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Example 6. A is 6 x 6 Toeplitz, while B and C7T are lower triangular Toeplitz such
that 7" is banded Toeplitz:

0.516679 0.279703 0.127793  0.0839437 —0.11893 0.277015
—0.164592 0.516679 0.279703 0.127793  0.0839437 —0.11893
0.864845 —0.164592 0.516679 0.279703 0.127793 0.0839437
—0.68101 0.864845 —0.164592 0.516679 0.279703 0.127793 ’
—0.742669 —0.68101 0.864845 —0.164592 0.516679 0.279703
—0.852 —0.742669 —0.68101 0.864845 —0.164592 0.516679

B.a = ( 0.409388 0.277015 —0.11893 0.0839437 0.127793 0.279703 )T,
Ci.=( —0.0525222 —0.852 —0.742669 —0.68101 0.864845 —0.164592 ).

With X7 ~ (0.56912 + 0.249638¢)1, we obtain X = X, + ¢X; where

—0.19786 0.04579 0.17548 —0.13383 —0.13147 —0.03350

0.08550 —0.18569 0.07363 0.19408 —0.15969 —0.11016

X = 0.17924 0.11816 —0.02339 0.11386 0.06945 —0.09011
T 0.26615 0.21461 0.16794 0.03407 0.05834 0.12694 ’

—0.06093 0.23906 —0.07352 0.15148 0.23425 —0.02114

0.11671 —0.04871 0.21307 —0.04890 0.15953 0.24800

0.10522 —0.00212 —0.07364 0.02842 0.03877 —0.00327

—0.05883 0.10155 0.04718 —0.08562 —0.00020 0.04053

X = —0.31445 —0.08884 0.21435 —0.01865 —0.13629 —0.02701
P —0.11535 —0.31798 0.06154 0.19150 —0.11108 —0.12000 ’

0.53519 —0.05517 —0.37719 0.17518 0.18779 —0.03365

0.03734 0.54391 0.00649 —0.36847 0.13035 0.20896

in ng < 16 iterations, and ||F()~()||001.77824 -10~1°, With X ~ 1.41187, Newton’s

method fails to converge. n
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0.517239  0.542287 —0.617065 —0.627036
0.992267 —0.835852 —0.110293 0.0754547
—0.949065  0.276742  0.481544  0.681173
—0.978031  0.396513  0.220374  0.359957

With X7 ~ (0.437063 + 0.70993:)1, Newton’s method converges to

B =

~ 0.580130 4 5.34110: —0.540627 — 1.076421 —0.060226 — 1.285421 —0.125883 — 2.730681
X — 10—12. 0.101667 — 0.406921% —0.426473 4 3.118741 —0.304544 — 2.387831 —0.301464 — 4.034691
0.269826 4 5.473031 —0.464609 — 3.32431: 0.021286 4 0.373041 0.013383 4 0.186371

0.238554 — 6.020571% 0.106400 + 1.696981 —0.025332 + 0.997561 —0.484515 + 2.346291

in ng < 14 iterations, with HF()N()HOO ~ 7.123 -10~!. Starting from X ~ 1.378361,
we obtain

0.58013 —0.540627 —0.0602264 —0.125883
1.01667 —0.426473 —0.304544 —0.301464

X =1 0260826 —0.464609 0.21286  0.133826
0.238554 0.1064 —0.253317 —0.484515
in n; < 12 iterations, with ||F(X)]|e &~ 3.38192 - 1071, =

Example 5. A is 4 x 4 Toeplitz, while B and C7T are lower triangular Toeplitz such
that 7" is banded Toeplitz:

0.461566  0.858435 —0.490227  0.707031
0.22595  0.461566  0.858435 —0.490227

A=1"_g414279 0.22595  0.461566  0.858435 |°
0.736799 —0.414279  0.22595  0.461566
—0.906584
0.707031
Ba=| 40027 |- Cl*=(0.974593 0.736799 —0.414279 0.22595).
0.858435

Starting from X7 & (0.535218 + 0.986517%)1, Newton’s method converges to

- 0.127893 — 0.535581 —0.092363 4 1.14785: 0.079576 4+ 2.641981 0.200933 — 3.851741
X — 10—17 —0.015835 — 0.302691 0.127074 4+ 0.505051% —0.079558 + 1.24412i 0.106000 — 1.235281
—0.000835 — 0.06315% —0.001627 — 0.06941% 0.012775 — 0.037691 —0.006562 4+ 0.792511%

0.005171 — 0.626441 —0.080865 + 1.313531 —0.166859 + 3.045351 1.268860 — 4.407291

in ng < 14 iterations, giving ||F(X)]|e & 3.84185 - 10716, With X ~ 1.778651, we

obtain

1.27893 —0.0923633  0.0795764 0.200933

5= —0.158357 1.27074 —0.0795578 0.106
| —0.083539 —0.162677 1.27749 —0.0656186 |’
0.0517145 —0.0808646 —0.166859 1.26886

in n; < 12 iterations, and ||F(X)|| = 3.76787 - 107*¢. Note that both X and X

approximate the same (real) solvent. .
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0.41713 0.06611 0.24949 1.18596 —0.16937 —0.15012
—0.10747 0.95104 —0.04612 0.47739 —0.15629 0.20858
0.66944 0.07775 0.64334 —0.43617 —0.00145 0.62218

0.13185 0.03048 —0.13581 0.28319 0.20814 —0.13234 ’

0.56233 0.05984 —0.30451 —1.13265 1.12261 0.29882
—0.09639 —0.06417 0.01498 —1.12158 0.15423 0.32263

in ng < 16 iterations, with || F(X)||e & 5.53918-1016. S

Newton’s method converges to the real solvent

0.620434 —0.75959 —0.109756 —0.563788
0.125155  0.0939193 0.0621351 0.577561
—0.461337 0.785254 —0.0549352 —0.10672
—0.235339 —0.358634 0.401347 —0.0833514
0.215709 0.614566 0.652756 0.277448
—-1.1711 0.846046 0.31629 0.665308

X =

in n; < 16 iterations, and ||F(X)]|eo & 1.28591 - 102,
Example 3. A=1,,C =—-B:

0.00516658  0.733489  0.428635
—0.753396  0.606722 0.49199
0.495661 —0.202535  0.924642
0.259717 —0.753891 —0.404637

B =

tarting from X ~ 1.141781

—0.178393 0.831679
—0.766806 0.470617
—0.287831  0.0880682
0.0544886 —0.547929

0.23819 —0.25092
0.0193916 —1.17968

0.531839
0.213826
—0.0790184
—0.280178

With X5 ~ (0.242021 + 0.970271:)1, Newton’s method converges to the solvent

0.056420 — 0.233377i —0.792390 — 3.6677001 —0.004604 + 0.9230501 —0.534639 — 2.6702201

X = 10—11 1.201400 + 2.6767401 —0.138980 — 4.035120: —0.054107 — 0.9922511: 0.144338 — 2.7691901
—0.005061 — 0.0568531 0.218162 4 1.4166701 —0.046156 + 0.129123% 0.110317 4+ 1.028050:

—0.081672 4+ 0.3318511i 0.830910 4 3.7028801 0.045067 — 0.1254201 0.312903 4+ 2.701530:

in ng < 10 iterations, giving ||F()~()||Oo ~ 1.15583 - 10~1°, With X ~ 1.270891, we

obtain

0.894743  —0.74742 0.28599

1.41626 —0.109748 —0.0558818
0.346077  0.334101 1.46281
—1.12301 0.78924  —0.240963

X =

in 7 iterations, and || F(X)||e ~ 3.81937 - 10716,
Example 4. A = AT (but not positive definite), and C

—0.504133  0.916786 —0.941018
0.916786  0.581326 —0.296251
—0.941018 —0.296251  0.530552
0.642083 —0.968074 —0.756876

A=

28

—0.442651
0.204132
0.347477
0.227666

= BT.

