INTERNATIONAL COMPUTER SCIENCE INSTITUTE

1947 Center Street @ Suite 600 ® Berkeley, California 94704 e 1-510-642-4274 e FAX 1-510-643-7684

Connectionist Layered
Object-Oriented Network
Simulator (CLONES):

User’s Manual

Phil Kohn
TR-91-073
3 March 1992

Abstract

CLONES is a object-oriented library for constructing, training and utilizing lay-
ered connectionist networks. The CLONES library contains all the object classes
needed to write a simulator with a small amount of added source code (examples
are included). The size of experimental ANN programs is greatly reduced by using
an object-oriented library; at the same time these programs are easier to read, write
and evolve. The library includes database, network behavior and training procedures
that can be customized by the user. It is designed to run efficiently on data parallel
computers (such as the RAP [6] and SPERT [1]) as well as uniprocessor workstations.
While efficiency and portability to parallel computers are the primary goals, there are
several secondary design goals:

1. minimize the learning curve for using CLONES,
2. minimize the additional code required for new experiments,

3. allow heterogeneous algorithms and training procedures to be interconnected
and trained together.

Within these constraints we attempt to maximize the variety of artificial neural net-
work algorithms that can be supported.

i

1 Overview

Continuing experimentation with Artificial Neural Networks (ANNs)[3] has made it
increasingly clear that:

1. Because of the diversity and continuing evolution of ANN algorithms, the pro-
gramming environment must be both powerful and flexible.

2. These algorithms are very computationally intensive when applied to large
databases of training patterns.

Ideally we would like to implement and test ideas at about the same rate that we
come up with them. We have approached this goal both by developing application
specific parallel hardware, the Ring Array Processor (RAP) [6, 2, 5], and by building
an object-oriented software environment, the Connectionist Layered Object-oriented
Network Simulator (CLONES). By using an object-oriented library, the size of ex-
perimental ANN programs can be greatly reduced while making them easier to read,
write and modity. CLONES is written in C+4 and utilizes libraries previously writ-
ten in C and assembler. It is a completely integrated system including object classes
for databases and training procedures with default implementations that can be eas-
ily adapted by users. An interface to a Graphical User Interface (or GUI) library for
viewing CLONES data structures is under development. This GUI interface will also
be used by other projects.

Researchers often generate either a proliferation of versions of the same basic
program, or one giant program with a large number of options and many potential
interactions and side-effects. Some simulator programs include (or worse, evolve)
their own language for describing networks. We feel that a modern object-oriented
language (such as C++) has all the functionality needed to describe, build and train
ANNSs. By using an object-oriented design, we attempt to make the most frequently
changed parts of the program small and well localized. The parts that rarely change
are in a centralized library. One of the many advantages of an object-oriented library
for experimental work is that any part can be specialized by making a new class of
object that inherits the desired operations from a library class.

Our ANN research currently encompasses two hardware platforms and several
languages, shown in Figure 1. Two new hardware platforms, the SPERT board [1]
and the CNS-1 system are in design (unfilled check marks). The SPERT design is
a custom VLSI parallel processor installed on an SBUS card plugged into a SPARC
workstation. Using variable precision fixed point arithmetic, a single SPERT board
will have performance comparable to a 10 board RAP system with 40 TMS320C30
digital signal processors (each of which runs at 32 million operations per second).
This is to be accomplished by using very wide instructions (128 bits), wide memory
buses (128 bits), eight parallel datapaths (each with a multiplier, shifter and adder),
and very fast SRAM. The CNS-1 system will be based on multiple custom VLSI

parallel processors interconnected by high speed communication buses.

SPARC

I

|

i

Net

|

)

i

I

o RAP
& Board
\

RAP System

i

SPERTBoard

X

CNS-1 System

i

A

:

L anguages Supported

System Performance
Assem C C++ | Sather |pSather
SparcStation 2 2 MFLOP / / /
Desktop RAP +
P 100 MFLOP t/
Sun 4/330 Host
Networked RAP
1 GFLOP

(1-10 Boards)

SparcStation +
SPERT Board 1cop Q/
CNS-1 System 200Gop | / /

SN N E S N

W N N X

Native Support: / Completed M In Design
RPC Support: /Completed / In Design

Figure 1: Hardware and software configurations

Linker Compatible

)

)

DO=CcOoW

O—o——~T 300

Because the investment in software is generally large, we insist on source com-
patibility of CLONES programs across hardware platforms. This is accomplished by
hiding the hardware configuration in a set of library classes. Because it is based on
a common library interface, the same CLONES source code can be compiled for the
RAP or UNIX workstations simply by selecting UNIX or T1 compiler and library files.
The implementation of these classes will be different for each hardware configuration.
These libraries include matrix and vector classes that hide the distribution of data
and computation among the processors from the user.

There are two ways to run CLONES programs that utilize the RAP:

1. The program can be compiled to run completely (except for file input and out-
put) on the processors of the RAP. In this case, the host SPARC machine only
handles communication with the world outside of the RAP. So long as external
input and output are not a bottleneck, this method minimizes communication
between the host and RAP machine.

2. CLONES code runs on the host SPARC except when library routines are called.
A “RPC” SPARC library is used; this library is based on a very fast shared
memory remote procedure call (RPC) mechanism. Any function in the RAP
library can be remotely called by the host SPARC including memory allocation
routines. For example, creating a matrix or vector on the SPARC causes the
RPC library to request memory for it on all of the RAP processors. When data
inside one of these objects is manipulated with put or get functions, the RPC
library copies the data (and converts representations if required).

In the case of SPERT and CNS-1, we plan to (at least initially) only support the
second (RPC) method above.

It is also considered important to allow routines in different languages to be linked
together. This includes support for Sather, an object-oriented language that has been
developed at ICSI for workstations. The parallel version of Sather, called pSather,
may be supported on the CNS-1. Both of these languages utilize the special purpose
hardware as a remote compute server (via an RPC interface); they are not compiled
to run on that hardware.

CLONES is seen as an ANN researcher’s interface to this multiplatform, multi-
language environment. Although CLONES is an application written specifically for
ANN algorithms, it’s object-orientation gives it the ability to easily include previously
developed libraries. CLONES currently runs on UNIX workstations and the RAP.

The four most important priorities of the CLONES design were:

1. Preserve the efficiency of the hardware. Making efficiency a primary goal differ-
entiates this design from many others[7] where flexibility, generality and ease of
representation are the most important design goals. However, there are other
new designs that do provide a significant increase in efficiency over previous
simulators[8, 9].

2. Allow the same CLONES source code to utilize uniprocessor workstations and
single program data parallel machines (such as RAP or SPERT), and perhaps
other vector processing, systolic array or SIMD (Single Instruction stream, mul-
tiple data streams) machines. To accomplish this, CLONES is based on abstract
matrix and vector classes that enforce a uniform interface. Each hardware con-
figuration has its own matrix and vector classes that inherit from these abstract
classes. In the case where the platform has a C compiler, the complete CLONES
program can run on the parallel machine; this reduces the host-server commu-
nication to requests for external data files and communication with the user.

3. Make it easy to customize any aspect of the network behavior and training pro-
cedure. For example, abstract classes for Layer and Connect leave the data
structure used to represent activations, errors, and weights totally unspecified.
The behavior of network components and their training procedures can be cus-
tomized without changing any CLONES source files: a new class that inherits
from a library class is declared and then some of the functions are redefined.
Since we have traded some flexibility for efficiency on these hardware platforms,
we do not claim that all connectionist algorithms can be cleanly implemented

in CLONES.

4. Heterogeneous algorithms and training procedures can be interconnected, then
trained and run as a single network.

5. The trained networks can be easily embedded into other programs. These pro-
grams might use the network as part of another algorithm (such as dynamic
programming for speech recognition), or CLONES nets might be embedded in
another ANN simulator that is better for other processing.

2 CLONES overview

To make CLONES easier to learn, we restrict ourselves to a subset of the many fea-
tures of C++. Excluded features include multiple inheritance, operator overloading
(however, function overloading is used) and references. Since the multiple inheritance
feature of C++ is not used, CLONES classes can be viewed as a collection of simple
inheritance trees. This means that all classes of objects in CLONES either have no
parent class (top of a class tree) or inherit the functions and variables of a single
parent class.

Users customize the behavior of network components and training procedures by
creating a new class that inherits from a library class and then redefining some of its
functions. This allows the user to modify the behavior of CLONES objects without
changing the CLONES library.

Figure 2 shows the overall inheritance structure of CLONES classes. An overview
of these classes is presented here. Each class is described in detail in the following

4

Figure 2: Class tree for CLONES

sections.

CLONES consists of a library of C++ classes that represent networks (INet), their
components (Net_part) and training procedures. There are also utility classes used
during training such as: databases of training data (Database), tables of parameters
and arguments (Param), and performance statistics (Stats). Database and Param
do not inherit from any other class. Their class trees are independent of the rest of
CLONES and each other. The Stats class inherits from Net_behavior.

