Combinatory Differential Fields:
An Algebraic Approach to

Approximate Computation and

Constructive Analysis *

Karl Aberer f
TR-91-061
November 1991

Abstract

The algebraic structure of combinatory differential fields is constructed to provide a semantics for computa-
tions in analysis. In this setting programs, approximations, limits and operations of analysis are represented
as algebraic terms. Analytic algorithms can be derived by algebraic methods. The main tool in this con-
struction are combinatory models which are inner algebras of Engeler graph models. As an universal domain
of denotational semantics the lattice structure of the graph models allows to give a striking simple semantics
for computations with approximations. As models of combinatory algebra they provide all essential com-
putational constructs, including recursion. Combinatory models are constructed as extensions of first order
theories. The classical first order theory to describe analysis is the theory of differential fields. It turns out
that two types of computational constructs, namely composition and piecewise definition of functions, are
preferably introduced as extensions of the differential fields theory. Combinatory differential fields are then
the combinatory models of these enriched differential fields. We show for basic algorithms of computational
analysis how their combinatory counterparts are derived in the algebraic setting. We illustrate how these
algorithms are suitable to be implemented in a computer algebra environment like mathematica.

*Part of this work was done while the author was at ETH Ziirich. Submitted to Journal of Symbolic
Computation.

'International Computer Science Institute, Berkeley, CA 94704. email: aberer@icsi.berkeley.edu. Sup-
ported by Schweizerische Gesellschaft zur Forderung der Informatik und threr Anwendungen

i

1. Introduction

The first motivation that is basic for this work is to combine the power of numeric computa-
tion in solving analytic problems with the accuracy of symbolic computation. The additional
power of numeric computations is mainly due to the fact that approximating algorithms
may be used, which are potentially of an infinite form, while in symbolic computation ma-
nipulations are restricted to a finite number of steps, in which only provably exact results
are computed. One exception of this are computations with closed-form representations
of infinite power-series, e.g. for the solution of differential equations. This inspires a first
approach contained in this work, to get an amalgamation of algebraic computation and
computation of limits in analysis. Starting from the first order theory of differential fields,
a standard way to formulate analysis in an algebraic form, we extend this theory axiomat-
ically by operations representing programming constructs. This is in the spirit of symbolic
computation where differential fields are extended by new transcendental functions in order
to solve problems, just that we use now programs instead of transcendental functions. The
approach works very well for representing composition and conditional functions, which
leads to a natural extension of rational functions to piecewise rational functions. However
for infinite recursion the only way to do this in first order theories is to accept nonstan-
dard models. Although nonstandard models were already used in different contexts for the
description of computations in first order theories [Richter & Szaeo, 1983, Jensen, 1972] we
try to avoid these as many desirable algebraic relationships are lost.

To overcome these difficulties we have to include in a powerful computational model for
analysis the concept of approximation. Approximations occur as incomplete information or
knowledge about objects with which one computes or as the result of the imperfect execution
of operations. The notion appears in many different contexts. Less explicitly as the notion
of error in numeric computations [Linz, 1988], more explicitly in methods of self-validating
numerics [Kaucher, 1983] like interval arithmetic or generalizations of it. The notion of
the radius of information plays also a major role in information-based complexity theory
[Traub et al., 1988]. Computable approximations are a substantial part of recursive analysis
[Pour-El & Richards, 1989]. Approximation appears also as a basic concept in denotational
semantics and the use of models of denotational semantics, like complete partial orders
(CPO’s) or graph models, for modelling approximate computation in analysis was already
proposed and conducted at different places [Fehlmann, 1981, Weihrauch, 1980]. What was
missing in these models was an algebraic foundation which allows to build up an intimate
relationship between algebraic relations and approximate algorithms by being able to con-
struct approximate algorithms with algebraic methods. A model of denotational semantics
that has an especially clear structure with respect to approximation as well to algebraization
are FEngeler graph models [Engeler, 1981A, Maeder, 1986]. Graph models were already used
as programming semantics for several mathematical structures, like varieties, geometries and
analysis [Engeler, 1981B, Engeler, 1984, Engeler, 1988, Fehlmann, 1981, Seeland, 1978]. We
will show how to bring these graph models in a form where they allow the incorporation
of the algebraic aspects of analysis as delivered by the differential fields theory. This goes
back to an approach that was first outlined in [Engeler, 1990]. Then approximation and
infinite recursion are supplied by the graph model and we are able to set up new algebraic

relationships that are basic properties of approximations and infinite recursions.

Of course the scope of this work goes beyond the idea of algebraization of approximate
computation. Combinatory differential fields can be understood as models for constructive
analysts. Although many models of computations were devised, as recursive analysis in
many variations, the theory of machines on the reals [Blum et al., 1989] or information-
based complezily theory, and many tight relationships exist between combinatory differential
fields and the other approaches, the combination of the concepts of analysis, programming
and approximation in an uniform structure is not found in any of the models mentioned
above. So combinatory differential fields seem to be a natural basis to discuss recursivily
and complezity in analysis. On the other hand the examples given in this work indicate
that algorithms are formulated in combinatory differential fields in a very natural way with
respect to implementation. They can provide the necessary structure to build a modern
numeric-symbolic computing environment for analysis.

Overview

We start with an informal introduction to the subject. Without relying on hard definitions
we present the essential ideas of the work. Then we discuss a major example, namely a com-
binatory Newton method, in which the impact of the new methodology can be recognized.
To derive this method we make use of several basic properties of combinatory differential
fields which are introduced in the informal part and will be proven in the following technical
part.

The technical part introduces combinatory models in their greatest generality. Their essen-
tial properties are given. Among these the main theorem is of central importance, which
tells that every combinatory model is an inner algebra of an Engeler graph model. Further-
more we discuss the basic properties of operations on approximations and recursion in the
combinatory model.

To introduce combinatory differential fields we first axiomatize the composition and condi-
tional operations, where the conditional operation is to represent decisions, as extensions
of the theory of differential fields. We omit in this part the proofs for the main theorem
which is a normal form result for polynomial terms containing composition and condition-
als and refer to [Aberer, 1991]. We also shortly discuss the axiomatic approach for defining
recursion. Next we introduce several notions which are of importance when discussing the
solutions of problems. These allow to describe concepts like “rounding”, “approximate so-
lution” or “almost equal” in a concise algebraic form. At the end we give a second example,
how to solve linear differential equations in combinatory differential fields.

PART 1. Introduction to Combinatory Differential Fields

COMBINATORY MODELS

Since in analytic algorithms approximations are often used and results of computations
are obtained as limits of repeatedly refined approximations there is a considerable interest
in formalizing these concepts in a computer theoretic view. The model proposed in this
work is on the one hand clear in the information-theoretic concepts used for describing the
computation with approximations and on the other hand gives a powerful mechanism for
solving analytic problems in an algebraic setting.

The introductory part is intended to give a wide spectrum of readers the opportunity to
inform themselves about the basic concepts of combinatory differential fields without going
through all the technical details involved in the construction.

The first aspect necessary to describe approximate computations is the data representation
of approximations. Typical examples coming from analysis are the following.

the distance between z, and z is smaller than e: |z, —z| < ¢
the point z lies in the interval [a, b]: a<z<b
the function f is at z* almost zero: |f(z*)] < e

As one immediately recognizes information about approximations is in all three examples
expressed in the form of quantifier-free formulas of first order predicate logic. The formulas
used are built up using certain operational and predicate symbols. ! We concentrate our
interest in this work on real analysis. Since the real numbers are a totally ordered field we
assume that among the operational symbols are at least the field operations +, —, * and ~*
and there is besides equality = a predicate symbol for total order <. Furthermore it may
be appropriate to introduce other operation symbols, like / for differentiation. Based on
a logical language we now define approximations as follows: Assume we want to describe
an object, a real number or a function, by its properties. Since we do not know what the
object exactly is we give it some name, say @. Then express in terms of @ all the properties
we know of this object by writing down formulas ¢(@). For example if we know the object
is strictly positive we write down the formula @ > 0. This gives a finite or infinite set of
formulas. Then we identify the object with the information describing it

X = {¢1(@)7 052(@)7 c }

We denote the set of all possible formula-sets X by Ag. The degree of accuracy of the
information describing such an object can widely vary. It can be precise, e.g. the real
number 1 is described by the formula-set {@ = 1} or it can be very vague, for example
the formula-set {@ > 0} is an appropriate description for all positive objects (including

1A collection of operational and predicate symbols and the rules how to form admissible terms and
formulas out of the atomic symbols is called a logical language. In logic usually the operation symbols are
called function symbols, but we avoid this terminology so that no confusion with the function notion of
analysis occurs.