0.642083
—0.968074 |
—0.756876 |
—0.549169



to develop fast and efficient sequential and parallel algorithms (see section 4). Fur-
thermore, the matrices of the factorizations could be computed with cost depending
only on the bandwidth (i.e. not on the size of the system). The LLT factorization
can be always applied. We have studied the existence of these factorizations and
shown how this problem is related to the existence of a solution of certain nonlinear
matrix equations. In particular we have stated the relation between the factorization
T = LLT + K and the equation ZZT + FZT + G = O. We have determined the
general form of a solution of this equation and found conditions (either necessary or
sufficient) for the existence of a solution. Finally we have performed a number of
computational experiments which show that the matrix equation related to the LU
incomplete factorization does have a solution in many cases not covered by the theory.

A Appendix

In the following we list six examples of resolution of quadratic matrix equations.

Example 1. A=1,, C = B:

0.185442  0.415787 —0.568279  —0.762019
0.812455  0.465055 —0.656925 —0.0738415
0.991509 —0.968499 —0.0970314 —0.392705
0.131298 0.51184  —0.910668 0.771585

B =

With X5 ~ (0.204103 + 0.978949:)1, we obtain

~ —0.370603 4+ 0.9401361 0.707384 — 0.102185% 0.031346 4+ 0.162928: —0.282357 4+ 0.101734:
X — —0.147816 — 0.1602861 0.62605 4+ 0.9823781 —0.444024 4 0.0859561 —0.31206 — 0.01595312
—0.513037 — 0.244091: 0.544864 4 0.100227% —0.271994 4 1.0937: —0.592966 4+ 0.0053661

—0.444395 — 0.026003: 0.107409 4 0.1245423 —0.031808 4 0.0262611 0.203222 4 0.923239:

in 7 iterations, with ||F(X)||. ~ 8.05067 - 10~'°. Starting from X& ~ 1.224721

Newton’s method fails to converge. n

Example 2. A= 15 C = B:

—0.117961 —0.722142 —0.41316 —0.788115 —0.268241 0.56837
0.221061 0.210068 0.334215 0.39728 —0.87456 0.732023

B = 0.326577 0.999912 —0.0197027 —0.35755 0.329825 0.470401
—0.414453 —0.52622 0.262314 —0.320514 0.00550452 —0.621506

0.979834  0.0592741 0.794505 —0.123669 0.684797 —0.0894222
—0.352167 0.87444 0.573304 0.735454 0.314397 —0.910233

With X5 ~ (0.132979 4+ 0.991119:)1, we obtain X = X, 4+ ¢X; where

0.16675 0.20072 —0.75241 —0.29353+ 0.06194 0.73149

0.47776 0.15227 —0.06188 —0.36409 —0.08412 0.77690

X = 0.60712 0.22441 0.14749 —0.20536 0.49309 0.14988
T —0.72694 —0.14407 0.06448 —0.12861 —0.01095 —0.69993 ’

—0.05172 —0.55553 0.47431 —0.38670 0.34290 —0.67070

—0.47075 —0.12145 0.89753 0.44735 0.06330 —1.09691
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where a = ||A]|l/||C|loc and b = ||Bl|oo/||C||co- In the latter case we always obtain
real iterations, while in the former we can also look for complex solutions. The actual
entries of the matrices were chosen at random, uniformly in the interval (—1,1). Six
numerical examples are reported in the appendix.

We have also tested several types of structured A, B, C' matrices of different size,
and performed hundreds of random tests for each combination. A summary of some
of the outcomes of this analysis is depicted in Figure 1. We found that often a solvent
exists in many cases not satisfying the sufficient conditions of section 6.

A, B, C general

A, B, C tridiagonal

A, B, C Toeplitz

A tridiagonal, B, C' diagonal
A, B, C orthogonal

A, B, C diagonal

20% = 40%  60% = 80% = 100%

Figure 1: Percentages of solvent existence for some types of A, B and C.

(2) We have computed the L factor both in the element case (i.e. L lower bidiagonal)
and in the block case (i.e. L banded lower triangular). In the former case, Newton’s
iterative method has been used to solve a system of two nonlinear equations. In all
the experiments, we have been able to compute the solution. In the latter case, we
have developed a LISP program for symbolically determining the nonlinear equations
needed to minimize the Frobenius norm of the matrix LLT — T (see section 3.2), and
for symbolically computing the partial derivatives needed to implement Newton’s
method. Such a program directly produces the FORTRAN code for actual (numeric)
computations. No significant differences were observed with respect to the scalar
case.

(3),(4) We evaluated the spectral radius of the iteration matrices. In all experiments,
we found convergent iterative methods, and the LLT factorization has shown itself to
be more suited to generate a fast iterative method. This fact is quite natural, since
this factorization is obtained corresponding to the minimization of the Frobenius
norm of a matrix with spectral properties close to the ones of the iteration matrix.

8 Conclusions

In this paper we have presented a framework for preconditioning and solving banded
Toeplitz linear systems by using incomplete factorizations. These techniques allowed
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It is interesting to compare this approach with an incomplete Cholesky factoriza-
tion of the matrix (26). In the latter case we maintain the block pentadiagonal view
of the matrix and write

T=LL"+H,
where
1
B I
L=| I B I 7
I B I
and
I+E L2k
B (0]
: B>+1 B
H= +] ( N I)(bk O ... ... 0),
E :
I+E 19

where [/ = 2EEH. Thus the incomplete factorization does exist, and the matrix H

has rank 2m + 3k — 6.

7.3 Numerical experiments

We now report on several results concerning the practical implementation of the fac-
torization techniques introduced in the previous sections. The numerical experiments
have been performed on an IBM 3033 computer by using the FORTRAN 77 program-
ming language. Newton’s iterations relative to case (1) below were conducted on a
Macintosh ITcx using Mathematica™.,

This section is organized in four parts (1)-(4).

1. solution of the matrix equation CX? — AX + B = O;

2. solution of the nonlinear system arising to determine the LLT factorization with
minimum ||LLT — T r;

3. evaluation of the number of steps of the iterative methods corresponding to the
incomplete LU factorization;

4. evaluation of the number of steps of the iterative methods corresponding to the
incomplete LLT factorization with minimum [|LLT — T'||p.

(1) In all the cases considered the matrix 7' is either unsymmetric or symmetric sign
indefinite. For what concerns the starting point, we chose either

a+ Va2 —4b a+ Va2 +4b
2 2 —7

X- =
0 2

+ _
or X5 =
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where f)(u) is the normal (outward) derivative, leads to the following coefficient
matrix:

C+1 2B 1
2B C 2B 1
I 2B C 2B I
I 2B C 2B 1
I 2B C 2B
I 2B C+1

where ' = B? + 2] +2EFEH, B = —A, A is the same as for the Poisson equation,
and

(e
o O

—_ O .-

We can apply the incomplete factorization (2) to (26) by working on the block tridi-
agonal matrix

M L
" Mo
L7 M L
" M
where
. (I, O [ C 2B
L_(QB ]k)’ and M_(QB 0)

are 2k X 2k matrices. Observe that

. .o ..ooN\" (Lo ..0o0
= 00 ..0 I 00 ...0T1I)

The incomplete factorization (2) will exist if and only if the matrix equation
X - MX+L=0

has a solution. In this case the difference matrix H will be an (m/2) x (m/2) block
matrix (with block size 2k x 2k), whose elements are all zero but the following

(59)

1\3|§
1\3|§

an(g 8)+ﬁHX, and  H

In this case H has rank 3k.
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has a solution. Note, in fact, that A and I commute and the matrix A? — 41 being
positive definite, since all the eigenvalues of A are greater than 2 (in fact A\;(A4) =
4 —2cos(in/(n+1)),7=1,...,n). Then the hypotheses of the Theorem 11 apply,
and the blocks are easily found in

1 1 9 1/2
X = A+ (4 -4
1 1
= cA—(a2—an)"”
2 2
The matrix B~'A = — A have all the eigenvalues less then -2, hence from the results

of section 6 we can see that the iterative method (12) will converge or not depending
on the actual value of k. Experimental results have shown that the method convergers
only if £ < 7.

