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Abstract
The purpose of this paper is to bring together the two Al areas of constraint-based
and nonmonotonic reasoning. In particular, we analyze the relation between different
forms of constraint relaxation and a particular approach to nonmonotonic reasoning,
namely, preferred subtheories. In effect, we provide formal semantics for the respective
forms of constraint relaxation.
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1 Introduction

During recent years, constraint-based reasoning techniques have proven to be very
useful and widely applicable in Al. However, soon after the advent of constraints
as a knowledge representation formalism, it has turned out that there is a particular
problem in using them for representing practical problems: real world problems, when
taken literally, tend to be inconsistent. Usually, there are so many features which one
would like or even require the solution of a problem to have, that there really is no
solution—the problem is overspecified.

Motivated by practical applications as described in [1, 4, 5], an idea developed
that has later been called constraint relazation [3] or partial constraint satisfaction
[7]. The idea is that in fact not every constraint in a constraint network must be
satisfied in what one would accept as a solution of the problem, but that there are
more or less “hard” constraints, where the hard ones are required to be satisfied,
but not necessarily the soft ones. In this paper, these and similar ideas of handling
inconsistent constraints are analyzed. In particular, we investigate the applicability
of approaches in nonmonotonic reasoning to formalize different forms of constraint
relaxation.

The idea of distinguishing soft and hard constraints bears some resemblance to
recent approaches of formalizing default reasoning [2, 11] where defaults are repre-
sented as standard first order formulas. To achieve the desired behavior of default
reasoning, inconsistencies in the set of premises are resolved by disregarding some
formulas (defaults) considered to be less important than others. We will see that the
techniques used for default reasoning can directly be applied to formalize constraint
relaxation. However, this formalization has its limitations. It turns out that to handle
inconsistent constraint problems in a satisfactory way, often more is needed than a
mere ordering of the constraints according to their importance.

There seem to be two principal ways of handling inconsistent constraint networks.
We can leave the classical notion of a constraint unchanged and try to pick out a good
non-solution, or we can introduce a new definition of constraints which guarantees
the existence of solutions but which differ in quality. These approaches are closely
related, and it is mainly a practical issue where to put the information needed to
resolve inconsistencies. Nevertheless, we will distinguish these approaches for clarity
and discuss them separately.

After presenting in section 2 the necessary formal background of constraints and
preferred subtheories, we pursue the first approach in section 3. Constraint networks
are extended by different orderings containing information about what to do in cases
of inconsistencies. We discuss three such orderings. The first one is an ordering
on maximal consistent subsets of the constraints and is a direct adaptation of the
preferred subtheory approach in [2]. The next, more general approach introduces an
ordering on the solutions of maximal consistent subsets of the constraints. The third
further generalization admits arbitrary subsets of the constraints, not just maximal



ones. These formulations of constraint relaxation may also be viewed as further
developments of the theoretical formulations in [7, 9, 10].

It turns out that, in the most general case, the role of constraints in the first
approach almost vanishes. It therefore seems appropriate to introduce a new notion
of constraints where constraints are partial orderings on value assignments. This
approach will be presented in section 4 where we also show how it can be “imple-
mented” using standard constraint techniques when numerical values representing the
degree of violation of a constraint are used to represent partial orderings. Section 5
concludes.

2 Background

In this section, we will introduce the basic notation and definitions underlying our
treatment of inconsistent constraint networks. We will first present the standard
constraint terminology restricting ourselves to finite constraint networks. We then
reconsider the notion of preferred subtheories as defined in [2]. This approach to
default reasoning will be used repeatedly in the next sections.

Usually, a constraint is defined as a relation R on a set of variables {vy,...,v,,}
over domains {Dy,...,D,}, i.e., R C Dy X -+ x D,, and a constraint network as a
set of constraints with shared variables. Since we are here only interested in whether
some assignment of values to the variables of the constraints is admissible or not, we
can reduce the definition of a constraint network to the following:

Definition 1 (Constraint Network)
A constraint network is a triple (C,V, D) where

1.V =A{vy,...,v,} is a set of variables,
2. D =Ui<ic, Di 15 a set such that D; is the domain of v;, and

3. C =Aer,..., ¢k} is a set of constraints, i.c., functions from value assignments
to {0,1} where a value assignment is a function assigning to each variable v;
an element of its domain D;.

Definition 2 (Solution)
Let CN = (C,V,D) be a constraint network with C = {¢1,...,ck}. A value assign-
ment Val is a solution of CN iff for every ¢ (1 <@ < k) ¢;(Val) = 1.

