SPERT: A VLIW/SIMD
Microprocessor for Artificial
Neural Network Computations

Krste Asanovi¢ *
James Beck *
Brian E. D. Kingsbury * T
Phil Kohn *
Nelson Morgan *
John Wawrzynek
TR-91-072
January 1992

Abstract

SPERT (Synthetic PERceptron Testbed) is a fully programmable single chip micro-
processor designed for efficient execution of artificial neural network algorithms. The
first implementation will be in a 1.2 gum CMOS technology with a 50MHz clock rate,
and a prototype system is being designed to occupy a double SBus slot within a Sun
Sparcstation.

SPERT will sustain over 300 x 10° connections per second during pattern classifi-
cation, and around 100 x 10° connection updates per second while running the pop-
ular error backpropagation training algorithm. This represents a speedup of around
two orders of magnitude over a Sparcstation-2 for algorithms of interest. An earlier
system produced by our group, the Ring Array Processor (RAP), used commercial
DSP chips. Compared with a RAP multiprocessor of similar performance, SPERT
represents over an order of magnitude reduction in cost for problems where fixed-point
arithmetic is satisfactory.

*International Computer Science Institute, 1947 Center Street, Berkeley, CA 94704
tEECS Department, University of California at Berkeley, Berkeley, CA 94720

i

1 Introduction

We are developing a single chip CMOS micro-
processor that will provide significant improvements
in cost/performance for artificial neural network cal-
culations. The architecture is fully programmable,
and executes a wide range of connectionist compu-
tations efficiently. Special emphasis is being placed
on support for variants of the commonly used back-
propagation training algorithm for multi-layer feed-
forward networksf RHW86, Wer74]. This class of net-
works is of interest in the speech recognition task that
is the focus of our applications work [MB90]. In this
work, networks are trained to estimate phonetic prob-
abilities for use in a Hidden Markov Model based
continuous speech recognizer. At the design clock
rate of 50 MHz, detailed performance analysis indi-
cate that this chip will sustain over 300 x 10® connec-
tions per second (CPS) when performing classification,
and around 100 x 10® connection updates per second
(CUPS) when performing backpropagation training.

In earlier work, our group designed a programmable
machine called the Ring Array Processor (RAP)
for general backpropagation training of layered feed-
forward networks [MBAB90, MBKB92]. This used
multiple TMS320C30 DSP chips [Tex88] connected
in a ring array. SPERT’s performance is compara-
ble to that of a 40 node RAP multiprocessor. Such
a RAP system occupies ten 9U VME boards, while
in contrast the initial SPERT system design will be
a double SBus card that will fit into a worksta-
tion. SPERT achieves this dramatic improvement in
cost/performance through a combination of using re-
duced precision fixed point arithmetic, providing high
on- and off-chip operand and instruction bandwidth,
and employing a highly parallel architecture. SPERT
has multiple parallel datapaths each with parallel and
pipelined functional units that can execute up to 37
primitive operations per cycle (1.8 GOPS).

SPERT fulfills an intermediate role in our neural
network system development plans. The RAP gave
us an early speed-up over existing workstations so
that we could develop our speech algorithms using
large databases (over 1,000,000 patterns) and large
networks (100,000 to 400,000 connections). The use
of commercial chips for this system permitted a short
(one year) development time. SPERT is our first full
microprocessor, and is the result of several years of
work on our VLSI design path. SPERT tests this
path as a first step towards our next full multiproces-
sor machine (tentatively named CNS-1), which will

use similar technology. A consistent set of software
abstractions will assist in porting code between these
platforms.

This paper provides an overview of the SPERT
project. Section 2 summarises work to determine
arithmetic precision requirements for neural network
algorithms, and the resulting selection of arithmetic
units for SPERT. Section 3 presents the overall archi-
tecture of SPERT. Section 4 describes the VLSI imple-
mentation methodology and current status. The SBus
board design is covered in Section 5, and Section 6
outlines the planned software environment. Section 7
contains results of a detailed performance analysis of
SPERT for the backpropagation training task. Sec-
tion 8 compares SPERT to other programmable neu-
rocomputers.

