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A fundamental issue is that of efficiency, both in size and time; the construction we give for
a pseudo-random generator based on any one-way function increases the size of the input by a
large polynomial amount. This is not good news for practical applications; it would be nice to
have a much more parsimonious construction. We would like to develop general constructions of
pseudo-random generators that are as time and size efficient as the one-way function on which
they are based.

A practical problem is to build a very efficient pseudo-random generator based on the conjec-
tured difficulty of some well-studied problem. [17, Impagliazzo Naor] present some progress in this
direction, they construct a pseudo-random generator based on the subset sum problem which is
as efficient as RSA. Pseudo-random generators are typically constructed based on the conjectured
difficulty of one specific problem, e.g. factoring, quadratic residuosity, discrete log, etc. A related
line of research is to develop an efficient generator that is pseudo-random as long as one of several
problems is one-way.
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Finally, we note that for all j = 1,... k the adversary A’}A can be uniformly constructed,
1
5
adversary A on input f(X) consists of running A’f for all possible values of j = 1,...,k to try

to invert f(X). |

and that the running time for the entire construction is polynomial in ¢ and n as required. The

Theorem 6 If f is a one-way function and p is polynomial time computable then g is a false-
entropy generator.

PROOF: This follows directly from Lemmas 23 and 25. |
Theorem 7 There are one-way functions iff there are pseudo-random generators.

PROQOF: That pseudo-random generators imply one-way functions is well known. The converse
now follows from Theorem 6 and Theorem 5, except for the assumption about knowing the exact
value of p. However we can deal with this problem exactly as we dealt with the unknown false
entropy in Theorem 5 (page 24). We make one generator for each value of p = %, %, %, ..., > using
independently chosen inputs, use Proposition 5 (page 9) to increase the length of the output of
each generator appropriately, and then use Lemma 6 (page 9) to show that the exclusive-or of all

the outputs yields a pseudo-random generator. |

9 Open Problems

The results presented in this paper unify different concepts in theoretical cryptography. When
combined with other work ([8, Goldreich Goldwasser Micali], [23, Luby Rackoff], [13, Goldreich
Micali Wigderson], [25, Naor]), they show that applications ranging from private key encryption
to zero-knowledge proofs can be based on any one-way function. [15, Impagliazzo Luby] shows
that most cryptographic applications that are impossible in a world where anything that is infor-
mationally possible is computationally possible must be implicitly based on a one-way function.

A general problem is to characterize the conditions under which cryptographic applications
are possible. By conditions we mean complexity theoretic conditions, e.g. P # NP, the existence
of one-way functions, etc. Examples of cryptographic applications are private key cryptography,
identification/authentication, digital signatures, bit commitment, exchanging secrets, coin flipping
over the telephone, etc. For a variety of cryptographic applications it is well-known that a secure
protocol can be constructed from a pseudo-random generator, and thus by the results described
above a secure protocol can be constructed from a one-way function. [15, Impagliazzo Luby] pro-
vides some complementary results; a one-way function can be constructed from a secure protocol
for any one of a variety of cryptographic applications, including private key encryption, identifi-
cation/authentication, bit commitment and coin flipping by telephone. Thus, secure protocols for
any of these applications is equivalent to the existence of one-way functions. Other results can
be found in [26, Naor Yung], which gives a signature scheme that can be based on any one-way
permutation, and in [29, Rompel], which improves this by basing such a scheme on any one-way
function. Some applications seem unlikely to be shown possible based on any one-way function,
e.g. [18, Impagliazzo Rudich] give strong evidence that exchanging secrets is an application of this

kind.
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f(y;))) = 1]. Thus, it follows that with probability 1 — exp(—n), for the y; € S; correspond-
ing to the largest estimate it is the case that Pr[A (SJ 1(]%*,17*,f( ) f(y;),ipb(Y;) = o)) =
1] — PrlA(E1(R* b, F(V;) = f(y;)))) = 1] > 6}(R*,b*) — &;(R*,5*) — 375, and from this it
follows that

A 6 6
6}—6}56}—(6}—] 316>+exp(—n)< o
which contradicts (2).

Let X € {0,1}". We now show 6 > 5 1mphes that the following adversary A’ inverts f(X)
with probability at least 16

Description of A’}A (f(X))

Iey{0,...,n}

H ey Hn,n+ilog(2n)

174 Cu {0) 1}I+ilog(2n)

T €y {0,1}".

Let M# be the oracle Turing machine described in Proposition 10 (page 12) that tries
to predict X @ T on inputs chosen according to g'j_l(f(Y}) =f(X)oHoVolo
T,ipb(Yj) = 0) when computing By and inputs chosen according to & _1(f(Yj) =
f(X)oHoVolIoT,iph(Y;) = 1) when computing By. Note that X ® T is not part
of the input to A4,

Let M'™" be the oracle Turing machine described in Proposition 9 (page 11). Run
this oracle machine on inputs as just described for M4 except that T is no longer
considered as part of the input. The output is a list L of n-bit strings which contains
the set of all 2’ € {0,1}" such that M4 has prediction probability at least % for
XoT.

For all 2’ € L, if f(2') = f(X) then output 2’.

The proof is similar to the proof of Lemma 18 (page 21). 5]» > % and Proposition 10 (page 12)
shows that the prediction probability of M4 for X ® T is at least % when the input distribution
is &_1(f(Y;) = f(X)oHoVoIoT,I<d(f(X))), except that the j%* inner product bit is missing
from the input. Thus, it happens with probability at least 2 for a randomly chosen instance z
and 7 of X and I, respectlvely, conditional on 7 < d(f(z)), that the prediction probability of M4

for z o T 1s at least %. From this and Proposition 9 (page 11) it follows that MM outputs an z’
with f(z') = f(X) with probability at least sic when the inputs to M™7" are chosen according to
E-1(f(Y;) = f(X)oHoVolIoT,I<d(f(X))). VVhenISd(f( )) then by Lemma 13 (page 15)

the input distribution is statistically indistinguishable within F from the same distribution with

the first T — 2ilog(%) bits of H(X)_r4ilog(2n) replaced by random bits. On the other hand, the
same distribution where all bits of H(X),_I_,_ﬂog(%) are replaced by random bits and the condition
I < d(f(X)) is removed M—statistically covers this distribution. Since this is the actual
distribution used within A’ , it follows that A’f outputs an inverse of f(X) with probability at

3

least 2n(n+1j(16c53'
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We first show that (1) can’t be true, and then we show (2) implies that the adversary A'}A
described below inverts f with non-negligible probability.

To prove (1) can’t be true, note that 60(]_%'* b*) is the difference between the accepting proba-
bility of A for &;_ 1(R b*, I; > d(f(X;))) and &;_ 1(R* b*, I; > d(f(X;))). On the other hand,

by the way D; (R b) is constructed when b; = 0, € (R b) is determined by the value y; € S;
that corresponds to the largest estimate, based on N1 samples, of the difference between the ac-
cepting probablhty of A under the dlstrlbutlon & (R, b* , f(Y;) = f(y;),ipb(Y;) = ipb(y;)) and
&5 1 (R b , f(Y;) = f(y;)). We first observe that 1 — p’ = Pr[I; > d(f(X;))] > nl?: If this is
not true then there is an z € {0, 1}" such that ilog(|f~!(f(z))|) > n, which implies that at least
half of the ' € {0,1}" are preimages of f(z), from which it easily follows that f is not at all

one-way. From this and the choice of Ny, with probability 1 —exp(—n) there is at least one y; € Sj
for which Pr[A(gj_l(R'*,b*,f_(Y}) = f(y;),ipb(Y;) = ipb(y;))) = 1] — Pr[A(E_1(R*,b*, f(Y;) =
fly))) =1 > 6;-)(}_%'*,b*) - %. (The probability is with respect to R;.) Furthermore, Ny
is large enough so that for all y; € S;, with probability 1 — exp(—n), p(y;) — p'(y;) is within

w5z of PrlA(E (R, 5%, f(Y;) = f(y;),ipb(Y;) = ipb(y;))) = 1] — PrlA(E_o(R, 5 f(V)) =
f(y;))) = 1]. (Once again, this probability is with respect to Rj;.) Thus, it follows that with
probability 1 — exp(—n), for the y; € S; corresponding to the largest estimate it is the case that

Pr[A(&;-1(R*,b*, f(V;) = f(yj), ipb(Y)) = ipb(y;))) = 1] = Pr{A(E (R 5, F(Y}) = F(y)) =

1] > 60(R* b*) -3 12 , and from this it follows that

)
0 0 0
6; — < 6; — (6] - 3@) +exp(—n) < 2%

which contradicts (1).

We now show that (2) implies that the adversary A’f described below inverts f(X) with
probability at least %. Define

= |PrlA(& -1 (I; < d(f(X;)))) = 1] = PrlA(&-a(I; < d(f(X;)),ipb(Y;) = a;)) = 1]].

We first show it can’t be the case that 5j < %. In particular, we show that 5j < % implies that

6} — ¢} <2 57, and this contradicts (2). By the triangle inequality,

PHLAE; (7,5, Ty < d(F(5,)), pb(%)) = ag) = 1]
= Pr[A(E 1 (R, 5, I; < d(£(X;)))) = 1] 2 6] (R*,5*) — b;(R*, b¥).
On the other hand, by the way D; (R, b) is constructed when b; =1, ¢} (R b) is determined by the
value y; € S; that corresponds to the largest estimate, based on Ny samples of the difference be-
tween the accepting probability of A under the distribution &;_ 1(}_%'* b*, f(Y;) = f(y;),ipb(Y;) =
a;) and S’j_l(R'*, b*, F(Y;) = f(y;))- Tt is easy to see that p’ > ICEsy) +1) From this and the choice of
Ny, with probability 1 —exp(—n) there is at least one y; € S; for which Pr[A(Sj_l(é*,g*, fv;) =
F(y;),ipb(Y)) = ay)) = 1] = PrIA(E_1(R* B, f(V) = f(y))) = 1] = PrlA(}_ (R, 5, I <
A(F(X;),inb(¥}) = aj)) = 1]  PrAE_1(F 5, s < d(f(X;)))) = 1] - 2. Furthermore,
Ny is large enough so that for all y; € S;, with probability 1 — exp(—n), p(y ) — p'(y;) is
within 15 of PrLA(E;_ (7,5, F(¥;) = F(u;),ipb(¥}) = ay)) = 1] = PrLA(E", (B, f(V}) =
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last [ bits. In £4(7, E) these bits are chosen completely randomly while in & (7, B') these bits
are chosen as H'(y(Bi1,y1,a1)0 -0 (B, yk, ar)), where y1,...,yr are fixed according to 7 and
B. Recall H' is a random hash function that maps to | = kp' — 2n? bits. By standard Chernoff
bounds, when a random instance b of B is chosen the probability that fewer than kp’ — k2/3/7 >
kp' — n? of the bits of b are set to 1 is exp(—n). In the positions where b; = 0, y(b;, y;, o;) is
fixed to ipb(y;), but in the positions where b; = 1, v(b;, yi, ;) is a uniformly distributed random
variable o;. From this and Lemma 13 (page 15), when b; = 1 for at least kp’ — n? values of
i, H o H'(y(b1,y1,1) 0 - -~ 0 (b, yr,ax)) and H’ o 3 are statistically indistinguishable within
exp(—n). Thus, & (7, E) and &' (7, E) are statistically indistinguishable within exp(—n) for every
setting of 7. |

Lemma 25 Let X €y {0,1}". If there is a feasible adversary A that distinguishes &, from &),
with non-negligible probability at least § then there is a feasible adversary A that inverts f(X)
with probability at least %.

