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ABSTRACT

We report on recent advances in the ICSI connectionist speech recognition project. Highlights
include:

. Experimental results showing that connectionist methods can improve the performance of a
context independent maximum likelihood trained HMM system, resulting in a performance
close to that achieved using state of the art context dependent HMM systems of much higher
complexity.

. Mixing (context independent) connectionist probability estimates with maximum likelihood
trained context dependent models to improve the performance of a state of the art system

. The development of a network decomposition method that allows connectionist modelling
of context dependent phones efficiently and parsimoniously, with no statistical independence
assumptions.
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Part I
INTRODUCTION

The dominant approach to automatic continuous speech recognition is statistical
[5, 7]. The resulting methods, which use crude speech production models, hidden
Markov models (HMMs), have been successful largely because of the existence of
well-understood, consistent and provably convergent training procedures.

Since 1988, we have been investigating the use of feed-forward connectionist net-
works to improve HMM speech recognition systems. The basis of this approach has
been a proof that feed-forward networks can be used as probability estimators [1].
We have been using such networks to estimate the output probabilities of HMMs
[9, 10].

In this paper, we summarise the theory underlying our hybrid connectionist-HMM
systems, and present the issues (both theoretical refinements and practical neces-
sities) that we have had to address in order to use these methods successfully. Our
recent experiments have used connectionist methods in both the baseline ICSI
continuous speech recognition system and the more complex DECIPHER system
developed at SRI International [3].

The connectionist systems described here estimate probabilities for context inde-
pendent phone models. However, advanced continuous speech recognition systems
utilise context dependent phone models [13, 7]: multiple models for each phone
depending on the surrounding phonetic context. In part IV, we present a new net-
work decomposition method that allows feed-forward networks to model phones
in context effliciently and parsimoniously. We show this technique to be theoret-
ically justified—no independence assumptions are necessary—and initial experi-
ments have demonstrated that the decomposition method does indeed produce
similar probability estimates to the much larger original networks.

Finally we outline some work in progress and future directions for this project.



Part 11
BACKGROUND

HIDDEN MARKOV MODELS
Statistical speech recognition

In a statistical approach to speech recognition, the desired quantity is the posterior
probability P(WY|X],®) of a word sequence WY = wy, ..., wy given the acoustic
evidence XI = Xy, ...,X7 and the parameters of the models used ©. These models
are generative models of particular units of speech (e.g. phones). This probability
may be re-expressed using Bayes’ rule:

P(XIIWY, ©)P(WY9)
P(XII©)

_ PXWY, 0)P(WY0)

"~ Yw PXIW,0)P(W'©)

P(X]WY, ©)/P(X]|O) is referred to as the acoustic model. This is the likelihood of
the acoustic evidence given the sequence of word models, divided by the probability
of the acoustic data being generated by the models. This latter term (P(X]|®)),
may be regarded as a constant (over models) normalising term at recognition time.

(1) P(WY'X1,0) =

However at training time, the parameters © are being adapted, thus P(X]|©) is
not constant. The prior, P(W}|®), is obtained from the language model.

The basic unit of speech is generally smaller than a word—here we will use phone
models. Each phone is modelled by a HMM. Word models consist of concatenations
of phone models (constrained by pronunciations from a lexicon), sentence models
consists of concatenations of word models (constrained by a grammar). The lexicon
and grammar together make up the language model, specifying prior probabilities
for sentences, words and phones.

A HMM is a stochastic automaton defined by a set of states @, a topology specify-
ing allowed state transitions, and a set of local output probability density functions
(PDFs) P(Xt,qi|qj,th_l). Making the further assumptions that the output at time
t is independent of previous outputs and depends only on the current state, we
may separate the local probabilities into state transition probabilities p(c|gj) and
output PDFs P(x¢|q;). A set of initial state probabilities must also be specified.

The state of a HMM at any given time is not known, it is hidden. What is observed
is the acoustic vector x; generated at time t. Speech recognition is performed by
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computing the most likely state sequence (given topological constraints) that could
have generated the acoustic data. This may be achieved by a dynamic programming
procedure, referred to as the Viterbi algorithm.

HMM training

The training problem for HMMs, consists of setting the parameters of the output
PDFs, P(x|q), and the transition probabilities, p(qilq;). In practice the transition
probabilities are less important (primarily encoding duration information) than
the output probabilities (which are generated by a distribution in data space).

The parameters of a model are frequently estimated using a maximum likelihood
training procedure known as the forward-backward algorithm. In this procedure
the likelihood P(x|q;) is locally maximised, with the normalising denominator P(x)
being ignored. This procedure is optimal if the several conditions are satisfied:

. The space of models being searched contains the true model;

. A “reasonable” choice of prior is made;

. The performance of the system improves as the parameters approach their
optimal settings;

. There is enough data to determine the parameters well;

. An adequate training algorithm is used.