The matrices A, A+ 2B = A —2[ and A — 2B = A + 2] are symmetric and
nonnegative definite, hence, for Theorem 9, the factorization T = LLT + K exists.
The blocks of the matrix L are:

7 = —(A=2D)"*4 Z(A+2D)"?,

Y = —(A-2D)'*— —(A+20)"*,

N — DN =
N | — DN | —

because A and B = —I commute, and thus it holds V = I. From
1 1 1/2
R Y L I
G=Y Z_—QA Q(A 4]) )

and from the fact that the eigenvalues of A are all greater than 2, it follows that the
iterative method (15) is not convergent.

7.2 Biharmonic equation

Another major problem that leads to a banded (almost) Toeplitz linear system is the
solution of the biharmonic equation via difference approximation. The biharmonic
equation is

Vif(w) =g(u), uwelUs={(z,y):0<2,y<1}

The finite difference approximation over U using a mesh size of h = 1/(1 4+ y/n) and
the following conditions on the boundary of U,

f(u) =0, and fi(u) =0,
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The conditions given are certainly too restrictive to have a lot of applications that
satisfy them; however, in Section 7 we will see an important special case for which
the conditions does hold.

In [11] Davis reports on a procedure for solving F(X) = AX? + BX +C = O
using Newtons triangularizations. The basic step of such a procedure is accomplished
by a modified version of the ()Z algorithm. Experimental results are also reported
which show that such a modified procedure finds a solvent of F(X) = O in many
cases where the ()7 approach fails. The sequential cost of the method, for k£ x &
matrices, is dominated by the quantity 904®, where o is the number of iterations for
the Q)7 algorithm to reduce a subdiagonal element to 0. In view of applying our
incomplete LU factorization, the method can be usefully adopted in case the order &
of the blocks is much lesser than n.

7 Special cases and experimental results

In this section we take into account two very important special cases, namely linear
systems arising from the discrete approximation by finite differences of Poisson and
biharmonic equations. Then we present a number of experimental results obtained by
applying Newton’s method to the solution of C X? — AX + B = O for various choices
of A, B, and (. These confirm that a solution to the quadratic matrix equation
problem can be found in many cases not covered by the theory.

7.1 Poisson equation

The solution of the Poisson equation is an example of a problem whose finite difference
approximation gives rise to a banded Toeplitz linear system. Poisson equation is

Vif(u)=g(u), uwelU={(x,y):0<z,y<1}.

The finite difference approximation over U using a mesh size of h = 1/y/n and the
Dirichlet conditions,

f(u) = g(u)
on the boundary of U, leads to a linear system of equations whose coefficient matrix

is an n x n banded Toeplitz as (1), in which & = /n, both B and C are equal to —1,
and A is

-1 4 -1

The incomplete factorization (2) can be applied to the coefficient matrix because the
matrix equation

X2 4+ AX +1=0,
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Theorem 11 Let A, B,C € R**, with C' nonsingular. If the matriz C~'A and
C~'B are symmetric, and the matriz (C~'A)* — 4C~'B is symmelric, nonnegative
definite and commutes with the matriz C~' A, then the matriz

1/2

X =1/207'A+1/2 [(c-lA)2 _ 40-13]
is a solvent of the quadratic equation.
Proof If C is nonsingular, then, multiplying per C'~!, we obtain the equation
X?—CT"AX 4+ C'B=0. (24)
Let us consider the equation
XXT - CT"AXT+C'B=0. (25)

By Theorem 7 the matrix
1/2

X = %C‘lA + % [(C-lA)2 _ 40-13]

is a solvent of the equation (25). The matrix X is symmetric, hence X is a solvent
of the equation (24). .

In this case one of the possible factorizations and a has the following blocks

_ 1 v—1 1 v—1 2 v—1 1/2
X = C A+§[(C A) —4C B] :
11 TR
Y = 5/1—50[(0 A)’ —4c B] ,
7 = C.

In particular, if 7" is block symmetric, the hypotheses of the Theorem 11 turn into

B~'A symmetric and (B~'A)? — 41 nonnegative definite, i.e. the eigenvalues of B~'A
must be in module great or equal to 2.

If A and B commute, then G =Y~'Z = X and

1/2

XG=X?= % (B‘1A)2 — I+ %B‘lA [(B-IA)2 — 41]

Let A € R be an eigenvalue of X (the matrix X' is symmetric), then

1 1
A=-n?— 14 —npy/n?—4
51— L4 gnyn® =4,

where 77 is an eigenvalue of B~'A. If < —3/2/2, then 0 < A < 1/2 and the iterative
method (12) is convergent.

21



(symbolic) polynomial computations (sum, product and partial derivatives). Finally,
there are Lisp functions that generate Fortran code for the (numeric) computation
of the produced formulas. For example, given a function F(x) = [F{(x),..., F,(x)],
where x = [21,...,2,], Newton’s method applied to compute a solution of F(x) =0
requires, at the k—th step, the computation of the vector F(x(*) and of the ma-
trix DF(x*)) whose i, j-th element is 9F;(x¥))/dz;. Given F, there a Lisp function
NEWTON that produces just the Fortran code to compute F(x(®) and DF(x*)).

6.2 Existence of the LU factorization

Let us consider now the question of the existence of the LU incomplete factorization.
A sufficient condition for the existence of a solvent of the quadratic equation is stated
in the following proposition, which immediately leads to a solution algorithm.

Proposition 10 Let A, B and C be real k X k matrices. If there exists a orthogonal
matriz () such that A = QT4QT, B = QTQT and C = QToQT (i.e. A, B and
C share the same set of eigenvectors), where T4, T and Te are upper triangular

matrices, then the matriz equation CX? — AX + B = O has a solution X* if the
triangular matriz equation ToY? — TAY + Tg = O has a solution Y™, and X* =

QY*QT.
Proof ;From the hypotheses it follows that
CX?—AX+B = QTeQTX? —QT4QTX + QTpQT
= QTeQTX?Q - TuQTXQ + T5)Q".
Now, let Y = QTX(Q be an upper triangular matrix. (Note that this position cor-

responds to a transformation of unknowns.) It is not hard to see that the upper
triangular matrix equation

TeY? —=T,Y +Tg =0

gives rise to a system of k x (k4 1)/2 equations and k x (k 4 1)/2 unknowns that
can be easily solved provided that no equation reduces to the constant=0 form. One
of the possible solution path is depicted below:

k—1)k k(k+1
(a3 PP .23}
4 5 6

2 3

1

where the [(k—1)(k—17+41)/24 j — i+ 1]-th equation is solved with respect to y;;,
J 2. .