PROQF:

We define step j to be uneventful if 6; > 6 — %, and otherwise the step is eventful. Note that
if j is the first eventful step then 6;_1 — 6; > ;—k. By the definition of uneventful, if all lc_ steps are
uneventful then the distinguishing probability of adversary A for the two distributions & and £’
is at least §/2. Lemma 24 shows that this distinguishing probability is at most exp(—n), and thus
there is at least one eventful step, and from this we construct a feasible adversary A’ for inverting
f with non-negligible probability. Let j be the first eventful step.

Define
87 = PrA(&-1(L; > d(f(X;)))) = 1] = Pr[A(E";-1(L; > d(f(X;)))) = 1]

and

8; = Pr[A(&_1(I; < d(£(X;)))) = 1] = Pr[A(&-1(I; < d(£(X;)))) = 1].
Since I; < d(f(X;)) with probability p’, we have
bj_1 = p’é} + (1 —p’)éjo.

Define
and

ej = Pr[A(&;(B; = 1)) = 1] = Pr[A(€;(B; = 1)) = 1].
Since B; = 0 with probability p, we have

8 = Pr[A(&;) = 1] = Pr[A(&;) = 1] = p'ej + (1 — p')ej.

Since 6;_1 — 6; > ;—k, one of the following must be true.

(1) 6?—6? > %.
(2) 6}—6]1- > %.
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H' o H'(y(b1,y1,a1) 0 ---0(bj, yj, ;) oipb(Yj41) 0 - - -0 ipb(¥3)).
The function v(b;,y;, ;) uses b; to select as its output either ipb(y;) or a;: b; = 0 implies
v(bi, yi, ;) = ipb(y;) whereas b; = 1 implies v(bi,yi, ;) = ;. E'(7, I_)') is of the same form
as & (7, I_)') except that the last | bits are replaced by random variable .

-,

Description of Distribution D; (7, b)

Let No = k’%
Let N1 = Nollog(NQ)
Let ™ =<ry,...,rj_1 > and let b =< bi,...,bj_1>. The values of 7™ and b* deter-

mine the values of y1, ..., yj—1 and how the functions y(by,y1, 1), ..., 7(bj-1, ¥j—1,%j-1)
are defined. These parameters determine the distribution ﬁj_l(ﬁ,l_)'*), The bits of

r; are used to make all of the random choices described below, and b; s used as a
selector.

Use r; to choose Ny instances S; of Y;.

For each y; € S;: wuse rj to choose N1 samples according to (‘,_'j_l(r""‘,g*,f(}/}) =
F(y;),ipb(Y;) = v(bj, y;, o)) and let p(y; ) be the fraction of these samples for which
A outputs 1, and use rj to choose Ny samples according to g’j_l(ﬁ,l_)'*,f(ﬁ) =
f(y;)) and let p'(y;) be the fraction of these samples for which A outputs 1.

Let y; be the string in S; that mazimizes p(y;) — p'(y;).

Set & (7,5) = &_1(7™,b*, f(¥;) = F(y;),ipb(V;) = 7(bs, v}, a;))

Set £;(7b) = &1 (7%, [_)'*) FY5) = f(y))-

DEFINITION 8.8 For all values of 7 and I;', let

and let §; = 6;(R, B).

The intuition for this choice of probability distribution is that the event B; = 1 occurs with
exactly the same probability as the event I; < d(f(X;)) occurs. With respect to the distribution
on Y; conditional on I; < d(f(X;)) no feasible adversary can tell the difference between ipb(Y;)
and a random bit a; € {0,1}. Although we cannot tell for a particular y; whether i; < d(f(z;)),
in the above algorithm it is the case that with high probability there are several y; € S; such that
i; < d(f(x;)). By fixing y; in ﬁj_l(é, I_;) to the string which maximizes p(y;) — p'(y;), we can
show that if there is no feasible adversary that can tell the difference between ipb(Y;) under the
condition I; < d(f(X;)) from a random bit «; then §; (R, I_)') is very close to 6j_1(ﬁ, I_)'), even in the
case when b; = 1 and ipb(Yj) is replaced with a random bit «; in the distribution c‘:'j (]%, [_;)

Lemma 24 &, and £'}, are statistically indistinguishable within exp(—n).

PROOF: For every fixed 7, the identical parts of the two distributions are exactly the same
string, and the only portion where the two distributions differ is in the different part, i.e. the
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the distribution defined by the output of g'. We call the initial part of the two distributions &, and
E! where they are the same the identical part and the remaining part (the last | bits) the different
part. The interesting part of the two distributions is the different part. Finally, let D,, be the joint
distribution defined by

Dp=g(Yio0---0Yyo0H )og'(Yio...oYy0H of).

Thus, the first half of a string randomly chosen according to D, is distributed according to &,,
the second half is distributed according to &), and the distribution on the two halves is correlated,
1.e. the two halves are exactly the same in the identical parts.

The intuition is that £, and &/ are computationally indistinguishable, and thus the false-entropy
of ¢ is the difference between the entropy of &/ and the entropy of £,. Lemma 23 shows that &)
has significantly more entropy than &, and Lemma 25 shows that these two distributions are
computationally indistinguishable. An important feature of this proof is that D,, i1s a distribution
which is polynomial time samplable. This is one reason why we are able to prove that ¢ is a
false-entropy generator in the uniform sense.

Lemma 23 Ent(&!) > Ent(&,) + 1.

PROOF: The entropy in &, and &, in the identical part is exactly the same. The additional
entropy in the different part of £/ is equal to [ = kp' — 2n? > kp + 4n2.

For each j where I; < d(f(X;)), the amount of entropy added to the different part of &, by
ipb(Y}) is at most 1. On the other hand, as in the proof of part (2) of the proof of Lemma 18 (see
page 21), under the condition that I; > d(f(X;)), ipb(Y;) is determined by f(Y;) with probability
at least 1 — % From this it follows that the extra entropy added to the different part of &, by
ipb(Y;) is at most p + ﬁ, and therefore the total additional entropy in the different part of &, is
at most k(p + %) < kp+4n? — 1. Thus, Ent(&,) — Ent(€,) > 1.

Our next goal is to prove that £, and &, are computationally indistinguishable. Qur argument
is slightly nonstandard in that it is not a straightforward hybrid argument. We assume for contra-
diction that there is a feasible adversary A that can distinguish the two distributions, and show
that this implies there is a feasible adversary A’ for inverting f.

DEFINITION 8.6 Let A be a feasible adversary such that § = Pr[A(E,) = 1] — Pr[A(&)) = 1] is
posttive and non-negligible.

DEFINITION 8.7 (the hybrid distributions) For j = 0,...,k we define hybrid distribution D; in-
ductively as follows. Dy = D,. For j = 1,...,k, D; s defined in terms of the following set
of independent random variables: Ri,...,R; €y {0,1}™ where m is polynomial in 1/6 and n;
at,...,o5 €y {0,1}; Bi,...,B;, where Pr[B; = 1] = p/ for alli = 1,...,j; Yjy1,..., Yy, H’
and 3 as in the above definition of Dy,. ij 1s of the form c‘:'j 0 &’j. Choosing a random instance

according to ij can be thought of as follows: Randomly choose instances r1,...,r; of R1,..., R;
and instances by, ..., b; of By,...,B;j, and let ¥ =< r,...,7; > and b =< bi,...,b; >. Use the
algorithm described below to determine how 7 and I_)'ﬁz the values of y1,...,y;. The conditional

distribution with respect to 7 and b is D; (7, [_;) = &(7, l_)') o &(7, g), where & (7, l_)') is of the form

flyr) oo f(yi) o f(Yjr) o0 f(Vr)o
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main result; we show how to construct a function g with false entropy from any one-way function
I

To provide some intuition for the final construction, we first give a simpler construction which
can be used to construct a false-entropy generator from f which has the following (weaker than we
want) non-uniform property: If there is a successful adversary A for the false-entropy generator
then we can construct (in possibly exponential time) a non-uniform successful adversary A’ for
inverting f. After presenting the simpler construction, we show how to construct a false-entropy
generator g from f which has the following (what we want) uniform property: There is an oracle
Turing machine M such that if A is a successful adversary for g then M4 is a successful adversary
for inverting f.

DEFINITION 8.3 Let f(XoHoloR)= f(X) o Ho H(z)_1tilog(2n)0 I o R, where I €4 {0,...,n},
X €y {0,1}", R €y {0,1}" and H €y Hnyn_*_ilog(gn).

We claim that in a non-uniform sense f(X o HoIoR)o(R® X) is a false-entropy generator.
Let distribution &, be defined by f(X o H oI o R)o(R® X) and let D,, be the same as &, with
the exception that if I = d(f(X)) (recall the definition of d from page 20) then R ® X is replaced
by a random bit 8 &, {0,1}. Using a proof similar to that of Lemma 18 (page 21) part (1), one
can easily prove that a feasible adversary that has non-negligible distinguishing probability for &,
and D, can be uniformly converted into a feasible adversary that inverts f with non-negligible
probability. Similarly, because I = d(f(X)) with probability an, using Lemma 18 part (2) one
can easily prove that the entropy of D, is greater than that of £, by an additive factor of at least
m. Thus, we have in a sense shown that f is a generator with false entropy at least m
But the problem is that, although we can sample &, in polynomial time, we cannot sample D,
in polynomial time unless we can tell if I = d(f(X)) in polynomial time, and this is the source
of the non-uniform nature of the reduction. Nevertheless, this yields a false-entropy generator in
the non-uniform sense and putting together the constructions given in this paper for constructing
a pseudo-random generator from a false-entropy generator yields a pseudo-random generator in
the non-uniform sense described above. The interested reader is refered to [16, Impagliazzo Levin

Luby] for the remaining details.

The construction of a false-entropy generator in the uniform sense essentially uses the same
ideas, but the proof is more involved.

DEFINITION 8.4 Define random variable Y = X o H oI o R. Define iph(Y) = X ® R. Let
p=Pr[I <d(f(X))] and let p' = Pr[I < d(f(X))] =p+ nlﬁ Letk=6(n+1)3 Forj=1,...k,
let Yy,..., Yy be independent random variables distributed identically to Y. Let | = kp’ — 2n? and
let H €y Hy 1. Define

g(Yio---oYyoH')= f(Y1)o- -0 f(Yz)o H o H'(ipb(Y1) o - - 0 ipbh(Y%)).

Our main claim is that ¢ is a false-entropy generator. We assume for now that we know the
exact value of p, and later we remove this assumption. We first introduce some more notation and
then give some intuition for why this is the case before presenting the proof.

DEFINITION 8.5 Let &, be the distribution defined by the output of g. Define independent random
variable 3 €y {0,1} and define g'(Yio---0oYyoH' 0 3) = f(Yi)o -0 f(Yy)o H' o 3. Let &, be
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Lemma 21 Fiz ¢ > 0, k = n° and j = k(n — Ent(f(X))) — 2nk*/3. Let &, be the distribution
defined by g(X' o H) except that H(X') is replaced by R €, {0, 1111+, Then, g(X' o H) is
statistically indistinguishable from &, within exp(—n).