2 Reduced Precision Arithmetic

One common feature of connectionist algorithms
that can be exploited when developing a special pur-
pose neurocomputer is that arithmetic operations can
be performed with much less precision and dynamic
range than is required for typical scientific and engi-
neering codes. Shorter word widths require smaller
datapaths. In particular, the area of a fast multiplier
circuit grows as the square of the width of the in-
put operands. Shorter word widths also require less
operand storage and consume less memory bandwidth
per operand. Employing fixed point rather than float-
ing point arithmetic also significantly reduces design
complexity and functional unit latencies.

To guide the development of the arithmetic units
in SPERT, we have conducted a series of experiments
to investigate the effects of moderate precision, fixed
point arithmetic on the backpropagation training al-
gorithms used in the speech recognition application.
The RAP was used to simulate reduced precision
arithmetic while training large networks on large, real
world datasets [AMO1].

Connection weights dominate storage and memory
bandwidth requirements, so we first investigated the
effects of reducing only weight precision. The tests
were performed by adapting an existing program to
call a weight quantization routine after each training
pattern. The effect of this is to simulate a special
purpose processor that stores and updates weights in
fixed point to some lesser precision, but which per-
forms all other arithmetic using 32b floating point.
Initial results suggest that 16b weight values are suf-

ficient to give essentially the same training and clas-
sification performance as full 32b floating point val-
ues, but that special care must be paid to scaling and
rounding. In particular, simple truncation of wider
range weights to 16 bits seriously hurt performance
for our learning task (typically reducing phonetic dis-
crimination from a 65% accuracy to less than 40%),
while unbiased rounding yielded essentially no degra-
dation compared to the floating point weights. A sec-
ond set of experiments varied unit output precision
with 25b and 16b weights, and demonstrated that 4-
8 bits of output precision were sufficient for training
and classification. These results are consistent with
other studies in a number of different application ar-

eas [BH83|.

Based on these precision experiments, our require-
ments for the arithmetic units in SPERT were that
they provide fast 16bx8b fixed-point multiplication,
with efficient handling of larger (24-32b) intermedi-
ary results.

We chose a uniform register and datapath width
of 32b for SPERT. Adders, shifters, and limiters are
relatively inexpensive to implement and all work on
full 32b data to retain the precision of intermediary
results. Adopting a uniform on-chip data width both
simplifies the programmer’s model and the implemen-
tation. Memory loads and stores can transfer vec-
tors of lower precision operands making efficient use of
processor—-memory bandwidth. All memory operands
of less than 32b are sign-extended to 32b when loaded.

To simplify the implementation and reduce rout-
ing area, we required that the multiplier fit within a
32b datapath. After some experimentation, we dis-
covered that the our most compact 16bx8b multiplier
layout compatible with a 32b datapath could be read-
ily extended to a 24bx8b array with minimal cost
in area and cycle time. Although the multiplier we
use is somewhat larger that that suggested by the
study, the memory interface has been optimized for
16b weights and allows one 16b operand to be fetched
per cycle per datapath. Applications requiring higher
precision may be memory bandwidth limited unless
memory operands can be reused. By increasing the
multiplier latency to two clock cycles, we both simpli-
fied the design, and reduced its area, without reduc-
ing throughput. A new multiply can be initiated ev-
ery cycle, but cannot use results from the immediately
previous instruction. Envisaged applications have suf-
ficient parallelism to hide this latency. The multiplier
produces a full 32b result, but can optionally round
the result to 24b, 16b, or 8b. The 8b input to the
multiplier can be treated as either signed or unsigned

to support higher precision multiplies in software; a
16bx16b multiply occupies the multiplier for 2 cycles,
a 24bx24b multiply occupies the multiplier for 3 cy-
cles. Thus, performance should degrade gracefully for
applications requiring greater precision.

With a compact multiplier design, multiple fast
datapaths can be integrated on a single die. The main
compute engine in SPERT is a small SIMD array of
8 parallel datapaths, with each 32b datapath contain-
ing a 24bx8b multiplier, a 32b adder, a 32b arith-
metic/logical shifter, and a 32b limiter. The shifter
when shifting left can optionally shift in 1/2 LSB to
prepare an operand for a rounding addition. The lim-
iter allows a 32b word to be clipped to an 8b, 16b, or
24b value, saturating the output if necessary.