The top level of the CLONES class tree is a class called Net_behavior. It defines
function interfaces for many general object functions including file save or restore and
debugging. It also contains behavior functions that are called during different phases
of running or training a network. For example, there are functions that are called
before or after a complete training run (pre_training, post_training), before or after
a pass over the database (pre_epoch, post_epoch) and before or after a forward
or backward run of the network (pre_forw_pass, post_forw_pass, pre_back_pass,
post_back_pass). The Net, Net_part and Stats classes inherit from this class.

All network components used to construct ANNs are derived from the two classes
Layer and Connect. Both of these inherit from class Net_part. A CLONES net-
work can be viewed as a graph where the nodes are Layer objects and the arcs are
Connect objects. Each Connect connects a single input Layer with a single out-
put Layer. A Layer holds the data for a set of units (such as an activation vector),
while a Connect operates on the data as it passes between Layers. Data flows along
Connects between the pair of Layers by calling forw_propagate (input to output)
or back_propagate (output to input) behavior functions in the Connect object.

For efficiency, CLONES does not have objects that represent single units (or ar-
tificial neurons). Instead, Layer objects are used to represent a set of units. Little
flexibility is lost since Layers with a single unit can be used when required. How-
ever, many very small Layers will not run as efficiently as fewer larger ones. Also,
the elements of the activation vector of a Layer need not be computed by the same
function. Layers are not restricted to representing a vector of units that must be
treated identically. Because arrays of units are passed down to the lowest level rou-
tines, most of the computation time is focused into a few inner loops. These assembly
coded loops fit into the processor instruction cache thereby reducing the overhead of
instruction fetches. Time spent in all of the levels of control code that call these loops
becomes less significant as the size of the Layer is increased.

The Layer class does not restrict the representation of its internal information.
For example, the representation for activations may be a floating (or fixed) point num-
ber for each unit (Analog_layer), or it may be a set of unit indices, indicating which
units are active (Binary_layer). Analog_layer and Binary_layer are built into the
CLONES library as subclasses of the class Layer. The Analog_layer class specifies
the representation of activations, but it still leaves open the procedures that use and
update the activation array. These procedures may or may not treat all the units of
the Layer the same way. BP_analog_layer is a subclass of Analog_layer that spec-

ifies the procedures for the back-propagation algorithm. Subclasses of Analog_layer
may also add new data structures to hold extra internal state such as the error vector
in the case of BP_analog_layer. The BP_Analog_layer class has subclasses for
various transfer functions such as BP _sigmoid_layer and BP linear_layer.

Layer classes have behavior functions that are called in the course of running
the network. For example, one of these functions (called pre_forw_propagate)
initializes the Layer for a forward pass, perhaps by clearing its activation vector.
After all of the connections coming into it are run, another Layer behavior function
(called post_forw_propagate) is called that computes the activation vector from
the partial results left by these connections. For example, this function may apply
a transfer function such as the sigmoid to the accumulated sum of all the input
activations. These behavior functions can be changed by making a subclass.

Layers also have functions (get and put) that allow access to internal activation
data. A subclass of Layer may support multiple get routines for accessing the same
activation data, each with its own datatype for activations and imposing its own
structuring on these activations. The default get functions include floating point
and integer activations that are organized in one, two or three dimensional arrays.
New access functions can be added as new activation datatypes and organizational
structures are researched.

For example, the BP _analog_layer class leaves open the activation transfer func-
tion (or squashing function) and its derivative. Subclasses define new transfer func-
tions to be applied to the activations. A new class of back-propagation layer with a
customized transfer function (instead of the default sigmoid) can be created with the

following C++ code:
class My_new_BP_layer_class : public BP_analog_layer {

My_new_BP_layer_class(int number_of_units)
: BP_analog_layer (number_of_units); // constructor

// apply forward transfer function to activation vector
// (note that Fvec is the floating point vector class)
void transfer(Fvec *activation) {
int i;
for(i=0; i<activation->n_ele; i++) // for each element of activation vector
activation->put (i, my_transfer_function(activation->get(i)));

}

// apply backward error transfer function to error vector (given activation vector)
void d_transfer(Fvec *activation, Fvec *error) {
int i;
for(i=0; i<error->n_ele; i++) // for each element of error vector
error->put (i,
derivative_of_my_transfer_function(activation->get(i), error->get(i)));

A Connect class includes two behavior functions: one that transforms activations

from the input Layer into partial results in the output Layer (forw_propagate)
and one that takes outgoing errors and generates partial results in the input Layer
(back_propagate). The structure of a partial result is part of the Layer class. The
subclasses of Connect include: Bus_connect (one to one), Full_connect (all to all)
and Sparse_connect (some to some).

Each subclass of Connect may contain a set of internal parameters such as the
weight matrix in a BP_full connect. Subclasses of Connect also specity which
pairs of Layer subclasses can be connected. When a pair of Layer objects are
connected, type checking by the C++ compiler insures that the input and output
Layer subclasses are supported by a Connect class.

In order to do its job efficiently, a Connect must know something about the
internal representation of the layers that are connected. By using C++ overloading,
the Connect function selected depends not only on the class of Connect, but also
on the classes of the two layers that are connected. Not all Connect classes are
defined for all pairs of Layer classes. However, Connects that convert between
Layer classes can be utilized to compensate for missing Connect classes.

CLONES allows the user to view layers and connections much like tinker-toy
wheels and rods. ANNs are built up by creating Layer objects and passing them to
the create functions of the desired Connect classes. Changing the interconnection
pattern does not require any changes to the Layer classes or objects and vice-versa.

At the highest level, a Net object delineates a subset of a network and controls
its training. Operations can be performed on these subsets by calling functions on
their Net objects. The Layers of a Net are specified by calling one of the following
routines (of the Net object) for each Layer: new_input_layer, new_hidden_layer,
or new_output_layer. A Net can have any number of input, hidden and output
Layers. Given the Layers, the Connects that belong to the Net are deduced by
the Net_order objects (see below). Layer and Connect objects can belong to any
number of Nets.

The Net labels all of its Layers as either input, output or hidden. These labels are
used by the Net_order objects to determine the order in which the behavior functions
of the Net_parts are called. For example, a Net object contains Net_order objects
called forward_pass_order and backward_pass_order that control the execution
sequence for a forward or backward pass. The Net object also has functions that
call a function by the same name on all of its Layers and Connects (for example
set_learning_ rate).

Figure 3 shows an example network with five layers and five connections. This
figure also shows two Net objects. A Net object deliniates a subset of a network. As
shown in the figure these subsets may overlap. Netl refers to Layerl, Layer2, Layer3,
and the Connects between Layerl and Layer2 and between Layer2 and Layer3.
Net2 refers to the all of Layer and Connect objects in the figure. Operations can
be performed on these subsets by calling functions on the Netl or Net2 object.

The networks depicted in figure 3 could be used, for example, to incorporate

Database H

Database H

|
N

Net 1 ‘

—4coO

z—

Net 2

—“co'

Figure 3: Example CLONES network

knowledge into an ANN by training a network to produce useful intermediate results.
In this example, Netl is trained first to produce an output at Layer3 that is a use-
ful input for a later training step. Then set_learning mode(0) is called on Netl
to freeze its parameters. Calling run_training on Net2 causes Connects between
Layers 1 and 4, 3 and 5, 4 and 5 to be trained with the aid of the unadaptive input
from Layer3.

Often there are several constructors for the same class of Net. Net constructors
may create new Layer and Connect objects. For example, a subclass of Net may
automatically build a three Layer structure when it is created. Its arguments might
be the sizes of the input, hidden and output layers. Net constructors may also take
existing Layer, Connect or Net object pointers as arguments. This allows new
Net objects to add structure to an existing Net. The Net constructor can also call
the constructors of other (or the same) Net class to create modular hierarchically
structured topologies. Such a Net might manage these internal Net objects and
hide them from external view.

The build function of the Net_order object scans the connectivity of the Net.
The rules that relate topology to order of execution are centralized and encapsulated
in subclasses of Net_order. Changes to the topology of the Net are localized to
just the code that creates the Layers and Connects; one does not need to update
separate code that contains explict knowledge about the order of execution when the
Net topology changes.

The training procedure is divided into a series of steps, each of which is a call
to a function in the Net object. At the top level, calling run_training on a Net
performs a complete training run. It starts by calling pre_training and ends by
calling the post_training behavior functions. It calls run_epoch in a loop until
the the next_learning rate function returns zero. The run_epoch function calls
run_forward and run_backward.

The Net object contains global variables for use by all of its components. These
global variables of Net include: the current pattern, the correct target output, the
epoch number, Stats objects, Database objects and Param object. A pointer to
the Net object is always passed to all of its Layer and Connect behavior functions
when they are called.