In the case of speech recognition, the first condition does not hold: we do not
know the true model for speech, but we are sure that it is not a piecewise sta-
tionary HMM, with some arbitrary choice of density functions. In this case we
should consider which decisions to make: or in decision theory terminology, what
is the utility function to be optimised? Here, we do not wish to choose the “most
accurate” model of each speech unit, chosen from the search space. Rather, we
wish to make the best discrimination between classes at each time step, to ulti-
mately choose the actual sentence that was spoken from the space of all possible
utterances.

That maximising the likelihood P(x|q) is not necessarily the best policy may be seen
by examining equation (1). The denominator is summed over all possible models.
At recognition time the parameters of the models are changing: thus in addition
to increasing the likelihood P(x|q.) of the correct model producing the data, we
must decrease the likelihoods of the data being generated by the incorrect models
P(x|q), | #¢. So, any parameter update will have two terms, one in the direction
of the maximum likelihood update and a second discriminative term.



FEED-FORWARD NETWORKS

Feed-forward networks may be used to estimate probabilities. Here, we shall regard
networks that are trained to perform a ‘l1-from-N’ classification, in which there is
a one-to-one correspondence between output units and classes. If we constrain the
output units of such a network to be non-negative and to sum to one (e.g., by using
some normalisation in the output units’ transfer function), then we may regard the
output units as representing a probability distribution. Note that we commonly
use a sigmoid transfer function on the output units, which only constrains them
to be non-negative. However Bourlard and Wellekens [1] demonstrated that at
the minimum of a least squares or relative entropy objective function, the sigmoid
output units of a ‘1-from-N’ classification network will sum to 1. In practice, we find
no significant difference between using a sigmoid transfer function or a normalised
exponential (‘softmax’) transfer function on the output units of a MLP.

Furthermore it was shown in [1] that ‘l1-from-N’ networks (such as multi-layer
perceptrons—MLPs) trained to minimise a relative entropy or least squares error
function, in a ‘l1-from-N’ classification task will output estimates of the posterior
probability P(qix) of class g (which corresponds to output unit i) given the input
vector X.
Note that:
P(x|ci, ©)

P(x|©)
Thus in maximising the posterior probability of the correct class, we simultaneously
maximise the likelihood of the correct class and minimise the likelihoods of the
incorrect classes. The proportionality constant is the prior P(qi|®). In network
training this is approximated by the relative frequencies of each class. However,
when performing speech recognition we believe that we can set a better prior using
a language model (grammar and lexicon), perhaps derived from a second, textual
database.

P(qifx, ©)

Hence, we may use feed-forward networks as the acoustic model in speech recog-
nition. It is important to remember that we are not getting something for nothing
here. In estimating the posterior P(qijx, ®) the networks do not estimate the input
density P(x|®) (which would be estimated by a maximum likelihood approach).

There are several reasons why this somewhat indirect method of estimating (scaled)
likelihoods, is attractive for speech recognition:

1. MLPs are well matched to discriminative objective functions.
2. Although an MLP is a parametric model, a large network defines an ex-
tremely flexible set of functions. Thus only weak assumptions are made about
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the input statistics. As a result of this they can combine multiple sources of
evidence. For example a single MLP may be trained using input data that
mixes samples drawn from several distributions, discrete or continuous.
Maximum likelihood estimation of HMM parameters requires the assumption
of conditional independence of outputs. MLPs can model correlations across
an input window of adjacent frames.

Since the recognition time computations are extremely regular, it is possible
to have a simple, efficient implementation in parallel hardware.



Part 111
CONTEXT INDEPENDENT NETWORKS

TRAINING AND RECOGNITION ISSUES

We have used the theoretical results described above to estimate observation like-
lihoods (output probabilities) for HMMs.

‘Failure is an opportunity to learn.” In 1988 N. Morgan and H. Bourlard [unsur-
prisingly unpublished] first used these methods in the DECIPHER system. On the
speaker independent Resource Management task, without a grammar, a word ac-
curacy of —30% was recorded. Now, using essentially the same approach, we have
improved our recognition accuracy to about 70% on the same task. What changes
were necessary to make the connectionist approach effective?

1. (Scaled) likelihoods must be used in the Viterbi search, not posteriors. These
may be most simply obtained by dividing each network output by the relative
frequency of that class. Although the equations used in the Viterbi search
hold for both posteriors and likelihoods, posteriors (which incorporate the
prior probabilities estimated from the data) should not be used: when a
language model and phone-structured lexicon are defined (i.e. the overall
HMM topology), the priors for each class are implicitly set. Thus we must
factor out the data estimates of these priors [11].