In the following we give another sufficient condition for the existence of a solvent
of the quadratic matrix equation, together with the explicit solution.
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Note that if there exists always a matrix V' such that MV N is symmetric, then
the nonnegative definiteness of A+ 2B is a necessary and sufficient condition for the
existence of the factorization (7).

If the hypotheses of the Corollary 9 are verified and A and B commute, we have

V =1 and |
1/2
G=Y"7=_B" [A+(A2—4B) /].

Let A be an eigenvalue of B~'A. If B is nonnegative definite, then
1 1 ——

and the iterative method (15) is convergent, if A < —3/2/2.

Consider now the problem of actually computing the matrix L which minimizes
the functional ||LLT — T'||r. We can look for a minimum of the convex functional
f(L) = ||LLT — T||%, which is equivalent to the previous one. The minimum can be
obtained by equating to zero the partial derivatives of f(L). In the following, we will
first consider the case in which & =1 (e.g. we assume L to be element bidiagonal,
and T to be symmetric tridiagonal, with ¢,2-th entry denoted by « and ¢,z + 1-th
entry by b). Then we will deal with the general case.

Let z, and y be complex numbers. Then the minimum of f(L) can be computed
by solving the system of two nonlinear equations

ne® —nax +2(n — Day?* — (n—1)by =0
Y3 —ay + 22%y — br =0

The solution of such system can be computed by Newton’s method, and as starting

points we suggest the values g = (Va +2b+ Va —2b)/2, and yo = (Va +2b —
Via — 2b)/2, which are the solution of the system

i.e. 2y and y, give rise to an incomplete LLT factorization themselves.

The block extension of this approach leads to a system of 2k? nonlinear equations.
Though not difficult, the process of obtaining such equations and developing code for
its solution is time consuming. Thus, we have implemented a tool for the symbolic
computation of these equations and the automatic generation of Fortran code for
their numeric evaluation. The complete code listing is available with the Technical
Report [7]. A brief description follows.

The tool consists of Lisp functions to symbolically perform simple matrix oper-
ations and functions, such as matrix sum, row by column product and the square
of the Frobenius norm of a matrix. Such computations require the ability to handle
multivariate polynomials; hence the most basic functions of the package are related to
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Corollary 8 Let T' be the matriz (1) with B symmetric. If the factorization (7)
exists then:

1. A is symmetric and nonnegative definite,
2. C =8B,
3. A+ 2B and A — 2B are symmetric and nonnegative definite.

The blocks Y and 7 are of the form

7 = % (A—2B)*V + (A+2B)"?],
Y = % (A+2B)"* — (A-2B)"* V|,
where V' is an orthogonal matriz. "

Corollary 9 Let T' € R™" be a symmetric and block symmetric tridiagonal Toeplitz
matric

A B
B A B
—— (23)
B A B
B A
with A symmetric and nonnegative definite and B symmetric. If A+2B and A—-2B
are symmetric and nonnegative definite and one of the following conditions holds:

1. A+ 2B and A — 2B share the same set of eigenvectors,

2. rank(F') = max{rank(A + 2B),rank(A — 2B)}, where F' is the n X 2n matriz
given by
F=(A+2B|A—-2B),

the factorization (7) of the matriz (23) exists, and it exists an orthogonal matriz V
such that the matrices

7 = % (A=2B)"*V + (A +2B)"*
Y = % (A+2B)"* — (A—2B)/* V|,
are the blocks of the factorization (7). n
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Lemma 6 Let M, N € R"*"™. If one of the following conditions hold:
1. the left singular vectors of M are equal to the right singular vectors of N,
2. rank(W) = max{rank(M),rank(N)}, where W € R™* and W = (M NT),

then there exists an orthogonal matrixz such that MV N is symmetric, and the system

_NTYTMT —
{MVN NTVT M O (21)

VTV = |
has a solution.

Proof Tet M = B 3,57 and N = RyY,S5T the SVD of M and N. Then using the
substitution Q = STV R,, we obtain

{ Ri¥1Q¥,ST — 553,QTY RT = O (22)

QTQ= 1T
If the condition (1) holds, the By = S5, and () = I is a solution of (22).
If the condition 2 holds and rank(M) = rank(W), then there exists a solution Y’
of MY = NT. Let Y = RXST be the SVD of Y, thus V = RST is an orthogonal

matrix and satisfy the system (21). If condition 2 holds and rank(NT) = rank(W),
we show the existence of V' in the same way. "

Note that if one of the matrix M and N is nonsingular then the condition 2 holds.
In particular, if M and N are symmetric and normal, then V' = [ is a solution of the
system (21). Moreover, a number of experimental results, leads to conjecture that
the system (21) has always at least a solution V.

From Lemma 6 it descends the following theorem.

Theorem 7 Let GG be a symmetric matriz. If FFT — 4G is symmetric and nonneg-
ative definite and one of the following conditions hold:

1. the left singular vectors of F are equal to the eigenvectors of FFT — 4G,
2. rank(W) = max{rank(F),rank(FFT — 4G}, where W = (F FFT — 4G),
then there exists an orthogonal matriz V such that

1 T 1/2
Zzﬁ[(FF —4G) V—F]
is a solvent of the equation (18). n

We summarize the above results with the following Corollaries.
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6 On the matrix equations related to the existence of the
factorizations

We state here some formal propositions about the existence of the incomplete LU
and LLT factorizations. No satisfying result is known about even the mere existence
of a solution for the general case of quadratic matrix equations

CX*—-AX + B =0, (17)
and for the matrix equations
77T+ FZT + G =0. (18)

Some iterative algorithms for the solution of (17) and (18), have been proposed (see

[11, 19]), which are all based on Newton’s method. Let us analyze in more details the
equations (17) and (18).

6.1 Existence of the LLT factorizations

We have analyzed the equation (18) when (7 is a symmetric matrix, and we state a
necessary (sufficient) condition for the existence of a solvent in Theorem 5 (Theorem
7).
Theorem 5 Let GG be an n X n symmetric matriz. If 7 is a solution of (18) then
FFT — 4G is symmetric and nonnegative definite, and X is of the form
1
Z= [(FFT—4G)1/2V—F], (19)

where V' is an orthogonal matriz.

Proof If (G is symmetric and Z is a solution of (18), then FZT = —ZZT -G = ZFT.

Then (18) can be rewritten as

(Z + %F) (Z 4 %F)T _ i (FF" - 46) (20)

and using Lemma 2, we have that FF'F'T — 4 is symmetric and nonnegative definite

and 7 = L[ (FFT —46)"*v - . .

On the other hand, assume that F/F'T — 4( is symmetric and nonnegative definite. If
7 is of the form (19) then Z satisfy FZT = ZFT. Thus, using (20), we have that 7
is a solvent of (18). We want to show that it exists an orthogonal matrix V' so that
Z=1 [(FFT —46)"v - F] satisfy F2ZT = ZFT, i.e. that FVT(FFT — 4G)Y/? is
symmetric.

The following lemma studies the existence of the matrix V' and gives a method to
find it when the matrices F' and (FFT — 4G)'/? satisfy some particular conditions.
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ple

(1) X = Xi(=TX;+2I), i=0,1,2,...
Xy = UL,

(2) X = 2Xi— XiTX,, i=0,1,2,...
Xy = UL,

3) Xipn = Xi(Ri+1), i=0,1,2,.
Riy1 = RiR;, i=0,1,2,.
X() - ],
Ry = —-U-'L7'H.

The third formulation is well suited to be implemented in a parallel environment (see
[8, 20]). The computational cost of this approach will be analyzed next. Note that all
these schemes have quadratic convergence [15]. Analogous results could be obtained
for iterative methods derived from the incomplete LLT factorization, which is even
more suitable for the application of iterative methods. Experimental results on this
will be reported in section 7.