1). One recognizes an ordering structure on these formula-sets which is that of a lattice.
Namely for any two formula-sets X,Y there exists another one which is satisfied by @ only
if both X and Y are satisfied. The same way there exists also one which is satisfied by @
if at least one of X and Y is satisfied. The former is the supremum of X and Y and we
denote it with X LY the latter the infimum which we denote with X MY . For example if
X ={¢1(@)} and Y = {¢2(@)} then XUY = {¢1(@), p2(@)} and XY = {1(Q)Vpo(Q@)}.
Furthermore there exists a formula-set E = {@ = @} which is smaller than all others and
one F = {1 = 0} which is the biggest possible. Thus we have not only a lattice but a
complete lattice.

Xuy
X Y
Xny

E

After giving a representation of approximation the next step is to perform operations on
these approximations. The first basic computational step we consider is to perform the field
operations, like addition. The question is, given two formula-sets X and Y, to define what
is the sum X 4+ Y of them. Obviously the sum should again be an approximation described
by a formula-set. The information contained in X + Y should be everything that we can
know about an object + y, where z is satisfying X and y is satisfying Y. This means
that the formula-set X +Y should contain every formula ¢(@), where ¢(z + y) is a formula
that is true under the assumption that = satisfies all properties of X and y those of Y. For
example take the two formula-sets {@ = 1} and {@ > 0}. Then the sum of an object where
the first argument satisfies {@ = 1} and the second satisfies {@ > 0} obviously satisfies
{@ > 1}. And this is already all information we can have about this new object. More
formally we write this kind of operation down as follows.

X +Y ={6(Q): X[a, Y - oz +y)}.

The notation X |§ means simply substitute every appearance of @ by z. The symbol I is to
be read as “has as consequence” or “proves that”. Hence in the example given this would
read as follows

{@=1}+{@ >0} ={¢(Q)lz =1,y >0F ¢(z + y)}.

This definition can be generalized to any k-ary operation 7(z1, ..., zx) that can be expressed
as term of the logical language, like e.g. 7(z) = 1/2 % (z + 2/z) or 7(z,y,2) = z * (y + 2)
etc..

T2 (X, X)) = {6(Q) s Xy [2 . X2 BT (7 (2, ..., 21)))

In principle many notions of consequence could be used at this point. In the technical
development, we will later exactly specify which kind of consequence we mean, namely
logical consequence under a first order theory T. ? With respect to defining objects by
their properties we make the following observation. Take the formula-set X = {@ > 1}.
The objects satisfying this formula-set are exactly the same as those satisfying X* = {@ >
0,@ > 1}. Hence X and X™* are equivalent in respect of expressing knowledge about objects.
This is because @ > 0 is a logical consequence of @ > 1. Hence it makes no difference if
we add to every formula-set all formulas which are logical consequences of this formula-set,
or in other words if take the logical closure. We will call in the following such logically
closed formula-sets combinators and denote the set of all combinators by £4,. The set of
all combinators also has the structure of a lattice. The operations defined for formula-sets
can be understood as operations on combinators. It is clear from the definition that the
result of such an operation is always logically closed and hence a combinator. The result of
an operation also remains the same when logically closing the arguments before applying
the operation.

The following illustration shows a small part of the lattice of combinators that lie between E
and F'. It also shows the possible effects of combinatory operations on combinators, in this
case of the operation T' = T1/2%(=+2/%) Ope recognizes that such an operation may refine
knowledge, expand knowledge or leave it the same. In the last case the combinator is a fixed
point of the operation. A typical phenomenon that may occur is that for a combinatory
equation like the fixed point equation

X = T1/2*(1‘+2/r)(X)

many different solutions are possible. Among the fixed points in this particular example
are E,F,{1< @< 2} and {@ > 1.4,@ > 1.41,@ > 1.414,...}. 3

2The first order predicate calculus gives an exact mechanism for deriving new formulas out of given ones
and a theoryT is a set of sentences which are assumed to hold for the intended structures. So the field theory
for example gives the set of properties we expect to hold in a field for the field operations and predicates.
The notation FT means, that the formulas on the right hand side can be derived from the formulas of the
left hand side under the assumption that the sentences of T' hold.

¥Note that the recursively defined sequence z,41 := 1/2% (zp + 2/zy) has \/2 as limit when the starting
value is appropriately chosen.

(@=32) {@=1712

T

{@>14,@> 141, @> 1414, ..} {716 < @< 7/4} /\
-
S
{1<@< 32 {-2<@<-lorl<@<2}

e | e

T {1<@<2

/

(12< @< 2}

s

{(34< @< 3}

\

E={@e=@ =—> T

As already indicated, combinators are not necessarily finite objects. This is very useful in
the context of analysis since this allows to describe real numbers and functions as limits of
approximate computations. But as computation lives in a finite world we have to give a finite
representation to these infinite objects. The idea here is to represent an infinite combinator
by the union of an increasing chain T° C T' C T?,... of (finite) combinators which is
recursively computed and hence has a finite representation by the program computing the
sequence. For example for the infinite combinator {@ > 1.4,@ > 1.41,@ > 1.414,...} we
can compute a representation by recursively computing the sequence

Tn—l—l = T1/2*(1‘—|—2/1‘)(Tn)
with T° = {@ > 1.4} and then taking the union
] .
n€lN

More generally we now introduce such recursively defined combinators as a new operation
on combinators defined as follows. Given a recursion

Tt = T"uT(T",TV,...,TT)
Tt T(T7,...,TT)

Tyt = T(TT,...,TY)

with starting values
T =X, T = Xy,..., T = X},

we define the &k + 1-ary operation MT T Tx oy combinators by

MTToThx xy . X)) = || T
meN

The T,T4,...,T} are operations on combinators which can be themselves recursions or
defined in the basic way shown before.

Summarizing up to this point we have defined an algebraic structure
CJde(F) =< EA@; TT(&Z‘J,...,QZ‘k)’ |_|’ |_|7 MT7T17~~~7Tk >

where the domain consists of all combinators of £4, and the algebraic expressions are built
up by three types of operations:

operations defined by terms 7(z1,...,zx),
lattice operations,
recursion operations.

These expressions can be understood as algebraic representations of programs. The details
of this structure however depend strongly on the underlying theory 7. Now the question
is: what have we achieved?

First we have incorporated the notion of approximation in a computational model for anal-
ysis. Approximation is simply realized by subset inclusion of combinators, as it is given due
to the lattice structure of £4,. Thus a combinator X approximates Y if X C Y. This means
that an object, that has in principle an exact definition, like the solution of an equation,
can be given an approximate form, which often is computationally more convenient.

The algebraic approach to the problem of computation with approximations allows the
formal derivation of properties of combinators. This means we can make exact algebraic
statements about objects which themselves are approximate descriptions of real numbers
or functions. A typical example for this is the following fixed point property of unary
recursions.

T(MT(1%) = MT (1Y)

Typically such properties of recursion are due to continuity of the operations on combinators.
Continuity is the property that for an ascending chain of combinators X,, such that X, C
X 41 the following equality holds.

T(|_|)(m): |_| T(‘Xm)

meIN meIN

We will show that continuity is a fundamental property of all combinatory operations.

Another way to establish algebraic relationships between combinators is by lifting algebraic
relations expressed in the underlying logic into the combinatory model. So if for example
two terms 71 and 7y are given and we can prove in T that 7 = 7 then we can state

that T™ = T™. * But equality is not always obtained in this way. The lifting can be
accompanied by some loss of information. So if in the theory there is 7(z,z) = 7(z) where
71 is a term with two arguments, then in general in the combinatory model we can only

show that
T F0e)(X, X)) C T70(X).