2. Cross-validation training is essential for good generalisation and preventing
over-training, especially when using large networks. In our training sched-
ule we cross-validate by withholding a certain proportion of the training
data (typically 10-20%) and using this to validate the training after each
epoch. When the classification performance on the validation set first fails
to improve by a certain amount (typically 0.5%) the gradient descent step-
size is reduced, typically by a factor of 2. This time-dependent reduction
in stochastic gradient descent step-size (gain) may be understood in terms
of the constraints on the gain sequence given by stochastic approximation
theory [12]%. After each succeeding epoch the step size is further reduced,

1. The conditions given by stochastic approximation theory (3" an = and >, a2 < ») are not, in fact,
met by our gain sequence, an o< 1/2", since Zn 1/2" < ». A gain sequencesuchasa o 1/n would meet these
constraints. Thisfirst constraint, that is violated by our gain sequence, may be regarded as ensuring that the
gradient descent can in fact reach the minimum. Since we use a cross-validation training scheme, it may be
that this condition is not necessary for us. Certainly a 1/2" gain sequenceresults in faster training than a 1/n
sequence.



until once again there is no improvement on the validation set. Training is
then halted.

3. Input representation is important. In particular dynamic features (obtained
via linear regression estimate of the temporal derivative) should be used in
addition to static ones, and a multi-frame input (typically we use + 4 frames
of context), offers an improvement over single frame input [10].

4. The word transition penalty used in the Viterbi search should be increased
in the case of multi-frame input. This empirical result may be explained in
terms of a scaling relationship between the likelihood of a single frame and
the joint likelihood of several frames, given the class.

To train large networks efliciently with a large and redundant training set, we have
found a stochastic gradient descent procedure (i.e. backprop with per-pattern up-
date) to be preferable. It appears that these stochastic methods are more efficient
than batch methods, at least for our training problems.

THE DECIPHER SYSTEM

The systems into which we have previously integrated connectionist probability
estimators were very simple: context independent phone models, single density
models (with duration modelling) and single pronunciations of each vocabulary
item. This paper continues this research by integrating such connectionist prob-
ability estimators into a large HMM continuous speech recognition system, SRI’s
DECIPHER [3]. DECIPHER is a much richer system than the previous baseline
systems we have used. It includes multiple probabilistic word pronunciations, cross-
word phonological and acoustic modelling, context dependent phone models, and
models with multiple densities.

Word models are represented as probabilistic networks of phone models, speci-
fying multiple pronunciations. These networks are generated by the application
of phonological rules to baseform pronunciations for each word. In order to limit
the number of parameters that must be estimated, phonological rules are chosen
based on measures of coverage and overcoverage of a database of pronunciations.
This results in networks which maximise the coverage of observed pronunciations
while minimising network size. Probabilities of pronunciations are estimated by the
forward-backward algorithm, after tying together instances of the same phonolog-
ical process in different words. Phonological rules can be specified to apply across
words, adding initial or final arcs which are constrained to connect only to arcs
fulfilling the context of the rule [2, 3].



Context dependent phone models include word-specific phone, triphone, gener-
alised triphone, cross-word triphone (constrained to connect to appropriate con-
texts), and left and right biphone (and generalised biphone). All these models
are smoothed together, along with context independent models, using the deleted
interpolation algorithm.

Most phone models have three states, each state having a sell transition and a
transition to the following state. A small number of phone models have two states,
to allow for short realisations.

EXPERIMENTS

Experiments were performed on the speaker-independent DARPA Resource Man-
agement database. This database used a vocabulary of 998 words and no grammar
(perplexity = 998) or a word pair grammar (perplexity = 60).

A 12th order mel cepstrum front end was used, producing 26 coeflicients per frame:
energy, 12 cepstral coefficients and derivatives of each static feature computed over
a 4 frame window. The inputs to the MLP consisted of a frame in + 4 frames of con-
text, a feature vector length of 234. The MLPs that we used contained 512 hidden
units (a number determined by empirical experiments, trading off representational
power with computation) and 69 output units (corresponding to 69 monophone
categories), giving a total of around 150,000 weights. Stochastic gradient descent
training typically required about 10 passes through the training database of 1.3
million frames. This required less than 24 hours compute time, using a 5-board
RAP (Ring Array Processor) [8], containing 20 TT TMS320C30 DSPs, each with
256kB of SRAM and 16MB of DRAM.

To train an MLP we require a bootstrap model to produce time-aligned phonetic
labels. In this case we used the context independent DECIPHER system to perform
the forced alignment between the training data and word sequence.

The baseline DECIPHER system modelled the output distributions using tied
Gaussian mixtures. Training used the forward-backward algorithm to optimise a
maximum likelihood criterion.