3 SPERT Architecture

The overall structure of SPERT is shown in Fig-
ure 1. The main components are a JTAG! interface
and control unit, an instruction fetch unit with an in-
struction cache, a scalar 32b integer datapath and reg-
ister set, a SIMD array containing multiple 32b fixed
point datapaths each with an associated register file,
and a 128b wide external memory interface.

The initial implementation of SPERT has a maxi-
mum clock frequency of 50 MHz, and all performance
figures in this document are based on this clock rate.
SPERT systems may run at slower clock rates to ac-
comodate large memory systems.

SPERT is intended to function as an attached pro-
cessor for a conventional workstation host. An in-
dustry standard JTAG serial bus is used as the host—
SPERT interface. Chip and board testing, bootstrap,
data I/O, synchronization, and program debugging
are all performed over the JTAG link. The host
calls routines on SPERT by initializing the instruction
pointer over the JTAG link. The host performs data
I/O by reading and writing SPERT external memory
over JTAG. A single memory transfer moves 128b of
data between the memory and the data shift register,
stalling SPERT for one cycle. The shifting of the data
register can be overlapped with further SPERT mem-
ory accesses. The JTAG interface is clocked at 50 MHz
providing a maximum host-SPERT data bandwidth
of 6 MB/s. A synchflag bit in the SPERT con-
trol unit supports host-SPERT synchronization. Each
SPERT instruction has a synch bit which when set

1nitials of the Joint Test Action Group who helped formu-
late the IEEE1149.1 boundary scan standard. For brevity, the
term JTAG is used to refer to the standard in this document.

Figure 1: SPERT Structure.

causes SPERT to complete this instruction, set the
synchflag bit and enter an idle state. The host can
poll the value of synchflag over JTAG, detect when
it becomes set, perhaps initiate some I/O task, then
clear synchflag to let SPERT proceeced at the next
instruction. This facility is also used to allow single
step execution of SPERT programs for debugging pur-
poses; if all instructions have synch set, then SPERT
will pause and wait for the host after every instruction.
These additional JTAG functions have been carefully
designed so as not to compromise JTAG’s use as a test
port.

SPERT is a VLIW machine, with a single 128b
instruction format. The instruction pipeline has 7
stages, and, in the absence of instruction cache misses
and host memory accesses, one instruction can be
completed every cycle. The greatly expanded instruc-
tion bandwidth requirement can be a problem for
highly parallel VLIW architectures. However, typi-
cal SPERT applications are dominated by small in-
ner loops, and a relatively small on-chip instruction
cache gives excellent performance. The instruction
cache holds 16 instructions and is direct mapped with
a separate tag per cached instruction. The instruc-
tion cache on SPERT has been organized as a stall
cache [ASPF92] to take advantage of the single cycle
external memory. During instruction fetch, the stall
cache bypasses the instruction cache whenever the in-
struction currently in the memory access stage of the
instruction pipeline does not use the memory port,
and fetches the instruction direct from memory. The
128b memory bus allows a complete 128b VLIW in-
struction to be fetched each cycle, and so cache misses
only cost one stall cycle each. Given the performance
of the small stall cache and the large external mem-
ory bandwidth, there is little incentive to use a denser
instruction encoding for SPERT, and hence we avoid
extra decode complexity and delay.

The scalar unit is similar to the integer datapath of
a RISC processor, and is used for general scalar com-
putation and to support the SIMD array by provid-
ing address generation and loop control. It contains
a triple-ported 16x32b general purpose register file, a
fully bypassed ALU, and two 32b address generators
addl and add2. The two address generators each have
two separate 32b address registers to allow them to
operate independently of the main scalar ALU. The
instruction fields for the scalar unit are more hori-
zontally encoded than for a typical RISC unit, allow-
ing better utilization of the processor components in
highly parallel code. For example, the scalar register
file can use one read port to supply a register to which

the immediate will be added to form a vector load ad-
dress, while the second read port is used to obtain a
value to be broadcast to the SIMD array, while the
write port is used to update the register file with the
result of a scalar load from a SIMD register. Here, the
three register file ports are used individually for three
unrelated parallel operations.