We call this property weakening. Note that the inclusion still is to be understood as algebraic
relation since we could reformulate X CTY as X MY =Y. 3

A way to look at combinatory models and combinatory differential fields, which are com-
binatory models of differential fields, is to view them as an extension mechanism, where
problems which are not solvable in the ground field are solved in a richer structure. Clas-
sically in the theory of differential equations extensions are introduced as new functions
which satisfy certain simple properties, as for example the exponential function. In our
approach the new functions are introduced as programs, especially infinite recursions.

Up to now we have left relatively open what kind of theory is underlying the combinatory
model. A first order theory that is basic for the symbolic treatment of analysis is the theory
of differential fields. We will define combinatory differential fields essentially as combinatory
models of the differential fields theory. Before doing this we want to enrich the theory of
differential fields.

ALGORITHMIC EXTENSIONS OF DIFFERENTIAL FIELDS

For the symbolic solution of differential equations and integrals, as well as for the solution
of algebraic equations in differential fields, the notion of field extension is essential: a
differential field D is extended by a new function f to the differential field D = D(f). This
becomes necessary since e.g. most of the differential equations are not solvable over the
ground field, which is typically a rational function field. For the solution of differential
equations the typical extensions are the so-called elementary extensions, which are either

algebraic extensions: p(f) = 0, p a polynomial of D

or one of the following two types of transcendental extensions, which are defined as solutions
of simple differential equations:

logarithmic extensions: f'=g¢'/g, g € D, then f =logg
exponential extensions: f'=g¢'* f,g € D, then f =expyg.

Choosing exactly this kind of extensions for the algebraic treatment of differential equations
has obviously its justification in the fact that these extensions are easy to define and well
understood. But as the algorithmic aspect is of central interest it also becomes natural to ask
whether it is worth to analyze the possibility to extend differential fields by algorithmically
defined functions.

*Note that the definition for combinatory operations also works for 0-ary operations.
®This is simply due to the fact that lattices are algebraic structures.

A differential field is typically a function field, e.g. @(:), where ¢ denotes the identity
function with the property ¢(z) = z. One basic construction on functions as well as on
programs is composition. In traditional mathematical notation the composition of two
functions f(z) and g(z) is denoted by f(g(z)). We denote composition in logic with a
binary operation symbol and write for this f o g. The identity function ¢ then naturally

satisfies for = f =10 f.

Many functions in mathematics are defined by cases. For example the absolute value func-
tion |z| is defined as

|z =

and denote this function f by
f=cond g hy hy

These two operations are of considerable practical interest. The conditional operations
allows to denote functions, e.g. the absolute value function, in closed form which otherwise
would require quantified first order formulas for their description, and hence would be out
of the range of description in combinatory models. We can also state using the composition
function, a fundamental property of conditional functions, namely:

const(c)Nooc>0— (condo m T)oc=Toc,

and similarly for 0 o ¢ < 0. From a theoretical point of view the conditional operation
allows us to express every function IR — IR that can be computed in a finite number of
steps and hence is a piecewise rational function, in closed form. In the following we will call
the theory of differential fields extended by these two operations the theory of conditional
differential function fields, or shortly CDFF. We define combinatory differential fields as
the combinatory models of CDFF.

One could also ask whether it would not be of advantage to introduce in a similar way
as it is done in combinatory models infinite recursion as an operation symbol of the logic.
Consider as an example the exponential function, which cannot only be understood as a
function defined as formal solution of the differential equation ¥’ = y but also as a recursively
defined function by employing its power-series representation

_1 L L2 3
exptL = +ﬂ+§+§+””

This power-series can be computed by the following recursion

Yntl = Yn + Up Yo = 0
Uptl = Uy * ﬁ Ug =
kn-l—l = kn + 1 k’o =1

We introduce the following notation in analogy to the combinatory model to denote the
function defined by this recursion.
1
Hzi:ku,u* Ik 1(0’171)'

It turns out that there is no obvious way to extend a first order theory in this manner
without introducing nonstandard models, i.e. allowing infinitesimal small and infinitely
large elements. As a consequence, in contrast to the combinatory recursion operation, no
fixed point property can be stated for recursion operators. Hence many possible algebraic
relationships are lost. Thus, while we include logical representations of composition and
conditionals in the combinatory differential fields, we will make no further use of the logical
representation of recursion, but use the combinatory representation of recursion in combi-
natory differential fields.

Now let us turn to a concrete example to illustrate how this machinery works. We want to
develop a combinatory version of Newton’s method.

Combinatory Newton Method

NEWTON ITERATION
The problem is to solve the equation

7(y) = 0.

When we want to solve the problem only on certain domains (of the real axis) we can express
this by using conditionals. So for the problem of computing the square root function in the
positive reals we can state the problem as follows.

y* = cond 1 ¢ 0.

Note that cond ¢ ¢ 0 is the identity function on the positive reals and constant zero on the
negative reals. In conventional notation this reads as follows: find a function y(z) such that
yi(z) ==, z > 0.

When there does not exist a closed form solution, which is in C DFF by a piecewise rational
function, we want to express a solution or approximations of it by combinatory terms. To
do this we use recursive methods like Newton’s method

7(Yn)
()

Yn+1 = Yn —

10

DIRECT TRANSLATION OF NEWTON’S METHOD
As an example we consider in this paragraph the computation of the square root function
on [1,00]. The problem can be stated by using conditional operations as

y? = cond (1 — 1) ¢ 0.

We discuss some of the problems and restrictions in the direct translation of Newton’s
method to a combinatory algorithm.

For applying Newton’s method we have to choose a starting value close enough to the
solution such that the iteration sequence converges to a zero. For example yy = ¢ would be
a good choice. For applying the combinatory Newton method in order to obtain a monotone
increasing chain of formula-sets we choose a function interval as initial approximation and
starting value. Here a good choice is

Xo = {1 S[l,oo] @ S[l,oo] L}

71 S[ah] T2 is a short-hand notation for ¢ < ¢ < b — 71 0 ¢ < 75 0 ¢ which can be expressed
in quantifier-free form by using conditionals. Newton’s method gives rise to the following

recursion.)
Y

n :n_—n:12 n n) ‘= n).
Ynt1 = 9o — 5 2 = 124 (Yot 0/9n) = x(9n)

n

Let the unary combinator H be the combinatory embedding of x(z). We want to compute
Xnt1 = H(X,). Since x(1) = x(¢) = 1 +¢/2 > T/t = x(T/¢) we have

X ={t <[00] @%@ <[y o] Y, 0 (o @

for n = 1. The computation furthermore shows that X¢o © X;. This is an important
information as we can tell now, due to the fixed point property of recursion operators, that
X, approximates a solution for X = H(X), namely MH(XO) = || X,. The fact that y,
converges to the square root functions, which can be verified by numerical estimates, shows
that this is an approximation converging to the square root function.

But there are some problems in connection with this “solution”. First it contains in form
of the inequality ¢ <y o @2 a problem that is equally difficult to solve as the original one.
Second applying the operation H to a set of formulas can be a difficult mathematical and
computational problem.

To avoid these difficulties we impose the following restrictions. First we restrict the formulas
that may appear in a combinator to a certain type which is good to manage, e.g. the
intervals. Second we allow only the use of a specific set of admissible operations for which
we can easily compute the result for these simpler combinators.

In our example we choose function intervals for the representation of functions and allow
only the field operations on those. Then define

Hi(X)=1/2+(X + %).

11

where we denote J = {@ = :}. Then applying Newton’s method to the starting value
Xo = {a <[1,00] @ <p1,00] B} gives the following result.

Hyp-Xo=1/2%(Xo+ J/Xo) = {1/2% (0 + 1/B8) <[1.0e] @ <proe) 1/2% (B +/)}.

To satisfy the condition Xg C H- Xy = X7 such to ensure a solution is approximated by
Xo gives the condition a* 8 = ¢. In this case Xog = Hj- Xg = MHI(XO). Hence this
cannot give a convergent solution provided «, 3 are rational.