We used two sets of test sentences for evaluation. A 300 sentence development
set (the June 1988 RM speaker independent test set) was used to tune the HMM
recognition parameters, such as the word transition penalty. The results reported
here were obtained from a 600 sentence test set (the February 1989 and October
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1989 RM speaker independent test sets); no tuning of parameters was performed
using this set.

Context Independent Models

We first experimented using context independent models. The baseline context
independent DECIPHER system incorporated multiple pronunciations, cross-word
phonological modelling, etc., but had only 69 two or three state phone models (200
distributions in all).

The baseline connectionist system had 69 single distribution phone models; the
lexicon comnsisted of a single pronunciation for each word. Each phone model was a
left-to-right model (with self-loops) with N/2 states, where N was the average dura-
tion of the phone. Transition probabilities were all tied to be 0.5. The connectionist
probability estimator was integrated into DECIPHER in two ways:

. The usual {2,3}-state DECIPHER models were used, but each model had
only a single output distribution (from the MLP). Thus the 2 or 3 states in
a model shared a distribution.

. A new MLP was trained with 200 outputs, corresponding to the 200 states
in the 69 context independent DECIPHER models.

The maximum likelihood transition probabilities (which basically encoded duration
information) were retained.

Two heuristics were tried for combining the MLP and standard estimates of the
state output probabilities. In the first weighted logs of the MLP and Gaussian
mixture likelihood estimations were used:

P p (Qj |X)
P(q;)

where Py, denotes the MLP estimate of a probability and Pgy the Gaussian mixture
estimate. A single set of As was used over all the states: they were optimised for

(2) log(P(xq)) = A, log ( ) + A2 109(Pgm(x10}))

minimum recognition error over the 300 sentence development set.

In the second heuristic, the log of a weighted average of the state output proba-
bilities estimated by the MLP and the tied Gaussian mixtures was used:

I:>m|p(qj [x) Pgm(x)
P(a;)

In this approximation, the probability of the data P(x) was required to ensure that
the 2 likelihood estimates are scaled similarly. This cannot be obtained from the

(3) log(P(xlq;)) = log (Al + )\ngm(x|qj)) _
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% error
Perplexity
Parameters || 998 60
Baseline MLP-69 155,717 || 36.1 | 12.8
CI-DECIPHER 125,762 || 44.7 | 14.0
MLP-69 155,717 || 30.1 | 7.8
MLP-200 222,920 || 34.9 | 11.4
MIX-69 281,548 || 29.4 | 7.5

Table 1: Results using 69 context independent phone models. The baseline MLP
system uses 69 single distribution models with a single pronunciation for each
word in the vocabulary. The DECIPHER system also uses 69 phone models, each
with two or three states 200 independent distributions in total. The MLP-69
and MLP-200 systems use DECIPHER’s multiple pronunciation and cross-word
modelling. MLP-200 differs from the other MLP systems in that it has 200 outputs
corresponding to DECIPHER’s 200 states. The MIX-69 system is an a system
interpolating the probabilities produced by the MLP and DECIPHER (rather
than replacing the DECIPHER probabilities by MLP probabilities).

MLP, and was approximated by summing over the state conditional tied Gaussian

likelihoods:

(4) Pgm(x) = Z Pym(x101)P(ct)-

The best results were obtained using (2), which resulted in an 8.0% error on the
development set, compared with an error of 9.1% using (3). Thus (2) was used in
evaluating over the 600 sentence test set.

Results for these context independent systems are shown in table 1. There are
several notable aspects to these results:

. The MLP system using single pronunciations and single distribution phone
models has a lower error rate than the context independent DECIPHER sys-
tem, which uses multiple pronunciations and cross-word phonological mod-
elling.

. Incorporating the MLP estimator into the context independent DECIPHER
system results in still better performance, lowering the error rate substan-
tially from 12.8% to 7.8%.

. The DECIPHER system uses multiple state, multiple distribution HMM:s.
Typically each phone model consists of 3 independent states. An MLP can
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% error
Perplexity
Parameters || 998 60

DECIPHER 5,541,844 | 21.9 | 4.9
MLP-DECIPHER 5,697,726 || 19.5 | 4.1

Table 2: Results using 3428 context dependent phone models. The hybrid system
(MLP-DECIPHER) interpolates the MLP context independent probabilities with
the DECIPHER context dependent probabilities.

be used to estimate these probabilities, simply by increasing the size of the
output layer and using the maximum likelihood state segmentation as out-
put targets. In maximum likelihood trained systems it is usually beneficial
to move from single distribution to multi-distribution models, since acous-
tically different parts of a phone (e.g. onset, centre and offset of a vowel)
may be modelled independently. However, such a change produced a per-
formance degradation when using the MLP. We hypothesise that this was
due to discriminative training. In many cases, different states of a phone
are acoustically very similar. Thus, forcing an MLP to discriminate between
such states could be counter-productive.