The Net object contains one or more Database object pointers. More than one
Net can share the same Database. The Net contains functions that interface the
Databases to the Layers of the Net. For example, the set_input function sets the
activations of the input Layers for a given pattern number of the database. Another
of these sets the error vector of the output layer (set_error). Some of these functions,
such as is_correct evaluate the performance of the Net on the current pattern.

Another global variable in the Database is a Param object that contains a table
of parameter names, each with a list of values. Again, multiple Nets can share a
single Param object. These parameters usually come from the command line and/or
parameter files. New parameters can be added to a CLONES program by adding a

10

single line to the parameter table (file parameters.h). The line contains the parameter
name and a single line of documentation for the help menu.

11

3 Example: backpropagation

Before describing CLONES classes and training procedures in more detail, it might
be helpful to look a simple CLONES program from the user’s point of view. The
following program creates an input, hidden and output layer and then connects input
to hidden and hidden to output. Backpropagation with a sigmoid transfer function
is used for this example.

void

main(int argc, char **argv)

{

Param param; // declare a parameter list
BP_sigmoid_layer #input, *hidden, *output; // declare 3 layers
BP_full_connect *input_hidden, *hidden_output; // declare 2 connections
BP_net *net; // declare a net object
Sentence_database *db; // declare a training database

FILE *db_file;
char *file_mode;

// read command line parameters into parameter object (param)
param.parse(argc, argv);

// create the database object with defaults of 1 frame of input context

// and 1 category label per frame

db = new RAM_database(param.get_int("frames_per_window",1),
param.get_int("labels_per_frame",1));

// set the reading mode to binary if this is a binary database
file_mode = param.get_bool(”binary_database”)? "rb" : "r";

// read in the database

db_file = fopen(param.get_string("database_file_name"), file_mode) ;
if (db_file == NULL) { perror('can not open database"); exit(-1) }
db->io(db_file, file_mode, param.get_int ("number_of_sentences"));
fclose(db_file);

// create the layers; get the input and output layer sizes from the database object
// the default hidden layer is 512 units unless specified by -hidden_layer_size
input = new BP_sigmoid_layer(db->get_pattern_size());

hidden = new BP_sigmoid_layer(param.get_int("hidden_layer_size",512));

output = new BP_sigmoid_layer(db->get_n_label());

// create the connections
input_hidden = BP_full.connect(input, hidden);
hidden_output = BP_full.connect(hidden, output);

// create the Net object
net = new BP_net(¶m, db, new Stats);

// define the input, output and hidden layers for this net

net->new_input_layer(input) ;
net->new_hidden_layer (hidden) ;

12

net->new_output_layer (output) ;

// build the net (updates order objects, etc.)
net->build();

// train it up!
net->run_training();

}

What the run_training function of the Net actually does depends on the subclass
of Net. This section outlines the default training procedure that comes with the
Net object and its subclasses (unless it is overriden by writing new functions). The
training procedure is broken down into a series of steps. Each step involves calling
a function of the Net class. Since there are several levels of control functions (with
run_training at the top), the user can customize the training procedure anywhere
from slightly to completely by redefining functions in a new subclass of Net.

All of the training functions listed below can be found in the file run.cc; they all
belong to class Net or one of its subclasses. Here are the basic steps of the training
procedure run_training;:

1. The pre_training function is called on the Net and all of its Net_parts. This
is used to initialize the network. For example, the pre_training function of a
Connect object might randomize its weight matrix.

2. Optionally, there is a pre_training epoch, in which the complete database
is run through the network with the stage variable of the Net object set to
PRE_TRAIN !. This is used by algorithms that need to use the database
to initialize the network for training. For example, an RBF[4] network might
calculate the covariance matrix during the PRE_TRAIN epoch.

3. Call reset_learning_rate to initialize the learning control parameters or tem-
perature schedule.

4. Inside the main training loop, call run_epoch for each Database until the
next_learning rate function returns FALSE. Each call to run_epoch will
present the network with as many patterns as are in the Database objects of
the Net. In this loop the stage variable of the Net object is set to TRAIN
to adapt the network to the patterns, or TEST for cross-vaildation. Inside the
run_epoch function:

(a) The pre_epoch function is called on the Stats object and all Net_parts.

(b) Loop over all patterns in the database. The loop index is a pattern
sequence number running from zero to the number of patterns in the
database minus one. Inside the run_epoch loop over the pattern sequence
number:

LOther values of the stage variable include: TRAIN, TEST and POST_TRAIN.

13

i. Call pattern_order(seq_num) to translate the sequence number into
a database pattern_id. Changing the pattern_order function of the
Net to modifies the order of pattern presentation. The default pat-
tern_order function uses the db_order variable of the Net to select
an ordering. If db_order is REAL then the pattern_id returned is
just the sequence number; the patterns are presented in the order spec-
ified by the database. If db_order is RANDOM_PATTERN, the
pattern_id returned is a random number between zero and the num-
ber of patterns minus one. There are other pattern orderings that are
documented in the file clones.h where the enumeration DB _order is

declared.

ii. Call pattern_select(pattern_id). If it returns FALSE then the pat-
tern is skipped.

iii. Call set_input(pattern_id) to load data into the input layer(s) of
the network. The default set_input loads all of the pattern data from
the database get_pattern function into the input layer(s) activation
vector using the Net put_input function.

iv. Call set_target to set the Net target variable(s) to some representa-
tion of the desired output.

v. Call one of the functions: train, test, pre_train or post_train, de-
pending on the value of the stage variable of the Net. This example
assumes that stage is set to TRAIN, so the function train is called.
These functions are called by function train:

A. Call run_forward(pattern_id) to setup and run the forward pass
of the network. The details of what run_forward calls are shown
in a separate outline below.

B. Call set_error to set the error vector in the output layer(s) based
on the target values in the Net object.

C. Call pre_back_pass on the Stats object and Net_parts.

D. Call run_back_order to run the backward_order object of the
Net.

E. Call post_back_pass on the Stats object and Net_parts.

vi. The post_epoch function is called on all Net_parts and statistics
object(s).

5. Call next_learning_rate to adjust the learning variable(s) of the Net object
(it may utilize performance data in the Stats object for this). If it returns
zero then training is complete, otherwise loop back to step (a) and run another
epoch.

6. The post_training function is called on the Net and all of its Net_parts.

14

7. Optionally, there is a post_training epoch in which the complete database is run
with the stage variable of the Net object set to POST_TRAIN. This can be

used to collect performance statistics on the fully trained network.
Inside the function run_forward above, the following steps occur:
1. Call pre_forw_pass on the Stats object and Net_parts.

2. Call run_forw_order to execute the calls held by the forward_order object.
This in turn calls the behavior on network components. Note that the func-
tions called depends on the subclass of Net_order object. Also note that the
functions in this list are the only run_training fuctions that are not in the
file run.cc. The defaults for these functions for backpropagation are in files
bp.cc and bp.h. For a simple three layer feed-forward network and the default
forward order (from the Forw_order class), the sequence of behavior function
calls is:

a) hidden layer . pre_forward_propagate()

hidden layer . post_forward_propagate()

(a)
(b) input_hidden_connect . forward_propagate()
(c)
(d) output_layer . pre_forward_propagate()

(e) hidden_output_connect . forward_propagate()
(f) output_layer . post_forward_propagate()

3. Call get_output to get the output layer(s) activation vector(s) into an output
array in the Net object.

4. Call pre_back_pass on the Stats object and Net_parts.

A listing of all of the above functions is included in the appendix.

4 CLONES Classes

To improve readability, all global symbols (including class names) start with a capital
letter. As a general rule, CLONES does not have any global variables (the one
exception is the connection creation objects such as BP_full). All global information
is contained in the Net object and its subclasses. Net objects are passed explicitly
to functions that need global information about the network and the state of the
training run. This allows multiple “global” name environments to be maintained
independently for each network.
The following subsections describe the CLONES classes in more detail.

15

4.1 Net_behavior

The CLONES training procedure consists of calling various behavior functions that
can be found in a number of object classes and their subclasses, including: Net,
Layer, Connect and Stats. Net_behavior is the parent of all these classes. It
contains functions that are called before any training is done and after training is
completed: pre_training and post_training. An epoch involves running a single
pass over the database(s). Net_behavior also has functions that are called before
and after running an epoch: pre_epoch and post_epoch.

Also, all CLONES objects have a function called io that allows the object’s in-
ternal data structures to be saved or restored from a disk file. The first argument to
io is a pointer to a FILE structure that was returned from the standard C function
fopen. Data is transferred without first rewinding the file; this allows a series of io
calls to read or write a sequence of objects in the same file. The second argument
selects file reading or writing by using the same mode character string that was used
as the second argument to fopen when the file was opened. ? Often the io function
simply calls the 10 functions of its components; in these cases the 1o function uses
the same code for both reading are writing itself.