The scalar unit includes a logic unit, and this is con-
nected to the branch comparator. The branch com-
parator determines whether or not to branch depend-
ing on the sign and equality to zero of the result of
the logic unit. This allows branches dependent on the
result of a logical operation to complete in a single
cycle. The two instructions following a branch are al-
ways executed, regardless of the branch outcome.

The SIMD array contains 8 fixed-point datapaths,
similar to those found in DSP chips. Each SIMD dat-
apath contains a 24bx8b multiplier, a 32b saturating
adder, a 32b shifter, and a 32b limiter. All of these
functional units can be active simultaneously, deliver-
ing up to 400 x 10° fixed-point multiply-accumulates
per second. Each SIMD datapath includes a triple-
ported 16x32b general purpose register file. In addi-
tion each SIMD datapath contains a number of dat-
apath registers. These are located on the inputs of
the functional units, and allow results to be moved
between functional units without requiring extra read
and write ports on the general purpose register file.
Each SIMD datapath has 3 global buses, each of which
can transfer two values per clock cycle, together with
several local sneak paths between physically adjacent
functional units. This rich interconnect coupled with
the separate input registers, supplies the high operand
bandwidth required by the highly parallel datapaths.

The external memory interface supports up to
16 MB of single cycle memory over a 128b data bus.
At the maximum 50 MHz clock rate, 12ns access time
SRAMs are required and memory bandwidth is then
800 MB/s. The relatively small external memory will
typically be used to hold weight values and program
code. Input and output training patterns will be sup-
plied by the host from a large database held on disk.
Even with relatively small networks, the time spent
training on one pattern is sufficient to transfer train-
ing data for the next pattern over the JTAG link.

SPERT is a pure load/store architecture; all mem-
ory transfers are to/from registers, and all functional
unit operations are register-register. A memory ac-
cess may transfer either a single 8b, 16b, or 32b
scalar operand, or a vector of 8x8b, 8x16b, or 4x32b
operands. All SPERT registers are 32b wide, and
all memory operands less than 32b wide are sign-

extended to 32b when loaded.

A scalar memory load operand can be loaded into
the scalar unit and/or broadcast to all 8 datapaths.
A vector load can only move into a SIMD register.
The 4x32b vector load updates only 4 of the 8 SIMD
datapaths. Similarly for a 4x 32b store only one half of
the datapaths participate. All vector memory accesses
move a contiguous, aligned vector of operands and the
assignment of datapaths to vector elements is fixed.
These restrictions dramatically simplify the memory
interface. If more complex memory access patterns
are required, then these can be performed through the
scalar unit.

The scalar unit experiences a two cycle load delay.
The SIMD unit is active later in the pipeline than
the scalar unit, and experiences no load delay. How-
ever, there is a single cycle store delay; the value being
stored cannot have been produced in the preceding cy-
cle.

The scalar unit can directly load/store into a SIMD
register, treating each one as a small 8x32b on-chip
memory. There are two main uses for this capability.
The first is to allow 8 scalar operands to be transferred
between registers and external memory in one cycle.
The other use is to enable a tight coupling between the
scalar unit and the SIMD units for cases where oper-
ations cannot be parallelized across the SIMD datap-
aths. SPERT is capable of performing a scalar unit
load from a SIMD register, a scalar unit store to a
SIMD register, and an external memory SIMD vector
access in a single instruction.

4 SPERT VLSI Implementation

A major decision in any VLSI design is the choice
of clocking strategy. Our VLSI group has been ex-
perimenting with the “True Single Phase Clocking”
(TSPC) proposed in [YS89] for CMOS circuits, gain-
ing experience with the technique for larger and more
complex systems [Waw92]. These designs result in re-
duced complexity, higher density, and higher speeds
than conventional CMOS clocking methodologies. In
TSPC designs, there is a single clock signal distributed
to two complementary latch types; one is transparent
on clock low, the other on clock high. To control skew
and simplify timing analysis, we classify chip signals
as either clock or data and forbid gating the clock sig-
nal with data signals. The result is that there is only a
single clock signal providing the timing reference, and
data signals only have to meet setup and hold times
relative to the clock edges. In the SPERT design, a
single central clock buffer will be used. This helps

ensure low clock skew by eliminating delay variations
introduced by intermediate clock distribution buffers.