. Interpolation of MLP probabilities with context-independent DECIPHER
maximum likelihood probabilities gives a small, but not significant (at the
0.95 level), improvement compared with MLP-69 system; the improvement
compared with the CI-DECIPHER system is, of course, significant. The pa-
rameters for the interpolation were tuned on the development set. There was
a more substantial improvement on the development set (around 2% error
reduction), indicating that the interpolation parameters are being overfitted
to the dataset used for tuning.

Context Dependent Models

Our experiments using context dependent models involved interpolating connec-
tionist estimates of context independent output probabilities (as used above) to-
gether with the maximum likelihood tied mixture estimates of the context de-
pendent probabilities used in DECIPHER. Equation (2) was used for these in-
terpolations. Results for this hybrid system are shown in table 2. These results
indicate that the MLP context independent probabilities may be used to afford a
small improvement in recognition, which is significant at the 0.95 level for both
the word-pair grammar case and the no grammar case.
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Part IV
CONTEXT DEPENDENT NETWORKS

CONTEXT DEPENDENT MODELLING

In the experiments reported above, connectionist methods were used only to esti-
mate context independent probabilities of the form P(qi|x). Such probabilities are
considered “context independent” since the left hand side of the posterior, contains
no term involving neighbouring phones?. However, state of the art recognisers, such
as DECIPHER, are of greater complexity: in particular they use context depen-
dent phone models. Will the consistent improvements offered by our connectionist
methods be washed out in systems with more detailed models?

One difficulty with more complex models is that many more parameters must
be estimated with the same limited amount of data. Brute-force application of
our earlier techniques would result in an output layer with many thousands of
units, and a network with many millions of connections. This network would be
impractical to train, both in terms of computation and learnability, using current-
sized public data bases. In each of our earlier studies, a simple context independent
trained network used a single output unit for each phone. For our most recent
Resource Management tests, we use 69 of these units. Were one to consider the
coarticulatory effects from the right only, this number would expand out to 692, or
over 4000. Considering both right and left context, we would require 692 units, or
about 328,000. With a typical hidden layer of 500 units, we would have over 10®
connections, which is far too many for a practical system.

Of course, HMM researchers have had a similar consideration in reducing the
number of parameters in their VQ or tied-mixture based systems. The solution has
been, in one form or another, to use a reduced number of context dependent models
(typically a few thousand). However, this is still a large number. For instance,
with 4000 outputs and 500 hidden units, a network would still have over 2 million
connections, which makes good generalisation difficult for training sets of a few
hundred thousand frames. Even if enough training data were available, networks
with millions of parameters can be expected to take impractical amounts of time to
train using back-propagation approaches, even with fast special-purpose machines
such as our Ring Array Processor (RAP) [8].

Here, we present a method for estimating likelihoods for context dependent phone

2. Note, that these probabilities do include an acoustic context, since we typically use a 9 frame window.
However this acoustic context is usually on a different timescale to phonetic context.
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models, using networks that are not substantially bigger than our context indepen-
dent networks, and that require only a small increase in computation. This method
is a general technique for decomposing a larger classification network into several
smaller networks without any simplifying assumptions, such as independence of
outputs.

CDNN: A CONTEXT DEPENDENT NEURAL NETWORK

Consider a system with K phone classes. A context independent network trained
to estimate class posterior probabilities would then have K outputs. For a context
dependent model, we may wish to estimate the joint probability of a current HMM
state with a particular neighbouring phonetic category. Using C to represent the
set of possible contexts, we wish to estimate p(Q,G|x), where ¢ O C = {Cy, ...
,CL}. If there are L context classes, this will require K x L output units for an
MLP estimator. However, if we use the conditional probability axiom, the desired
expression can be broken down as follows:

(5) P(O. GIx) = P(akix) * P(Gjlok, X)

Thus, the desired probability is the product of the monophone posterior probability
and a new conditional. The former can be realised with the usual monophone
network. Viewing an MLP as an estimator of the left side of a conditional given
the right side as input, the second term can be estimated by an MLP trained to
generate the correct context class given inputs of the current class and the speech
input frame. The latter network only has as many outputs as there are context
classes.

This procedure reduces the training of a single network with K x C outputs to the
training of two smaller networks with K and C outputs respectively, and repre-
sents a generic way of splitting large MLPs used in classification mode into several
smaller ones. It has the potential, however, of requiring much greater computa-
tion during the recognition phase. Indeed, if one implements this method naively,
the second network must be computed K times for each frame during recognition,
since the output probabilities depend on an assumption of the current class (corre-
sponding to a monophone model in a hypothesised word sequence at that point in
the dynamic programming). The next section will describe how this expense can
largely be circumvented.