Let us summarize some of the difficulties experienced in directly translating the well known
(numerical) algorithm into a combinatory algorithm:

e The embedding of a general operation 7(z1,...,2,) can result in difficult computa-
tional problems.

e The liberal use of logical formulas can hide the problem in implicit form in the basic
combinators.

e Putting restrictions on the straightforward algorithms to avoid the first two problems
can make them useless.

So since we cannot change the first two points we have to look for better (combinatory)
algorithms.

A COMBINATORY ALGORITHM
Let us return to the general problem of solving the equation

7(z)=0

Let G be a combinatory embedding of 7. We want to give a combinatory (recursive)
algorithm which gives a convergent approximation of the solution of the corresponding
combinatory problem

G(X)=0.

Furthermore this algorithm should still work when knowledge representation and admissible
operations are restricted.

We do not make use of the derivative, as in Newton’s method, but use instead, similarly as
for the secant method, the difference quotient

Mz, y) = 77(2 : Z(y)

We call this function the Lipschitz function since it represents exactly the contraction factor
in the lipschitz condition

[7(@) = ()] = M (2, y) * |2 - y].

12

Note that when « is a polynomial then A,(z,y) is also a polynomial. Let L be the binary
operation representing the embedding of A (z,y).

If we rewrite the definition of the lipschitz function as

7(z) —1(y)
Ay(z,y)

and apply weakening we obtain the following inclusion

GX)-G(Y) _
L(x,y) -

rT=y+

Y +

Let us denote with X* a solution of the combinatory problem, for example the formal
solution X* = {@% = cond (¢ — 1) ¢ 0}. Assume we know an approximation X, to X*,
X, C X*. If we take an arbitrary combinator y, interpolating X, which means X, C y,,
6 or in other words take a point y, out of X,,, then according to the inclusion above, we
can establish the following.

= L()(nvyn) =
G(X") - G(ya)
In L(men) =
P TI S

The previous inclusions mean that if X,, is an approximation of the solution of G(X*) =0
and y, is taken out of X,,, and if we transform the information in y, and X, according to

L(Xnv yn)’

then we get further information approximating X*.

Yn —

Therefore this leads to a first version for an information refining algorithm for approximating
the solution X* of G(X) = 0 starting with an initial approximation X .

1) Choose y,, such that X,, C y,.

2) Compute X, 41 = X,, Uy, — %

The algorithm given so for includes a random step, by allowing to choose any y,, such that
X, C y,. We can transform this step to a deterministic one if desired. Since X, C y, we
conclude by using monotonicity, which is a general property of operations on combinators,

Yntl = Y — 5o C Yy — mr e = Xy
* L(Yns Un) L(X,,yn) *

5We use the notion interpolation as the exact opposite of approzimation.

13

This relation gives rise to the following nonmonotone recursion.

G(yn
Xop1 = XUy, — ﬁ
b1 = g o)

We can summarize the previous arguments as follows.
Theorem 1 If G(X*) =0 and Xo C X*, X C yo then
Gly

,- Gl _ Gl
MXW L(X, 3/) L(yvy) (X07y0) — I—l Xn E X*
nelN

Note that for proving this theorem we have used a few basic properties of operations on
combinators, which will be given later in the theoretical treatment.

From the theorem we may also conclude that if the recursion results in the contradictionary
set of formulas F no solution was contained in Xj.

The algorithm given is so general that it would be nearly more adequate to call it a Newton
information transformation principle for fields. Let us point out some of the degree of
freedom left open by the algorithm. The most important fact is that no assumptions are
made on the type of knowledge used. It is of no importance whether one uses intervals, sets
of intervals or other kinds of inequalities. (It seems less appropriate to use equalities with
this algorithm.) The algorithm works for any kind of number or function field. In principle,
~ can be any type of term, although the algorithm is up to now only successfully applied
in the case where v is a polynomial.

No statements are possible about the convergence rate of the algorithm in general, since
this depends heavily on the concrete implementations and the type of knowledge involved.
However we illustrate in the following two examples that convergence seems to be fast.

COMPUTATION OF THE SQUARE RooT FuNCTION
In the case where y(z) = 2 — ¢ the lipschitz function simplifies to A\ (z,y) = = + y. Hence
the deterministic recursion is

Yn — ¢
X = X,U - =
s " (yn Xn + yn)
2
- ¥t
Yn+1 = UYUn 9 % U .

This method is similar to Moore’s Newton iteration, a method known from interval arith-
metic [Krawczyk, 1983]. We illustrate the convergence behaviour of this algorithm by a
graph showing the result of this recursion computed in mathematica. In the graph two lines

14

1.6+

0.8+

Figure 1: Three steps of recursion M

of the same darkness indicate the bounderies of the successive function intervals computed.
Using a function interval arithmetic, which we have implemented in mathematica to carry
out this example, the implementation of the algorithm is straightforward as may be taken
from the program used.

F[0]={1, Int[1, J1}
Fl{y_,X_}]:={Simplify[y-(y~2-J)/2/y], SimpInt[Cut[X, y-(y~2-J)/2/X]1}

The functions Simplify and SimpInt are used to simplify intermediate expressions. The
first iterates are

Out[16]= {1, Int[1, JI1}

1+7 -1+37J 1+7
Out[17]= {----- , Int[-------- , ————- 1}
2 217 2
2 2 3 2
1+6 J+ 7 -2+3J+87J -7 1+6J+7
Out[18]= {-------—-——- , Int[-----—--——--— -, -1}
4+47 4 (-1 +317J) 4 (1 +7)

The first component are the y,, the second the X,,. The algorithm computes a monotonic
decreasing sequence of rational function intervals.

15

SIMULTANEOUS COMPUTATION OF THE REAL ZEROS OF A POLYNOMIAL

Now we apply the method to isolate the real zeros of a polynomial. We change the type
of information used to mulli-intervals, i.e. finite sets of intervals. To obtain convergence
the nondeterministic version of the algorithm is used where y,+1 may be freely chosen.
In a randomized version y,+1 would be chosen out of one of the intervals of X,, while
in a parallelized version for every interval in X,, a y,4+1 is chosen and a new recursion
started which can abort with an empty set (contradiction in the information) or contain a
zero. Algorithms known in the literature which are related to this implementation of the
combinatory Newton method are the method of derivatives, a symbolic algorithm, found

in [Buchberger et al., 1983] and an algorithm using successive linear interpolation (regula
falsi) found in [Dekker, 1969].

The result of a (simulated) parallelized version again implemented in mathematica produced
the following output. The number at the beginning denotes the depth in the parallel
computation tree, BotInt is the empty interval which is described in the combinatory
model by the combinator F. Note that once an interval containing a zero is found the
convergence appears to be quadratic.

Test[Int[-10.,10.], -6 + 11 y - 6 y~2 + y~3]

: MultInt[Int[-10., -0.0402685], Int[0.0350877, 10.]1]
: Int[-3.79439, -0.0402685]

: Int[-1.12157, -0.0402685]

: BotInt

: MultInt[BotInt, Int[0.0350877, 4.76341]]

: MultInt[Int[0.0350877, 2.3763], Int[2.44174, 4.76341]]
: MultInt[Int[1.25383, 2.3763], Int[0.0350877, 1.1486]]
: MultInt[Int[1.86522, 2.3763], Int[1.25383, 1.65789]]
: Int[1.86522, 2.06164]

: Int[1.98948, 2.02338]

: Int[1.99953, 2.00041]

: Int[2., 2.]

Zero Int[2., 2.]

: MultInt[BotInt, BotInt]

: Int[0.772775, 1.1486]

: Int[0.987121, 1.02691]

: Int[0.999545, 1.00027]

: Int[1., 1.]

Zero Int[1., 1.]

4 : Int[2.58561, 3.41823]

5 : Int[2.9954, 3.0008]

6 : Int[3., 3.00001]

7 : Int[3., 3.]

Zero Int[3., 3.]

© 0 N U WN B WN -

W ~N O 1O,

16

PART II. The Theory of Combinatory Differential Fields

Combinatory Models

In this section we give a rigorous algebraic basis to what we have developed on ideas about
operations on knowledge so far. We show that operations on knowledge are elements of an
inner algebra of an Engeler graph model of combinatory algebra. Thus we make the concept
of knowledge transformation as well as that of infinite recursion to a subject of algebra.

