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Abstract

Conventional speaker-independent speech recognition systems do not consider speaker-

dependent parameters in the probability estimation of phonemes. These recognition
systems are instead tuned to the ensemble statistics over many speakers. Most para-
metric representations of speech, however, are highly speaker dependent, and prob-
ability distributions suitable for a certain speaker may not perform as well for other
speakers. It would be desirable to incorporate constraints on analysis that rely on
the same speaker producing all the frames in an utterance. Our experiments take a
first step towards this speaker consistency modeling by using a classification network
to help generate gender-dependent phonetic probabilities for a statistical recognition
system. Our results show a good classification rate for the gender classification net.
Simple use of such a model to augment an existing larger network that estimates
phonetic probabilities does not help speech recognition performance. However, when
the new net is properly integrated in an HMM recognizer, it provides significant
improvement in word accuracy.
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1 Introduction

Reports over the last few years have described improvements in continuous speech recognition using a
Multilayer Perceptron (MLP) to estimate output probabilities for Hidden Markov Models (HMMs).
Bourlard and Wellekens [2] showed the relationship between minimizing a squared-error cost function
and estimating Bayesian probabilities for the multiclass case (see Richard and Lippmann [6] for a
good overview of theory and results for that problem). In particular, experiments by Bourlard and
Morgan [1] have shown that the MLP outputs (when divided by the prior classification probabilities)
can be used as estimates of the emission probability of HMM’s. Particularly when this approach
is used to incorporate contextual information at the input of the MLP, significant performance
improvement over non-discriminant HMM training procedures is observed. However, in common
approaches to speaker-independent recognition (both pure HMM and hybrid MLP-HMM), speaker-
dependent parameters are not considered during training. The probability estimators are instead
trained using the entire ensemble of data from many speakers. Most parametric representations of
speech, however, are highly speaker dependent, and probability distributions suitable for a certain
speaker may not perform as well for other speakers. Examples of speaker-dependent parameters are
differences in regional accents and the length of male and female vocal tracts.

A more general view of this limitation is the lack of consistency constraints. Each time that one
estimates HMM output probabilities, the analysis ignores the fact that the speaker is consistent for
the whole utterance. That is, each frame-wise analysis should be constrained to models that assume
the same vocal tract and basic glottal mechanism. This suggests that speaker-dependent feature
estimation should be done over a large window of the input waveform, since these features are not
local properties of a small input window.

As has been observed for some mainstream HMM systems [5], given enough training data, sep-
arate phonetic models for male and female speakers can be used to improve performance. Our
first attack on consistency, then, is to train an MLP to estimate the probability of gender. This
probability is then integrated into an existing MLP-HMM hybrid recognizer.

2 The Classification Net

The first task is to build a net that predicts whether the speaker of a speech input is male or female.
The output of the classification net is taken as the probability P(Gender|Data), and will be used
in some manner to be described later to improve overall recognition.

In our experiments we tried to answer the following questions:

e What is the best set of features, that we want to extract from speech?
e What is the best configuration for the classification network?

Experiments were done using the 109-speaker DARPA Resource Management corpus. As we
have done in our group for previous experiments with this corpus, 3511 sentences were used for the
training set and 479 in the cross validation set.

In our first experiment we used 12 mel-cepstral features and energy along with their first deriva-
tives. The features were calculated from 20ms of speech. The networks that we use only have one
hidden layer. The number of input features are 26, and there are two output units. One for each
gender. The results are summarized in table 2.

From these first set of results, we tried to improve the recognition rate by using linear prediction
coefficients instead of mel-cepstrum since they capture the speaker-dependent features better. We
used 12 coeflicients and energy along with their first derivatives. We started with an analysis window
of 20ms.