PROOF: The proof follows from the claim that with probability 1 — exp(—n) with respect to
fixed z1,..., 21 chosen according to Xi,..., Xi, respectively, the following distribution is quasi-
random within exp(—n). For all i = 1,...,k let X/(z;) €u f~'(f(zi)). The distribution is
HoH(X{(z1)o...0X}(xr)). From Lemma 13 (page 15), this distribution is quasi-random within
exp(—n) if the min-entropy of X{(z1) o ...0 X}(zy) is at least j + nk?/3. The min-entropy of
Xi(z1)o...0o Xj(zg) is simply >,y log(]f~*(f(z;))|). Now we again think of z1,...,z} as
being random instead of fixed. Let Z; = log(|f~1(f(X:))|). The range of Z; is [0, n], Exp[Z;] =
n — Ent(f(U,)) and the sum can be written as }°,_, ; Z;. Using Chernoff bounds, this sum is

at least kExp[Z;] — nk*/3 = j 4+ nk?/3 with probability 1 — exp(—n). |

Lemma 22 If f has at least n=° bits of false entropy and an approzimation a = a(n) of Ent(f(X))
that is correct to within an additive error of n=(¢*1) can be computed in polynomial time then, with
k= n3t and j = k(n — a) — 2nk*/3, g(X' o H) is a pseudo-entropy generator.

PROOF: We claim that g(X’ o H) has computational entropy at least nk + |H|+ 1. Let D,
be computationally indistinguishable from f(X) such that Ent(D,) > Ent(f(X)) + n~¢ > a+
n=¢ —n=(c*1) (The last term is the round-off error involved in approximating Ent(f(X)) by a.)
From Lemma 21, g(X’ o H) is statistically indistinguishable from &, within exp(—n). Since D, is
computationally indistinguishable from f(X), &, is computationally indistinguishable from Df o R
by Proposition 12 (page 13). D o R has Shannon entropy kEnt(D,,) + |R| = kEnt(D,) + |H| + j.
Since Ent(D,,) > a4+ n~°¢ — n=(¢t1) this quantity is at least nk + |H|+ 1 for our choice of k. H

We get rid of the technical assumption that we can approximate the entropy of the false entropy
generator by appealing to Lemma 6 (page 9).

Theorem 5 A pseudo-random generator can be constructed from any function f that has false
entropy at least n=¢ for some constant ¢ > 0.

PROOF: We can try n®*? values

1 1 ntt2 — 1 not?
netl) pe+l’ "7 petl ) petd

=n

for a and be guaranteed that at least one of these values is within an additive factor n=(¢+1) of
Ent(f(X)). Each of these n°*? values, combining the constructions given in Lemma 22, Theorem 2
(page 18) and Proposition 5 (page 9), yields a candidate for a pseudo-random generator stretching
a bit string of length n into one of length n°*%. We then apply Lemma 6 (page 9) to obtain a
pseudo-random generator that stretches a string of length n°*3 to one of length n°*4. |

8.2 One-way function — false-entropy generator

In the previous section we reduced the problem of constructing a pseudo-random generator to the
problem of finding a function with false entropy. In this section, we present the final step of the
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DEFINITION 8.1 (false-entropy generator) We say that f is a false-entropy generator if f has com-
putational entropy at least s(n) where s(n) > Ent(f(U,)) + 1/n® for some constant c. The false

entropy of f is s(n) — Ent(f(U,)).

As the following lemma shows, it is easy to see that a function that hides a meaningful bit is
also a false-entropy generator.

Lemma 20 Let X €4 {0,1}™ and let f'(X) = f(X)ob(X) where b(X) is a hidden and meaningful
bit of f'(X) (see Definition 5.1 on page 10). Then f' is a false-eniropy generator.

PROOF: Let ¢ be a constant such that an unbounded adversary has prediction probability
p(n) > 1/n¢ for b(X) given f(X). Let D be the probability ensemble defined by D, = f'(X)
and let £ be the probability ensemble defined by &, = f(X) o 3 where 5 € {0,1}. Since b(X)
is hidden given f(X), by Corollary 11 (page 12), D is computationally indistinguishable from £.
Also, both D and £ are polynomially samplable. When b(X) is p(n)-meaningful for f/(X), it
can be shown that the entropy 6(X) adds to the preceeding bits is at most 1 — ¢(n) and thus
Ent(€,) > Ent(D,) + q(n), where q(n) ~ p(n)?.

8.1 False-entropy generator — pseudo-entropy generator

Our present goal is to transform a function f with false entropy into a pseudo-entropy generator
g. The major obstacle is that f could be many-to-one. In this case, even though the output of
f seemingly has more entropy than it really has, the Shannon entropy of the output of f may be
much less than the length of the input; intuitively the application of f to the input may cause
more of a loss in Shannon entropy than the corresponding gain in false entropy.

We introduce a general method for recovering this loss in Shannon entropy without affecting the
false entropy. This construction is related to the construction given in Subsection 7.3 of a pseudo-
entropy generator from a one-way function f(X) under the condition that d(f(X)) is polynomial
time computable (see page 20 for the definition of d).

DEFINITION 8.2 Let k = k(n) and j = j(n) be length functions, let X, X1,..., Xy €u {0,1}"
independently, let X! = Xy 0--- Xy and let f' = f*. Let H €y Hnr,j and define g(X' o H) =
f'(X")oHo H(X').

It turns out that g(X’oH) is a pseudo-entropy generator for appropriate choices of k and j. The
intuition is that the false entropy of f/(X’) is k times that of f(X) and that with high probability
d(f'(X")) is close to the degeneracy of f/(X’). (On the other hand, d(f(X)) is on average within
one of the degeneracy of f(X), but the variation of d(f(X)) can be quite high.) Note that the
degeneracy of f(X) is n — Ent(f(X)) and thus the degeneracy of f/(X’) is k times this quantity.
The construction of g from f’ is similar to that given in Subsection 7.3. We set j roughly equal to
the degeneracy of f'(X’), and the intuition is that H extracts entropy equal to the degeneracy of
f/(X') from X’ without compromising the false entropy of f/(X’). As before, Lemma 13 (page 15)
plays an instrumental in proving that g(X’ o H) is a pseudo-entropy generator.

The following two lemmas shows that how to set the parameters when f satisfies a technical
condition: Ent(f(X)) can be approximated fairly well in time polynomial in n. We can then use
Lemma 6 (page 9) to construct a pseudo-entropy generator without this technical condition.
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Corollary 19 Let f be a one-way function. Suppose that d(f(x)) is computable in time polynomial
in n given f(z). Define f(X o H) = f(X) o H o H(X)_af(x))+ilog(2n), define b(X o H o R) =
(X o H)® R and define

g(XoHoR)=f(XoH)oRob(X oHoR),

where X €y {0,1}", H €y Mn ntilogan) and R €y {0,137+ H Then, g is a pseudo-entropy
generator.

PROOF: Let probability ensembles D and £ be defined (analogously to D and £ in Corollary 11
(page 12)) as D, = f(XoH)oRob(XoHoR)and £, = f(XoH)o Rof, where 3 €4 {0,1}. From
Lemma 18, part (1) and Corollary 11 it follows that D and £ are computationally indistinguishable.

From Lemma 18, part (2) it follows that Ent(&,) > 2(n+|H|)+1/2. On the other hand, the input
entropy to g is 2(n + |H|), and thus it follows that ¢ is a pseudo-entropy generator. |

Theorem 3 Let f be a one-way function such that d(f(z)) is computable in time polynomial in n
given f(z). Then, a pseudo-random generator can be constructed from f.

PROOF: Combine Corollary 19 with Theorem 2 (page 18). |

We use Corollary 19 to prove that a pseudo-random generator can be constructed from any
one-way regular function (Theorem 4). Theorem 4 was originally proved by [9, Goldreich Krawczyk
Luby] using a different construction and proof. The obvious idea to prove this theorem from the
above is to apply Corollary 19 to obtain a pseudo-entropy generator and then the proof follows by
Theorem 2 (page 18). The only difficulty with directly applying Corollary 19 is that Corollary 19
assumes that d(f(z)) = ilog(reg(n)) can be computed in polynomial time, and this might not
be the case for an arbitrary one-way regular function. When ilog(reg(n)) cannot be computed
in polynomial time then the following theorem provides a way to circumvent this problem using
Lemma 6 (page 9).

Theorem 4 A pseudo-random generator can be constructed from any one-way regular function.

PROOF:

For inputs of length n, and for all ¢ = 0,...,n, let g; , be the generator obtained by assuming
that ilog(reg(n)) = . For each value of n, for one value of ¢ this assumption is right. Thus, from
Corollary 19, for each n there is a value s(n) € {0,...,n} such that family {gsn)n : n € N}
has pseudo-entropy. Then, from Theorem 2 (page 18) and from Proposition 5 (page 9) the family
{g9in :1=0,...,n,n € N'} can be converted into a family of generators {G;, :1=0,...,n,n €
N}, where G , maps n bits to more than n(n + 1) bits, such that the subfamily {Gn)n :n € N}
is pseudo-random. Then, from Lemma 6 (page 9) it follows that the polynomial time computable
family of generators {G,, : n € N'} is pseudo-random, where G, = ®1 (G .

|
8 False-entropy generator

A false-entropy generator is a further generalization of pseudo-entropy generator. A false-entropy
generator doesn’t necessarily amplify the input randomness, it just has the property that the
output randomness is computationally more than it is statistically.
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The intuitive motivation for statistical coverage is the following. Suppose an adversary A inverts
f with probability p when the input distribution to A is D, and furthermore suppose that & 6-
dominates D. Then, A inverts f with probability at least p/6 when the input distribution to A4 is
E.

Lemma 18 Let f be a one-way function. Suppose that d(f(z)) is computable in time polynomial
in n given f(z). Define f(XoH) = f(X)oHo H(X)—a(f(x))+ilog(2n), where X €y {0,1}" and
H ey Hn,n+ilog(2n)‘ Then;

(1) f(X o H) is a one-way function.
(2) But(F(X o ) > n+ || = 3.

PROOF:

Proof of (1): Suppose adversary A inverts f(X o H) with probability p(n) which is non-negligible.
We prove that the following oracle Turing machine M4 on input ¥ = f(X) finds X’ € f~}(V)

. ey 3
with probability at least ’il%.

Description of M4(Y)

Compute d(Y).

H €u Hn a(v)+ilog(2n)

o €y {0, 1}4)+ilog(2n)

Run A on input Yo H o a.

If A outputs X’ o H with f(X') =Y then output X'.

Let D, be the distribution defined by f(X) o H o H(X), let D/, be defined by f(X) o H o
Qe d(f(X))—-2ilog(2/p(n)) © H(X)a(s(x))=2il0g(2/p(n))— and let &, be defined by f(X)o Hoa. A
successfully finds an inverse of f with probability at least p(n) when the input distribution is D,.
By Lemma 13, for each fixed value of Y = y, when X’ €, f~!(y) the distribution defined by
yoHo H(X’),_d(y)_Qilog(Q/p(n)) is statistically indistinguishable within ﬂ;l from the distribution
defined by y o H o a4(y)-2ilog(2/p(n))- From this it follows that D, and D!, are statistically

indistinguishable within 20,
inverse of f with probability at least p(n) — %ﬂ = ‘%ﬂ when the input distribution is D, . It is

easy to see that &, p(sn’f)g -statistically covers DJ,, and thus A finds an inverse of f with probability

at least ‘ﬁl%ni when the input distribution is &, .

From this and Proposition 3 (page 9) it follows that A finds an

Proof of (2): Fix y in the range of f and let z € f~'(y). From Lemma 17, yo H o H () — i(y)+ilog(2n)
uniquely determines z with probability at least 1 — ;.. Thus, Ent(f(Up4im))) > [H|+n(1- =) >
|H|+n— 3.
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technique of extracting entropy out of the input to f equal to the degeneracy of f using techniques
similar to that of Lemma 13 (page 15) has many applications in [15, Impagliazzo Luby]. We now
give a highly intuitive presentation of this technique. Let rank(z) = [{y < z : f(y) = f(z)}],
i.e. rank(z) is the rank of z among all of its siblings. For now, we make the highly unreasonable
assumption that rank(z) is computable in polynomial time given z. Consider the function f(z) =
f(z)orank(z). f(z) is one-to-one and so Ent(f(Uy,)) = n, i.e. f has degeneracy zero. Furthermore,
the task of inverting f is at least as hard as that of inverting f. On input f(z) o r, an adversary
doesn’t just have to find some preimage of f(z), it has to be able to find the 7'» smallest preimage.
Thus, if rank(z) is computable in polynomial time, then, using the same ideas as used in Theorem 1
(page 12), it is easy to construct a pseudo-random generator based on f.