We do this in a more general framework as exposed before. The following generalizations
lead to no additional difficulties in the construction of the model.

e We define combinatory models not only for the theory of differential fields, but for
any theory T.

o We generalize from knowledge about elements described by formula-sets consisting of
formulas of the form ¢(@), which is the same as describing unary relations by formulas,
to knowledge about relations described by formulas of the form ¢(@q,...,@,), hence
describing arbitrary relations.

o We define operations on knowledge not as the action of terms but as the action of
a special class of first order formulas, the so called positive existential formulas. We
will see later that operations defined by terms are just a special case of this.

NoTaTIONS AND CONVENTIONS

Let L be a language of first order logic with equality and 7" a theory in this language.
Denote with Aa,,. a, the set of quantifier-free formulas in L containing the additional
constant symbols @;,...,@,. We use subsets X C Aq,, . a, to describe n-ary relations.
The mapping Cn : P(Aa, . a,) — P(Aa,,.a,) T defined by

Cn(X)=1{¢ € Aq,,.a,: X F ¢}

gives the logical closure of formula-sets in Aa,,.. @, under consequences of I'. This does
not change the extension of the relation described by X. Let &4, o be the range of the
mapping Cn, hence the set of all logically closed formula-sets.

Now we want to define operations on the formula-sets. Each operation is defined by using a
positive existential formula. A positive existential formula ¢(z1,...,z,, V1,..., Vy) with free
variables z1,...,z, is built up from atomic formulas and the logical connectives A, V, and
3. Besides the usual atomic formulas of first order logic, namely equalities and predicates of

7P denotes the power set.

17

the logic, also predicate variables Vi(t1, ..., 1), i = 1,...,k are allowed as atomic formulas,
where t1,...,1,, are terms in L.

DEFINITION OF COMBINATORY MODELS
Let X, X5 € EA@1 - For the union and intersection of logically closed formula-sets we
introduce the following notations

C’I’l(Xl U X2) = AXVl (W XQ, C’I’l(Xl N XQ) = Xl M AXVQ.
Note that that Cn(Cn(X)NCn(Y)) = Cn(X)NCn(Y).

For every positive existential formula ¢ we define inductively on the structure of ¢ for every
arity £ > 0 and X; € Aa,,..@,,, ¢t =1,...,k mappings

T° gfl@l a HEA@ an
T (X, Xg) o= On({6(Qy,...,@,)})
TVitn) (XL Xy) = Cn(Xila e), i<k
T (X1,...,X) = T%Xy,..., X)) UTY(Xy,...,X}3))
TVY(Xq,...,Xp) = TXy,...,Xp)NTY(Xq,..., Xk)
Tflzigb(zl,...,a:n,Vl,...,Vk)()(17 - ka) _

{¢(@q,..., Q) : TPtz Vi Vil (X X)) FT (@1, @i, Tig1s e e e &n)}

We used the notation ¢ := ti|z@11,’.'.'.',£"-
Let T',Tq,...,T; be mappings defined by positive existential formulas as above. Then we

define a k + 1-ary recursion mapping

as

The T™ are computed by the following recursion.

Tt = T"uT(T™,TV,...,TY)
T = Ty(TT,...,TT)
Tt = T(TT, ..., TT)

with the starting values T = X, T9 = X;,...,T% = X;. Note that monotonicity of the

recursion sequence is only required for the first component of the recursion sequence. 3

8This is in contrast to the usual definition of higher-dimensional fixed point recursion in graph models
but has turned out to be appropriate for the applications in analysis.

18

EMBEDDING IN A GRAPH MODEL

In a next step we want to represent the operations constructed above as elements of an
inner algebra of the FEngeler graph model with 5A@1 as carrier set. In this way we
construct an algebraic structure extending the term-algebra given by the logic to an algebra
for computing with properties. We carry here out the program for embedding differential
fields into graph models proposed in [Engeler, 1990]. The basic definitions and properties

of graph models can be found in [Engeler, 1981A].

The Engeler graph model is an algebraic structure D =< Dy, - > with one binary application
operation - satisfying the laws of combinatory algebra. These are given by the following two
axioms where K and S are two constant combinators.

K- XY = X
S-X-Y-Z = X-Z-(Y-Z2)
A fundamental property of this logic is combinatory completeness which says that every
term t(Xy,...,X,) is expressible in the form T"- X; -...- X,, where T is a term in K and
S.

It is possible to give in combinatory logic combinators which correspond to basic computa-
tional constructs. The B-combinator represents composition

B- XY -Z=X-(Y -Z).
The fixed point combinators Y solves fixed point equations by
X (Y- X)=Y- X.

Furthermore we can give representations m for natural numbers and combinators N, Z and
Zero that allow the representation of recursive programs on them.

Zero-m- XY =
Z-X=0 Y, m>0

The domain D4 of the graph model consists of all subsets of G(A), the set of arrow terms.
This set is given by the following inductive definition using a base set A.

Go(A) = A
Grn41(A4) = Gp(A)U{a — a:a finite,, a C G,(A), a € G,(A)}

f_j G(A).

[
B
I

19

The elements of D4 are called combinators. The application operation is defined for com-
binators M, N € D4 by

M-N={a:3aCN,a—ae M}

The fact that the graph model is satisfying the laws of combinatory algebra is shown by
giving representations of S and K in the graph model [Engeler, 1981A]. Furthermore the
structure D 4 is a complete continuous lattice [Maeder, 1986]. All combinatory operations
are continuous, which means that for a given chain X; C X5 C ... and a combinator T the
following holds:
T-|| Xo=[] T X,
nelN nelN

A retraction is a combinator R that satisfies R-(R-X)= R-X for all X € D4. An inner
algebra A =< A; T > of a graph model has a retract A = {X € D4 : R- X = X} as

carrier set and an operation T' € D4 on this carrier set satisfies T'-(R-X4)-...- (R-X,,) =
R-(T-(R-X1)-...-(R-X,)). Hence operations of the inner algebra are realized by
application.

T(X1,..., X)) =T X -...- Xg.

Now follows the main theorem which also justifies the use of the notion of combinatory
models.

Theorem 2 The combinatory model

..... an

Proof. &aq,

definition operations on the retract. So it is sufficient to show that the operations Cn, T'?

. is the retract of Cn. The operations of the combinatory model are by

and ML TvTr gnq compositions of those are representable as combinators of Dag,
First we give a combinatory representation of Cn.

The following combinator is a retraction and satisfies due to the compactness theorem of
first order logic Cn - X = Cn(X).

Cn={{¢1, . c;bpn} = b1, 0 ' &, 1,0 b, 6 € Aa,, 0,

In the case of a k-ary mapping T the combinatory representation is given as follows.
Case ¢ free of V;, atomic. Then take
T?=B*.Cn- {0 — ... = 0 — ¢(@,...,@,)}

where the () appears k times. B¥ is the k-ary composition combinator of combinatory logic
satisfying B¥ - Z - X1 -...- Xp = Z - (X1 -...- X3).

20

Case ¢ = Vi(t1,...,tm), 1 <t < k. Then take
T¢ = B*.Cn - {) — o= (@, Q) — = D= () Y € Agy @,)
where ¥(@q,...,@,,) is at the i-th place of the arrow term.

Case ¢ = ¢1 A g3 or ¢ = ¢1 V ¢3. Union and intersection of sets of logical formulas closed
under consequences is given in the graph model by the combinators

Un = {p—t¢—pAt:p € Aa,.. a,}

Is = {p—=d—=pV:p, Y€ Aa, a,}
Hence wehave X UY =Un-X-Y and XY = Is- X -Y. By combinatory completeness
we know that there exist combinators S* with S¥-Z; - Zo- X1 ... - Xp = Z1- X1 ... - Xi -
(Z3-X1-...- Xi). Thus we get the following representation for conjunction and disjunction.
T4 — Un.S*.T% -T¢2,
ToVe _ [g.SF .1 o2

Case ¢ = Ja; Y(x1,...,2,,V1,...,Vi). We define the projection combinator

P’P; ={p1,- = A 1p1,.. . pn HT Ay Py Pn € Aay,.@,

A€ A@J oo @i _1,@441,...,@, }

Note that Pri - X = Cn - (Pri - X). Hence again referring to the compactness theorem of
first order logic we get T% - (X -...- X;) = Prt . (TV@0mn ViV (XL X)), for all
. And so

..... Q
T¢ — Bk’ . P'T';L,L . T¢($],...,Z‘n,‘fl,...,v’k)
is the desired combinatorial representation.