We now analyze the cost of the classical iterative method (12) derived from the
incomplete factorization (2). The computation of the iteration matrix (13) for the
sequential case is different from that for the parallel case. While in parallel we can
efficiently compute matrix powers and products, in sequential it can be better to solve
triangular (matrix) equations. Thus, our sequential method is as follows:

1. Solve LV = —H and UW = V. Observing that only the first £ columns of V'
and W are nonzero, this can be done with O(m#k?) arithmetic operations (see
steps 1 and ii of the direct sequential algorithm).

2. Solve Ly = b and then Ux = y. This costs O(mk?) time. (The method is
Wit = Ww; +x.)

The cost of sequentially setting up the method is then dominated by step 1) and
therefore is O(mk®). In parallel we can take advantage of the knowledge of (the
form of ) the iteration matrix, and it turns out that its computation can be done in
PT(mk*/log k, (2log k)(log m)).

For what concerns the execution of the method, it is known that the number of
steps required by an iterative method to compute the solution of a linear system x =
Px+q with relative analytic error of O(27") is O(—t/log p(P)). Each step requires an
n X n matrix by vector multiplication and the sum of two n-vectors. In sequential this
costs O(n?) arithmetic operations, and the overall execution costs O(n*(—t/ log p(I —
U='L='T))). In parallel, each step can be carried out in PT(mk?/log k,2log k), and
the whole circuit has PT'(mk®/log k, max{logm, (—t/log p(I — U= L=1T))}2log k).
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after having used U~'L~! as a preconditioning matrix, conjugate gradient methods
are supposed to work very quickly (about k iterations) when applied to solve systems
with U='L='T as a coefficient matrix. Furthermore, note that (U='L='T)~! is given

by

(I + M,GX)™!
My G2X (I + M, GX) T
(UT'L7'T)! = M, _.GPX(I+ M,GX)"t 0 I 7
(=)™ GmX (I + My GX)™ 0 ... 0 T

so that an upper bound to the condition number p(U~'L='T') can be easily computed,
with respect either to the spectral norm or the max norm. The evaluation of an upper
bound to the condition number with respect to the max norm is pretty easy; for what
concerns the spectral norm, one can proceed as follows:

1. UTYL'T can be written as U™'L™'T = [ + VET where V is an n x k matrix.

2. The spectral norm of U='L=1T is given by
[0 LT = p(U= LU= LT) = (1 + V(T + VET)),

from which it readily follows that the knowledge of the eigenvalues of the k x &k
matrix £y VTV ET suffices to determine ||[U=1L=1T||,.

3. Use the previous procedure to evaluate ||(U~'L='T)7!||;, and therefore
(U L) = U LT - (O L)
It is worth pointing out that p(U~'L~'T) can be evaluated in terms of operations

involving only a k£ x k matrix.

(iii) Consider now the matrix equation 7X — I = O, which has solvent X = T~
This equation can be solved by using Newton’s method [8, 20], which leads to the
iterative expression

Xy = Xi—X/(TX,—1), i=0,1,2,...
Xo = U'L7

The above iterations can be carried out by means of different formulations, for exam-
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is an eigenvalue of M, GX. If XG is symmetric, then A € R, and the iterative
method (12) is convergent if the following constraints hold:

1 — Amtl
_1<ﬁ_1<1' (14)
The inequality (14) is satisfied for o, < —1 < A < 1/2 < 3,,, where lim,;, o @, =
—1, and lim,, .o B, = 1/2. Due to the vanishing term A™*! experimental results
have shown that p can be considered a constant even for small values of m. Hence,
in practice, the convergence of the iterative method (12) is quite independent from
m, the number of the blocks of the matrix 7T'.

The iterative method corresponding to the LLT factorization has the form

o 1y (15)
Wip1 = — L L7'T)yw; + L' L~'b,
where q is an arbitrary n-vector. The iterative method (15) converge if and only if
p(I—L7TL7'T) = p(YTN,.GZT) < 1.

If Y, Z e B are symmetric, then C = B=YZ = ZY (i.e. Y and Z commute) and

(G is symmetric. Thus, we have

p(I=L7TL7'T) = (i GQq) = 3 (), (16)

g=1

where A, is the eigenvalue of G = Y=!'Z with maximum module (p(G) = |Apazl)-
From (16), it follows that if |\,...| < 1/v/2, the iterative method (15) converges.

(ii) Now we turn our attention to the possible use of the incomplete factorization (2)
as a preconditioning for the conjugate gradient method. It is well known that such a
technique results in a faster algorithm as long as the preconditioned coefficient matrix
is “close” to the identity matrix. If we multiply both sides of the equation Tw = b by
U L7 we get the system U~'L='Tw = U~'L71b, and our interest is in studying
how close is the matrix U='L~!'T to the identity matrix. It turns out immediately
that

I+ M,GX
M, G*X T

U-'L-\T = M,_.G?X 0 I
(-H™ta¢»x 0 ... 0 I

First of all, note that only k eigenvalues of U='L=!T are different from 1, and that
the minimum polynomial of U=! L=!T has degree not greater than k. It follows that,

13



ALGORITHM DP

Step 1 Invert the matrix Y in PT(2k*%1/2/logk, (7/2)log? k)

Step 2 Compute G =Y 'Z in PT(k*/logk,2log k)

Step 3 Compute the powers X', G, i=2,...,m—1,
in PT(mk®/logk, (2log k)(log m))

Step 4 Compute the products R, =G'Y ™', j=0...,m—1,
in PT(mk®/logk,2logk)

Step 5 Compute the matrix products P;; = X'R;, 4,7=0,...,m —1,
in PT(m*k*/logk,2log k)

Step 6 Compute the matrix V = U'L~! using the products P;
according to (5) in PT(n?m/logm,2logm)

Step 7 Compute W =V E1Z and x = Vb in PT(n*/logn,2logn)

Step 8 Compute z= XE{x and S =1+ XETW in PT(k*/logk,2log k)

Step 9 Invert the matrix S in PT(2k*+1/2/logk,(7/2)log? k)

Step 10 Compute s = S™'z in PT(k?/logk,?2logk)

Step 11 Compute w = x — Ws in PT(mk?/logk,2logk)

be the incomplete factorization (2), and consider the linear system
Tw = b.
By using (2) as a splitting of 7', one can get the equivalent system
w=(I-U"L""TYw+U""'L"b,

which naturally leads to the iterative method

{ Wo =(q (12>
W1 = —UL'"TYyw; + U~ L™,
where q is an arbitrary n-vector. It is a well known fact that the above iterative
method is convergent, provided that p(I — U L7'T) < 1.