A constraint satisfaction problem (CSP) is the problem of finding one, some, or

every solution of a constraint network. A constraint network is called consistent if it

has a solution, inconsistent otherwise.?

IThe notion of consistency used here should not be confused with notions of k-consistency etc.

as defined in [6].
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Val ‘ ¢1(Val) ‘ ¢2(Val)
(carpet — r, wall — r, door — g) 1 0
(carpet — r, wall — y, door — g) 0 0
(carpet — r, wall — g, door — g) 0 1

Figure 1: A constraint network for the room painting example and its corresponding
functional definition. Both ¢; and ¢; are equality constraints.

We will use the following somewhat minimalistic example throughout the paper.
Assume you want to paint your room. You have three different colors available: red
(r), green (g), and yellow (y). There are two constraints: ¢;, demanding that the
color of the wall match the color of the carpet, which is red, and ¢y, demanding that
the color of the wall match the color of the door, which is green. In figure 1, we show
the respective constraint network in a traditional style, adding an excerpt from the
functional definition. Obviously, the constraint network is inconsistent.

To make constraint satisfaction techniques more easily comparable to default rea-
soning, we will sometimes switch to a more logically oriented view of constraints.
Due to our restriction to finite constraint networks, a constraint can be viewed as as
a disjunction of the form

[vl:dll/\---/\vn:dln]v---v[vl:dll/\---/\vn:dln]

Note that constraint variables are mapped to logical constants. A constraint network
can, in the logical view, simply be seen as a set of constraints. A solution of a set of
constraints C' is a ground formula s of the form

’Ulzdl/\.../\‘l}n:dn

such that d; € D; and C' U {s} is logically consistent.
The logical version of the constraint ¢; in the room painting example would be

carpet = r A wall = r A door = g

which would also be a solution for the constraint subset consisting just of the con-
straint ¢;.

(Classical constraint networks are monotonic in the sense that the addition of a
constraint always reduces the number of solutions, i.e., s is a solution of C' U {C;}



only if s is a solution of C'. The networks described in the rest of this paper do not
have this property, i.e. they are nonmonotonic.

If there is no solution, we are often interested in solutions of a CSP N’ for which
a solution exists and that is “as close as possible” to N. In this case, N’ will be
called a relaxation substitute of N. In the next section, we will discuss various ways
of defining such substitutes.

We will next define the nonmonotonic formalism used in the next sections to
formalize reasoning with inconsistent constraints, Brewka’s preferred subtheory ap-
proach [2], which generalizes earlier work of [11]. This approach is based on an order-
ing of the maximally consistent subsets (subtheories) of a set of premises. Provability
can be defined as follows:

Definition 3 (Weak and Strong Provability)

Let T' be a set of premises, < a strict partial ordering of Sub(T'), the set of mazimally
consistent subsets (subtheories) of T'. A formula p is weakly (strongly) provable from
T iff it is provable from at least one (all) of the <-minimal elements of Sub(T).

In [2], various ways of generating the ordering of the subtheories from orderings of
the premises of a given theory are investigated. For instance, it is shown that Poole’s
framework for default reasoning can be obtained by defining the preferred subtheories
to be those containing a distinguished set of facts. We will restrict our presentation to
one approach, the so-called level default theories. Here, the set of available premises
P is divided into different reliability levels Py, ..., P, with the intended meaning that
a formula in P; is of greater reliability than a formula in Py iff § < k. The preferred
(i.e., <-minimal) subtheories are then defined as follows:?

Definition 4 (Preferred Subtheories)

Let P = Py, ..., P, be alevel default theory. S = S1U...US, is a preferred subtheory
of P iff for all 1(1 <@ < n) the set S U...US; is a mazimally consistent subset of
PU...UP.

[2] contains a further generalization to arbitrary partial orderings of the premises.
This extension is rather straightforward and will not be discussed in the present paper.

With this formal background, we are in a position to define various approaches to
reasoning with inconsistent constraints.

3 Choosing the Best Non-Solution

One of the ways to deal with situations where no solution of a particular constraint
problem exists, is to pick out one of the non-solutions of the problem. The question,

2This defines the <-minimal elements directly without specifying <. A corresponding definition
of < would be: My < My iff there is an ¢ such that My N(PLU...UP—1) = MaN(PLU...UP_;)
and Ms N P; is a proper subset of M; N F;.



of course, is: Which of the non-solutions is good? The information about the right
choice must be provided somehow. A first idea that comes to mind, is to select
one of the solutions of a maximally consistent subset C’ of the set of constraints C.
This alone is often insufficient, however, as it does not allow to distinguish between
important constraints that we require to be satisfied, and less important ones whose
violation is more acceptable.