To represent the nonmonotone recursion combinatorially we use the embedding of natural
numbers in combinatory logic. Given a recursion

Tt = T"uT(T",TV,...,TT)
T = T(TT,...,TT)
Tyt = T(TT,...,TT)

with starting values T° = Xo,T9 = Xq,...,T9 = X, where X, Xq,..., X}, are the argu-
ments of the recursion combinator, we define first combinators Ry, Ry, ..., Rr such that

Rym=T", R -m=T",i=1,...,k.

21

Define auxiliary combinators F;, ¢ = 0,..., k as follows.

Fo-Zog-Zy-...-Zr-m=

Zero-m -T°-(Un-(Zo-m—1)-(T-(Zo-m—1)-(Zy-m—1)-...-(Z,-m —1))),

F; - Zy-Zy-...-Zy-m=Zero-m-T - (T; - (Z1-m—1)-...-(Zy-m—1)), i > 0.
Then, using the fixed point combinators Yf""l,z' =1,...,k+ 1 of combinatory algebra, we

define R;,¢t = 0,...,k as the least fixed points of the system X; = F;- Xg-.. .- X, 0 =0,...,k
by

Ri=YHl Fo-Fi ... Fp, i=0,... k.
We prove the property stated for R; by induction over m.

For the case m = 0 and 7 > 0 we have.

R0 = YN Fo-Fi-...-F;-0
= Fi- (Yt Fo-Fy-...-Fp)-...-. (Y[Fo-Fy-...-F})-0=T}.

and similarly for Rg - 0. For the induction step and 7 > 0 we have

Ri-m+1 = (Y{ - Fo-Fy-...-Fp)-m+1
= Fi-(Y§U' Fo-Fy-... Fp)-...- (Y Fo-Fr-...-Fp)-m+1
= T, (Y¢" Fo-Fy-...-Fpy-m)-...- (Y[} - Fo-Fy-...- Fy-m)
= Ti-(Ro-m)-...-(Rk-m):T?H'l.

Again for Ry -m + 1 we proceed similarly.
The fixed point Y - N* of the combinator
N* X=0UXUN. X
is the union of all representations of natural numbers: Y - N* = | | .y m. Hence

Ry-(Y-N)=Ro- || m= || Ro-m= || T"
meN meN n€N

gives the combinatorial representation of recursion.

Note that using continuity the following holds
Cn-||Tr"= || Cn-T"=[|T"
meN m€eN melN
This shows that the result of the recursion is logically closed.
After having given combinatorial representations for all operations we have only to remark

that compositions of operations can be represented by using the BF combinators. Thus we
have represented the combinatory models as inner algebra of the graph model.]

22

Remark.

1. The domain 44 of the inner algebra is a complete lattice with an infimum denoted

by E = Cn-{) and a supremum denoted by F = Cn-{¢} where ¢ can be any contradiction,
like 0 = 1. We have the property that for Xy,..., X} € EA@1

T-Xq-...-Xpy=F, ifexists 7, X; = F
The operators of the algebra again form a lattice.

2. The combinators T'V¢(#1:7n) provide projections as follows, X; € EA@1 ay

Vi(z1,mn) Xy oo Xy = X,

3. Union and intersection are represented by

TVl(Z‘l,...,l‘n)/\‘fg(l‘l,...,l‘n) . Xl . X2 — Xl L X2
Tvl(l‘l,...,l‘n)V‘IQ(l‘l,...,l’n) . Xl . X2 — Xl M X2

Internal Combinatory Models

We come now to an important subclass of operations which are defined as the action of
terms on formula-sets. Denote with Te(z1,...,zx) the set of terms of L with free variables
T1,...,Tk Let a term 7(zq,...,2) be given. Then we define a mapping T7(@107k)
E‘IZ@1 — E4q, as combinatory operation by T7(@1k) = e,V Vi) for

ola1, Vi,..., Vi) = Fag, .. xpp1(zr = T(22, - Thp1) A Vi(22) A oo A Vi(@k41))-

Combinators of this kind are called internal combinators. In many practical applications
it will be sufficient to consider the algebraic structure which consists of combinators repre-
senting unary relations and the internal combinatory operations on them. In this case we
speak of internal combinatory models '° which are the algebraic structures

< 5A@;TT,I_I,|_I,MT’T1""’T’“ >

Remark. In the case where a variable-free term defines an operation we get

T :=T""" =Cn-{z, =7}

°As a mnemonic: E = empty, F= full set of properties.
1Ty the informal part we have only discussed internal combinatory models.

23

Sometimes we will also consider the following generalization of unary internal combinators

to the embedding of a vector operation. Let a vector of terms 7(z1,...,2,,) of length n be
given.
a1,y T, V1) = F0ng1 - T 1= T (@1, s Tngm) A e
ANty = Te(Tngts oo Tngm) A VI(Zng1, ooy Trgm)

This is a mapping EA@1 an
way to a k-ary combinator.

— EA@1 ay This definition cannot be extended in a natural

We give now some of the basic properties of internal combinators. Before doing this we
need some preparations from logic. The first is concerning notation: Whenever we write
T1(21,...,2k) = T2(@1,...,2,) it has to be understood as

F' Wy .. (T, .., k) = To(@, .., Tk)
The second is a simple property
Lemma 1 Let T be a theory, @ a constant symbol not appearing in T, T a variable-free

term. Then

T.,@=1F¢(@Q) iff TF¢(T).

First we give a characterization of internal combinators that relate these to the definition
given in the introductory part.

Proposition 1 (Characterization of internal combinators) Let 7 € Te(zq,...,xy),
k> 1, Xq,..., X € EA@1' Then

T X X = (@) s Xl Xkl BT o(r (a1,)}
Proof.
T3I27~~~7$k+1($1:T(I2,...7$k+1)A‘/l(l‘g)/\...A‘fk(l‘k+1)) i)(1 . Xk. _
P"i+1 . (L. (Prgii . Tl‘l:T(]Ig,...,l‘k+1)/\V1(1’2)/\.../\Vk(l‘k+1) .)(1 . Xk') .) —
Pri-l—l . (L. (Prlgi% . Tl‘l:T(l‘27...,l‘k+1) Xy - XU
TVl(I‘Q) 'Xl XkuuTVk(Ik‘l'l) Xle))):
@
Pri (oo (Prif - (101 = 7(Q2,. o, @)} U X g2 U U X gh)) =

{6(Q) : @ = 7(@g,..., Qppr), X1[92, ..., Xl T (@)} =
{0(@y) : Xﬂ%’j, o -J@lgf“ FT o(m(@Qy, ..., Qpy1))}

The last step is by using lemma 1.]

24

Remark. A similar characterization can be given for the embedding of vector operations.
Let 7(z1,...,2,) be a vector of terms in Te"(zq,...,z,,) of length n. Let X € EA@
Then the embedding of 7 is given by

7)Y = {¢(@, ..., @) X[T g2, @), @1y))

Proposition 2 (Soundness of the Embedding) Let 7,7 € Te(zy,...,zr). Then

(w1, 2k) = (a1, wp) — TR = relnrs)
Proof. We have T#1=7(200%k41) = TE1=T2(Z10k41) gince FT 1 = Ti(@2,. .., Thq1) <
1 = T2(21,...,2,41). Hence inspecting the definition of the combinatory operations the
combinators T7(#1%8) and T72(17k) are huilt up the same way. 1

The converse of this theorem which is called the completeness property does not hold in
general. However using the following criterion completeness can be shown for many term
classes.

