the
sequence, while an on-line adversary must process any request on line.

Furthermore, an adversary is static if he is not allowed to rearrange the list after each
request.

An oblivious adversary must generate the sequence without knowing possible random
choices of the algorithm A, while the adaptive adversary can choose the next request on
the basis of the previous behavior of A. The distinction between oblivious and adaptive
becomes meaningful in the case of a randomized algorithm. In fact randomization does
not help against an adaptive adversary, as shown by Ben-David et al. [2]. Therefore any
competitivity result about randomized algorithms refers to oblivious adversaries and, of
course, it is intended to provide an estimation of the expected behavior of the randomized
algorithm, where the expectation is taken with respect to its random choices.

1 Introduction

The List Update Problem (LUP) has been extensively studied in the literature (see, for
example, [20, 4, 9, 3, 21, 13]). It consists in maintaining a dictionary as an unsorted linear
list.

While processing a sequence of requests, the list may be rearranged in order to minimize
the access cost of subsequent operations. For any request, the cost of accessing the searched
item depends on its position in the list.

In the Weighted List Update Problem (WLUP) any item has an associated cost due for
its “visit” and therefore the cost of searching an item within the list depends on the sum of
the costs of the preceding items. Also in this case the problem consists in minimizing the
total cost incurred in processing a sequence of requests.

This is an example of on-line problem, where each request in a sequence has to be
processed before the subsequent ones are made known, and some decision taken will affect
the cost of answering the subsequent requests. A usual framework to analyze the behavior
of heuristics for on-line problems is the technique based on adversaries. An adversary is in
charge to generate the sequence of requests in order to maximize the ratio between the cost
incurred by the heuristics to be analyzed and the cost of an optimal algorithm to handle
the sequence. The heuristic is e-competitive if this ratio is asymptotically not greater then
¢ [14]. Several heuristics for the LUP have been considered, such as the Frequency Count,
the Transpose, the Move-To-Front (overviews can be found, for example, in [20, 9]). Sleator
and Tarjan proved that Move-To-Front (MTF) is 2-competitive against any strategy of the
adversary, that is what is called a strong adversary. MTF has been proved to be optimal
among all the deterministic heuristics for this problem [15, 11] with a competitivity 0(%)
Several kinds of adversaries can be considered for the LUP: for example in [3] Bentley and
McGeoch showed that MTF is 2-competitive against an adversary using the optimal static
ordering and answering requests without moving any item. Indeed this has been also proven
to be optimal [15, 11] and quite surprisingly it turns out that moving items does not help
the adversary for this problem. A lazy adversary for an on-line problem is one that moves
as few as possible to service requests [16, 7]: in the case of list update problem a lazy
adversary does not move anything. In this paper we consider heuristics for the WLUP and
we show that MTF is not e-competitive against a lazy adversary by any constant factor in
the weighted case. We propose two heuristics for this problem, both derived from MTF:

e the Counting Move-To-Front (CMTF), which is a deterministic heuristic which uses
n real counters (one counter per item) in order to decide whether moving to the front
the accessed items;

e the Random Move-To-Front (RMTF), which is a randomized heuristic, obtained by
CMTF by substituting counters by biased coins.

Both are shown to be 2-competitive against a lazy adversary. Moreover we consider the
Tree Update Problem, where items are to be found in a tree instead of in a sequential list.
The tree is represented by means of lists of successors and is searched by a leftist depth
first search. The only possible update operation consists in rearranging the lists of children
of the vertices. If we weigh each vertex by means of the size of its subtree, we can handle
the list of the children of any vertex by using any weighted list update heuristic in order to

The Weighted List Update
Problem and the Lazy Adversary

*

Fabrizio d’Amore! Alberto Marchetti-Spaccamelaf*
Umberto Nanni#®
TR-92-011
February 1992

Abstract

The List Update Problem consists in maintaining a dictionary as an unsorted linear list. Any request
specifies an item to be found by sequential scanning through the list. After an item has been found,
the list may be rearranged in order to reduce the cost of processing a sequence of requests.

Several kind of adversaries can be considered to analyze the behavior of heuristics for this
problem. The Move-To-Front (MTF) heuristic is 2-competitive against a strong adversary, matching
the deterministic lower bound for this problem [21].

But, for this problem, moving elements does not help the adversary. A lazy adversary has the
limitation that he can use only a static arrangement of the list to process (off-line) the sequence of
requests: still, no algorithm can be better than 2-competitive against the lazy adversary [3].

In this paper we consider the Weighted List Update Problem (WLUP) where the cost of accessing
an item depends on the item 1itself. It is shown that MTF is not competitive by any constant factor
for this problem against a lazy adversary. Two heuristics, based on the MTF strategy, are presented
for WLUP: Random Mowve-To-Front is randomized and uses biased coins; Counting Move-To-Front
is deterministic, and replaces coins by counters. Both are shown to be 2-competitive against a lazy
adversary. This is optimal for the deterministic case.

We apply this approach for searching items in a tree, proving that any c-competitive heuristic
for the weighted list update problem provides a c-competitive heuristic for the Tree Update Problem.

*Work supported by the ESPRIT II Basic Research Actions Program Project no. 3075 (“ALCOM”) and
by the Italian National Project “Algoritmi e Strutture di Calcolo”, Ministero dell’Universita e della Ricerca
Scientifica e Tecnologica.

'Dipartimento di Informatica e Sistemistica, Universitd di Roma “La Sapienza”, via Salaria 113, 1-00198
Roma, Italia.

!Dipartimento di Matematica Pura ed Applicata, Universith di L’Aquila, via Vetoio, Coppito 1-67100
L’Aquila, Italia.

SCurrently visiting the International Computer Science Institute, 1947 Center St., Berkeley, CA 94704.