At this point we realized that we had to use a bigger analysis window to properly model con-
sistency and to augment the feature set with features that separate males and females. After some



Number of Hidden Units | Temporal Window Length | Cross Validation Set Error
32 5 28.7%
32 9 28.0%
16 5 25.1%
16 9 25.1%

Table 1: Results for Mel-Cepstrum Features

Number of Hidden Units | Temporal Window Length | Cross Validation Set Error
32 5 28.4%
32 9 27.9%
16 5 29.5%

Table 2: Results for the LPC12 Features

experimentation, the LPC coefficients and energy were calculated over a 500 msec window, and were
augmented by the fundamental frequency (plus derivatives of all these features), for a total of 28
inputs. The MLP had one hidden layer. Experiments showed little difference in performance over
a range of hidden layer sizes, and 16 hidden units were used for the rest of the experiments. There
were two output units, one for each gender. This final system incorrectly predicts the gender for
cross-validation set frames less than 16% of the time.

On a sentence level, it is possible to identify the talker’s gender with much lower error. Table
3 shows the classification rate over the cross-validation set using either the mean or median of
MLP output probabilities over the sentence. We also tested the sentence mean on the test set of
the DARPA resource management data base, comprising of 300 sentences from male and female
speakers. The performance remained high with a 6.3% sentence error. In the course of dynamic
programming, an estimate of a geometric mean is essentially used, which also should give a similar
strong result by the end of the sentence. While this result could perhaps be improved, we were
satisfied that at least we had a fairly reliable gender indicator.

3 Using Gender-Dependent Features in
Speaker-Independent Recognizers

3.1 Introduction

Traditional HMM’s have tried to deal with speaker-dependencies through speaker adaptation or
speaker clustering. Speaker clustering assumes that speakers can be divided into clusters with similar
speech parameters. HMM’s are then trained for each cluster. The recognition process is divided

Combination Method | Sentence Error
Average 5.8%
Median 7.1%

Table 3: Results for Male-Female Classification with Sentence Smoothing
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Figure 1: The outputs of the gender net become additional features to the hidden layer
of the general recognition net

into two stages. The first stage is the cluster identification stage, where the speaker is classified
into the cluster that most resembles his speech characteristics. In the second stage, the HMM
corresponding to the cluster is used to identify the speaker’s sentence. For the cluster identification
stage, the speaker has to provide a training sentence with its correct identity, in order to find the
correct cluster. K.F. Lee [4] experimented with two algorithms for speaker adaptation. However,
his results are not better than speaker-independent recognition. In a more recent work Huang et
al [3] presented a codeword-dependent network(CDNN) for speaker normalization. The network is
used as a nonlinear mapping function to transform speech data between two speakers. The goal is
to minimize speaker variations with a limited amount of training sentences. Their results using this
method are comparable to that of the best speaker-independent performance on the same test set.

In the hybrid MLP-HMM approach, speaker-dependencies can be dealt with by taking into
account speaker-dependent speech parameters in the training of the MLP network.

3.2 The Integration of the Classification
in the Speech Recognizer

We then attempted to incorporate the gender classification net into the phonetic probability estima-
tion process. In the first approach, the gender subnet is used to generate an extra pair of inputs to
the main phonetic probability network. The latter network (which uses 9 frames of 26 mel cepstral
and delta mel cepstral coefficients) is then trained and used for HMM likelihood estimation, that is
to generate (after division by priors) output probabilities for hypothesized HMMs in the recognition
process (see [1] for a more detailed description of this method) . This straightforward approach
would generate the same probabilities as in the gender-independent system, that is P(phone|data) .
However, the hope would be that the separate training of a small application specific net would allow
the overall net to learn a better minimum. The architecture of this approach is shown in Figure 1.
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Figure 2: The output of the classification net selects which net to use, or else provides
a weighting for each net’s outputs

In a second approach, the main network is replaced by two networks, one to be trained only with
sentences from males, and one only with females. To keep the number of parameters similar, the
input context for each is reduced to 5 frames. As shown in Figure 2, the gender network makes a hard
decision and only the ”correct” net is used. For simplicity’s sake, we ignore real-time considerations
here and use the sentence-average estimate of male/female probability to determine the setting of
the ”switch”. This approach is similar to K.F. Lee’s approach as mentioned above.