Criterion: Let a term class be given such that for two terms 7 (z1,...,2%), T2(21,. .., k)
the equality m(21,...,2%) = 72(21,...,2) is decidable for T. Furthermore assume it is
possible to give whenever 7y(z1,...,z%) # T2(21,. .., x;) variable-free terms 71, ...,7; such
that 7 (y1,...,7k) # T2(71,---,7%). Then completeness holds for this term class.

The next proposition shows that the term algebra of L is isomorphically represented by the
inner algebra with the carrier set 7% = {T'7, 7 variable-free term of L } and the internal
operations 7% = {TT(“"“’”) c1(21,. ., xk) € Te(zq, ..., ak)}

Proposition 3 (Compositionality) Let 7q,..., 7 be variable-free. Then

TT(Tl,...,Tk) — TT(Z’l,...,l‘k) . TTl L TTk.

Proof.

Tal‘g,...,l’k+1(I1:T(I2,...,l’k+1)/\Vl(l’-g)/\.../\‘fk(l’-k_i_l)) . TTl R TTk —

Pri, (... (Prit (T E0emin) TR
TVi@) .pmo. ey TVRERe) LT TR L) =

Pri (oo (Pritt ({@) = 7(@g,. ., @)} U{Qs = 1} UL U {@ppy = 71})) ..) =

Prig (... A(Prftl (@ = (ry, .) U {@y =1 UL U@y = T1))) L) =

Cn -{Q =7(m1,...,7)}

(
(

k+1

The last step is by repeated application of lemma 1.]

25

Remark. In the general case compositionality holds no longer but for example weakenings
as the following may occur.

TT(azl,...,xk) . (Tﬁ(a:) . X) Co (TTk(l‘) . AX') C TT(’Tl(I),...,Tk(]J)) X,
We show now a very basic kind of weakening.
Proposition 4 (Weakening) Let 7(z1,...,25) = To(@1, ..., T1,- -, Thy. .., T) and
Xi,..., X, € gA@1' Then

TTQ(I‘l,...,l‘l,...,l‘k,...,z‘k) . Xl L)(1 L Xk . Xk E TTl(l‘l,...,Ik) .)(1 . Xk

Proof. Assume ¢(@;) € T2 (T3 sT 15y Th) Xi1-o..- Xy, X -...- Xi. Then

X1 %1117') '7)(1%11"1" : ‘7Xk|%kllv' . -,Xk|x@k1nk =
AT L1115y Ty s e o s Thly e vy Thiy))-
Therefore also
X1|%11""’X1|%117"'7‘Xk|$@’;7"'7Xk|I@’; BT
Ara(T1y ey Ty ey Ty ey Tg)),

and so X1[g ;.. .,Xk|g“1 ' ¢(mi(21,...,21)). This shows that

qb(@l) € TTl(zl’""xk) D CIRIEY. ¢

In the following situation equality is obtained.

Proposition 5 Let 7y(z1,...,25) = T2(@1,...,2x) where each variable in both terms ap-
pears exactly once. Then

TTl(l‘lv---vl‘k) . Xl P Xk = TTQ(I‘l""’xk) . AXV1 Tt Xk

Proof. The proof is the same as in the previous proposition. But in this case it is possible
to proceed in both directions.]

The following proposition holds only for the embedding of unary operations respectively
vector operations.

Proposition 6 (Unary Characterization) Lel 7(z1,...,2,,) be in Te™(z1,...,Tm).
Qb(Tl(@l, .. -7@m)7 .. .,Tn(@l, .. 7@m)) e X
iff
¢(@17 - @n) = T(Tl(zl,...,zm),...,ﬂ'n(zl,...,z‘m)) X

26

Proof.
S(1(@r1, .o @), (@1, @) € X O
X|$1’ jIm FL p(r(@1y e s)y e vy Tr(@1y e oy Ty)) T
(1T,)y ey Tal(T1, . Tp)) ECR - X = X
|

The unary characterization lemma can be used to show the following properties of internal
combinators which are generalizations of compositionality to terms containing free variables.

Proposition 7 Let 7(z),7i(z) € Te(z),i = 1,....k and o(z1,...,z;) € Te(x1,...,x5) be
given and Xy,..., Xy € E4,. Then

TT(I’) . (Tcr(zl,...,zk) . Xl .)(k) _ TT(U(wl,...,wk)) . Xl . AXvk
To@nm) (@) L x (T LX) = peE)eemE) L x L X

Proof. ¢(@) € T™@) . (T7@12k) . Xy .- X}) iff ¢(7(@)) € T7@ k) . X .. X, This
is the case iff
X8 X2 FT g(r(o(zn,. . ., ap))

which is iff ¢(@) € T7E20) . X, . X

For proving the second equality assume that ¢(@) is contained in the right hand side. This
is iff

(T X8, (T X[T d(o(a, ..., zp).
Using the unary characterization lemma we see that this is iff

Xalghs s Xilg T p(o(mi(z1), .. ., Te(zk))).
The last step is seen immediately by remarking that
Gi(@1), - Vp(zp) F gl (e, 2p))
iff
P1(m(z1)), - Yr(Tr(zk)) L olo(m(z1),. .., me(zr))).

NoOTATION
To simplify notation we make the following convention for internal combinators. Let op be
an operation in the language. Then we write

ToP@emk) L Xy L Xy = op(Xy, ..., X5).
Example. We write T%11%2 . X - X3 = X; + X,.
Furthermore due to the main theorem we can interchangeably use the notations T'- X1 -.. .- X}

or T(Xy,...,X}) for denoting the application of combinatory operations to its arguments.

27

Fixed Point Property of Nonmonotone Recursion

We propose that the recursion combinator of the combinatory model allows two different
possibilities to assign properties to recursively defined functions, by continuity and by fixed
point relations. The first is realized by the definition, namely a recursion combinator has
any property that is maintained throughout the recursion. We show now that also the
second possibility is realized. This allows to establish algebraic relations involving recursion
combinators by using fixed point equations.

We denote in the following a general nonmonotone recursion combinator M TTh...Tx gy
ply by M. Then we state the following fized point property.

Proposition 8 (Fixed point property) Let G be a k-ary combinatory operation. If
Tt =G -T™-...-T™ % form >k then
M=G-M-...-M.
Proof. The proof uses a standard argument for graph models. One inclusion is trivial: The
assumption of the proposition gives
THCcG-T"-...-T" "

Remember that M = |], .nT"™ and so by using monotonicity of G' we obtain first T C
G-M-...- M and hence
MCG-M-...-M.

For the other direction assume that ¢ € G-M -...- M. This is the case iff there exist finite
a;, T M, i=1,...,k such that

ap — ...— a — ¢ € G.

Therefore since the «; are finite there exist mq,..., mg such that a; © T™¢, 2 = 1,...,k.
Since the T are monotone increasing there exists a mg such that T C T™°7". Now we
conclude that ¢ € G -T™ - ... T™ % which proves that ¢ € M. 1

The following corollary justifies the use of the notion fixed point property.

Corollary 1 (Fixed point property of unary recursion) Let G be a combinatory op-
eration. Then

MGG = MG (GY)).

Proof. The iterates G™ of the combinator MG(GO) satisfly G™*! = G(G™) and hence
solve the fixed point equation.]

Corollary 2 If G° C G(G°) then G° approzimates a fized point of G.

28

Normal Form of Nonmonotone Recursion Combinators

In this section we will show that it is not necessary to discuss the case of composite recursion
operators, since for every such combinator there exists an equivalent one, which is built up
with exactly one nonmonotone recursion combinator at the outermost level and has the
same extension in £4,. The idea of the proofis to eliminate recursions by diagonalization.
The problem is that we have to handle the diagonalization of infinite recursions. This is
possible due to the following lemma for graph algebras.