Now, recalling that the ,j-th block element V;; of the matrix U7'L~! can be
written according to the formula (5), we have

M,GX 0 ... 0
. 2

Fpmep o | mManG@X 00 (13)
(—D)m=1GmX 0 ... 0

Thus, the iterative method will converge if the spectral radius of the £ x £ matrix
M,,GGX is less than one. Suppose that (¢ and X commute (e.g. if T is block sym-
metric). Let A be an eigenvalue of X, then

L 1 —AmHt

=2 W=y

g=1

12



ALGORITHM DS2
Step 1 As in DS1
Step 2 As in DS1
Step 3 S=I+XEJUT'L'E1Z=) X'G"
i=0

3.1 Solve YG =7

3.2 S«1

3.3 For 1—1 to m do

S — XSG+1

Step 4 As in DS1
Step 5 w—x—U"'L7'EZs, where UT'L7'E1 7 = [Wl,...,Wm]T

5.1 Compute LU, =X

5.2 Solve L, U Wi =5-1

5.3 W1 «— X1 — W1S

5.4 For 1+ 2 to m do

5.5  Solve L,U,W;=(-1)'G'""! —=W;_,

5.5.1 @ — @G (Remark: () is initially set to [)
5.5.2 T — (=1)'Q — Wi
5.5.3 L, U W, T

5.6 w; — X; — W;s

can be implemented by a PRAM with max{4k'/?**/log k, m*k®/log k,n*m/logm}
processors with running time bounded by max{7log k,2log m}log k). Depending
upon the actual value of £ such algorithm can be significantly better than the general
O(log? n) time algorithm for matrix inversion. We finally observe that Toeplitz ma-
trix by vector products could also be computed by FFT circuits. However this would
not improve the asymptotic performance of the algorithm.

5 Iterative methods derived form the incomplete factoriza-
tions

In this section we analyze the suitability of the incomplete factorizations (2) and (7)
to generate rapidly convergent iterative methods. We consider three possibilities. (i)
Use the incomplete factorization as a splitting of 7' to generate a classical iterative
method w; 1 = Pw,; 4 q; in this case we are interested in studying the spectral radius
of the iteration matrix P. (ii) Use the matrix U~'L~" as a preconditioner to obtain a
system which is well suited to the application of conjugate gradient methods; in this
case our interest is in the evaluation of the condition number of the preconditioned
coefficient matrix. (iii) Use the matrix /="' L~! as a starting point for the application

of Newton’s method to the inversion of T; in this case our interest is in the evaluation
of the difference between T-1! and UL,

(1) As in section 3, let

T=LU+H, H=FEZXET

11



ALGORITHM DS1
Step1 x—U"'L7b
1.1 Solve Ly=b, y=[yi,...,¥ym]T, b=[b1,...,by]T
1.1.1 Compute L,U, =Y
1.1.2 Solve L,U,y1 =bs
1.1.3 For ¢t — 2 to m do
Solve LyUyyi =b;,—Zyia
1.2 Solve Ux=y, x=[X1,...,%m]"
1.2.1 Xm —¥Ym
1.2.2 For : — m —1 downto 1 do
X —yi — XXip1
Step 2 z — XE{x(= Xx1)
Step 3 Compute S =1+ XEfUT'LT'E1Z =5 X'G*
i=0
and [Wh,...,W,]T=UL1EZ
.1 Solve YG =7
2 Compute and store the matrix powers GZ,...,G™
3 W — (=)™ g™
4 For 1 — m —1 downto 1 do
Wi — (=1)'71G" = XWig
3.5 S—T14+XW;
Step 4 s +— S7'z
4.1 Compute L.U. =S
4.2 Solve L.t=2z
4.3 Solve Uss =t
Step 5 For t — 1 to m do
w; — X; — W;s

w www

It is not difficult to see that the cost of the above algorithm is dominated by
step 3, which requires approximately 2mk® arithmetic operations and mk? storage
(note that the storage used for the (i's can be overwritten with the W's). In step 3 of
algorithm DS1 we used the recurrence W; « (=1)""1G' =X W, (W,, « (=1)""1G™)
and the equality S = I + XW; if we first compute S = 3; X*G' and then Wi =
(=1)'G"~! — W;_y, then we succeed in reducing the amount of temporary storage to
n + O(k?). This is done in algorithm DS2. Tt is interesting to note that, besides the
storage for X, Y, Z and b, algorithm DS2 only uses small additional work space, i.e.
O(k?). In fact, the storage for W;;; can be the same as for W;. Of course the total
work space is n + O(k?). On the other hand, the time cost of DS2 is approximately
4mk? since both step 3 and step 5 requires roughly 2mk? arithmetic operations.

Consider now the parallel implementation of factorization (2). Recall that a com-
mon feature of fast parallel algorithms for matrix inversion is the need of high matrix
powers, whose computation dominates the overall parallel cost. By using formula (4)
we can take advantage of the knowledge of the form of L= and U~'. Even if the ex-
plicit computation of L=! and U~! still requires powering, the matrix involved are only
of order k. Thus an O((logn)(log k)) time bounded PRAM algorithm seems within
reach. The algorithm DP does in fact achieve such a performance. Algorithm DP

10



shown that the Sherman-Morrison-Woodbury formula applied to a splitting of the
type A = B — (' can be implemented by a numerically stable algorithm, provided
that A and B are well- conditioned. The analysis to be performed here starts assuming
T (the original band Toeplitz matrix) to be well-conditioned, and gives conditions for
LU being well-conditioned. Following Yip, one can then easily see that under these
conditions our factorizations lead to stable algorithms.

;From the fact that LU = T — E; ZX ET | it follows that

|CX]]

LU < T+ [leX ] = [T+ 7] )-

Moreover, (LU)~! can be written as T~! — T~1E; RET T, where the expression for
the & x k& matrix R can be derived from section 3.1, so that

IO < WTH A+ NTTHPIED = 1T7HI+ 17D

We have then

|CX]]
17

cond(LU) < cond(T)(1 + )1+ [T,

which can be easily evaluated only in terms of the & x £ matrices X and R.

4 Algorithms and computational cost

In this section we restrict ourselves to the evaluation of the performance of factor-
ization (2). Similar results could be derived for the incomplete LLT factorization as
well. We present both sequential and parallel algorithms for the computation of 7-'b
by means of (4). In [22] Yip analyzes one sequential implementation of (4) that is
suitable for the general case, i.e. when T'— LU is a generic rank & matrix; the cost
of his method is O(kn?). By exploiting the block Toeplitz structure of 7', L and U,
our first sequential implementation (algorithm DS1) attains a performance of O(nk?)
arithmetic operations and O(nk) storage. Alternatively (in algorithm DS2) we can
reduce the storage usage to O(n + k?) at the price of twice as much time. In both
cases the hidden constants are small.

In a parallel computation setting we can take further advantage of the knowledge
of L7t and U~1. We present an asymptotically fast algorithm for solving T~'b which
is either in NC?% or NC}. depending on whether k is a constant value or grows with
the size n of the problem, and F'is a field with characteristic zero.

Let us first consider the sequential algorithms. It can be easily verified that the
algorithm DS1 produce, in absence of roundoff errors, the exact solution of the original
system T'w = b. (Note: if a step has substeps, then the latter are implementation of
the former.)



where . _
S=1+2"E L7 2 =3 (G7) &
=0

The i-th vector component w;, 7 = 1,....m, of w = T~ 'b is then

7=1 r=0

m m -1
w;=[T7'b| =3 (VM —VaZ (Z (GT) G’“) ZTVU) b;.
Even in this case we have found an explicit expression of the solution of the original
system in terms of Y, Z and b.

We consider here also another interesting factorization. We look for a matrix L
of the form

Y
Z Y
L = . . b
Z Y
where Y and Z are k x k matrices, and such that its entries are computed in order
to minimize the Frobenius norm of the matrix LLT — T, i.e. we seek a matrix L for

which
ILLT = T||r

attains its minimum.

Proposition 4 The LLT incomplete factorization of the block tridiagonal Toeplitz
matriz (1) is possible since the functional ||[LLT — T||p has a minimum.

We will deal with the problem of actually finding a minimum for the above described
functional in section 6.

Let now consider the problem of solving Tw = b using a direct method. Let
T = LLT 4+ K be the incomplete LLT factorization. We get

T ="+ K) ' = [ LI - LT K = (I = LT LK)y~ LT

provided that no eigenvalue of L=TL='K is equal to 1. Note that this situation is not
likely to occur because of the choice of K.