We will therefore adopt the ideas underlying the preferred subtheory approach to
this problem. This leads to the following definition:

Definition 5 (Approximate Solution 1)

Let C be a (possibly inconsistent) set of constraints, and < a strict partial ordering
on Sub(C), the set of maximally consistent subsets of C. We say s is an approzimate
solution of C iff s is a solution of C' where C" is a <-minimal element of Sub(C).

This definition leaves open how to define the ordering on the maximally consistent
subsets. A solution in the spirit of [11] might distinguish between two classes of
constraints: the hard constraints that have to be satisfied and the soft constraints
that are only satisfied if possible. We will describe a more general approach here,
which applies the ideas of level default theories as described in the last section. We
split the set of constraints C' into levels Cy, Cy, ..., and require that a relaxation
substitute for C' consist of a maximally consistent number of constraints from C,
augmented by a maximal number of constraints from C; consistent with those chosen
so far, etc. This approach is very similar to the ones described in [4, 9].

Definition 6 (Preferred Subsets of Constraints)

Let Cy,...,C, be a partition of a set of constraints C into levels of tmportance.
S = S1U...US, is a preferred subset of C iff for all i (1 < i < n), the set S1U...US;
is @ mazimally consistent subset of C1 U ... UC;.

As mentioned before, [2] also describes a more general approach based on partial
orderings of the premises instead of reliability levels. It uses total linearizations of
the partial orderings. Its application to constraints is similar to the one above and
will be omitted here.

Unfortunately, this direct adaptation of ideas from default reasoning to reasoning
with inconsistent constraints has its limitations. In the approach defined so far,
a formula (default or constraint) is either valid, or invalid and disregarded. For
default reasoning purposes this is entirely reasonable. For constraints, a somewhat
more flexible approach is desirable and possible. Instead of entirely disregarding
a constraint, one might want to replace it by a weaker one, where a constraint ¢
is weaker than d if ¢ accepts more value asignments than d, or, in logical terms,
if ¢ contains all the disjuncts of d plus some additional ones. Assume, in our room
painting example, that you want to relax the constraints in order to make the network
consistent by admitting that carpet is considered matching the color of the wall if



wall = ¢ and carpet = r. This would mean to introduce an additional disjunct,
namely carpet = r A wall = g A door = g into the logical formulation of ¢;.

In general, this is equivalent to disregarding unsatisfiable constraints and prefer-
ring some of the solutions of the now consistent problem to others. We therefore
order the solutions of maximally consistent subsets of the constraints instead of the
maximally consistent subsets themselves in the following definition:

Definition 7 (Approximate Solution 2)
Let C be a set of constraints, < an ordering of the solutions of Sub(C), denoted
Sol(Sub(N)). s is an approzimate solution of C if it is a <-minimal element of

Sol(Sub(N)).

In our example, we might order the solutions of maximally consistent subsets of
the constraints such that solutions where wall = ¢ are preferred to such solutions
where this is not the case.

This definition is already quite general. It still requires, however, that the relax-
ation substitutes be maximally consistent subsets of the constraints. In some cases,
even this requirement might be too strong. Imagine a situation where we have to
choose between “heavily” violating a small set of constraints and “weakly” violating
a superset of these constraints. There may be situations where the harmless violation
of more constraints is preferable to the harmful violation of fewer constraints.

There are two maximally consistent subsets, each consisting of exactly one of the
two constraints. Our last definition requires that our approximate solution be among
the solutions of these subsets, i.e., we only have the choice between r and ¢. But y
might be the better solution in this case because although it violates both constraints
this violation might be more tolerable than any of the other solutions.

To be able to handle such examples in our framework, we have to take solutions
of nonmaximal subsets of the constraints into account. Our room painting example
shows that even the case where no constraint at all is satisfied, has to be considered.
This amounts to ordering all possible value assignments and leads to the following
definition:

Definition 8 (Approximate Solution 3)

Let C be a set of constraints, < an ordering of the value assignments satisfying the
condition: if C' s consistent then s s <-minimal iff s is a solution of C. s is an
approximate solution of C iff it is a <-minimal value assignment.