Some of the functionality of the Net_behavior class is summarized below:

| Net_behavior Function | Description |
print_name() Print the symbolic name
set_name(char *name) Set the symbolic name
print_class_name() Print the symbolic name of the class
char *get_class_name() Return the symbolic name of the class
Bool is_class(Class_tag *class) Quick test of object class
Bool is_class(char *class_name) Slow test of object class (strcmp)
Bool is_subclass(Class_tag *class) Quick test of object parents
Bool is_subclass(char *class_name) Slow test of object parents (strcmp)
Class_tag *get_class_tag() Get the unique number for this class
Class_tag *get_parent_class_tag() Get the unique number for parent
print_ident() Print name, class, size, address, etc.
dump(int level) Dump internal data structures
print(FILE* file, int level) Pretty print internal data structures
io(FILE *file, char *mode) Read or write object from/to a file
file_io(char *file_name, char *mode) | Open, read or write, then close
pre_training(Net*) Called before a training run begins
post_training(Net*) Called after a training run is complete
pre_epoch(Net*) Called before a pass over the database
post_epoch(Net*) Called after each pass over the database
pre_forw_pass(Net*) Called before doing a forward pass on Net
post_forw_pass(Net*) Called after a forward pass is complete
pre_back_pass(Net*) Called before doing a backward pass on Net
post_back_pass(Net*) Called after a backward pass is complete
set_learning_rate(float rate) Set rate of adaptation (0.0 for no learning)
set_learning_mode(int mode) Set the learning_mode variable (0 for no learning)

ZNote that “rb” or “wb” must be used to open a file for reading or writing in BINARY mode.
See the RAP software users manual for more details.

16

4.2 Net_part

A Net_part is a modular component used to build a network. Currently, Layer
and Connect are the only subclasses. All network components respond to certain
global commands from the Net object. These include routines to adjust the rate of
adaptation during training (set_learning rate and set_learning_mode).

There are also routines to dynamically change the number of units in a Layer
and its Connects (add_units and del_units). When the size of a Layer is changed,
by default it automatically calls functions add_units or del_units on its Connects
so that they can adjust to the new number of units. Since these two functions are
virtual, the Layer need not know the subclass of Connect being called.

All network components used to construct ANNs are derived from the two classes
Layer and Connect. Net_part defines functions that are shared by all network
components:

| Net_part Function | Description
add_units(Net* int n) Increase the number of units (by n)
del_units(Net* int n) Decrease the number of units (by n)
int get_fixed_point() Get the position of the binary point (SPERT only)
set _fixed _point(int) Set the position of the binary point (SPERT only)
float get_avg_fan_in() Return average input connections per unit
float get_avg_fan_out() Return average output connections per unit
forw_propagate(Net*) Connect adjusts output Layer based the input Layer
back_propagate(Net*) Connect adjusts self based on output Layer error
forw_pre_propagate(Net*) Layer setup for input Connect forw_propagate calls
back_pre_propagate(Net*) Layer setup for output Connect back_propagate calls
forw_post_propagate(Net*) | Layer compute after all input Connect forw_propagate calls
back_post_propagate(Net*) | Layer compute after all output Connect back_propagate calls

Note that these functions define the abstract interface to a Net_part. Subclasses
of Net_part such as Layer or Connect must provide the C++ code that defines
their behavior.

The Net_part class contains propagation behavior functions that are used by both
Layer and Connect subclasses. One may wonder why these functions are defined
in the Net_part class instead of in the Layer and Connect classes. The primary
reason is to allow a sequence of calls to these functions to be maintained as a table
(in subclasses of Net_order) with entries of a single data type: pointer to member
function of Net_part. This allows very efficient calling of these behavior (propagate)
functions without the need to first check if it is a Layer or Connect object.

Net_part has member variables that control the learning process in general.
These include the integer learning_mode and the floating point learning_rate. The
meaning of these variables is defined in subclasses of Net_part, but it is universal that
a learning_mode of zero freezes any adaptation of that network component. New
learning control variables are currently being added (such as weight_decay_mode
and decay_rate).

17

4.3 Layer

The network behavior of a Layer class is specified by functions that initialize it for
a forward or backward pass (pre_forw_propagate and pre_back_propagate), and
functions that produce activations or errors from the partial results left from running
connections to the Layer (post_forw_propagate and post_back_propagate).

The number of units in a Layer is returned by get_n_unit. Each Layer contains
two lists of Connect object pointers: Connects coming into the Layer and Con-
nects going out of the Layer. The size of these lists in returned by get_n_in_connect
and get_n_out_connect. Input Connects of a Layer are returned from function
get_in_connect(connect_number). Output Connects of a Layer are returned by
function get_out_connect(connect_number). The connect_number above starts
at zero for the first connection.

The functions of a Layer are summarized in this table:

| Layer Function Description
new Layer(int) Create a layer with (int) units
copy(Layer* lay) Copy all internal parameters of lay into this Layer
int get_n_unit() Get the number of units in Layer
Connect *get_in_connect(int) Get the n'® input connection to Layer
Connect *get_out_connect(int) | Get the '™ output connection from Layer
int get_n_in_connect(int) Get number of input connects
int get_n_out_connect(int) Get number of output connects
put(float* int,int) Set activation 1d vector (array,size,offset)
get(float® int,int) Get activation 1d vector (array,size,offset)
put(float*,int,int,int) Set activation 2d matrix (array,size,x,y)
get(float* int,int,int) Get activation 2d matrix (array,size,x,y)
put(float*,int,int,int,int) Set activation 3d array (array,size,x,y,z)
get(float* int,int,int,int) Get activation 3d array (array,size,x,y,z)
put(int*,int,int) Set activation 1d vector (array,size,offset)
get(int* int,int) Get activation 1d vector (array,size,offset)
put(int* int,int,int) Set activation 2d matrix (array,size,x,y)
get(int* int,int,int) Get activation 2d matrix (array,size,x,y)
put(int*,int,int,int,int) Set activation 3d array (array,size,x,y,z)
get(int* int,int,int,int) Get activation 3d array (array,size,x,y,z)

A Layer can define put and get functions that allow the units to be accessed as a
sequence of floating point numbers. Both of these functions take as their arguments: a
pointer to an array of floating point numbers (float*), the number of units to transfer
(int) and the starting unit index to transfer (int). If only the first argument is used,
the other two default so that the entire activation array will be transferred. If only
the first two arguments are specified, the starting unit index defaults to zero.

Multidimensional put and get functions are also available allowing the same
Layer to be accessed as a one, two or three dimensional array of activations. For
each of the put and get functions above there is a function for integer activations
as well as floating point. A Layer that represents activations in one way will have
functions that convert from their representation to other supported representations.
For example, a Layer that internally represents activations as an array of fixed point

18

or integer numbers will include functions that provide access to these activations as
a floating point array.

The Analog_layer class specifies the representation of activations, but it still
leaves open 2 the procedures that use and update the activation array. The class
BP _analog_layer is a subclass of Analog_layer that defines behavior (propagate)
functions for the backpropagation algorithm.

4.4 Connect

Each Connect object connects two Layer objects. The two Layers are refered
to as “incoming” and “outgoing” since often during a forward pass the Connect
moves data from incoming to outgoing. The Connect has two behavior functions:
one that transforms activations from the incoming Layer into partial results in the
outgoing Layer (forward_propagate), and one that takes outgoing Layer errors
and generates partial results in the incoming Layer (backward_propagate). The
structure of a partial result is part of the Layer class. In order to do its job efficiently,
a Connect must know something about the internal representation of the Layers
that are connected. The Connect function selected depends not only on the class
of Connect, but also on the classes of the two layers that are connected. This
is accomplished by connect creation objects. These are the only global objects in
CLONES. Their only purpose is to create a Connect object of the correct type given
the classes of the two Layers being connected. For example, a backpropagation
connect creation class for analog or binary full connections might look like:

// The only purpose of class BP_full_select is to create new

// instances of BP_full_aa, BP_full_ba, etc. depending on the layer classes.
// There is only one instance of this class called BP_full.

class BP_full_select {
public:
BP_full *connect(BP_analog_layer *al, BP_analog_layer *a2)
{ return((BP_full*) new BP_full_aa(al,a2)); }

BP_full *connect (BP_binary_layer *bl, BP_analog_layer *a2)
{ return((BP_full*) new BP_full_ba(bil,a2)); }

BP_full *connect(BP_binary_layer *bl, BP_binary_layer #*a2)
{ return((BP_full*) new BP_full_bb(b1,a2)); }
}s

// create the global BP_full_connect (of class BP_full_select)
BP_full_select BP_full_connect;

To create a fully connected backpropagation connection between two analog or
binary Layers:

3These functions are specified in C++ as virtual. This means that redefining the function in a
subclass is visible even when an object of that subclass is passed as an abstract object of the parent
class, or grand-parent class, etc.