3.3 Numerical stability of the Sherman-Morrison-Woodbury formula

In this section, we briefly look at numerical stability issues. We restrict ourselves
to analyze the application of the Sherman- Morrison-Woodbury formula to (2), i.e.
to the splitting T' = LU + H. Analogous results can be obtained for the Cholesky
incomplete factorization. We follow the approach presented in [22] by Yip. He has

8



Lemma 2 Let A be an n X n nonnegative definite symmetric matriz with normal
Schur decomposition A = UDUT. Then the n X n matriz X satisfies XXT = A if
and only if it holds X = AV2UVT where V is an orthogonal matriz. "

Theorem 3 Let T be the matriz (1). The factorization T = LLT + K exists if and
only if:

1. A is symmetric and nonnegative definite,
2. C = BT,
3. A+ B+ BT is symmetric and nonnegative definite,

and the equation

/

77" - (A+B+B")" 2" 1 B=0 9)

has a solution. In particular, if Z is solution of (9), then it holds Y = —Z + (A +
B+BT)1/2.

Proof Properties 1, 2, and 3 follow immediately from the constraints (8). Then,
by Lemma 2, the equation (Y 4+ Z)(Y + Z)T = A+ B+ BT becomes Y + Z =
(A+ B+ BT)l/Q, from which we obtain (9). n

In section 6 we will study the equation (9) in its more general form, ZZT+ FZT+G =
O. Assuming that a solution Z of (9) has been found, we use the Sherman-Morrison-
Woodbury updating formula to obtain an explicit representation of 7-1. Repeating
the same method used for the LU factorization, we obtain the following analogous
result

7' = (LY + By Z2ZTE])™! (10)
= LTTL' - LT By Zz(T+ ZTET LT L By 2) 7 2T BT LT L

The i, j-th block element V;; of the matrix V = L=TL~! can then be written as
Vi = (=)= T (GT) Nocmmaxiyn G0V, (11)
where )
N, = Z (GT)q G,
q=0

and G = Y~'Z. Using (11) into (10) leads to the following expression of the block

element (71);; of the matrix 7!
(T7")ij = Vij = VaZS™' 2TV

7



The i, j-th block element V;; of the matrix V = U~!'L=! can then be written as

‘/2] = (_1)i_ij;iMm—max(i,j)+1Gi;jY_17 (5)
where
et S, 4 i i—j ifi>j
M, = qZ:%X @ an R otherwise.

Using (5) into (4) leads to the following expression of the block element (7-1);; of
the matrix 7'

(T7Y);; = Vij — VaZS7' XV
with S = (I + XETU'L7YE, Z) = Y7, X'G'. The i-th vector component w;,
i=1,...,m,of w=T"'b is then
m m -1
w;=[T7'b| =3 (VU —VaZ (Z X’“G’") XVU) b;. (6)
7 — =0

71=1

Formula (6) is an explicit expression of the solution of the original system in terms
of X, Y, Z and b.

In section 4 we will make use of (4), (5) and (6) to formulate both sequential and
parallel algorithms for the solution of T'w = b.

3.2 Incomplete LLT factorizations

The approach of section 3.1 could also be applied to an incomplete Cholesky factor-
ization. We look for the matrices L e K such that:

Y yT o7
Z Y :
T = - - + B ZZTET (7)
ZY YT
= LLT 4+ K,

where Y e 7 are k x k matrices, £y = [I,0,...,0]T, and I = I;. This holds if and

only if the following constraints are satisfied:

Y+2)(Y+2)T =A+B+C
{ YZT = (8)
ZYT =
. From the following Lemma 2 and Theorem 3, it descends that also the existence of
the incomplete factorization 7' = LLT + K is related to the existence of a solution of
a particular matrix equation.



In turn, this means that the quadratic matrix equation
CX*—AX+B=0 (3)

must have a solution.

The following Theorem holds.

Theorem 1 The factorization (2) exists if and only if the matriz equation CX? —
AX 4+ B = 0O has a solution. n

We will deal with the question of the existence of the LU incomplete factorization
of nonsymmetric Toeplitz matrices in section 6, where we will give sufficient condi-
tions for the existence of a solvent for (3), and in section 7, where we will present
experimental results, which make it evident that the incomplete factorization (2)
exists in many cases not covered by the theory.

Let assume that a solution X to (3) has been found and consider the incomplete
factorization T'= LU+ H, H = ElZXElT. If the k£ x & matrix ]—I—XElTU‘lL‘lElZ is
nonsingular, then by the Sherman-Morrison-Woodbury updating formula [15, 16, 22]
we obtain an explicit representation of 7-1, namely

' = (LU + B, ZXEN™
= UL U LT B Z(T+ XEF U LT B 2) T X ET U LT (4)
The fact that the matrix H has low rank (i.e. rank(H) < k < n), and that L and U

are still block Toeplitz will allow us to obtain good performance algorithms for the
solution of T'w = b by the use of (4). It is easy to see that, since

Y 1
Y Y-tz I
L= ,
Y Y17 1
then it holds
y -1
—-GY ! y-!
-1 = Gy 1 -Gyt y-1 7
(—1)m-tGm=ty =t e .. =GY-t oyl
where (G = Y~1Z. Similarly, we have
I =X ... ... (=1)m-txm-d
Ut = 7 —x X
1 -X



e log x denotes the logarithm to the base 2 of x > 0.
e p(A) denotes the spectral radius of the matrix A.

e |A||r denotes the Frobenius norm of the matrix A, i.e.

|4||F—ﬁ

3 The incomplete factorizations

Let T' be an m x m block tridiagonal Toeplitz matrix, i.e.
A B
¢ A B
r=| .. (1)
¢ A B
C A
where A, B and C are k x k matrices (i.e. T'is n xn and n = mk). If CT = B and A
is symmetric, then 7" is symmetric, and if C' = B, then T is block symmetric. Note
also that a banded Toeplitz matrix T" of order n = mk and bandwidth 2k 4+ 1 can be
viewed as a block tridiagonal Toeplitz matrix.

Our goal is to develop efficient algorithms based on two types of factorization,
namely

1. T = LU + H, (Incomplete LU factorization)

2. T=LLT + K, (Incomplete LLT factorization)
where L (U) is a block lower (upper) bidiagonal Toeplitz matrix.

3.1 Incomplete LU factorization

We look for matrices L, U and H such that
Y I X
Z Y I X
T = + B ZXEL = LU + H, (2)
Z Y I X
ZY 1

where X,Y and Z are k x k matrices, £y = [I,0,...,0]T, and I = I;. This holds if

and only if the following constraints are satisfied:

Z=C
YX =8

ZX+Y =A



For the case of parallel algorithms, we make use of the parallel random access
machine (from now on simply called PRAM) [13], with an extended instruction set
including the arithmetic operations and tests over a ground field F'. The usual cost
measures for PRAMs are parallel time and the maximum number of processors oper-
ating in parallel. The notation PT'(a,b) will be used to denote an O(b) time bounded
PRAM with O(a) processors.

Given a field F', one important class of numerical and algebraic problems over F' is
the class NCp (see e.g. [14]). Problems in NCr can be solved by PRAMs with poly-
nomially (i.e. n°()) many processors running in polylogarithmic (i.e. O(log®® n))
time with respect to the size n of the problem. Also, for any given & > 1, the subclass
NC% of NCr is defined as the set of problems solvable in time O(log* n) by PRAMs
with a polynomial number of processors. We remark that the NC' classes are mainly
a tool used by computational complexity theorists to classify fast parallel algorithms.
In other words, NC' algorithms are not always intented to be of practical interest.
Our goal is here to show that, using our incomplete factorization method, very fast
parallel algorithms can be obtained for block Toeplitz nonsymmetric problems, thus
extending previous results which apply to the symmetric case.