In a subtler form of this approach the output of the gender net is used as a probability to
weight the phonetic probabilities out of the two other networks, so as to estimate the total phonetic
probabilities given the male/female decomposition. The equation for determining the probability of
each phone is then:

P(phone|data) = P(phone|male,data) * P(male|data) + P(phone|female, data) * P(fernale|data)
(1)
All of these approaches in one way or another simply decompose the desired phonetic probability
into gender-dependent pieces. Alternatively, one could estimate a probability that was explicitly
conditioned on gender, as if the phonetic models were simply doubled to permit male and female
forms of each phoneme. This would lead to yet another formulation in which the outputs of the
gender-dependent and gender-independent networks were multiplied, but not added together - rather
the male and female cases would each have an optimal path computed by the Viterbi process, and
the overall probabilities could be compared at the end of the utterance.

We can express P(male, phone|data) (which is then divided by priors to get the corresponding
data likelihood) by expansion to P(phone|male, data) x P(male|ldata) . These factors are just the
outputs of the male-trained phonetic net and the male output of the gender net. The final likelihood



Method Word error
Baseline 17.2%
Gender-net as input 17.2%
Switched between gender-dependent nets 18.2%
Weighted Gender-dependent nets 17.0%
Gender consistency over utterance 15.1%

Table 4: Results of Speech Recognition Task

for the male case can be expressed as:

P(phone|male, data) x P(male|data) x P(data)?
P(phone|male) x P(male)

P(data|phone, male) = (2)

Similarly, a female-assumed probability can be computed for each hypothesized phone. These male
and female-assumed probabilities can then be used in separate Viterbi calculations (since we do
not permit any hypothesis to switch gender in the midst of an utterance). In other words, dynamic
programmingis used with the framewise network outputs to evaluate the best hypothesized utterance
assuming male gender, and then the same is done for the female case. The case with the lowest cost
(highest probability) is then chosen.

4 Experimental Results

Each of the approaches described above was tested using a simple HMM recognizer that used a
single density per phone and a single pronunciation per word (our best results have used a more
complex SRI system that uses multiple pronunciations). The baseline speaker-independent net, as
seen in the first row of Table 4, gave a word error rate (using a perplexity 60 wordpair grammar,
and including insertions, deletions, and substitutions) of 17.2% on a 300 sentence development set.
The table shows that all of the male/female experiments except the last had negative results; simply
incorporating male/female information to better estimate the same probabilities gave no significant
improvement. In the case of the hard decision switch, there was actually a significant degradation.

On the other hand, the probabilistic approach which used the MLPs to estimate the likelihood of
gender-specific phonetic models appears to have been quite successful(significant at the 0.05 level),
having eliminated about 1/8 of the errors.

5 Conclusions and Future Work

In order to get better results in the speaker independent task, the speech recognition system has
to adapt its speaker-dependent parameters according to the speaker. Furthermore, the knowledge
about the speaker has to be acquired incrementally, and integrated in the recognition process.

Our work takes a first step towards integrating speaker-dependent features in a speaker-independent
speech recognition system. From our experiments, we draw the following conclusions:

e The features that identify the speaker can be different from the features that are used to
recognize the spoken utterance. In particular, the fundamental frequency, which is typically of
little value in English phonetic discrimination, is an important feature for gender classification.
Similarly, a larger analysis window of 0.5 sec. was useful in modeling consistency.

1 During recognition, P(data) can be ignored



e Simply adding modular nets to estimate the same ultimate probability did not improve per-
formance. Reformulating the problem to estimate probabilities that explicitly include gender
led to significant improvements.

The final successful approach, however, required a separate network for each consistency category.
Therefore it does not seem scalable to a large number of speaker characteristics. However, for major
and clearly distinguishable classes with a significant amount of training data, it appears to be a
viable technique. Other approaches will need to be investigated to incorporate subtle shadings such
as regional accent and pace.
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