19

BP_full_connect.connect (input_layer, output_layer) ;

A Connect object contains a pointer to the input Layer and a pointer to the
output Layer of the connection. These are returned by functions get_in_layer and
get_out_layer.

Connect objects also may define the member function share; this allows two com-
patible Connect objects to share parameters. For example, a BP_analog_connect
object can share weights with another object of the same class. Again, compatibility
between the Connects is enforced by compile time type checking by the C4++ com-
piler. Several (overloaded) share functions allow a Connect to share parameters
with any number of other Connect classes.

The functions of the Connect are summarized below:

| Connect Function | Description
Connect *Connect(Layer* Layer*) | Create a new connection between two layers
copy(Connect* conn) Copy all internal parameters of conn into this Connect
Layer *get_in_layer() Get the input layer of this Connect
Layer *get_out_layer() Get the output layer of this Connect
share(Connect_subclass*,Net*) Share parameters between two Connects

4.5 Net_order

The order in which behavior functions in Layer and Connect objects are called is
determined at run-time by utilizing a Net_order object. Each Net_order object
is associated with a single Net object. The build function of a Net_order object
prepares it for calls to its run function (this may involve a scan of the Net topology).
The run function executes a sequence of Net_part behavior functions. Note that
the order of network component execution may be statistical; Network components
may be executed more or less than once per pass. A subclass of Net_order, called
List_order, contains an ordered list of Net_part pointers. This subclass is currently
used for running the same sequence of behavior calls repeatedly. The following code
demonstrates how to iterate over the Net_parts of a Net_order to set the learning
rate for each Layer and Connect:

Net_part #*part;
Net_order *order;
int part_index;

for(part_index = 0; part_index < order->get_n_parts(); part_index++) {
part = order->get_part (part_index) ;
// do something to each part of this net ordering
// in this case, set the learning rate for all connections to zero
// (layers may still have non-zero learning rate for biases)
if (order->is_connect(part_index))
part->set_learning rate(0.0);

20

ANet object contains three Net_order objects: one for the forward pass order,
one for the backward pass order and one that lists all the network parts once for use as
a parts list. It is often useful to loop over all Net_part objects in a Net. The Net ob-
ject has functions get_n_parts and get_part with the same interface as a Net_order
object. In the above example, Net_order could be replaced with Net to set the learn-
ing rate of all network connections. Since iterating over all parts of a net happens
frequently in CLONES, there is a macro called LOOP_OVER_ALL_PARTS that
allows such a loop with a single line body to be written in one line. For example, to
set the learning rate of all parts to zero:

LOOP_OVER_ALL_PARTS (net_or_order_obj ect,
part->set_learning_rate(0.0));

The macro has three local variables: part is a pointer to the current Net_part,
part_id is the index number of the Net_part and n_part is the total number of
parts in the Net. Here is the definition of this macro:

ttdefine LOOP_OVER_ALL_PARTS(NET,FUNC) \
{\
Net_part *part; \
int part_id, n_part; \
n_part = (NET)->get_n_part(); \
for(part_id=0; part_id<n_part; part_id++) { \
part = (NET)->get_part(part_id); \
FUNC; \
A
}

A Net_order object is prepared for use by calling its build function. This func-
tion takes a Net and scans it to make an internal list of Net_parts. Different sub-
classes of Net_order have redefined build to create different orderings. For example,
Forw_order and Back_order classes generate orderings used by feed-forward back-
propagation networks. Note that these orderings need not contain all the Net_parts
of the Net, and may contain multiple entries for the same Net_part (often with a
different operation code).

Each Net_part in a Net_order object also has an operation code number. This
number can be used to indicate what should be done to the Net_part when the
run function is called on the Net_order object. For example, there are different
operation codes for running pre_forward and post_forward functions on a Layer
object. These codes and their meaning are hidden inside the build and run functions
of the Net_order class. Calling run on a Net_order class causes functions to be
called on each Net_part depending on its operation code.

This table summerizes member functions of the Net_order class:

21

| Net_order Function | Description
int get_n_part() Return total number of parts
Net_part *get_part(int) Return the n'” part
int get_operation_code(int) | Return the n'™ operation code
build(Net*) Build internal data structures for network
run() Run each Net_part in order, function called depends on operation code
int is_layer(int n) Return true if n'® Net_part is a Layer
int is_connect(int n) Return true if n'* Net_part is a Connect
4.6 Net

The Net object contains three lists of Layer pointers: input, hidden and output.
Each list may contain references to any number of Layers. Several Net objects may
refer to the same layers, which is useful for training and testing subnets in a larger
Net. A Net object also has Net_order objects that are responsible for determining
the order in which Layer and Connect functions are called to run a forward or
backward pass.

New Net objects are created by calling one of the constructor functions in a
subclass of Net. In C++4 this is accomplished by the following syntax:

new_net_object = new Net_subclass_name(
arguments such as: sizes, Layers, Connects, or Nets)

For example, the constructor for a three layer Net might look like:

new_net_object =
new Three_layer_MLP(

// param is a standard parameter list holding object (class Param)
param,
// NULL layer below creates the layer
input_layer, hidden_layer, output_layer,
// size required below if NULL above for layer above
input_size, hidden_size, output_size
// the size arguments are optional when existing layers are used

)

Often there are several constructors for the same class of Net. Net constructors
may create new Layer and Connect objects. They may also take existing Layer,
Connect or Net object as arguments allowing new Net objects to add structure to
an existing network. The Net constructor can also call the constructors of other (or
the same) Net class to create modular hierarchically structured topologies.

The Net class inherits all functions in class Net_behavior. It adds these func-
tions:

22

Net Function

Description

new_input_layer(Layer*)
new_hidden_layer(Layer*)
new_output_layer(Layer*)

Add another input layer to input layer list
Add another hidden layer to hidden layer list
Add another output layer to output layer list

build()

Setup for current set of inputs, hiddens and outputs

int get_n_input_layer()
int get_n_hidden_layer()
int get_n_output_layer()

number of input layers
number of hidden layers
number of output layers

Return
Return
Return

Layer *get_input_layer(int)
Layer *get_hidden_layer(int)
Layer *get_output_layer(int)

n'™ input layer

n'" hidden layer
¢

Return
Return

Return nt" output layer

Bool is_input_layer(Layer*)
Bool is_hidden_layer(Layer*)

Bool is_output_layer(Layer*)

True if argument is an input layer
True if argument is a hidden layer
True if argument is an output layer

del_input_layer(Layer*)
del_hidden_layer(Layer*)

del_output_layer(Layer*)

Delete an existing input layer from list
Delete an existing hidden layer from list
Delete an existing output layer from list

int get_n_part()

Net_part *get_part(int)
Bool is_layer(Net_part*)
Bool is_connect(Net_part*)

Return number of Layers and Connects
Return the n'® Layer or Connect
Return true if Net_part is a Layer
Return true if Net_part is a Connect

int get_n_input_unit()
int get_n_output_unit()

Return total number of units in all input Layers
Return total number of units in all output Layers

put_input(float*)
get_output(float*)
put_error(float*)

Put activation vector into all input Layers
Get output activation from all output Layers
Put error vector into output Layers

run_training()
run_epoch(stage)
run_forw(int)

run_back()

Run a complete training

Run a pass over the database

Run a forward pass for database pattern sequence number
Run the backward pass for current pattern

void select_database(Stage)
int pattern_order(int)

int pattern_select(int)
set_input(int)

set_target()

set_error()

Bool is_correct()

Select database(s) for current phase of training

Get database pattern number from sequence number
Return 0 to skip presentation of pattern number

Set input Layers for a pattern number from Database
Set the desired Net output from the Database(s)

Set the error vector based on Net output and target(s)
Returns true if output is “correct”

The build function of a Net object prepares the current network topology and
configuration for training or running. It is responsible for calling the build functions
of all internal Net_order and Net objects. It also sets up arrays that are used as

variables that are in a Net:

staging areas for the input, output and error vectors. Any time the topology changes,
build must be called at least once to update the Net object.