To assess the cost of the parallel algorithms of Section 3, we use the following
known results.

1. fu = [ug,...,u,)’ and v = [vq,...,v,]T are two n-vectors, then the inner
product uv is in NC}, for it can be computed by the naive fan-in algorithm
in PT(n,logn). The number of processors can be reduced of a factor logn in
the following way. First, partition the two vectors in n/logn vectors, u; and
v, 1 < i < n/logn, of logn elements each. Then compute simultaneously in
PT(n/logn,2logn) the n/logn scalar products ul'v; by using the sequential
algorithm. Finally, using the fan-in algorithm, add the n/logn partial results
in PT(n/(2logn),log(n/logn)).

2. Matrix by vector products can be computed in PT'(n?/logn,logn), as a conse-
quence of the latter result, thus proving that this problem is in NC}.

3. The matrix product is NC}, for it can be computed in PT(n*/logn,2logn),
where 2 < o < 3. Such a result, with a = log 7, was first due to Chandra [6]
and then improved by several authors. (The current value of « is approximately

2.38.)

4. Finally, the inversion of an n X n matrix with elements in a field F' of character-
istic zero is in NC%, for it can be carried in PT(n'/?**/logn, (7/2)log?n) by
a result of Preparata and Sarwate [21], who in turn improved the fundamental

work of Csanky (PT(n*/2,(3/2)log*n)) [10].

Throughout the paper, we will view banded matrices of size n = km as block tridiago-
nal ones, as is done in [4] for generic banded matrices, and use the following notations
and/or definitions.



in an incomplete Cholesky factorization of positive definite band Toeplitz matrices.
We generalize Grear and Sameh’s incomplete factorization, and introduce incomplete
factorization methods also for nonsymmetric banded Toeplitz matrices.

We describe two strategies which allow to compute both an LU and two LLT
incomplete factorizations. For the sake of brevity, we show how to compute the LU
and the LLT factorizations by using one method, and then how to compute the LLT
factorization by using the other method, even if both methods could be used to derive
both factorizations.

Our approach allows to overcome some drawbacks of both superfast methods,
which are not suitable for parallel implementation, and parallel band solvers, which
can only be applied to systems enjoying special properties (e.g. positive definiteness).
On the other hand, the algorithms based on our incomplete factorizations have good
performances both in sequential and in parallel, and can be applied to solve general
banded Toeplitz systems. Related work in the field can be found in [5], where circulant
matrices are used as preconditioners of Toeplitz ones to accelerate conjugate gradient
methods.

The rest of this paper is organized as follows. In the next section, we give some
preliminary results of parallel complexity analysis and we introduce the main nota-
tions used in the paper; the incomplete factorization methods are described in section
3; more precisely, section 3.1 contains the description of an LU factorization, and sec-
tion 3.2 of two LLT factorizations. In section 4 we present the algorithms derived
by the factorization methods and analyze their demand on computational resources;
in section 5 we study some iterative methods obtained by viewing the factorizations
as splittings; in section 6 the existence of the incomplete factorizations is taken into
account. We find a necessary condition and a sufficient condition for the existence
of the LLT incomplete factorization, and a sufficient condition for the existence of
the LU incomplete factorization. Section 7 deals with the application of incomplete
factorizations to the matrices obtained from the discrete approximation of Poisson
and biharmonic problems and presents some experimental results on the existence of
the LU incomplete factorization. Finally we report in the appendix some numerical
examples.

2 Preliminaries and notations

In this section we briefly describe the models of computation used for cost analysis.
We then recall some known results concerning the arithmetic parallel complexity
of basic linear algebra operations (to be used in Section 4), and finally introduce
notations adopted throughout the rest of the paper.

We measure the cost of running a sequential algorithm, operating over a field F,
by counting the total number of arithmetic operations over F' and the number of
memory cells used as the workspace. This is often referred to as the “straight-line
programs” model.



1 Introduction

Several authors have considered incomplete factorization methods for either solving
or preconditioning linear systems (see for example [2, 3, 9]). As it is well known, the
interest in incomplete factorization techniques arises because direct methods (as well
as the corresponding factorizations) applied to the solution of sparse or structured
linear systems are likely to destroy the sparsity or the structure, respectively. The case
of sparse matrices has been investigated more intensively, and Cholesky incomplete
factorization has been suggested as a major technique [2, 3] to avoid (at least partially)
the fill-in caused by those methods.

Let us recall, in more detail, some basic ideas besides the notion of incomplete
factorization. If one wants to compute a factorization, say LU, of a matrix A, and
if A has some properties, like sparsity, it generally happens that its factors L and U
loose all or some of these properties. In fact, for example, a sparse matrix does not
have, in general, sparse factors. For these reasons, it has been suggested to consider,
for a matrix A with some properties, a factorization LU such that (z) the factors have
the same properties of A; (é¢) the matrix A— LU = H is small with respect to a given
measure (e.g. norm, rank). Thus we have a decomposition of the type A = LU + H,
from which the term incomplete factorization comes out.

In this paper, we investigate a special case of structured linear systems, namely
that of banded, and/or block tridiagonal, Toeplitz linear systems. Banded Toeplitz
linear systems of bandwidth much less than the order of the coefficient matrix arise in
many problems of mathematical physics and statistics, such as least squares approxi-
mations by polynomials, stationary time series, and problems involving convolutions.

Given a block tridiagonal Toeplitz matrix T', we present an incomplete LU fac-
torization, where L and U are lower and upper block bidiagonal Toeplitz matrices,
respectively, and two incomplete LLT factorizations, where L is a lower block bidiago-
nal Toeplitz matrix. Both methods preserve the Toeplitz structure of the factors, and
this allows to develop good performance algorithms for the solution of linear systems
associated with 7. Indeed, preserving the Toeplitz structure will allow us to use Fast
Fourier Transform (FFT) algorithms to perform matrix-vector multiplication.

The existence of these incomplete factorizations is related to the existence of a
solvent of certain matrix equations. In this paper, we investigate about the existence
of a solvent of these equations. We give some conditions that assure the existence of
a solvent and show a possible form of it.

Several efficient sequential and parallel algorithms for the solution of Toeplitz
linear systems have been developed over the last decades (see [16, 17, 18, 23]). In
particular, several superfast (sequential) methods for the solution of dense Toeplitz
systems have been developed, which perform O(nlog? n) arithmetic operations (see [1]
for an overview and for efficient implementations). On the side of parallelism, Grear
and Sameh [16] have presented three parallel algorithms for the solution of positive
definite banded Toeplitz linear systems (see also [12]). One of their algorithms results
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Abstract

Let T be a block tridiagonal Toeplitz matrix. We introduce two incomplete factor-
izations of T', namely T'= LU + H,and T = LLT + K, where L (U) is a block lower
(upper) bidiagonal Toeplitz matrix. We first address the question of the existence of
the proposed factorizations, which is related to the existence of solutions to suitable
matrix equations of size dependent on the bandwidth of 7', and then we analyze the
efficiency of the factorizations. We also report on a number of computational exper-
iments which show that the quadratic matrix equations involved do have a solvent
in many cases not covered by the theory. We finally consider applications of these
techniques to the solution of linear systems arising from the discrete approximation
of the Poisson and biharmonic equations.
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