Unfortunately, the value of rank(z) is not in general computable in polynomial time. Suppose
for the moment that the function d defined below is computable in time polynomial in n given
f(z). We show how to construct a pseudo-random generator based on this (still not justifiable)
assumption.

DEFINITION 7.3 (the function d) For z € {0,1}", define d(f(z)) = ilog(|f~*(f(z))|),

The idea is to let the easily computable quantity H o H(z), where H € M, d(f(x))+ilog(2n)s
serve the same purpose of the possibly hard to compute quantity rank(z). Redefine f(X o H) =
f(X)oHo H(X),_d(f(x))+ﬂog(2n).5 Their are two claims: (1) f_(X o H) is “almost” a one-to-
one function, this follows from the following simple lemma; (2) f(X o H) is a one-way function
if f(X) is a one-way function, this follows using a proof based on Lemma 13 (page 15). From
these two claims, using the same basic outline as given in Theorem 1 (page 12), it follows that a

pseudo-random generator can be constructed from f.

Lemma 17 Let ¢ be any positive integer, let x € {0,1}" and let H €y Hppnye. Then, f(zx), H
and H(x)—_q(f(z))+c together uniquely determine x with probability at least 1 —1/2°.

PROOF: Forany 2’ # z and for any i < n+ec, when H €y Hp nte, Pr[H(2)—i = H(z')—i] = 272
There is ambiguity in determining z from the given information if and only if there is some
' € f~1(f(z)) such that H(z') = H(z). The lemma follows because Pr[3z’ € f~1(f(z)) — {z} :
H(m/)«—d(f(:c))+c = H(m)«—d(f(z))+c] < %@%{-Lﬁ < 21_C L
We now formalize the above intuition, first introducing a technical lemma that is used in the proofs
of Lemma 18 and later on in Lemma 25, then stating and proving the informal claims made above

under the assumption that d is polynomial time computable, and finally stating formally the result
under this assumption in Theorem 3.

DEFINITION 7.4 (statistical coverage) Let D and & be probability distributions on {0,1}", We say
& f-statistically covers D if, for all z € {0,1}", E[{z}] — 6D[{z}] > 0.

5To avoid variable length outputs of functions on inputs of the same length, we adopt the convention that
whenever a hash function is applied to an argument and only a prefix of the entire hash value is specified as output,
then the output of the hash applied to the argument is padded out to a fixed maximum length with a string of zeroes.
For example, H(X)hd(f(X))+ilog(2n) is padded with a string of zeroes so that the entire length is the maximum

possible length n + ilog(2n).
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pseudo-random generator.* On the other hand, all is not lost, because it is still the case that f(X)
is uniformly distributed on some set of 27 bit strings, and it is still the case that R ® X is both
hidden and meaningful. We show that this construction yields a pseudo-entropy generator.

Lemma 16 If f is a one-way one-to-one function then g is a pseudo-eniropy gemerator, where

g(XoR)=f(X)oRo(X ®R).

PROOF: The generator ¢ is the same as the g described in Proposition 8 (page 11). Consider the
probability ensembles D and & defined in Corollary 11 (page 12). Corollary 11 shows that £ and
D are computationally indistinguishable. On the other hand, because /3 is an independent random
bit whereas R® X is completely determined by f(X)o R, &, has one more bit of entropy than D,,.
Furthermore, since f is a one-to-one function, Ent(D,,) = 2n, which is the entropy of the input to

g. n

7.3 One-way regular function — pseudo-entropy generator

In this subsection we show how to construct a pseudo-entropy generator from a one-way regular
function. This result was previously obtained by [9, Goldreich Krawczyk Luby] using a different
construction and proof techniques.

DEFINITION 7.2 (regular function) A function f is reg(n)-regular if, for eachn € N, for each x €
{0,1}", the number of siblings of x is reg(n)—1. Thus, for each z € {0,1}", |f~1(f(z))| = reg(n).

The main result of this subsection shows how to construct a pseudo-entropy generator from any
function f which is one-way and for which the function |f~!| is computable in polynomial time.
The primary reason for giving the construction here is because it illustrates some of the additional
ideas needed later for our construction of a false-entropy generator from any one-way function.
In general it is not the case that |f~!| can be computed in polynomial time, and considerably
more effort is needed to construct a pseudo-entropy generator from one-way functions without this
property. For regular functions, |f~1(f(z))] is the same for all z of a given length and, as we show,
this makes it easy to overcome the problem that |f~'| may not be computable in polynomial time.

To see where we get into trouble with the construction given in Proposition 8 (page 11), suppose
f is a one-way reg(n)-regular function. Then, the degeneracy of f is log(reg(n)). The problem
with applying directly the construction given in Proposition 8 is twofold. Suppose that reg(n)
is fairly large, e.g. reg(n) = 27/4 and consider the probability ensembles D and & defined in
Corollary 11 (page 12). These two ensembles are still computationally indistinguishable. However,
Ent(D,) = 2n — log(reg(n)), and thus we have lost n/4 bits of the input entropy. Furthermore,
although r ® « is a hidden bit of g, it is no longer a meaningful bit. In fact, Ent(&,) = Ent(D,),
and even stronger, D, and &, are statistically indistinguishable within exp(—n).

The idea to overcome these problems is to create a new function which is the original one-way
function concatenated with bits extracted out of the input using hashing to regain the lost entropy.
Then, Proposition 8 can be applied to the new function to obtain a pseudo-entropy generator. This

4In fact, it is easy to concoct an example where the construction yields a generator g that is definitely not
pseudo-random, even if f is a one-way one-to-one function. Consider the function f(X) = f/(X) o0 where f' is
a one-way permutation. Then, f is a one-way one-to-one function and yet the resulting g is not a pseudo-random
generator, because the 0 bit at the end can always be predicted.
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DEFINITION 7.1 (pseudo-entropy generator) We say that f is a pseudo-entropy generator if f has
computational entropy at least s(n) where s(n) > n + 1/n® for some constant ¢, where n is the
nput length function for f.

Note that a pseudo-random generator is a pseudo-entropy generator because the uniform distri-
bution is polynomially samplable and because the output length {(n) of a pseudo-random generator
is greater than its input length n, and consequently Ent(¥(,)) = I(n) > n+ 1.

7.1 Pseudo-entropy generator — pseudo-random generator

Proposition 12 (page 13), together with Lemma 13 (page 15) via Corollary 15 (page 17), suggests
a way of converting a pseudo-entropy generator into a pseudo-random generator; first make several
copies of the pseudo-entropy generator so that the Shannon entropy and the min-entropy are
approximately equal, then use hashing to convert the min-entropy into uniform entropy. This is
exactly what we do in the following theorem.

Theorem 2 Let f be a pseudo-entropy generator with computational entropy at least s(n) = n +
1/n®, let k = n3°%* and let j = ks(n)—2nk>/3. Then, g(HoXjo0...0Xy) = HoH(f(X1)o...0f(Xy))
is a pseudo-random generator, where H €y Hyi(n),; and, for alli = 1,...,k, X; €y {0,1}" are
independent.

PROOF: Let D be the polynomial samplable probability ensemble with Ent(D,) > s(n) that is
computationally indistinguishable from f(X), where X €, {0,1}". By Proposition 12 (page 13),
fE(X10...0Xg) = f(X1)o...0 f(Xy is computationally indistinguishable from D*. Note that
Ent(D%) = kEnt(D,,) > ks(n). Let D', be the probability distribution defined by HoH (Yjo0.. .0Y%),
where, for all i = 1,...,k, ¥; €p, {0,1}'(®) are independent. By Corollary 15 (page 17), D', is
quasi-random within exp(—n). Let &£, be the probability distribution defined by the output of
g. Then, since f* is computationally indistinguishable from D*, it follows from Proposition 4
(page 9) that &£ is computationally indistinguishable from D’. This is true in the sense that
there is an oracle Turing machine M such that if A is a feasible adversary that distinguishes D’
and &£ with non-negligible probability then M4 is a feasible adversary that distinguishes D from
& with non-negligible probability. The uniform reduction is possible because both D and & are
polynomially samplable and the sampling algorithms are incorporated into M. Because D’ is
quasi-random within exp(—n), and because by choice of k the output of g is longer than the input,
g is a pseudo-random generator.

7.2 One-way one-to-one function — pseudo-entropy generator

In this subsection we describe a construction of a pseudo-entropy generator from any one-way one-
to-one function. This construction, together with Theorem 2 (page 18), yields a pseudo-random
generator from any one-way one-to-one function. The overall construction is quite different in
spirit than the original construction of [9, Goldreich Krawczyk Luby] that yields the same result.
We present this construction because it illustrates how to construct a pseudo-entropy generator in
a particularly simple way using [10, Goldreich Levin].

The construction is the same as in Proposition 8 (page 11). If we use this same construction
applied to a one-way one-to-one function, then it is not possible to argue that the result is a
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(the concatenation of k(n) independent samples of D,) such that the min-entropy of &, is ap-
proximately equal to Ent(Dﬁ(n)). Lemma 13 shows that if H is a randomly chosen hash function
from nk(n) bits to slightly less than the min-entropy of &, bits and X €¢, {0,1}?*(") then
H o H(X) is statistically indistinguishable within exp(—n) from the uniform distribution. Since
&, and Di(n) are statistically indistinguishable within exp(—n), we conclude using Proposition 3
(page 9) that if X1, ..., Xj(,) are independently chosen according to D,, then Ho H(X;0- -0 Xp(n))
is statistically indistinguishable within exp(—n) from the uniform distribution on approximately

|H|+ k(n)Ent(D,) bits.

Lemma 14 Let k(n) be a length function. For every probability ensemble D there is a probability
ensemble & with length function nk(n) satisfying:

e The min-entropy of &, is at least k(n)Ent(D,) — nk(n)?/3 — exp(—n).

o &, 15 statistically indistinguishable from DEM) within exp(—k(n)) + exp(—n).

PROOF: Let S C {0,1}" be the set of elements with probability at least 2=2" with respect to
D,,and let S’ = {0,1}*—S. Let D', be the distribution on {0, 1}" described as: (1) for all z € S,
D' [{z}] = Dul{z}]/Dn[S]; (2) for all 2 € S, D', [{z}] = 0. It is easy to show that D,[S'] < 27",
and from this it follows that Ent(D’,) > Ent(D,) — 27" and that D', and D, are statistically
indistinguishable within 277,

For each z € {0,1}", let Ent(z) = —log(D'y[{z}]). When X; €p:, {0,1}" independently
fori=1,...,k(n), Z = Zi:l,...,k(n) Ent(X;) is the sum of independent random variables on the
interval [0, 2n] with expected value Ent(D’,). Hence, by an elementary extension of Chernoff
bounds, with probability 1 — exp(—k(n)), Z has value within an additive factor of nk(n)?/3 of its
expectation. Thus, with probability 1 — exp(—k(n)), Z > k(n)Ent(D’,) — nk(n)?/3. This means
that only with probability exp(—k(n)), the sequence z1,...,zy(,) has probability greater than
2-k(ERK(DL)+nk(7)** when 7, is chosen independently according to X; for all 4, Restricting D/*(*)
to the complement of this exponentially small in probability set of sequences, and renormalizing
the distribution as before, we obtain &,. [ |

Corollary 15 Let k(n) = n® for any constant ¢ > 0. Let H €u Hy,p(n) k(n)Eat(D, )= 2nk(n)2/3; and
let X; €p, {0, 1}" independently fori=1,... k(n). Then the distribution Ho H(X10...0 Xpm))
is quasi-random within exp(—n).