In our example, we now can give the value assignment that assigns the value y to
the variable color preference over all other assignments and thus obtain the desired
result. Obviously, the role of the constraints almost vanishes in this last and so far
most general definition. Almost all the necessary information resides in the ordering
of value assignments. The only role left for the constraints is to guarantee that this
ordering prefers a solution of the constraints, if the constraints are consistent.



In the next section, we will therefore introduce a new notion of constraint networks
that generalizes the classical one. The information of how to handle inconsistencies
will become part of the constraints, thus giving them back their original importance.

4 A New Notion of Constraints

We first introduce a generalized definition of constraint networks. The intuitive idea
underlying this definition can be described as follows: a constraint is considered as
a judge with certain preferences for value assignments. A constraint network is a
committee of judges determining the quality of a value assignment based on the
preferences of the individual judges. A specific combination rule is used to determine
the decision of the committee from the individual preferences. In a classical network,
the judges can only describe their preferences by classifying the value asignments as
either acceptable or unacceptable. The combination rule underlying classical networks
is the rule of veto, i.e., if there is a single judge disagreeing with a value assignment,
then this assignment is not considered as a solution. In the general case, we admit
arbitrary strict partial orderings of value assignments as the votes of a judge, and we
admit more interesting combination functions. Let us make these intuitions precise:

Definition 9 (Generalized Constraint Network)
A constraint network is a quadruple (C,V, D, Comb) where

1. V=Av,...,v,} is a set of variables,
2. D =Ui<ic, Di 1s a set such that D; is the domain of v;, and

3. C={cr,...,ck} is a set of constraints where each constraint is a strict partial
order on value assignments, and

4. Comb s a combination function that, given C, produces a single partial order
on value assignments.

Definition 10 (Solution)
Let CN = (C,V,D,Comb) be a constraint network. A value assignment Val is a
solution of CN iff Val is a minimal element of the partial order Comb(C).

Note that these definitions guarantee the existence of a solution; in other words,
there are no inconsistent constraint networks any more. To be able to work with
these definitions in practice, we have to define ways of specifying constraints, i.e.,
partial orderings on value assignments, and the combination rule. Interestingly, the
level default theory approach can be used here as well if the preference orderings of
the constraints can be represented as levels.

Let C' be a set of constraints, each constraint ¢; assigning a preference level P, (vay
to every value assignment Val. We can generate a level default theory 7' in the



following way: for each ¢; in C' and each P; put a formula p into level T; of the level
default theory such that p is the disjunction of all value assignments (represented
as conjunctions) that are assigned to the level P; by constraint ¢;, i.e., all value
assignments Val for which ¢;(Val) = 1.

The definition of preferred subtheories implicitly specifies a combination rule,
which picks out a solution that is among the most preferred of at least one constraint,
and—if possible—among the second best solutions of another constraint, and—if
possible—among the third best solutions of yet another constraint, and so on. It
should be noted that a constraint in this approach does not, as in the last section,
correspond to a formula in one level, but contributes a formula to each level.

But there is again a limitation. If we reconsider our painting example, it is not
difficult to see that, again, the preferred subtheory approach does not provide a way
of preferring the solution wall = y to all other solutions. We therefore have to
investigate other ways of representing orderings.

One particularly convenient way of expressing priority orderings in constraint
networks, is to introduce some kind of metric (see also [7]). We can, for instance,
specify the quality of a value assignment by using integers interpreted as penalties,
indicating the degree to which a particular value assignment violates the constraint.
This can easily be modeled using the Comb function: the numbers associated with
the value assignments are used to determine a numerical measurement of the overall
quality of a certain solution. The combination rule Comb can, for instance, be given
as a weighted sum of the numerical values obtained from each constraint, i.e., for a
set of constraints C' = {¢1,..., ¢} and a value assignment Val we can define

Comb(ey, ..., cp)(Val) = wier(Val) + ... + wier(Val)

where w; 1s a weight indicating the importance of constraint ¢;. Following the con-
vention that a constraint assigns the penalty 0 to a value assignment, whenever it
belongs to its most preferred ones, then this definition guarantees that value assign-
ments violating no constraint, if they exist, get the value 0 and are thus preferred
to solutions violating at least one constraint. Violating a constraint here means not
belonging to its most preferred value assignments.