SPERT is being implemented in a 1.2 ym CMOS
process using MOSIS scaled CMOS design rules; with
a target 50MHz clock rate. The design uses a mix-
ture of full-custom cells for the datapaths and pads,
and standard cells for control and other random logic.
The current floorplan indicates a die size of approxi-
mately 7.4x9.2mm?2 Our tool set is a mixture of com-
mercial and public domain software, the latter coming
primarily from the various UC Berkeley toolsets. We
are using magic as our primary layout editor, SPICE3
and CAzM as our circuit level simulators, irsim as
our switch level simulator, and the Lager/ViewLogic
system for schematic capture and logic synthesis.

A number of scaled SPERT components have been
successfully fabricated and tested on 2.0 yum MOSIS
TinyChips. These include the triple ported register
file and saturating adder. A JTAG controller with cus-
tom boundary scan cells has also been fabricated and
delivered, and has passed initial tests. The multiplier
design has been completed and is out for fabrication.
The custom cells we are developing are being made
available as Lager library cells. A full description of

the VLSI cell library work is available in [KAW*91].

5 SPERT SBus Board

We are designing an SBus board around the SPERT
chip. The board will contain a SPERT chip clocked at
33MHz, 2 MB of 20ns SRAM, and the SBus to JTAG
interface. This will be placed inside a SPARC desktop
workstation to form a powerful, low cost neural net-
work accelerator. This combination will form the core
of a demonstration training system that we plan to
implement in mid 1992. We intend to develop higher
speed and larger memory SPERT systems as faster
and denser memory parts become available.

The board will measure approximately 5” x6” with
the layout shown in Figure 2. It will occupy two SBus
slots and will dissipate less than 20W, with most of
the power dissipation due to the SRAM. The SPERT
chip will be packaged in a 209 pin PGA and will be
socketed on the board. The same board will be used
to test SPERT chips after fabrication.

The external memory consists of sixteen 128K x8b
20ns SRAMs. Four SSI bipolar address drivers are
used to buffer the address line outputs from the
SPERT chip. Each data bus pin of the SPERT chip
has only a single connection to an SRAM data pin.

This minimizes the load on the SPERT and SRAM

Address

Drivers \D D

SPERT
PROM Chl p
i
SBUS
Interface
Xilinx PGA D D

Figure 2: SPERT board.

data bus drivers, and simplifies board layout. To fur-
ther reduce data bus load, and also to reduce board
size, 32-pin surface-mount small outline packages will
be used for the SRAMs.

The SBus interface will be implemented using a Xil-
inx Field Programmable Gate Array (FPGA) and a
PROM. The FPGA converts the parallel data from
the host to the serial format required by the JTAG
standard used in the SPERT chip. The function of
the PROM is to supply initialization data to the host
CPU, as required of all SBus boards.

6 Software Environment

The application developers’ interface to SPERT will
be a set of C++ library classes for the host Sparc-
station that implement a selection of common neu-
ral network related algorithms. We preserve our in-
vestment in software by using the same higher level
simulator software that we have developed for the
RAP. The matrix and vector libraries define a com-
mon interface that hide the SPARC, RAP or SPERT
hardware from the user and the simulator code. The
Connectionist Layered Object-oriented NEtwork Sim-
ulator (CLONES) is based on this interface and sup-
ports training and interconnect of a variety of network
types including arbitrarily shaped backpropagation
networks [Koh91].

The matrix vector library is in turn implemented on
top of another shared interface: the Common Server
Interface (or CSI). Object classes (such as matrix and
vector) that insulate the user from the hardware con-
figuration are built on top of the CSI class. The CSI

class defines the interface that is inherited by classes
such as CSI_SPARC, CSI_RAP and CSI_SPERT. These
three classes contain the implementation of CSI for
each of the three hardware configurations. Multiple
CSI_RAP or CSI_SPERT objects can be created allowing
the host to command more than one RAP or SPERT
system.