PROOF: Use Lemma 14 (page 17), Lemma 13 (page 15) and Proposition 3 (page 9). |

7 Pseudo-entropy generator

The difference between a pseudo-random generator and a pseudo-entropy generator is that the
output of a pseudo-entropy generator doesn’t have to be computationally indistinguishable from the
uniform distribution, instead it must be computationally indistinguishable from some distribution
&, that has more entropy than the input to the generator. Thus, a pseudo-entropy generator
still amplifies randomness so that the output randomness is more computationally than the input
randomness, but the output randomness is no longer necessarily uniform.
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By the properties of hash functions, for each fixed s € {0,1}!, Exp[W,(H)] = 2~!. We can rewrite
equation (1) as
> Exp[|Wi(H)-27"]]. (2)

s€{0,1}!

For any random variable Y, Exp[|Y|] < Exp[Y'2?]'/2, and thus equation (2) is upper bounded by

S Expl(Wi(i) - 2771 (3)

s€{0,1}!

Below we show that Exp[(W(H) — 2~")?] < 2-2=2¢ From this we conclude that equation (3) is
upper bounded by 2} - 2-1=¢ < 2-¢,

We now show that Exp[(W,(H) —27")?] < 2=2-2¢. For each h € H,; we can rewrite

Ws(h) = Z Dn [{:L‘}]X(h(l‘) = 5)1

ze{0,1}~

where x(h(z) = s) takes the value 1 if h(z) = s and is 0 otherwise. We can rewrite Exp[(W,(H) —
2712] as

Exp | Y Dal{z}Dal{y}] (x(H(z) = 5) —27") (x(H(y) = s) —27Y) | . (4)
€,y
Since the events H(z) = s and H(y) = s are independent for fixed z and y, z # y, all terms except
the diagonal terms are zero when we move the expected value inside the sum. Using this and the
fact that Pr[x(H(z) = s) = 1] = 27, equation (4) can be rewritten as

Y. DllEN -2+ (=27 @T)?) <27t Y DRPl{e). ()

ref{0,1}n ze{0,1}n

Because the Renyi entropy of D, is at least m, er{o 13n D, 2[{z}] < 2=™. Thus, equation (5) is
upper bounded by 2-1-"m = 2-2I=2¢ |

6.2 Converting arbitrary entropy into uniform entropy

Lemma 13 is very useful in some parts of our constructions as it is, but in other parts it has a
major drawback. In some situations, we want to be able to transform an arbitrary distribution
D, into a uniform distribution without much loss in Shannon entropy. The drawback is that
Lemma 13 says that the min-entropy, not the Shannon entropy, of D, can be transformed into
uniform Shannon entropy. Can we replace the condition that D, has a specified amount of min-
entropy in Lemma 13 by the weaker and more natural condition that D, has a specified amount
of Shannon entropy? Not directly. For example, a distribution can have high Shannon entropy
yet still have one element output with probability 1/2; thus, any function computed based on one
sample from this distribution generates some output with probability at least 1/2, and therefore
is highly non-random. This problem hints at a solution: take multiple independent samples from
the D,, and apply a randomly chosen hash function to the concatenation of the samples.

In a little more detail, we first prove that for sufficiently large k(n) there is a distribution

&, on strings of length nk(n) that is statistically indistinguishable within exp(—n) from pE)
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we interpret € {0,1}" as an element of this field and let A(z) = az + b we obtain a hash function
from n-bit strings to n-bit strings. If m < n we can obtain a hash function to m-bit strings by
dropping part of the output while if m > n we need several independent hash functions. The
advantage of this scheme over the first is that it uses fewer bits, but on the other hand we need a
representation of the finite field in question.

Hereafter, whenever we refer to a family or system of hash functions, we mean one of the
families defined here. However, any system of hash functions that satisfy the required properties
may be used.

Lemma 13 can be interpreted as follows. Suppose we have a distribution D,, on strings of length
n with min-entropy greater than m. A fair coin is used to generate a random hash function H
mapping n bits to m — 2e bits, where e is a small integer that controls the tradeoff between the
“uniformity” of the output bits and the amount of entropy lost in the smoothing process. We then
sample from D,, and apply H to the result. Lemma 13 states that the resulting bits are essentially
uniformly and randomly distributed and almost uncorrelated with the bits used to generate H.
Thus, we have managed to convert almost all the min-entropy of D,, into uniform random bits
while maintaining our original supply of uniform random bits. Previously, [24, McInnes] proved a
related lemma, and independently, [2, Bennett Brassard Robert] proved a similar lemma.

The following definition of entropy, due to [28, Renyi], is intermediate between Shannon entropy
and min-entropy.

DEFINITION 6.5 (Renyi entropy) The Renyi entropy of distribution Dy, is equal to

—log | Y Dul{z})?

z€{0,1}n

It can be easily verified that the Renyi entropy of a distribution is at most the Shannon entropy
and at least the min-entropy. In the following lemma, the distribution is required to have a certain
amount of Renyi entropy. In the remainder of the paper, this lemma is applied to distributions
which have min-entropy at least the amount of Renyi entropy required by the lemma, and because
the Renyi entropy of a distribution is at least the min-entropy the lemma can be directly applied.

Some generalizations of Lemma 13 are possible, including weaker restrictions on the hash
functions used. These generalizations can be used to make our constructions somewhat more
efficient.

Lemma 13 Let D, be a distribution that has Renyi entropy at least m and let ]l = m — 2e. Then
the distribution H o H(X), where H €y Hn; and X €p, {0,1}*, is quasi-random within 27°.

PROOF: For s € {0,1} and h € M, let W,(h) be the probability that 2(X) = s. By
the properties of hash functions (see the remarks following the definition of hash functions on
page 14), for each h € H,, 1, Pr[H = h] = 27|, The quantity we need to bound is

S >0 27w (k) =277 (1)

s€{0,1} 1 heH
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6.1 Smoothing Distributions with Hashing

Due to its importance in such basic algorithms as primality testing, randomness has become an
interesting computational resource in its own right. Recently, various studies for extracting good
random bits from biased “slightly-random” sources that nevertheless possess a certain amount of
entropy have been made; these sources model the imperfect physical sources of randomness, such
as Geiger counter noise and Zener diodes, that would have to actually be utilized in real life. (See
[3, Blum], [31, Santha Vazirani], [32, Vazirani], [34, Vazirani Vazirani], [7, Chor Goldreich] [24,
Meclnnes].)

Lemma 13, which we introduce and prove in this subsection, is very useful in many of our
constructions of various kinds of one-way functions and pseudo-random generators. However, it is
probably best thought of as a result in the theory of slightly-random sources, instead of pseudo-
random generators. Intuitively, it can be thought of as a method for extracting “uniform” random
bits from a slightly-random source using real random bits as a “catalyst”.

Before stating and proving Lemma 13, we start with some preliminaries. We need to use a
variant definition of entropy used in [7, Chor Goldreich].

DEFINITION 6.3 (min-entropy) The min-entropy of D, is minge g 1}={—log(Dp[{z}])}.

Intuitively, if a distribution has min-entropy k, it is “at least as random” as the uniform
distribution on k bit strings. There are distributions that have arbitrarily large entropy but have
only one bit of min-entropy.

The concept of a universal hash function, introduced in [6, Carter Wegman)], has proved to have
far reaching and a broad spectrum of applications in the theory of computation.

DEFINITION 6.4 (hash functions) Let H, », be a family of functions from n bit strings to m bit
strings. We say Hnm s a family of pairwise independent universal hash functions if, for all
z,y € {0,1}", z # y, H(z) o H(y) €u {0,1}*™ when H €y Hpm. A system of hash functions

consists of one such family for all pairs n and m.

We require that the number of hash functions in H, , be a power of two, say 2n,m)  Fur-
thermore, we require that there is an easily computable one-to-one mapping from bit strings of
length I(n, m) into H, . Slightly abusing notation, when we write the name of the hash function
this denotes the bit string describing the hash function, and when we write the name of the hash
function applied to a parameter this denote the bit string that is the value of the hash function
applied to the parameter, e.g. h denotes the description of a hash function and h(z) denotes the
value of the hash function A applied to z. Thus, the description of H € Hp,m can be thought of
as H € {0, 1}(»m),

The following system of pairwise independent universal hash functions has several nice proper-
ties. Let Hy, m be the set of all m by n+41 matrices over the field with two elements. A description
of a hash function from this system is A = (M, b), where M is an m by n bit matrix and b is a bit
vector of length m. Then, h(z) = (M - z) @ b. The description of H €y H, m can be thought of
as H € {0,1}(n+1)m,

Another interesting set of pairwise independent hash functions can be obtained as follows.
Suppose we are given a representation of GF'[2"] and two numbers a and b in this field. Then if
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distribution on strings of length 2n 4+ 1. Since D and £ are computationally indistinguishable, g is
a pseudo-random generator.

The reason for the simplicity in the construction when f is a permutation (versus the case when
f is not necessarily a permutation) is twofold: (1) f(X) is uniformly distributed in {0,1}"; (2)
f(X) uniquely determines X, and thus from f(X) and R it is informationally possible to compute
R ® X, and consequently R ® X is a meaningful bit of ¢(X o R). The first property ensures that
the first 2n output bits of the generator are uniform and random, and the second property ensures
that R ® X is a meaningful bit of g(X o R) (Proposition 8 ensures that it is hidden). For a general
one-way function, neither of these properties necessarily holds. In the sequel, we first develop the
construction of a pseudo-random generator from any function that hides a meaningful bit, and
then later we show how to construct a function that hides a meaningful bit from any one-way
function.

6 Manipulating Entropy

Our constructions of pseudo-random generators from one-way functions can be viewed as manip-
ulations of entropy. In this section, we provide the necessary definitions and technical tools for
these manipulations.

The following definition of entropy is from [30, Shannon].

DEFINITION 6.1 (Shannon entropy) For each x € {0,1}", define the entropy of © with respect to
D, to be Ent(z) = —log(Dy,[{z}]). The (Shannon) entropy, Ent(D,), of D, is Exp[Ent(X)] when
X €p, {0,1}". The entropy function Ent(D) assigns to each n € N the value Ent(D,). For
a function f, we call Ent(f(D)) the (Shannon) entropy of f on D and Ent(D) — Ent(f(D)) the
degeneracy of f on D.

DEFINITION 6.2 (computational entropy) Let s(n) be a function from N to the positive reals. We
say f has computational entropy at least s(n) if there is a polynomially samplable ensemble £ such
that & is computationally indistinguishable from f(U) and Ent(E,) > s(n).

The following proposition appears in [12, Goldwasser Micali Rackoff].

Proposition 12 Let k(n) be a length function. If D and £ are polynomially samplable probability
ensembles that are computationally indistinguishable then D* and £* are computationally indis-
tinguishable. More precisely, there is a probabilistic oracle Turing machine M such that if A 1s a
feasible adversary with non-negligible distinguishing probability for D* and £* then M4 is a feasible
adversary with non-negligible distinguishing probability for D and £.