As a particular application of this general rule, the problem of hybrid HMM/MLP
approaches for triphone modelling will be considered. In this case, the main prob-
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lem lies in the estimation of probabilities like p(Xt|qk,Cj£, C;) where Cf and C, respec-
tively represent the left and right phonemic contexts of state gy. If one wants to
model triphones with neural networks, a straightforward approach could consist
in having K x L x L output units to model the K x L x L possible contextual state
probabilities. This would require an excessive number of parameters.

Expanding the joint triphone likelihood as in (5), we get:

(6) (G G, Ci) = P(C [0k, €. %). P(C] Ik, X)- P(qKX)
and
(7) P(Ck. 6. C;) = P(C lok, €)- P(CLI0k). P(Clk) -

During recognition and training, the context dependent likelihoods p(xt|cf,qk,cz)
can then be estimated from (6) and (7) as:

p(c, Ok, C %) P(%:)
p(cf, g, C})

in which p(X) can be ignored during dynamic time warping.

(8) p(xlcf, G C;) =

In fact, relations (5), (6) and (7) are examples of a general approach for splitting
a huge MLP used in classification mode into smaller ones without requiring any
simplifying assumptions. Now, exploiting the conclusions we derived from the the-
ory of our hybrid HMM/MLP approach for phoneme models (i.e., in classification
mode, the output values of the MLP are estimates of the a posteriori probabilities
of the output classes conditioned on the input), it can be shown that all the right
hand factors appearing in (6) and (7) can be estimated separately by different
MLPs:

. p(CjZ|qk,Cz,Xt) can be estimated by an MLP in which the output units are
associated with the left phonemes of the triphones and in which the input
field consists of the current acoustic vector X (possibly extended to its left
and right contexts), the current state and the right phonetic contexts in the
triphones (which are known during training).

. p(C; |0k, X) can be estimated by a neural network in which the output units are
associated with the right phonemes and in which the input field is constituted
by the current acoustic vector X (possibly extended to its left and right
contexts) and the current state (associated with x).

. p(akP%) is estimated by the same neural network as the one used for modeling
phonemes where the input field contains the current acoustic vector only and
the output units are associated with the current labels.
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. p(Cﬂqk,CD can be estimated by a neural network in which the output units
are associated with the left phonemes of the triphones and where the input
field represents the current state and the right phonemes. This provides us
with the a priori probability of observing a particular phoneme in the left
part of a triphone given particular current state and right phonetic context.

. p(cjlok) can be estimated by a neural network in which the output units are
associated with the right phonemes of the triphones and where the input field
represents the current state. This provides us with the a priori probability of
observing a particular phoneme on the right side of a particular state. Given
the limited number of parameters in this model (i.e., K x L), this probability
can also be estimated by counting (i.e., this does not require a network).

. p(gy) is the a priori probability of a phoneme as also used in the standard
hybrid HMM/MLP phonetic approach, and is simply estimated by counting
on the training set (i.e., this also does not require a network).

By training these different MLPs and using their output activation values in (8),
it is possible to estimate, without any particular assumptions, the probability
p(Xt|qk,Cje,CE) that is required for modelling triphone probabilities to be used in
HMMs. This generalises to triphones the approach described above and which
was restricted to phoneme models. Of course, for limited training sets, as done
with standard HMMs, smoothing of context dependent and context independent
probabilities still may be important even with MLPs. Also, training improvements
detailed above (such as the use of cross-validation technique to improve generali-
sation performance) remain valid in this new approach. Additionally, if ¢ and ¢’
represent broad phonetic classes or clusters rather than phonemes, the above re-
sults apply to the estimation of “generalised triphones”, such as are defined in [7].
As done previously the input field containing the acoustic data (e.g., x) may also be
supplied with contextual information. In this case, the x appearing in all the above
(and subsequent) probabilities have to be replaced by X{*% = {Xi_c, ..., X, ..., Xt} »
in which c represents the width of the contextual window. This leads to the es-
timation of triphone probabilities given acoustic contextual information, which is
even more important in the case of triphone models.

IMPLEMENTATION ISSUE

While the previous section appears to have solved the problem of triphone mod-
elling by neural network, an important implementation issue still has to be taken
into account.
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We have shown theoretically how to transform, without any particular assumptions
or simplifications, the huge neural network which would result from the brute force
application of our earlier hybrid HMM/MLP approach for phoneme modelling to
triphones. Indeed, instead of having a single MLP estimating p(QcX), we need to
estimate

(9) P(G ¢, Ci1X,)

which requires an MLP with K x L x L output units. In the previous Section,
we have shown that it was possible to estimate the same probability with three
smaller MLPs respectively estimating

(10) PLE 10k € X)
(11) P(C;1qk. %)
and

(12) P(qKix.) -

However, while this strongly reduces the memory requirement and the number of
parameters, a naive implementation of these smaller networks would require much
more computation.