In support of the SPERT library class developer,
a SPERT assembler and Sparcstation C++ run-time
libraries will be provided. The run-time libraries will
provide test, bootstrap, memory management, func-
tion call, and data I/O routines for the SPERT board.

A software simulation of the SPERT system will
be provided to allow application development where
SPERT hardware is not available.

7 SPERT Performance Analysis

During the architectural design process, a number
of applications were considered and used to evaluate
design alternatives. The primary envisaged applica-
tion is backpropagation training and in this section
we present detailed performance results for backpro-
pagation training on SPERT.

These results have been obtained by careful hand
analysis of assembly code routines. The results include
all loop overhead, blocking overhead, and instruction
cache miss cycles. The routines are fully parameter-
ized, with all parameters passed in scalar registers.
For these timings, all input data resides in memory,
and all output data is placed back into memory in a
form that will allow these routines to be chained with
no penalty for data rearrangement. The only restric-
tion imposed by these routines is that the number of
units in a layer be a multiple of 8. Usually this is
not an important restriction, but dummy units can be
inserted to pad smaller layers if necessary. For these
results, weights are 16b, inputs are 8b, and activations
are 8b sigmoids looked up in a 64K entry table. Most
intermediary values are calculated to 24-32b precision.

Figure 3 plots the performance of SPERT on for-
ward propagation. The graph plots a number of curves
for a fully connected pair of layers, varying the num-
ber of units in the input and output layers. Peak per-
formance is around 352 x 10° connections per second
(CPS). There are nine instructions in the inner loop
for forward propagation. The first instruction brings
in a vector of 8 inputs; the subsequent 8 instructions
load in 8 vectors of 8 weights each. Each of the weight
vectors will be multiplied by one of the 8 inputs, and
the 8 results are accumulated one per datapath. The

loop is unrolled and software pipelined to sustain peak
performance. SPERT attains high performance even
with smaller nets. Nets must be smaller than 32x32
to drop below half peak performance.

Figure 4 plots the performance of SPERT for back-
propagation training of input unit layer to hidden
unit layer weights in a multilayer feedforward network.
This include the time for forward propagation, and the
time to calculate error terms and update weights dur-
ing backpropagation. No errors are backpropagated
in this case. Peak performance is around 114 x 108
connection updates per second (CUPS).

Figure 5 plots the performance of SPERT for back-
propagation training of hidden unit layer to output
unit layer weights in a multilayer feedforward network.
This includes forward propagation, output error cal-

culation, weight updates, and error backpropagation.
Peak performance is around 86 x 10° CUPS.

In this case, performance drops off noticeably with
fewer output units. This is due to the way in which
errors are backpropagated. The backpropagate rou-
tine has an outer loop over groups of 8 hidden units,
and an inner loop over groups of 8 output units. The
errors for each hidden unit are accumulated as 8 par-
tial error terms, one per datapath, in a vector regis-
ter. When the inner loop completes, it is necessary to
sum the 8 partial errors in a vector register for each
of the 8 hidden units in the current iteration of the
outer loop. This is performed in two stages. First,
each set of 8 partial errors are reduced to 4 by us-
ing 4x32b memory accesses to move 4 partial sums
to the other half of the SIMD array. Next, the scalar
unit accesses the vector registers and performs three
additions per vector register to reduce the 4 partial
sums to a single error for each hidden unit. This set
of summations must be performed after completing
every inner loop over output units, and so represents
a significant overhead with smaller numbers of output
units. There are several possible ways to reduce this
overhead. A future SPERT design could implement
a vector reduction unit that sums the 8 elements in
a vector register using a carry save array. Although
this would provide a useful boost to training perfor-
mance on smaller networks, it has not been included
in the current implementation to save design time and
complexity.

Combining the above results we obtain Figure 6.
This shows the training performance on a 3 layer feed-
forward network with equal numbers of units on the
input, hidden, and output layers. Peak performance

is around 100 x 10% CUPS.

In comparing these performance figures with other

implementations, it must be stressed that the fig-
ures for SPERT represent training with no pooling of
weight updates. The training is entirely on-line with
weight updates occuring after every pattern presenta-
tion. Some parallel systems train multiple copies of
a network, then periodically pool the weight updates.
This can lead to reduced training performance, coun-
teracting the benefits of increased parallelism.