In Proposition 12 it is crucial that both probability ensembles are polynomially samplable be-
cause the sampling algorithms are incorporated into M. Because we want to be able to uniformly
convert a successful adversary for distinguishing D* from £* into a successful adversary for distin-
guishing D from &, we required & to be polynomially samplable in the definition of computational
entropy. There is a weaker form of Proposition 12 where neither D nor £ are required to be
polynomially samplable, but then the much weaker conclusion of the proposition is that there is
a non-uniform way of converting a feasible adversary for distinguishing D* and £* into a feasible
adversary for distinguishing D and £.
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Proposition 10 Let f' be of the form f'(X) = f(X) o b(X) where b is a bit function and X €y
{0,1}". Let probability ensembles D and £ be defined as follows. Let Dy, = f(X) o b(X) and let
En = f(X) o B where 8 €y {0,1} is independent of X. If b is a hidden bit of f' then D and & are

computationally indistinguishable.

PROOF: Since both f and b are polynomial time computable functions, both D and & are
polynomially samplable. We show below that there is an oracle Turing machine M such that if
A is a feasible adversary that has non-negligible distinguishing probability p(n) for D and &, with
p(n) = PrlA(f(X) o b(X)) = 1] — Pr[A(f(X) o B) = 1], then M4 is a feasible adversary with
prediction probability 2p(n) for b(X) given f(X). This contradicts our assumption that b is a
hidden bit of f’ and thus D and £ are computationally indistinguishable.

M4 follows a fairly standard outline common in the literature.

Description of M4(f(X))

By — A(f(X)00)

By — A(f(X)o1l)

If By = B; then output o € {0, 1}
Elseif By = 1 then output 0

Elseif B; = 1 then output 1

It can be easily verified that Pr[M4(f(X)) = b(X)]—1/2 = p(n) and thus the prediction probability
PHMA(F(X)) = B(X)] — PHMA(F(X) # b(X)] s equal to 2p(n). n

Corollary 11 Let probability ensembles D and £ be defined as D, = f(X)o Ro (X ® R) and
En = f(X)oRopB where X €4 {0,1}", R €4 {0,1}" and 3 €y {0, 1} are independently distributed.

If f is a one-way function then D and € are computationally indistinguishable.

PROOF: By Proposition 10 there is an oracle machine M such that if A is a feasible adversary
that has non-negligible distinguishing probability for D and £ then M4 is a feasible adversary
that has non-negligible prediction probability for X ® R given f(X) o R. By Proposition 8, there
is an oracle machine N such that if M4 is a feasible adversary that has non-negligible prediction
probability for X ® R given f(X) o R then NM* ig a feasible adversary that has non-negligible
inverting probability for f. |

5.1 One-way permutation — pseudo-random generator
In this subsection, we describe a way to construct a pseudo-random generator from any one-

way permutation which is substantially simpler than the original construction of [35, Yao]. The
construction and proof described here is due to [10, Goldreich Levin].

Theorem 1 If f is a one-way permutation then g(XoR) = f(X)oRo(X ®R) is a pseudo-random
generator, where X € {0,1}"™ and R €y {0,1}".

PROOF: The generator g is the same as the g described in Proposition 8 (page 11). Let D and &
be defined as in Corollary 11 (page 12). Because f is a permutation, £, = f(X)oRo/ is the uniform
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Pr[A(f(X) # b(X)]| when X €p, {0,1}". Bit b is hidden for f' on D if every feasible adversary
has negligible prediction probability for b given f on D. Bit b is hidden for f' if it is hidden for f’
on U. Bit b is p(n)-meaningful for f' on D if there is an unbounded adversary A with prediction
probability at least p(n). Bit b is meaningful for f' on D if there is a constant ¢ > 0 such that b is
nl—c meaningful for f' on D. Bit b is meaningful for f' if it is meaningful for f' on U.

The following proposition shows that we need only functions with the uniform distribution on
inputs in the definition of a function with a hidden and meaningful bit.

Proposition 7 Let f'(X) = f(X) o b(X) where b is a hidden and meaningful bit of f' when
X €p, {0,1}", where D is polynomially samplable. Let M be the polynomial time sampling
algorithm for D and suppose without loss of generality that M takes n uniformly distributed bits
to sample from D,. LetY €y {0,1}" and let ¢(Y) = b(M(Y)), let g(Y) = f(M(Y)) and let
¢ (Y)=9g(Y)oe(Y). Then c is a hidden and and meaningful bit for ¢'.

How do we go about constructing a function that hides a meaningful bit from a one-way
function? A key component of this construction comes from [10, Goldreich Levin].

DEFINITION 5.2 (inner product bit) Let X €p, {0,1}" and R €y {0,1}*. Let f(XoR) = f(X)oR
and let D', = D, oly,. It is easy to see that if f is one-way on D then f s one-way on D'. The
inner product bit is 5(X o R) = X ® R.

The following important proposition is from [10, Goldreich Levin].

Proposition 8 Assume that f is one-way on D and let X €p, {0,1}" and let R €4 {0,1}". Let

f(XoR)=f(X)oR. Let D!;, = Dy olUy, and let b(X o R) = X ® R be the inner product bit. Let
g(X oR) = f(X o R)ob(X o R). Then, b is hidden for g on D'.

In fact, what [10, Goldreich Levin] proves is something much stronger, which is stated in the
following proposition.

Proposition 9 Let A be a Turing machine that outputs a single bit on inputs of the form yor,
where r € {0,1}". Let R €4 {0,1}". There is an oracle Turing Machine M4 which on input y and
error parameter § > 0 outputs a list L of n-bit strings such that with probability 1 — exp(—n) the
following statement is true for allz € {0,1}": If |Pr[A(yoR) = 2 ® R]—Pr[A(yoR) #zOR]| > 6
then x € L. The running time of M is polynomial in % and the running time of A.

PROOF: (of Proposition 8) Suppose there is a feasible adversary A with non-negligible prediction
probability p(n) for X @ R given f(X)o R. When z €p, {0,1}" is fixed and y is set to f(z) then
with probability at least ﬂ;l the prediction probability of A for £ ® R on input y o R is at least
ﬁ?. Consider the oracle Turing machine M described in Proposition 9. With probability at
least 1&222, M# on input Y = f(X) and ﬂ;_) outputs a list L of n-bit strings that with probability
1 — exp(—n) contains X. Let NM* be the oracle Turing machine that on input y, runs M4 on
input y to produce a list L, and then for each 2’ € L outputs z’ if f(z') = y. With probability at
least @ an inverse of f(X) is produced by NM* |

Proposition 8 presents an elegant, simple and general method of obtaining a hidden bit from a
one-way function. We need the stronger Proposition 9 in some of our proofs.
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be a family of functions such that for each n € N, for eachi=1,... k(n) and for all z € {0,1}",
gin(x) is computable in time t(n). Suppose that for each wvalue of n there is a value s(n) €
{1,...,k(n)} such that the subfamily of functions {gsn)n : n € N'} is pseudo-random. Define
generator

gn(X10---0 Xk(n)) = @fiq)gi,n(Xi);

where X1 €y {0,1}*, ..., Xp(n) €u {0,1}". Then, the family {gn : n € N} is a pseudo-random
generator.

PROOF: Tt is not hard to verify that g on inputs of length nk(n) is computable in time
O(t(n)k(n)). Since the length of the output of ¢ on inputs of length nk(n) is {(n) > nk(n) by
assumption, it remains to be shown that the output of g is indistinguishable from a truly random
string of the same length.

Let R €4 {0, 1}*("). Suppose there is an adversary A that distinguishes S = g,(X;0-- 0 Xk(n))
from R with non-negligible probability p(n), i.e. A accepts S with probability pg, A accepts R
with probability pr and |ps — pr| > p(n). We show this implies that for all ¢ = 1,... k(n) there
is an adversary M that distinguishes g; ,(X;) from R with probability at least p(n), and this
contradicts the assumption that the family {g;(n)n : n € N} is pseudo-random.

Foreachi=1,...,k(n) let M be the oracle Turing Machine that works as follows. On input
Y, M{* generates X1 €y {0,1}",..., X;_1 €4 {0,1}" and Xi1q €y {0,1}7,..., Xp(ny €4 {0, 1}"
and computes S’ = P;£igj.(X;) @Y. Then MA runs A on input S’ and accepts if A accepts.
By the nature of &, if Y = R then M accepts with probability pr, whereas if Y = g; »(X;) then
M7 accepts with probability pg. Thus, for each value of i, M distinguishes g; ,(X;) from R with
probability |ps — pr| > p(n). |

If the original family in Lemma 6 does not satisfy the property that /(n) > nk(n), then we can
use Proposition 5 to stretch the output of each generator in the family and then apply Lemma 6.

In the remainder of the paper, we show how to construct a pseudo-random generator from
any one-way function. We provide several constructions, depending on the structural properties
of the one-way function, starting with the simpler constructions for one-way functions with a lot
of structure and finishing with the most complicated construction for one-way functions with no
required structural properties.

5 Hidden and Meaningful Bit

In the construction of a pseudo-random generator from a one-way function, one of the key ideas is
to construct from the one-way function another function which has an output bit that is compu-
tationally unpredictable from the other output bits (it is hidden) and yet statistically somewhat
predictable from the other output bits (it is meaningful). The idea of a function that hides a
meaningful output bit is used implicitly in the original construction of a pseudo-random generator
from the discrete log problem [5, Blum Micali] and has been central to all such constructions since
that time.

DEFINITION 5.1 (hidden and meaningful bit) Let f' be a function of the form f'(z) = f(z) o b(z)
where z € {0,1}" and both f and b are polynomial time computable and b(z) is a single bit.
The prediction probability p(n) of adversary A for b given f on D is |Pr[A(f(X)) = b(X)] —
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DEFINITION 4.1 (statistically indistinguishable and quasi-random) D,, and &, are statistically in-
distinguishable within & of 37, (4 11 [Pn[{z}] — En[{z}]| < 8. Dy is quasi-random within & if Dy,
ts statistically indistinguishable within & from the uniform distribution.

Proposition 3 Let D,, and &, be probability distributions on {0,1}™ which are statistically indis-
tinguishable within 6. Let f be any function on inputs of length n. Then, f(Dy) and f(&,) are
statistically indistinguishable within 6.

The following definition is the computational analog of statistical indistinguishable. The defi-
nition of computationally indistinguishable appears in [11, Goldwasser Micali], [35, Yao] and [12,
Goldwasser Micali Rackoft].

DEFINITION 4.2 (computationally indistinguishable) The distinguishing probability function p(n)
of adversary A for D and £ is |Pr[A(X) = 1] — Pr[A(X') = 1]| when X €p, {0,1}" and X' €¢,
{0,1}". D is computationally indistinguishable from & if every feasible adversary has negligible
distinguishing probability.

The following proposition is the computational analog of Proposition 3.

Proposition 4 Let D,, and &, be probability distributions on {0,1}" which are computationally
indistinguishable and let f be any function on inputs of length n that can be computed in feasible
time. Then, f(D,) and f(&,) are computationally indistinguishable.

[35, Yao] makes the following definition of pseudo-random.

DEFINITION 4.3 (pseudo-random generator) Let g be a function such that the output length of g is
strictly longer than its input length, i.e. I(n) > n for alln € N. We say that g is a pseudo-random
generator if g(Uy) is computationally indistinguishable from Uy, .

The usual definition of a pseudo-random generator insists that the generator can stretch the
input by any polynomial amount. The following shows the definition above is equivalent, and
follows from [8, Goldreich Goldwasser Micali].

Proposition 5 Suppose that g is a pseudo-random generator that stretches an n bit string to an
n+ 1 bit string. Let go(z) = g(z) and define inductively, for all i > 1, g;(z) = 9(gi—1(2)—n) ©
gi—1(z)n—. Then, for every length function l(n), gi(n) is a pseudo-random generator.

Some of our constructions have the property that for each value of n we construct a polynomial
size family of generators and the guarantee is that at least one of them is pseudo-random, but
we don’t know which one. The following lemma provides a way to construct a pseudo-random
generator from such a family by taking the “exclusive-or” of the outputs of the generators.