Note that in the special case of defining priority orderings by penalty functions,
the third item of definition 9 may be notated as follows, which is in analogy to
definition 1:

3. C={ecy,...,ck} is a set of constraints where each constraint is a function from
value assignments to IN.

However, the value 0 changes its meaning here: in definition 1, a value 0 as result of
¢; meant that the constraint was violated; now, as the value of ¢; is to be interpreted
as penalty, the value 0 signifies that the respective constraint is satisfied optimally.



Applied to the room painting example of figure 1, the penalty functions might be
defined as follows:

Val ‘ ¢1(Val) ‘ ¢2(Val)
(carpet — r, wall — r, door — g) 0 8
(carpet — r, wall — y, door — g) 3 3
(carpet — r, wall — g, door — g) 8 0

When defining each weight w; in Comb to be equal 1, we obtain the combination rule
Comb(ey, ¢2)(Val) = ¢1(Val) 4 ¢3(Val)

which prefers the assignment wall = y over wall = r as well as wall = g¢.
Interestingly, the (meta)-problem of finding a solution with its degree of quality
can be represented in a standard constraint network. Every solution of this new net-
work corresponds to a solution of a relaxation of the original problem, and additionally
contains the necessary numbers to compute its quality.
One straightforward way to achieve this, is to construct for a given numerical
generalized constraint network

CN = (V,D,C,Comb)
a corresponding (classical) constraint network
CN' = (V',D',C"
in the following way:

L. V=V U{vy,...,v,} where k = |C|, i.e., k is the number of constraints in

CN.
2. Déj = IN, for 1 < j < k. The domains of all variables in V' remain unchanged.
3. C"={d,...,c¢,} and ¢(Val) = 1 iff 1) ¢;(Val|V) = n, and 2) Val(v,,) = n.

In figure 2, we show a relaxed version for the room painting example with additional
variables and the corresponding functional description.

Standard constraint satisfaction algorithms like the one in [8] can be applied to the
new constraint network. If all variables v.; have the value 0, we have found a solution
where no constraint in the original problem is violated. If some of these variables are
greater than 0, we can use these numbers to compute the overall quality of a solution
according to the rule Comb. It thus can be ensured that a “good” solution is found.



N N
’UCJ ’UCQ
Val ¢1(Val) ¢2(Val)

(carpet — r, wall —r, -, Ve, > 0, o) 1 .
carpet — r, wall — r Ve — 1, - 0
( p 2 2 2 1 7
carpet — r, wall — r Ve > 2 0
( p 2 2 2 1 7
(carpet — r, wall —y, ---, Vg 0, -+) 0
(carpet — r, wall —y, ---, Ve > 3, -o) 1
carpet — r, wall — 1y, --- Vo, =4, e

p 2 y7 2 1 7
(carpet — r, wall — g, ---, Vg 0, -+) 0
(carpet — r, wall — g, ---, Vo > 8, ++) 1
(carpet =T, wall =g, -, Vg, 97 .. )
(-, wall — r, door — g, ---, V., > 0) 0
(-, wall — r, door — g, ---, Ve, > 8) 1
(-, wall — r, door — g, ---, Ve, > 9)

Figure 2: Relaxed version of the room painting example of figure 1. v, and v,

1
represent the qualities of assignments to carpet, wall, and door.

10



5 Conclusions

We have discussed two ways of dealing with inconsistent constraints. In the first ap-
proach, the notion of a constraint remained unchanged. In case of an inconsistency, a
good non-solution was chosen. To define the quality of non-solutions, various prefer-
ence relations had to be introduced. In the most general case, this lead to a situation,
where the role of the constraints almost vanished. We therefore proposed a second
approach in which the notion of constraints has been generalized to be just a partial
order on value assignments.

Our presentation intended to distinguish between these two approaches for the
sake of clarity. In fact, they are more closely related than our presentation might
suggest. Of course, it is mainly a matter of convenience whether we want to add
the necessary priority information separately, as in the first approach, or whether we
want to make it part of the definition of a constraint, as in the second approach. It
is often easy to switch forth and back between these two views. Note, for instance,
that the numerical representation of partial orderings presented at the end of the last
section as a way of implementing the second approach, can as well be interpreted as
a way of computing the ordering of non-solutions, i.e., as an implementation of the
first approach.

In both approaches, ideas developed to formalize defeasible reasoning in general
proved to be applicable, in particular the preferred subtheory approach to default
reasoning. However, their application to constraint problems had its limitations.
More general ways of defining the necessary priority orderings proved to be useful for
reasoning with inconsistent constraints.
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