Since CLONES does not have global variables, the Net object serves as a place
to put data structures that are of general use to a particular network. The advantage
over global variables is that Nets with their own global environments can coexist
in the same program without name conflicts. The table below briefly describes the

23

Net Variable | Description |

param Parameter object pointer for command line or parameter file variables
db_order Select pattern order algorithm for training (REAL, RANDOM_PATTERN, ...)
epoch_num Number of passes over database that have been run

pattern_num Pattern number of current pattern being run

stage Current phase of training (PRE_TRAIN, TRAIN, TEST, POST_TRAIN)
target Current target category for output (categorization tasks only)

input Floating point array of current input data for the Net

output Floating point array of current output data from Net

Subclasses of Net often add their own variables. For example BP_net adds these
variables:

| BP _net Variable | Description |
learning_rate Current learning rate
ramping_learning_rate | Flag indicating that learning rate is ramping down
label_output_unit Array of output unit number to train for each category
error Floating point array of current errors for each output

4.7 Database

The Database class is independent of the rest of CLONES and can be used separately.
It serves as an abstract interface that allows training examples (represented as floating
point vectors) to be retieved by pattern number. The training pattern consists of one
or more frames of data from the database. There is also a member function to get
“labels” that identify (or classify) each frame. Since Database is abstract, it can
not be constructed. A subclass of Database called Sentence_database implements
this model very specifically for speech tasks. It adds many functions to the interface
that implement a sentence level of structure.

A database object allows access to a sequence of frames. Each frame has a fixed
number of floating point fields. The total number of frames in a database object can
be obtained by calling get n_frames. The number of fields in a frame is returned
by get_frame size. Not all of the fields of a frame hold input data for training the
net, some may be used for identification of the pattern, the correct classification or
target output, and other information needed by the trainer. Note that all fields of a
frame are floating point; integer information is stored in floating point and converted
as required.

Each frame has a unique frame_d from zero to get_n_frames()-1. To get a com-
plete frame, call get_frame(frame_id, output_array). To get just the fields of
the frame that contain input data for the network, call get_data(frame_id, out-
put_array).

One or more frames are combined to make a complete input pattern for the
input Layers of the Net. Patterns are numbered by a pattern_id from zero to
get_n_patterns()-1. The number of patterns is often different than the number
of frames. To get the complete network input data for pattern pattern.d, call:
get_pattern(pattern_id, output_array). This is usually called from the set_input

24

function of the Net class. The default get_pattern function assembles a context win-
dow of frames around the center frame:

void

Sentence_database::get_pattern(int pattern_num, float *array)

{

int frame_id, i, index;

frame_id = pattern_center_frame_id(pattern_num) - half_window_size;
index = 0;
for(i=0; i<window_size; i++) {
get_data(frame_id + i, &array[index]);
index += data_size;
}
}

Objects of class Database can not be created since some of its member functions
are declared as null slots; it is an abstract class. The subclass Sentence_database
adds functionality to support speech databases. The only functions that are not
defined in Sentence_database are the low level functions that access the data. These
include: get_frame, put_frame, set_size, and data_io. Sentence_database has
two subclasses: Disk_database and RAM_database. These two classes are fully
specified; their constructors can be called to create new objects. The only difference
between them is that Disk_database holds the frame data in a binary datafile on
disk while RAM _database holds this data in a distributed matrix (in DRAM).

Objects of these classes can be easily created:

database = new Disk_database(number_of_frames_in_window, number_of_labels_per_frame);

database = new RAM_database(number_of_frames_in_window, number_of_1abels_per_frame);

The Disk_database data file must be opened in binary mode (“rb”). Since the
file handle is used during training, the fclose function should not be called until one
is finished using the Disk_database. In the case of RAM _database, fclose can be
called on the file as soon as all calls to the 1o function are completed.

A Sentence_database contains a sequence of numbered sentences. The num-
ber of sentences is returned from get_n_sentences. Fach sentence has a number
of frames returned by sent_n_frames(sentence_id). The first frame.id of a sen-
tence is returned by sent_first_frame_id(sentence_id) and the last frame_id is re-
turned by sent_last_frame_id(sentence_id). The absolute sentence_id of a frame
is get_sent_id(frame_id). Note that the sentence_id is a field of the Database and
may not begin at zero and may skip around. The relative sentence number counts
the sentences in order starting at zero. It can be obtained by calling the function
get_sent_num(frame_id). To get the relative number of frames into the sentence
from an absolute frame_id, use get_frame_num (frame_id).

The relationship between pattern_id and frame_id depends on the number of
frames in the pattern window. If the pattern window is one frame then the pat-
tern_id is equal to the frame_id. If the window were three, the first pattern_id (zero)

25

corresponds to the first three frames of the first sentence (centered on frame one).
The pattern window always includes frames from the same sentence. To get the
center frame_id for a given pattern_id, use pattern_center_frame_id(pattern_id).
The inverse, the pattern_id of frame_id is frame_pattern_id(frame_id). The first
or last pattern_id in sentence sent_id is returned by sent_first_pattern_id(sent_id)
or sent_last_pattern_id(sent_id).

Each Database frame has a fixed number of category labels. The number of
categories associated with a frame is returned by get_label _per_frame. The de-
fault is one label per frame. Each label field is an integer ranging from zero to
get_n_label(label field_num). The integer label value for label label field num of
frame_id is get_frame_label(frame_id,label field_ num). To get the category for
label_num of the center frame in pattern_id, use get_pattern_label(pattern_id).

All frames with a given label can be quickly obtained using hidden index tables
of the Sentence_database. A frame_id with label_value in the first label field is
returned by label frame_id(label value, example num). where example num
ranges from zero to label_n_frames(label value)-1.

To read or write a database file from a Sentence_database object, the function
10 is called:

sentence_database_object—>io(
file_pointer, mode_string, number_of_sentences)

(199

The mode_string is one of the following: “t” (read ascii), “

w” (write ascii), “rb”

(read binary) or “wb” (write binary). Binary databases are about half the size of

ascii database files and can be read many times faster since ascii to floating point

conversion is not required. A Disk_database object can only be created for a binary

database. All floating point numbers in binary files use the IEEE 32-bit standard.
The functions of a Database object include:

| Database Function | Description |
int get_n_frame() Return total number of frames
int get_frame_size() Return number of fields in a frame
int get_data_size() Return number of data fields in a frame
int get_label_per_frame() Return number of label fields in a frame
get_frame(int,float* int,int) Get frame_id into floating array (size and offset)
float get_frame(int,int) Return field value given frame_id and field number
float get_frame label(int,int) | Return label field value given frame_id and label field number
put_frame(int,float*,int,int) Put frame_id from floating array (size and offset)
get_data(int,float™*) Get the data part of frame_id into array
io(FILE*,const char* int) Read or write database in binary or ascii
int get_pattern_size() Return the number of fields in a pattern
int get_n_pattern() Return the total number of patterns in database
get_pattern(int,float*) Get data for a complete pattern given pattern_id
int get_n_label(int) Return number of categories given label field number

int get_pattern_label(int,int) | Return category number given pattern_id

Sentence_database adds these functions to the interface:

26

Sentence_database Function | Description |

Sentence_database(int,int) Create Sentence_database given window size and labels per frame
int get_window_size() Return number of frames in a context window

int get_n_sentence() Return number of sentences in database

int get_n_label_per_frame() Return number of labels on each frame

int get_frame_label(int,int) Return label for frame_id and label number

int get_sent_id(int) Return absolute database sentence_id field for frame_id

int get_sent_num(int) Return relative sentence number of frame_id in this database
int get_frame_num/(int) Return frame offset within sentence of frame_id

int sent_first_frame_id(int) Return first frame_d of relative sentence number

int sent_last_frame_id(int) Return last frame_id of relative sentence number

int sent_n_frames(int) Return number of frames in relative sentence number

int label_n_frames(int) Return number of frames with given category number

int label_frame_id(int,int) Return frame_id with given category and example index number
int pattern_center_frame_id(int) | Return center frame.id given pattern_id

int sent_first_pattern_id(int) Return first pattern_id of given sentence number

int sent_last_pattern_id(int) Return last pattern_id of given sentence number

int sent_n_pattern(int) Return number of patterns in sentence number

int frame_pattern_id(int) Return pattern_id for a given frame_d
set_select_input(int,int*) Select fields and frames to use in pattern

compute_stats() Computes means and variances for each data field
normalize_data() Scale data (in place) to be normal(0,1)

copy_stats(Sentence_database*) | Copy the statistics from another database

4.8 Param

Like the Database class and its subclases, the Param classes are independent of
the rest of CLONES and can be used separately. Param objects contain a symbol
table that associates each parameter name with a list of one or more string values.
Parameters from the command line can be entered into a Param object by calling
the parse function:

parse(int argc, char *xargv, Param_mode mode)
Or, parameters can be taken a file by calling the parse function:

parse(char *file_name, Param_mode mode) .

The Param_mode argument has three possible values: OVERRIDE, UNDER-
RIDE and APPEND. These determine what happens when a parameter that al-
ready has a value in the Param object, is encountered again. OVERRIDE throws
out the old value before adding new values. UNDERRIDE keeps the old value and
ignores the new ones. APPEND adds the new value to the end of the existing list
of strings.