Lemma 6 Let I(n) and k(n) be length functions such that l(n) > nk(n). Let t(n) be a function
that is polynomial in n. Let

{gin {0, 13" — {0, 1} si=1,.. . k(n);n € N}



is that they seem to be more likely to occur naturally than one-way functions, but on the other
hand, as Proposition 2 (page 8) shows, a one-way function can be constructed from any somewhat
one-way function.

DEFINITION 3.5 (somewhat one-way function) We say that f is somewhat one-way on D if, for
some constant ¢ > 0, for every feasible adversary A, the inverting probability Pr[f(X) = f(A(f(X)))]
is at most 1 — 1/n® when X €p_ {0,1}".

DEFINITION 3.6 (one-way function) We say that f is one-way on D if, for every feasible adversary
A, the inverting probability Pr[f(X) = f(A(f(X)))] is negligible when X €p, {0,1}". We say that

f is one-way if f 1s one-way on the uniform distribution U.
If a function is one-way then it is somewhat one-way.

Proposition 1 If there is a polynomial-samplable D such that f is one-way on D then there is a
one-way function g.

The function ¢ is simply the composition of f and the polynomial time computable sampling
function for D. This proposition allows us to state most of our results in terms of one-way functions
on the uniform ensemble as opposed to other probability ensembles.

DEFINITION 3.7 (copies of functions and ensembles) Let k(n) be a length function. Let D* be the
ensemble with length nk(n) such that DE is the distribution obtained by independently sampling
k(n) times from D,, and concatenating the results. Similarly, let f* be the function with input and
output lengths nk(n) and l(n)k(n), respectively, given by:

ffzio...0 Zrny) = f(x1)o... 0 f(2r(n)),
where x1,. .., 2pmn) € {0, 1},

The following proposition is implicitly used in [35, Yao]. The importance of Proposition 2 is
that it allows us to transform any function that is just a little bit hard to invert into one that is
hard to invert almost always for a random input. For the remainder of the paper, we only consider
one-way functions as opposed to somewhat one-way functions.

Proposition 2 If f is somewhat one-way on D with associated constant ¢ > 0, then f* is one-way
on D*, where k(n) = n°t1.

4 Pseudo-random generator

Informally, a polynomial time computable function f is pseudo-random if f(X) is strictly longer
than X and if every feasible adversary can distinguish f(X) from a truly random string of the
same length with only negligible probability. Intuitively, f(X) “looks” just like a random string
to any feasible adversary, even though it is generated from a string X that is strictly shorter. This
intuition is captured in the definition of a pseudo-random generator [5, Blum Micali], [35, Yao].
Before giving the definition of a pseudo-random generator, we state some related useful definitions.



the set of preimages of y, 1.e.

TN y) ={z€{0,1}": f(z) =y}

Then, |f~1(y)| is the number of n-bit preimages of y.

DEFINITION 3.3 (probability notation) A probability ensemble D with length m(n) assigns to each
positive integer n a probability distribution Dy, on bit strings of length m(n). We use capital letters
and Greek letters to denote random variables and random events, and we use uncapitalized letters
to indicate particular values for variables. We use Exp[X] to denote the expected value of X, and
Pr[E] denotes the probability that event E occurs. We use the notation X €p, {0,1}™(") to mean
that random wvariable X is randomly distributed in {0,1}™(") according to D,, and we use the
notation x €p, {0,1}™(") to mean that string x is randomly chosen in {0,1}™(") according to D,,.
For S C {0,1}™(") D,[S] is the sum over all 2 € S of the probability of x with respect to D,,.
When S 1s a set then the notation X €y S means that X is randomly and uniformly distributed in
S. The uniform ensemble U assigns to each positive integer n the uniform probability distribution
U, on strings of length n.

DEFINITION 3.4 (polynomial samplable) We say that D is polynomial samplable if there is ¢ poly-
nomial time Turing machine M with input length k(n) and output length m(n) such that, for each
n€N, M(X) €p, {0,1}™() when X € {0,1}F).

Define f(D) to be the probability ensemble with length {(n), where f(D,) is the probability
distribution defined by the random variable f(X) when X €p, {0, 1}7(?),

Hereafter, unless stated otherwise, we use the following conventions. Both f and g are polyno-
mial time computable functions. If no length functions are specified for a function then the input
length is n and the output length is {(n). Both D and £ are probability ensembles. If no length
function is specified for a probability ensemble then the length is n.

Intuitively, a function f is one-way if it is easy to compute but hard to invert, i.e. given z
the value of f(z) can be computed in polynomial time but every feasible adversary that receives
as input f(X) when X € {0,1}" can output X’ such that f(X’') = f(X) with only negligible
probability. It has not yet been proven that one-way functions exist (if P=NP then they certainly
do not exist, but even if P # NP it is not clear if they exist), but there are many examples of
functions that seem to be one-way in practice and that are conjectured to be provably one-way.
Some examples of conjectured one-way functions are discrete log modulo a large randomly chosen
prime [5, Blum Micali], quadratic residuosity [4, Blum Blum Shub], factoring a composite number
N that is the product of large randomly chosen primes ([33, Vazirani Vazirani] based on the
generator suggested in [4, Blum Blum Shub] and proved by adapting the techniques of [1, Alexi
Chor Goldreich Schnorr]), problems from coding theory [9, Goldreich Krawczyk Luby] and the
subset sum problem for appropriately chosen parameters [17, Impagliazzo Naor].

We give two definitions of functions that are one-way in some sense. For one-way functions, a
successful adversary is required to output some preimage of f(X) with non-negligible probability.
This is the primary definition used in this paper. For somewhat one-way functions, a successful
adversary is required to output some preimage of f(X) almost all the time. In other words an
adversary is unsuccessful if for an a priori given constant ¢ the probability that it fails to output

some preimage of f(X) is at least n=°. The reason for considering somewhat one-way functions



DEFINITION 2.9 (uniform reduction) A reduction from f to g is uniform if there is an oracle Turing
machine M such that if A is a successful adversary for g then M* is a successful adversary for f.

The reduction has the property that if A is a non-uniform adversary then so is M4, whereas if
A is a uniform adversary then so is M4. The important point is that irrespective of the uniformity
of the adversaries, the conversion machine M is always uniform.

To see the importance of this property, consider the following example. Suppose that f is
the one-way function based on the difficulty of factoring a composite number that is the product
of a pair of large randomly chosen primes, and g is the pseudo-random generator resulting from
the construction. Suppose that someone managed to find a probabilistic polynomial time Turing
machine A for distinguishing the output of the pseudo-random generator from truly random bits.
Then, M4 is a probabilistic polynomial time Turing machine that factors a non-negligible fraction
of the composite numbers.

Now instead suppose someone managed to find in exponential time a polynomial size circuit
family A that distinguishes the output of the pseudo-random generator from truly random bits.
Then, M4 is a polynomial size circuit that factors a non-negligible fraction of the composite
numbers. However, M4 is constructed in polynomial time from A. Note that here the onus is on
the adversary; the adversary may spend exponential time finding A if it exists. If the adversary is
unsuccessful then we can use ¢ securely, and on the other hand if the adversary finds an A then we
can in only polynomial time (as opposed to exponential time) find the small circuit M“ to solve
the factoring problem.

Often in our proofs we argue that the probability that a particular event occurs is very small,
i.e. exponentially small in a size parameter n. These probabilities are smaller than inversely
proportional to any function in the resource class, and thus they can be safely disregarded.

DEFINITION 2.10 (exponentially small in n) If there is a positive constant ¢ such that for all suf-
ficiently large n € N, a(n) < 27", then for notational convenience we use exp(—n) in place of

a(n).

3 One-way function

We first introduce some notation which is used to define one-way functions and also used throughout
the remainder of the paper.

DEFINITION 3.1 (functions) A length (function) {(n) is a polynomial in n time computable mono-
tone increasing function from N to N such that I(n) is polynomial in n. A function f with input
length m(n) and output length I(n) specifies for each n € N a function f, : {0, 1}7(*) — {0,1}/().
For simplicity, we write f(z) in place of fo(z). We say that f is polynomial time computable if
there is a polynomial time Turing machine that on input x € {0,1}(*) computes f(z).

DEFINITION 3.2 (siblings and preimages) For all z € {0,1}" and 2’ € {0,1}", we say that z and
z' are siblings if f(z) = f(z'). We say that z is a preimage of y if f(z) = y.> We let f=1(y) be

3For notational simplicity, we make the convention that a preimage is always a bit string of length n.



is no restriction at all; i.e. it is safest to assume that the problem instances are generated in a
possibly non-uniform manner. This is exactly the reason that a pseudo-random generator with
respect to non-uniform adversaries is used to prove that BPP C DTime(2"") for every ¢ > 0
[35, Yao]. A non-uniform adversary is equivalent to a uniform adversary that has extra input bits
generated non-uniformly (see [19, Karp Lipton]).

DEFINITION 2.2 (uniform adversary) A uniform adversary is a probabilistic Turing machine. The
time bound T'(n) for a uniform adversary is the mazimum running time on inputs of length n.

DEFINITION 2.3 (non-uniform adversary) A non-uniform adversary is ¢ pair of Turing machines
A and M. A is a preprocessing algorithm that on input n produces a string A(n). The running
time of A is not limited. Algorithm M accepts as input € {0,1}" and A(n). The time bound
T(n) for a non-uniform adversary is the mazimum running time of M over all inputs z € {0,1}"

and A(n).

DEFINITION 2.4 (unbounded adversary) An unbounded adversary A is an adversary (uniform or
non-uniform, it doesn’t matter) with unbounded time and space resources.

From the results of [19, Karp Lipton], a non-uniform adversary with time bound function in
resource class R is equivalent to a (recursive) family of circuits with the size of the circuit for inputs
of length n equal to r(n) where r is some function in resource class R.

In all definitions and theorems, there are really two statements being made simultaneously, one
with respect to uniform adversaries and the other with respect to non-uniform adversaries.

DEFINITION 2.5 (feasible adversary) A function is feasible if it is in the resource class R. An
adversary 1s feasible if the time bound function 1s feasible.

DEFINITION 2.6 (negligible) A function p : N'— N is negligible with respect to resource class R
if for all v € R, for almost all n, p(n) < 1/r(n).

For the remainder of the paper, unless stated otherwise, the resource class R is fixed but
arbitrary, and explicit mention of the resource class is suppressed when possible.

DEFINITION 2.7 (successful adversary) A successful adversary is a feasible adversary that has non-
negligible success rate.

DEFINITION 2.8 (oracle Turing machine) A probabilistic Turing machine M is an oracle machine
if it makes calls to an adversary that is specified in advance. We let M4 denote M making calls
to adversary A.

In this paper, we prove statements of the form “There is a generic construction that takes any
particular instance f of primitive A and produces a particular instance g of primitive B”, e.g. our
main theorem can be stated as “There is a generic construction that takes any one-way function
f and produces a pseudo-random generator ¢”. The construction in all cases is uniform in the
following sense:



sum mod 2 (i.e. bitwise parity) of z and y. If a is a number, then |a| is the absolute value of a,
log(a) is the logarithm base two of a and ilog(a) is the logarithm base two of @ rounded up to the
nearest integer. If S is a set then |S| is the number of elements in S.