8 Related Work

Several related efforts are underway to construct
programmable digital neurocomputers, most notably
the CNAPS chip from Adaptive Solutions [Ham90]
and the MA-16 chip from Siemens [RBR*91].

Adaptive Solutions provides a SIMD array with 64
processing elements per chip, in a system with four
chips on a board controlled by a common microcode
sequencer. As with SPERT, processing elements are
similar to general purpose DSPs with reduced preci-
sion multipliers. Unlike SPERT, this chip provides
on-chip SRAM sufficient to hold 128K 16b weights but
has no support for off-chip memory. Larger networks
require additional processor chips, even if the extra
processing power cannot be efficiently employed.

Like SPERT, the MA-16 leverages the high density
and low cost of commercial memory parts. This chip
is a direct realization of three general network formu-
lae that are intended to summarize many connectio-
nist computations. The system that is envisioned will
consist of a 2D systolic array containing 256 of these
chips, and the resulting system will provide impressive
raw peak throughput. However the purely systolic ap-
proach, together with deep pipelines and relative in-
flexibility will severely limit its general applicability.
In particular, the systolic array will perform poorly
on smaller networks, and on related code that is not
purely connectionist in nature.

In summary, we are designing SPERT to provide
the large off-chip memory bandwidth of the Siemens
chip as well as the general programmability of the
Adaptive Solutions chip. SPERT also provides high
scalar performance and performs well on smaller lay-
ers. These capabilities are important for our appli-
cation, as we are interested in experimenting with
larger, sparser network structures that are organized
as collections of smaller; highly interconnected, sub-
networks. Both other architectures will experience a
serious drop in performance if network size is reduced,
or if network structure is made more complex. Both
the CNAPS and the MA-16 are designed to be cas-

caded into larger SIMD processor arrays. An impor-

360

Output Units:
2048
@320 128
2280 [
= 64
AP0 WU NS WA RS W 77 70 G S O S N | I
° 32
8 e —
gé 200 16
% 160 _8
o
j2) 4
5 120
§ 1
c 80
[
Q
O 4w
0 N -
1 2 4 8 16 32 64 128 256 512 1024 2048
Input Units
Figure 3: SPERT Forward Propagation Performance.

120
a Hidden Units:
c 2048
9
= 100 128
E ,,,,,,,,
N—r
o] 64
§ 80 | LU
(§§ 32
o) 16
Q. 60 T
8 8
g e
(o8
S 40
c 1
= R N . /2 B A R R S R O S
8 2
c
c
(@)
O ______

o

1 2 4 8 16 32 64 128 256 512 1024 2048
Input Units

Figure 4: SPERT Training Performance. Input Unit to Hidden Unit Weights.

120

100

0]
(=]

&

Connection Updates per Second (millions)
8 3

o

Figure 5: SPERT Training Performance. Hidden Unit to Output Unit Weights.

120

100

Connection Updates per Second (millions)
8 5] 3 8

o

Figure 6: SPERT Training Performance. Three layers, with equal number of units per layer.

Output Units:
2048

16 32

64 128 256 512 1024 2048
Hidden Units

8 16

32

64

128 256 512 1024 2048

Units per Layer

tant goal in the SPERT design is to prototype ideas
for a parallel processing node that will be used in a fu-
ture, scalable, MIMD multiprocessor system. Such a
system will be targeted at high performance on large,
irregular network structures.

9 Summary

We have presented an overview of the SPERT
project. For those connectionist applications that do
not require high precision arithmetic, SPERT repre-
sents a very high performance, low cost acceleration
tool. The predicted sustained performance is over
300 x 10% CPS for forward propagation, and around
100 x 1085 CUPS for error backpropagation in layered
feedforward networks. A consistent set of software
abstractions unify SPERT with our other systems, in-
cluding the earlier RAP, and a larger multiprocessor
we are currently designing with further custom VLSI
elements based on SPERT.