In the case of phonetic modelling, a single MLP provided with the current acoustic
vector X as input can estimate p(QuX) for all possible classes ¢ on the associated
output units. This remains valid for triphone modelling if we use the huge network
with X at its input and K x L x L output units, each output unit being associated
with a particular triphone. However, when this huge network is decomposed into
smaller networks computing (10), (11) and (12), the first two networks must have
input values depending on the phonetic contexts constituting the triphones. For
example, the input field of the neural network estimating (10) on its output units
is constituted by the concatenation of the current acoustic vector X and the middle
and right phonetic contexts in the triphones. Since the MLP training is supervised,
i.e. we know exactly which triphone is associated with a particular acoustic vector,
this is not a problem during training. However, this is no longer the case during
recognition where we do not know in advance which triphone is associated with x.

Therefore, in principle one would have to compute network activations at each
frame for each possible phonetic context. This would amount to L x L times the
monophone network computation, and would generally be prohibitive. Fortunately,
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a simple restriction on the network topology permits the pre-calculation of contex-
tual phonetic contributions to the output; this computation can be done at the end
of the training phase, prior to the recognition of any speech. By simply partitioning
the net so that no hidden unit receives input from both phonetic context units and
data input units, we can pre-calculate the contribution to the output units (prior
to the output nonlinearity) for all possible combinations of left and right contexts,
and form a table of these contributions. During recognition, the pre-sigmoid output
values resulting from data vectors can be computed by a forward pass on the net
for each frame. For each hypothetical triphone model, these contributions from
the data inputs can be added to the corresponding context contributions from
the table. The major new computation (in comparison with the monophone case)
then is simply the cost of some lookups, both for the contextual contributions,
and for the final sigmoidal nonlinearity, which must now be re-computed for each
hypothesised triphone (as opposed to once per frame, as in the monophone case).
In practice this only doubles or triples the computation time, a reasonable cost for
triphone models.

As an example, let us consider the case of p(Cﬂqk,CE,Xt). More formally, letting
Y;(0. C;) be the contribution to the pre-sigmoid output for state g; for the phonetic
context dependent partition of the net, and letting Z(X) be the contribution to
the pre-sigmoid output for state ¢ for the data vector input. Then

(13) p(c ok, €. %) = f(Y; +Z)

where f is the standard sigmoid function. A (K x L x L)-dimensional table Y is com-
puted after network training by running the phonetic-context dependent partition
of the network (which has no inputs from the data vector) K x L x L times, i.e. for
all possible output units and for all possible combinations of phonetic contexts,
with no output sigmoid computation. This table loading is a negligible amount
of computation compared to the training of the network. During recognition, for
each acoustic vector X, it is then enough to run each MLP only once to get the
contribution Zj of the data inputs for each output unit g;. For each hypothetical
triphone model, this contribution Z; just has to be added to the corresponding
context contribution Y; obtained by a simple lookup in table Y. In fact, this is
equivalent to considering Yj as an added bias (of output unit ;) that depends on
the phonetic context. Of course, the same method can be applied to the MLP
computing p(Cy|gk, X). Also, for p(Cﬂqk,CD and p(cjlak) it is sufficient to compute
look-up tables at the end of the training phase for use in (7).
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DISCUSSION AND RESULTS
The unrestricted split net

In equation (5), when splitting the original MLP with K x L output units into two
smaller networks with K and L outputs respectively, the number of parameters
is drastically reduced, which could affect the quality of the conditional distribu-
tions’ estimation. However, parameter reduction is exactly the aim of the proposed
approach, both to reduce computation and to improve generalisation. As it was
done for p(gkx) above it will be necessary to find (e.g. by using cross-validation
techniques) the number of hidden units (and hence the number of parameters)
leading to the best estimate of p(Gj|gk, x). The desired probabilities can in principle
be estimated without any statistical assumptions (e.g., independence). Of course,
this is only guaranteed if the training does not get stuck in a local minimum and
if there are enough parameters.

The topologically restricted net

As shown above, while reducing the number of parameters, the splitting of the
network into two smaller networks results in much greater computation in the
contextual network. To avoid this problem it is proposed to restrict the topology
of the second network so that no hidden unit shares input from both g and x.
Consequently, the gy input only changes the output thresholds. However, a recent
experiment with frame classification for continuous speech (trained using 160,000
patterns from 500 sentences uttered by a speaker in the Resource Management
continuous speech recognition corpus) suggested that this did not affect the correct
estimation of p(Glok,x). In this example, the network with a split hidden layer
predicted (for a test set of 32,000 patterns from 100 sentences) the correct right
context 63.6% of the time, while a network with a unified hidden layer predicted
the context 63.5% of the time, an equivalent figure.