Parameters in files or on the command line have the same format. They consist
of a sequence of parameter declarations. FEach declaration has a parameter name
preceded with a minus sign followed by an (optional) list of parameter values. The
list of values is delimited by the next parameter declaration or the end of file. When
parsing from a file, a line that begins with “#” will be skipped as a comment. For
example, this is a simple command line with two parameters:

27

-db database -hidden_layers 16 -256

The above would set parameter db to the one entry list “database” and parameter
“hidden_layers” to the two entry list: “16 -256”.

Parameter values that are parsed before any minus prefixed parameter name are
associated with a default parameter name. For example, to use the first parameter
values in the command line as a list of file names containing more parameters

// Set the default parameter name for values that occur before an
p y

// -parameter_name tokens to "parameter_files".

param. set_default_param_name("parameter_files") ;

// Add the parameters from the command line to the parameter list.
param.parse(argc,argv,0VERRIDE) ;

// Any values that come before the first parameter name are added as

// "parameter_files". In this case, we use these arguments

// as file names that contain more parameters.

for(i = 0; param.get_string(param_files,NULL,i) != NULL; i++) {
param.parse(param.get_string(param_files,NULL,i),UNDERRIDE) ;

}

The value of parameters can be returned in many ways. To get the n'* string
associated with parameter xyz:

get_string("xyz", default_value, n)

The default_value is returned if there is no such parameter. The last argument
indexes the array of strings for the parameter; it defaults to 0, returning the first
string listed under parameter xyz.

Other routines that get parameter values include:

| Param Function | Description |
Param() Create a new parameter object
parse(int, char**, Param_mode) Parse a C style command line argument list
parse(char*, Param_mode) Parse from a file given the file name and OVERRIDE control
set_default_param_name(char*) Set parameter name for values that proceed a parameter -flag
int get_bool(char*) Return 1 if name exist (may not have any string values)
int get_size(char*) Return the number of strings associated with name
int get_int(char*,int,int) Get integer parameter given name, default value and index
float get_float(char* float,int) Get floating parameter given name, default value and index
char *get_string(char*,char* int) Get string parameter given name, default value and index
char *copy_string(char*,char*,int) Same as above but returns copy of string (user must free it)
int *get_int_array(char*) Get all integers associated with name as an array
int *get_float_array(char*) Get all floats associated with name as an array
int *get_range_array(char®* int,int,int) | Get array of ranges as a table of bools
int *get_mapping(char* int* int) Get a table of pairs of indexes for an index mapping
print(FILE¥) Print out a list of current parameters and their values

28

Parameters can be checked against a master parameter table to avoid misspelling.
The table also contains documentation used to produce a usage message in the case
of a command line or parameter file error. This master table is kept in a file called
parameters.h. To add a new parameter to CLONES, one line must be added to this
file. The line contains a pair of string constants: the name of the parameter and one
line of documentation. Here is an example of this file:

char* Parameters[] = {
"-debug","debug level (int)",
"-db","database file name (string)",

"-net_read", "read weights from file",
"-net_write'", "write weights to a file",
"-window'", "number of frames in an input pattern'",
"-output_size", "size of output layer",
"-hidden_size", "size of hidden layer(s)",
"-db_order'", "order of presentation of patterns during training",
"-train_sent", "number of training sentences",
"-test_sent', "number of testing sentences',
"-label_per_frame'", "number of labels (categories) for each frame",
"-normalize', '"normalize all data based on stats for whole training set",
"-initial_learning_rate", "initial rate of adaptation',
"-min_random_bias", "smallest random number for initial biases",
""-max_random_bias", '"largest random number for initial biases",
"-min_random_weight'", '"smallest random number for initial weights",
"-max_random_weight', '"largest random number for initial weights",
NULL, NULL, // mark end of table

};

4.9 Stats

A Stats object holds performance statistics accumulated over the course of training
and testing epochs. The Net object contains two Stats objects, one for the training
database and one for the database used for testing generalization. Here is an exam-
ple that demonstrates how simple statistics can be obtained by using the functions
inherited from Net_behavior.

// Stats objects are used to collect statistics about the training
class Stats : public Training_behavior {

private:

int total_try, total_correct; // counters

float correct, prev_correct; // % correct on this and prev cycle
public:

Stats() { reset(); }
virtual void reset()
{ correct = prev_correct = total_try = total_correct = 0; }

// at the beginning of an epoch, zero the counters
void pre_epoch(Net#*) {

total_try = total_correct = 0;
}

// after each forward pass, keep count of if it was correct

29

void post_forw_pass(Net#*) {
total_try++;
if (net->is_correct())
total_correct++;

}

// at the end of an epoch, print some stats
void post_epoch(Net*) {
enum Stage stage;
stage = net->stage;
if (stage != TRAIN && stage '= TEST)
return;
prev_correct = correct;
correct = (float)total_correct * 100.0 / (float)total_try;
printf ("%s%7.3£%% %s correct (%d out of %d)\n",
stage != TEST? " ooy
correct, stage == TEST? "test" : '"train",
total_correct, total_try);

5 CONCLUSIONS

CLONES is a useful set of tools for training ANNs especially when working with
large training databases and networks. It runs efficiently for networks of interest on
parallel hardware we have developed. Extending CLONES to cover a wider variety of
connectionist algorithms is currently in progress. The source code for CLONES will
become available through anonymous FTP.

ACKNOWLEDGEMENTS

Special thanks to Steve Renals for daring to be the first CLONES user. Others who
provided valuable input to this work were: Jerry Feldman, Krste Asnovic, Nelson
Morgan, James Beck and Chuck Wooters. Support from the International Computer
Science Institute is gratefully acknowledged.

6 Appendix: CLONES code

// do a complete training run
// run patterns until training criterion is reached
void
BP_net::run_training()
{
// run pre_training function on all Net components
pre_training(this);

test_stats->pre_training(this);

30

train_stats->pre_training(this);

if (!param->get_bool("skip_pre_train_pass")) {
select_database (TRAIN);
run_epoch (PRE_TRAIN) ;
select_database (TEST);
run_epoch (PRE_TRAIN) ;

reset_learning rate();

// run test set first for baseline needed by next_learning_rate
select_database(TEST);
run_epoch(TEST) ;

do {
select_database (TRAIN);
run_epoch (TRAIN);
select_database (TEST);
run_epoch(TEST) ;

} while(next_learning_rate());

if (!param->get_bool("skip_post_train_pass")) {
select_database (TRAIN);
run_epoch (POST_TRAIN);
select_database (TEST);
run_epoch (POST_TRAIN);

post_training(this);

test_stats->post_training(this);
train_stats->post_training(this);

/**/

void
Net::pre_training(Net *net)
{
training_epoch_num = epoch_num = 0;
LOOP_OVER_ALL_PARTS(net, part->pre_training(net));
}

// run a complete pass
void
Net::run_epoch(Stage new_stage)
{
int pat, npat;
Net *net = (Net*) this;

epoch_num++;

if (stage == TRAIN)
training_epoch_num++;

31

stage = new_stage;
stats->pre_epoch(net) ;
pre_epoch(net) ;

npat = get_n_patterns();

for(pat = 0; pat < npat; pat++) {
// get order of pattern presentation (from sequence number pat)
pattern_num = pattern_order(pat);

// see if this pattern is selected for presentation (this time around)
if (! pattern_select(pattern_num))
continue;

// user’s routine to set input layers of net
set_input (pattern_num) ;

// set Net target variable
set_target();

switch(stage) {

case TRAIN:
train(pat); break;

case TEST:
test(pat); break;

case PRE_TRAIN:
pre_train(pat); break;

case POST_TRAIN:
post_train(pat); break;

default:
printf("bad stage %d\n", stage);
exit(-1);

}

}

stats->post_epoch(net);

post_epoch(net);

}

// Reset the learning rate schedule for a new training run.
void

BP_net::reset_learning_rate()

{

if (param->get_bool("learning_ rates")) {

learning_rate = param—>get_float(”learning_rates”,0.0);
} else {

learning_rate = param->get_float("initial_learning_rate",0.05);
}
printf("initial_learning_rate = %f\n", learning_rate);
set_learning_rate(learning_rate);
ramping_learning_rate = 0;

32

// Set next learning rate based on stats from last epoch
// returns O when training is complete
int
BP_net: :next_learning_rate()
{
if (param->get_bool("learning_ rates")) {
learning_rate = param->get_float("learning_rates'", 0.0, training epoch_num);
} else {

if (test_stats->correct - test_stats->prev_correct <
param->get_float ("ramp_threshold",0.5))
{
// Improvement in the test score was less than 0.5% (or rap_threshold if set)
// If we are already ramping the learning rate, then we are done.
if (ramping_learning_rate)
return(0); // done training

// Start ramping learning rate

ramping_learning_rate = 1;

if (ramping_learning_rate)
learning_rate = learning rate / param->get_float(''divide_learning_rate",2.0);

set_learning_rate(learning_rate);
printf (" learning rate = %f\n", learning_rate);

if (learning_ rate == 0.0)
return(0) ;

return(1); // keep training

}
void
Net::post_training(Net *net)
{
LOOP_OVER_ALL_PARTS(net, part->post_training(net));
}