10 Acknowledgements

The National Science Foundation provided sup-
port for the VLSI building blocks and design tools
through Grant No. MIP-8922354, and also with Grad-
uate Fellowship support for Brian Kingsbury. John
Wawrzynek received support from the National Sci-
ence Foundation through the Presidential Young In-
vestigator (PYT) award, MIP-8958568. The larger
project continues to be supported by the International
Computer Science Institute.

References
[AMO1] Krste Asanovi¢ and Nelson Morgan. Ex-
perimental Determination of Precision Re-
quirements for Back-Propagation Training
of Artificial Neural Networks. In Proceed-
ings 2nd International Conference on Mi-
croelectronics for Neural Networks, Mu-

nich, October 1991.

[ASPF92] Krste Asanovié, Klaus Erik Schauser,
David A. Patterson, and Edward H.
Frank. Evaluation of a Stall Cache: An
Efficient Restricted On-Chip Instruction
Cache. In Proceedings 25th Hawaur Inter-
national Conference on System Sciences,

January 1992.

10

[BHSS]

[Ham90]

[KAW*91]

[Koh91]

[MBY0]

[MBABY0]

[MBKB92]

[RBR*91]

Tom Baker and Dan Hammerstrom. Mod-
ifications to Artificial Neural Network
Models for Digital Hardware Implementa-
tion. Technical Report CS/E 88-035, De-
partment of Computer Science and Engi-
neering, Oregon Graduate Center, 1988.

A VLSI architec-
ture for High-Performance, Low-Cost, On-
Chip Learning. In Proc. International
Joint Conference on Neural Networks,

pages 11-537-543, 1990.

Dan Hammerstrom.

Brian E. D. Kingsbury, Krste Asanovic,
John Wawrzynek, Bertrand Irissou, and
Nelson Morgan. Recent Work in VLSI
Elements for Digital Implementations of
Artificial Neural Networks. Technical Re-
port TR-91-074, International Computer
Science Institute, 1991.

P. Kohn. CLONES: Connectionist Lay-
ered Object-oriented NEtwork Simula-
tor. Technical Report TR-91-073, Interna-
tional Computer Science Institute, 1991.

N. Morgan and H. Bourlard. Continu-
ous speech recognition using Multilayer
Perceptrons with Hidden Markov models.
In Proc. IEEE Intl. Conf. on Acoustics,
Speech, & Signal Processing, pages 413—
416, Albuquerque, New Mexico, USA,
1990.

N. Morgan, J. Beck, E. Allman, and
J. Beer. RAP: A Ring Array Processor
for Multilayer Perceptron Applications.
In Proc. IEEE Intl. Conf. on Acoustics,
Speech, & Signal Processing, pages 1005—
1008, Albuquerque, New Mexico, USA,
1990.

N. Morgan, J. Beck, P. Kohn,
J. Bilmes. Neurocomputing on the RAP.
In K. W. Przytula and V. K. Prasanna,
editors, Digital Parallel Implementations
of Neural Networks. Prentice Hall, 1992.
In Press.

and

U. Ramacher, J. Beichter, W. Raab,
J. Anlauf, N. Bruls, M. Hachmann, and
M. Wesseling. Design of a 1st Generation
Neurocomputer. In VLSI Design of Neu-
ral Networks. Kluwer Academic, 1991.

[RHWS6]

[Tex88]

[Waw92]

[Wer74]

[YS89]

D.E. Rumelhart, G.E. Hinton, and R.J.
Williams. Learning Internal Representa-
tions by Error Propagation. In Paral-
lel Distributed Processing. Exploration of
the Microstructure of Cognition, volume 1.
MIT Press, 1986.

Texas Instruments, Houston, Texas, USA.
Third-Generation TMS320 User’s Guide,
1988.

J. Wawrzynek. A 250MHz 64-bit Datap-
ath in 1.2 gm CMOS. Technical Report In
Preparation, Computer Science Division
(EECS), University of California, Berke-
ley, 1992.

P.J. Werbos. Beyond Regression: New
Tools for Prediction and Analysis in the
Behavioral Sciences. PhD thesis, Dept.
of Applied Mathematics, Harvard Univer-
sity, 1974.

Jiren Yuan and Christer Svensson. High-
Speed CMOS Circuit Technique. [EEE
JSSC, 24(1):62-70, February 1989.

11