Preliminary results and conclusion

Prior to experimenting with the CDNN for continuous speech recognition using
biphone and triphone models (to be reported at a later date), we wanted to check
experimentally that the split MLP was equivalent to the original one. We compared
biphone probabilities generated by the original and split MLP for the speaker in-
dependent Resource Management database. The number of hidden units in each
MLP was chosen such that the number of parameters was approximately the same
in both cases. After having trained both cases on 4,000 sentences, biphone prob-
abilities were computed on a test set of 100 sentences pronounced by 4 different
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speakers, yielding a total of 17,012,088 probabilities. To compare both sets of prob-
abilities we computed the correlation coeflicient to be 0.65, and the mean absolute
difference that was equal to 0.0017. Thus, the two sets of probabilities are sig-
nificantly correlated. This suggests that CDNN may be a good way to compute
context dependent probabilities with nets that have a limited number of parame-
ters and that require an acceptably small increase in computation over the context
independent case.
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Part V
PROSPECTS AND CONCLUSIONS

WORK IN PROGRESS

We are currently working on several areas of speech recognition, including im-
proved front-end signal processing, acoustic modelling and language modelling. A
particular focus is to integrate our various methods into working, near-real-time
systems.

The RASTA-PLP (Relative Spectral-Peceptual Linear Prediction) method [4],
developed by Hermansky et al. at ICSI, is an analysis technique designed to be
robust to steady-state or slowly varying factors in speech, which are assumed to
carry little linguistic information. The essential idea, is that part of an analysis
should include a bandpass filtering in log spectral domain. Application of the
RASTA-PLP method in online recognition experiments at ICSI have shown it to
be robust to changes in microphone, compared with other analysis methods, such
as mel-cepstrum and PLP. This, and other experiments, seem to indicate that
RASTA is an extremely effective approach to adopt for speech recognition in “real
world” situations.

Much of our current effort is in the area of improved acoustic modelling. Konig et
al. [6] have added gender models to the acoustic modelling component. A gender-
dependent network was trained to estimate the probability of a specker being male
or female. This network was then used with two context independent networks
(one trained on male data, the other on female) to estimate two sets of likelihoods
P(x|gi, male) and P(x|q;, female), with the maximum probability Viterbi path (male
or female) being chosen for a new speaker. This gave a statistically significant
improvement from 17.2% error to 15.5% error on our baseline system.

Renals et al. [11] showed how a tied-mixture density estimator may be discrimi-
natively trained using connectionist methods. Work is in progress to determine if
this method can improve our current acoustic models, and if it can further improve
the performance of an already trained tied mixture density estimator.

In October 1991, we constructed an online demonstration system, using the Re-
source Management task. This system uses the baseline ICSI system (single pro-
nunciation words, etc.) with a RASTA-PLP front end. It has proven surprisingly
robust to microphone variation. Work is in progress on a new demonstration sys-
tem, Yo (“Y-naught”) which is based on a Berkeley restaurant guide. This task
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has a more substantial language modelling component: in addition to correctly
transcribing a string of words, a correct database query must also be generated;
a dialog must be maintained with the user; and out of vocabulary words must be
handled appropriately. Additional features will include dealing with disfluencies
and recognising non-native English speakers.

Our current recogniser is entirely implemented on a SPARC-2: data collection is
performed on the RAP (and, of course, the network training). This system runs
at about 35 x real-time. We aim to achieve real-time performance by running
the network recognition computations on the RAP, using pruning in the Viterbi
search, and possibly exploiting the parallelism of the RAP at recognition time by
running the dynamic programming in parallel (although this latter step may prove
unnecessary with the next generation of faster workstations).

CONCLUSIONS

Two substantial advances in connectionist methods for continuous speech recog-
nition have been reported:

. We have demonstrated that connectionist probability estimation may be
used to improve the performance of a state of the art continuous speech
recognition system. In particular:

1. Comparing like with like, a discriminatively trained connectionist con-
text independent system performs considerably better than the corre-
sponding maximum likelihood tied mixture system.

2. The context independent MLP-DECIPHER system has an error of 7.8%
compared with a 4.9% error produced by context dependent DECI-
PHER. However the latter system has 50 times the number of models
and 35 times the number of parameters compared with the MLP system.

3. Interpolating MLP context independent probabilities into the context
dependent DECIPHER system produces a significant increase in word
accuracy.

. We have presented a general method for factoring a multi-layered classifica-
tion network with a large output layer into a number of smaller networks,
with no statistical independence assumptions. We have demonstrated that
this technique may be used estimate likelihoods for context dependent phone
models.
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