/**/

void
Net::pre_epoch(llet *net)

{
LOOP_OVER_ALL_PARTS(net, part->pre_epoch(net));
}

void
BP_net::train(int pattern_num)
{

run_forward();

33

set_error();
stats->pre_back_pass(this);
run_back_order() ;
stats->post_back_pass(this);

void
Net::test(int pattern_num)
{

run_forward();

}

void
Net::post_epoch(llet *net)
{
LOOP_OVER_ALL_PARTS(net, part->post_epoch(net));

if (param->get_bool("learning_rates")
|l (stage == TEST && improved()))
write_weights();

}
int
Net::improved()
{
return(test_stats->correct == test_stats->best_correct);
}

/**/

// run forward

void

Net: :run_forward()

{
pre_forw_pass(this);
stats->pre_forw_pass(this);

// actually run the forward pass of the net
run_forw_order();

// get output from output layer(s)
get_output (output) ;

post_forw_pass(this);

stats->post_forw_pass(this);

// set_error sets the error vectors for Net output layers.
// This can be redefined to change the way errors are generated
// from the database and target.

void

34

BP_net::set_error()
{
assert(target >= 0 && target < n_output);

// set the errors for each output unit
copy_v_v(sizeof(float) * n_output, output, error);
error[target] = error[target] - 1.0;

// put the errors into the output layer(s)
put_error (error) ;

// return true if Net output is considered "correct'.
// this is called by the stats routine (post_forw_pass)
int
BP_net::is_correct()
{

float max;

int max_output;

// get the max element index in the output array of floats
max_output = max_v(n_output, output, &max);

if (max_output == target)
return(1) ;

return(0);

void
Net::pre_back_pass(Net #*net)
{
LOOP_OVER_ALL_PARTS(net, part->pre_back_pass(net));
}

void
Net::post_back_pass(Net *net)
{
LOOP_OVER_ALL_PARTS(net, part->post_back_pass(net));
}

/**/

// set_input sets the Net input layers based on database pattern pat_num.
// This function can be redefined to select and process data
// from the database(s) before putting it into the input layers.
void
Net::set_input (register int pattern_num)
{
// be sure we got a valid pattern number
assert(pattern_num >= 0 && pattern_num < db->get_n_patterns());

// get the pattern from the database

35

db->get_pattern(pattern_num, input);

// if you want hack the pattern data, redefine transform_data
transform_data(input);

// put the pattern into the input layers of the net
put_input (input) ;

// Get pattern number given a sequence number from 0 to n_pattern-1
// The db_order variable in BP_net is used to select a pattern order.
// See the comment in clones.h where the enumeration DB_order is defined.

int
BP_net: :pattern_order(int seq_num)
{
register int pattern_num;
int label, n_pat;
DB_order pat_order = db_order;
Sentence_database *sdb = (Sentence_database*) db;

if (stage '= TRAIN)
pat_order = REAL;

switch(pat_order) {
// choose a random pattern from the database
case RANDOM_PATTERN:
pattern_num = db->random(db->get_n_patterns());
break;

// get patterns in database order

case REAL:
pattern_num = seq_num;
break;
default:
panic('bad DB order %d\n'", db_order);
}
return(pattern_num) ;
}
int
BP_net::pattern_select(register int pattern_id)
{
int label;

if (label_output_unit != NULL) {
label = db—>get_pattern_1abe1(pattern_id, target_label_num);
if (label >= n_label_output_unit)
return(0);
if (label_output_unit[label] >= 0)
return(1);
else
return(0);

36

}
return(1);

}

// set_target sets the target variable for the current

// This can be redefined to process the target numbers given by the

// database(s).

void

BP_net::set_target ()

{
Sentence_database *sdb = (Sentence_database*) db;
assert(target_label_num >= 0 && target_label_num < sdb—>n_1abe1_per_frame);
target = db—>get_pattern_1abe1(pattern_num, target_label_num);

// check if there is a mapping in effect

// between target labels and output units

if (label_output_unit !'= NULL) {
assert(target < n_label_output_unit);
target = label_output_unit[target];
assert(target >= 0 &% target < n_output);

}

}

void
Net::pre_forw_pass(Net *net)
{
LOOP_OVER_ALL_PARTS(net, part->pre_forw_pass(net));
}

void
Net::post_forw_pass(Net *net)
{
LOOP_OVER_ALL_PARTS(net, part->post_forw_pass(net));
}

/**/

void
Forw_order: :run()
{
register int i, n;
register Net_part *s; // connect or layer to run

n = order.size;
for(i=0; i<n; i++) {
s = (Net_part*)order[i];
switch((Order_call)ops[i]) {
case CONNECT: // connection
s->forw_propagate(net);
break;
case PRE_CONNECT: // layer
s->forw_pre_propagate (net) ;
break;

37

case POST_CONNECT: // layer
s->forw_post_propagate(net);

break;
default:
panic('"bad op code in Net_order %d", (int)ops[il);
}
}
}
void
Back_order: :run()
{

register int i, n;
register Net_part *s; // connect or layer to run

n = order.size;
for(i=0; i<n; i++) {
s = (Net_part*)order[i];
switch((int)ops[il) {
case CONNECT:
s—>back_propagate(net);
break;
case PRE_CONNECT:
s->back_pre_propagate (net) ;
break;
case POST_CONNECT:
s—>back_post_propagate(net);
break;
default:
panic('"bad op code in Net_order %d", (int)ops[il);
}
}

/**/

// BP_analog_layer defines the CLONES functions required for basic
// analog backprop (no momentum, etc.).
// The activation and error transfer functions are still left open here.
class BP_analog_layer : public Analog_layer {
Fvec *error; // error vector
Fvec *bias; // bias vector
float bias_learning rate; // learning rate for bias vector

// Transfer function run on unit activations (usually forw_post_connect)
virtual void transfer(Fvec *out);

// forw_pre_propagate is run before any connections into this layer.
// In this case it copies the bias vector into the activation vector.
void forw_pre_propagate(Net *) { output->copy(bias); }

// forw_post_propagate is run after all forw_propagate()

// to this layer have run.

// In this case it applies the transfer function to the activation vector.
void forw_post_propagate(Net *) { transfer(output); }

38

};

// BP_sigmoid is a BP_analog_layer with the transfer functions set
// for a sigmoid function.
class BP_sigmoid : public BP_analog_layer {

void transfer(Fvec *out) { out->sigmoid(out); }

};

// BP_full_aa defines the CLONES functions for a backprop connection
// between two analog layers.
class BP_full_aa : public BP_full {

// forw_propagate is called to adjust the output layer activations based
// on the input layer activations.
void forw_propagate(Net *) {

}

};

// output_layer_activation += weight_matrix * input_layer_activation
output_layer () ->output->muladd(weight, input_layer()->output);

References

[1]

K. Asanovi¢, J. Beck, B. Kingsbury, P. Kohn, N. Morgan, and J. Wawrzynek.
SPERT: A VLIW/SIMD microprocessor for artificial neural network computa-

tions. Technical Report TR-91-072, International Computer Science Institute,
1991.

J. Beck. The ring array processor (RAP): Hardware. Technical Report TR-90-048,

International Computer Science Institute, 1990.

H. Bourlard and N. Morgan. Connectionist approaches to the use of Markov
models for continuous speech recognition. In David S. Touretzky, editor, Advances
in Neural Information Processing Systems, volume 3. Morgan Kaufmann, San

Mateo CA, 1991.

D. S. Broomhead and D. Lowe. Multi-variable functional interpolation and adap-
tive networks. Complex Systems, 2:321-355, 1988.

N. Morgan, J. Beck, P. Kohn, and J. Bilmes. Neurocomputing on the RAP. In
K. W. Przytula and V. K. Prasanna, editors, Digital Parallel Implementations of
Neural Networks. Prentice-Hall, Englewood Cliffs NJ, 1992.

N. Morgan, J. Beck, P. Kohn, J. Bilmes, E. Allman, and J. Beer. The RAP:
a ring array processor for layered network calculations. In Proceedings [EEE

International Conference on Application Specific Array Processors, pages 296—

308, Princeton NJ, 1990.

39

[7] H. Schmidt and B. Gomes. ICSIM: An object-oriented connectionist simulator.
Technical Report TR-91-048, International Computer Science Institute, 1991.

[8] D. van Camp, T. Plate, and Geoffrey Hinton. Xerion. Technical Report TR-?77,
University of Toronto, 1991.

[9] A. Wieland, R. Leighton, and W. Morgart. Aspirin for migraines. In Proceedings
of the 1988 International Neural Network Society Conference, 1988.

40