2 Adversaries

In this section, we formally introduce notions related to parameterizing the security of a primitive.
In this paper, an adversary is for example trying to invert a one-way function or trying to distinguish
the output of a pseudo-random generator from a truly random string. In both cases, there is a
notion of the success rate of the adversary. In the case of one-way functions, the success rate is the
probability that the adversary finds an inverse of the function, and in the case of pseudo-random
generators the success rate is the distinguishing probability of the adversary. A standard definition
of successful adversary is one that allows polynomial resources, i.e. the running time is restricted
to polynomial in the size of the input and the success rate is at least inverse polynomial in the
input size. We choose instead to let the resources of a successful adversary be defined in terms
of an arbitrary resource class, where the standard definition of a successful adversary corresponds
to the resource class that is the set of all polynomial functions. Allowing general resource classes
is important because in some situations it makes sense that a successful adversary must run in
polynomial time and have a inverse polynomial success rate, whereas in other situations it makes
sense to allow a successful adversary considerably more latitude to be considered successful, e.g.
running time 2901°8°(")) and success rate 1/2°0°8°(")) for some constant ¢ > 1.

DEFINITION 2.1 (resources) A resource class R is class of functions from N to N that includes the
identity function r(n) = n. The resource class is closed under the following upward operation: If
r € R then r'(n) = r(n?) is in R. The resource class is closed downwards also, i.e. if r € R and
v’ is any function with the property that v'(n) < r(n) then r' € R.

We do not consider resource classes that contain a function that is exponential in n, i.e. 7(n) =
2™ is not in R. This is because if such a large r is in R then it is easy to construct an adversary
that performs an exhaustive search that is always successful. Note that polynomial resources is
the minimal resource class.

We consider both uniform and non-uniform adversaries. The difference between the two types
of adversaries is that, a uniform adversary is a probabilistic Turing machine with a time restriction,
whereas a non-uniform adversary is an infinite sequences of Boolean circuits, one circuit for each
input length, with a size restriction on the circuit. At first glance, a non-uniform adversary
seems too strong of an attack to allow for a pseudo-random generator, because it seems natural
that the adversary can be thought of as a probabilistic Turing machine. However, a pseudo-
random generator that is only secure against uniform adversaries when used to build a private key
cryptosystem or when used to generate the random bits used in a Monte Carlo simulation may not
be sufficiently secure. In the case of a private key cryptosystem, the time allowed for computation
by the adversary before the cryptosystem is used may be much greater than the allowable time
during the use of the cryptosystem. The result of the preprocessing can then be used by the
adversary to break the cryptosystem within the allowable time. In the case of a Monte Carlo
simulation algorithm, there is usually a problem input in addition to the random bit input. Since
there is no restriction on how problem instances are generated, the safest restriction to assume



we say that the computational entropy of ¢ is the Shannon entropy of £. Because the output of ¢
is longer than its input, the computational entropy of g is greater than the Shannon entropy of its
input, and in this sense g amplifies entropy. The notion of computational entropy provides one of
the main conceptual tools in our paper.

Just as Shannon entropy quantifies the amount of randomness in a distribution, computational
entropy quantifies the amount of “apparent” randomness (to a polynomial time algorithm) of a
distribution. For example, we can relax the notion of a generator g being pseudo-random by
allowing g(U) to be computationally indistinguishable from a probability distribution P that is
not necessarily the uniform distribution, where D has more Shannon entropy than /. In this case,
we call ¢ a pseudo-entropy generator because the computational entropy of g is greater than the
Shannon entropy of its input.

The notion of computational entropy is also useful in the case when the Shannon entropy of
D is not necessarily greater than that of /{. We say that g has false entropy if the computational
entropy of g(i) exceeds the Shannon entropy of ¢(i) (but not necessarily the Shannon entropy of
U).

We use computational entropy in constructions of pseudo-random generators as follows. We
show how to construct a false-entropy generator from any one-way function, a pseudo-entropy
generator from any false-entropy generator and finally a pseudo-random generator from any pseudo-
entropy generator.? The first step uses in a fundamental way the work of [10, Goldreich Levin].

In [10, Goldreich Levin], it turns out that the easily computable bit that is hidden is a random
inner product of the input bits. This random inner product can be viewed as a hash function from
many bits to one bit. One of our main technical lemmas (Lemma 13 on page 15), which roughly
speaking can be viewed as follows, involves hashing. Let H,; be a family of universal-two hash
functions [6, Carter Wegman] mapping n bit strings to [ bit strings. Suppose D is the uniform
distribution on an arbitrary subset of 2™ strings of length n, where m is slightly larger than [.
Then, the distribution H o H(Z) is roughly the uniform distribution on strings of length |H |+ {,
where H is uniformly distributed in H, ; and Z is independently distributed according to D. One
use of this hashing lemma is to compact a distribution that is uniform on 2™ arbitrary strings of
length n to a distribution that is uniform on [ bit strings while maintaining the entropy of the
randomly selected hash function used to do the compaction. Another use is to extract entropy out
of the input bits that has been lost through the application of the one-way function as follows.
Suppose f is a one-way function such that each string in the range of f has 2 inverses. Then,
this hashing lemma can be used to prove that the function f/(X o H) = f(X)o Ho H(X) is a
one-way function that is close to a one-to-one function, i.e. the entropy of the output of f’ is close
ton+ |H|.

The current paper is a combination of the results announced in the conference papers [16,
Impagliazzo Levin Luby] and [14, Hastad)].

1.1 Notation

If z and y are bit strings then |z| is the length of z, z o y is the concatenation of z and y, z(;) is
the *? bit of z, z_; is the first i bits of z, z;_, is all but the first i bits of z. If 2 and y are two
equal length bit strings then z ® y is the inner product mod 2 of z and y and = @ y is the vector

2The presentation of these results in the body of the paper is in reverse order.



property.

Subsequent to [5, Blum Micali], several results show how to construct pseudo-random number
generators based on general classes of one-way functions with special properties. [35, Yao] general-
izes the results of [5, Blum Micali] by showing how to construct a pseudo-random generator from
any one-way permutation (i.e. for each y in the range there is a unique z such that f(z) = y). [1,
Alexi Chor Goldreich Schnorr] show how to construct a pseudo-random generator based either on
the difficulty of factoring or on the difficulty of inverting the RSA function. Their pseudo-random
generators have trapdoors, which is crucial for constructing public key cryptosystems. [22, Levin]
introduces one-way functions with special properties and shows that these one-way functions are
necessary and sufficient for the construction of a pseudo-random generator.! Up till this point,
the conjectured one-way functions that fulfill the special properties are all number theoretic in
nature. [9, Goldreich Krawczyk Luby] show how to construct a pseudo-random generator from any
one-way function with the property that each value in the range of the function has roughly the
same number of preimages. This expanded the list of conjectured one-way functions from which
pseudo-random generators can be constructed to a variety of non-number theoretic functions.

In this paper we show how to construct a pseudo-random generator from any one-way function.

Previous methods implicitly rely on constructing a function that has a “hidden” but “mean-
ingful” bit of the output from one-way functions with special structural properties. Intuitively, an
output bit of a function is hidden if it is unpredictable by a polynomial time algorithm given all the
other output bits, and the bit is meaningful if it can be predicted from the other output bits by an
all-powerful algorithm. [10, Goldreich Levin] provide a simple and elegant way of constructing a
function with a hidden bit from any one-way function. Their result radically simplifies the previous
constructions of pseudo-random number generators from one-way permutations, and in addition
makes all previous constructions substantially more efficient. We use their result in a fundamental
way.

Our overall approach is quite different in spirit from previous constructions of pseudo-random
generators from one-way functions with special structure. Previous methods rely on iterating the
one-way function many times, and from each iteration they extract a hidden but meaningful bit.
The approach is to make sure that after many iterations the function is still one-way. In contrast,
as explained below in more detail, our approach concentrates on extracting and smoothing entropy
from a single iteration of the one-way function.

The Shannon entropy of a distribution is a good measure of its information content. A funda-
mental law of information theory is that the application of a function cannot increase information,
i.e. if D is a probability distribution on inputs to a function g then the Shannon entropy of ¢(D) is
at most the Shannon entropy of D. On the other hand, a pseudo-random generator g is a function
that “appears” to violate this fundamental law in the sense that g(D) “appears” to have more
Shannon entropy than D. To make this more precise, we say two probability distributions D and
& are computationally indistinguishable if no polynomial time algorithm can distinguish between z
randomly chosen from D and y randomly chosen from £. If ¢ is a pseudo-random generator then
¢(D) and & are computationally indistinguishable, where D is the distribution on the inputs to ¢
and where £ is the uniform distribution on strings the same length as the output of g. In this case,

1Previous to [22, Levin], attention focused only on one-way permutations, in which case the task of inverting f(z)
is to find z uniquely. The natural extension of the notion of inverting f(X) in the case when f is not a permutation

is to find any X’ such that f(X') = f(X).



1 Introduction

One of the basic primitives in cryptography and other areas of computer science is a pseudo-
random generator. The usefulness of a pseudo-random generator is demonstrated by the fact that
it can be used to construct a private key cryptosystem that is secure even against chosen plaintext
attack, and it can be used to save random bits and allows reproducibility of results in Monte Carlo
simulation experiments. Intuitively, a pseudo-random generator is a polynomial time computable
function ¢ that stretches a short random string X into a much longer string ¢(X) that “looks”
just like a random string to any polynomial time adversary that is allowed to examine g(X).
Thus, a pseudo-random number generator can be used to efficiently convert a small amount of true
randomness into a much longer string that is indistinguishable from a truly random string of the
same length to any polynomial time adversary.

The notion given here of a pseudo-random generator should be contrasted with the classical
notion of a pseudo-random generator, e.g. [20, Knuth]. A classical pseudo-random generator is
required to pass a particular set of statistical tests, but does not necessarily satisfy the more general
requirement that it pass all polynomial time tests. This is a particularly important distinction in
the context of cryptography, where the adversary must be assumed to be as malicious as possible,
with the only restriction on tests being computation time. This is a primary motivation for the
seminal paper of [5, Blum Micali], where they define the notion of pseudo-random generator used
here and show that there is a pseudo-random generator based on the difficulty of the discrete log
problem. Another example of the central importance of pseudo-random generators is that they
can be used to reduce the number of random bits needed for any probabilistic polynomial time
algorithm, and they allow deterministic simulation of any polynomial time probabilistic algorithm
in subexponential time [35, Yao]. In contrast, [27, Plumstead] and [21, Krawczyk] show that there
is a polynomial time statistical test which the classical linear congruential generator does not pass,
although it does pass a variety of standard statistical tests. In a similar vein, [4, Blum Blum Shub]
describe two natural and seemingly similar generators. They show that one of the generators
passes standard statistical tests but is not pseudo-random in the sense used here, whereas the
other generator is pseudo-random in the sense used here if it turns out that factoring the product
of a pairs of randomly chosen primes is difficult.

Since the conditions are rather stringent, it is not easy to come up with a natural candidate for
a pseudo-random generator. On the other hand, there seem to be a variety of natural examples
of another basic primitive; the one-way function. Intuitively, a function f is one-way if: (1) f is
polynomial time computable; (2) given f(X) for a randomly distributed X, it is not possible on
the average to find an inverse X’ such that f(X’) = f(X) in polynomial time. It has not been
proven that there are any one-way functions, but there are a number of problems from number
theory (e.g. factoring and the discrete log problem), coding theory, graph theory and combinatorial
theory that are candidates for problems that might eventually be proven to be one-way functions.

[6, Blum Micali] are the first to introduce a definition of a pseudo-random generator. [35,
Yao] introduces the notion of a pseudo-random generator we use in this paper, which seems more
natural than the definition in [5, Blum Micali], and shows that the two definitions are equivalent.

[5, Blum Micali] shows that a specific conjectured one-way function, the discrete log problem,
can be used to construct a pseudo-random number generator. Their construction has the property
that if the generator is not pseudo-random then the function from which it is constructed can
be efficiently inverted and consequently is not one-way. All subsequent constructions share this
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