Lemma 2 Let T be a combinator of a graph model and Xl-k,i =1,...,n, k€ N combina-
tors such that XF is a chain for i fived: X} T X? T Then
T || X{-..- || XxE= || T X} X
kelN keN kelN

Proof. The inclusion O is trivial due to monotonicity. The other inclusion is showed as
follows. Let 8 € T+ ey X5 . "L peny X£. Then there exist ay,. .., ay, finite and o; T X%,

such that &y — ... = a, — [€ T. Since the a; are finite there exist X%l, ..o, X such
that o; C Xf‘. Take kg = max;=1 . n(k;), then a; C Xf0 and so § € T - Xfo o X,
This shows that 8 € [Jyen T - X¥-...- XE. 1

We introduce a vector notation for multi-dimensional recursions, which will make the text
more readable. Let the combinator ML T1-Tx (T,T9,...,TY?) be given defining the re-
cursion

Tt = T"yuT.T".T7" ... TV
"+t = Ty TV .. TE
TPt = Ty -TT-...- T}
with the starting values T°,T9,...,T?. We denote now k-tuples as vectors. Hence the

combinator is written as MT’T(TO7 T°). Then we write for the recursion

T+ = TTuT-T"-T™

™+ = T.7T™
When working with several recursion combinators with different starting values and dif-
ferent arities it is always possible to find a set of equivalent recursion combinators which
share the same set of starting values. This is achieved by simply introducing trivial re-

cursions, thus raising the arity of the recursion combinator, which have no influence on
the limit. For example MT’Tl""’Tk(T,T(lJ,...,T%) represents the same set in 4, as

]\/_,T,Tl,...,Tk,G(T7 TY,...,T9, G°) where

T-X X1 Xp - Xpp1 =Tr-X-Xq-...- Xy,

29

and similarly for ’Tl, .. .,’fk.
As a first step we show that we can pull continuous operations inside a recursion.
T, T,

XX
be a combinator. Then there exists a recursion combinator M such that

Lemma 3 Let recursion combinators M; = M (TO,TO) 1=1,...,n be given. Let T

T -M,-...-M, = M.

Proof. Each M; can be written as a union,

M;= || T".
meN
Hence by the lemma we have
T-My-....M, = T ||Tp-...- || Ty =
melN meIN
= ||T-T7-...-T]
melN
We build a recursion that gives the T-T7* -...-T".
T+t = TP UT,-TT - T™
f1m+1 = fl . flm
1 .
Tt = T"uT, - TT-T,™
r, ' = T, T,™
Tt = T"yuT.T7.... T
This recursion written as recursion combinator gives M. 1

This lemma shows that we can pull all combinatory operations (except recursion operations)
to the inside. Hence every combinatory term can be rewritten such that all recursions
appear on the outside of the term. Next we show that composed recursion combinators can
be diagonalized. The proof is straightforward although the notations are tedious. We again
assume that all recursion combinators share the same starting values.

Lemma 4 Lel recursion combinators M ; = MT“Ti(TO,’fO) t=0,...,n be given. Then
the term
MGG G N oMM,

can be rewritten as one recursion combinator with starting values TO,TO using the embed-
dings of the natural numbers and the Zero combinator.

30

Proof. First we give a diagonalized representation of
MGG -G N My M,

and then a recursion which computes it.

Let GZ(SO, S1,...,5,) denote the [-th iterate of MGG G S0-S1-...-8,.
MGG -Gn My M- M, =
MGG G| NTE Unen T - Uen T =

Llle]N Gl(l_ImEIN Ty, |_|me]N r,.. -al_lme]N TZL) =
LllE]NleE]NGl(87‘7 TavT;n)

We claim that

L] L Gy, Ty = || e Ty T,
leINmelN meN

We have only to show the inclusion C since the other is obvious. Let

oe | | Gy, Tr,.... T,

{eIN melN

Then there exists g, mg such that ¢ € GIO(TS’LO,TTO, ..., 7). Assume that Iy < mg.
Then, since the G form a chain, we have

Gh(Tro, 7, ..., T™)C G™(TJ°, T, ..., TT™).
Otherwise, since also all T'* form chains we get by monotonicity
l l l l {
Geo(Tye,Ti",..., T")C G(TY,TY,...,T)?).
Hence the claim is proven correct.

So we have to give a recursion that computes

|_| G"™(Ty, T, ..., TW).
meN

the recursion we give is essentially built up as follows. Every time we have computed in

one step the Tt TP+ .. T+ out of the Ty, TT, ..., T™ we build up in m 4+ 1 steps
Gm"'l(Tg“H,TTH, ..., TT™1) To control the execution of the recursion we make use of

the embedding of natural numbers and the combinator Zero given earlier. Furthermore
we need a combinator that can compute the difference of two natural numbers which can
be given easily.

Now we are ready to give the recursion. We use two auxiliary combinators C™, D™ for
counting, where D™ is the counter for the outer loop which computes the TZ-”‘H while C™ is

31

the counter for the inner loop computing G™*!. Furthermore we need auxiliary recursions

for H™,

m

the parenthesis around the three arguments of Zero to obtain better readability.

Tyt

fnm—}—l

Hm—l—l

m+1
Hl

H!

Gm—l—l

Starting values are C° =0, D° =0, H° =T9, HY =T? and G° = E.

= Zero-

= Zero-

= Zero-

= Zero-

= Zero-

= Zero-

= Zero-

= Zero-

= Zero-

= Zero-

Dm
Dm

Dm
Dm

Dm
Dm

Dm
Dm

Dm

Dm

- Ccm
- Ccm

-Ccm
- Ccm

- Ccm
- Ccm

_cm
—_cm

- Ccm

- Ccm

Ccm+1

Dm

Ty

m
TTL
_'7’)”
1
T,

H™"uG-H™

G,-H"- ...

G, H"-.. ...

Gm

m
. HT

0

D™+ 1

T UT, T
To-To™

T UT, T"
T, T,™

Ty UTy Tf -
T uT, -T7 -
T UuT, -T"-
G"UH™

™. ..., H™ which hold the intermediate results for computing G™*'. We omit

The embeddings of the natural numbers and the operations on them, which can be realized
in combinatory algebras, are not basic operations in the definition of combinatory models.
Therefore the diagonalization result does not hold for arbitrary combinatory models in the
strict sense, that all operations used in the diagonalization are combinatory embeddings

of terms or formulas.

However, as far as the application to analysis is concerned, the

natural numbers and the basic operations on them, like addition and subtraction, are always

available as a part of the analytic structure, and hence expressible in the logic used to

describe it. In these cases also a decision combinator can be constructed as an operation of

the combinatory model, as will be shown later, and so the diagonalization can be realized

completely within the combinatory model.

32

Retractions and Solutions

In this section we introduce some standard notions used in analytic computation, like round-
ing or approximate solution etc., by precise algebraic definitions.

Often we want to compute in EA@l .a, only with combinators of a certain type. A natural
way to impose restrictions on the carrier set EA@] ..a, 18 by retracts. Let R be a retraction.
Then the carrier set of the retracted combinatory model is

gRI{AXVR:R'Xa XEEA@l ~~~~~ @"}

and the retracted combinatory model is the algebraic structure

R R R
Ep =< & TR, T T T8

where the retracted operations are defined as
TR=B" R -T.

o, satisfies
~~~~~ n

If the retraction R of EA@]

R-XCX,X¢€&aq,

Qpn

we will call it a proper retraction. In a proper retraction the retract of a combinator is hence
still an approximation of the retracted combinator. A special type of proper retraction can
be defined by restricting the allowed formulas. Let R C Aa,,. a, be the set of formulas
that may be used to describe an object. Then the combinator

R = {(Qy,...,Q@,) — ¢(Qq,...,Q@,): (Qy,...,Q@,) € R}

reduces a combinator in EA@1 ..a, toasubset of R. Since we want to consider only combi-
nators closed under logical consequence we choose as retraction

R:=B-Cn-R .

Then R satisfies R- X C X. The combinators in g are then defined as sets of consequences
of subsets of R.

Example. Assume we are computing in integer arithmetic. A retraction could then be a
rounding to the next integer, for example

R . (@ =3/4} = {@ = 1}.

A proper retraction would be to the smallest integer interval, such that the interval includes
this number:

R™.{@=3/4} ={0< @< 1}.

An especially interesting class of retracted operations are complele retracted operations

which satisfy
TR . xE.. . xXE=(r. X, ... X,)E

33



Example. Assume we retract in the combinatory model of totally ordered fields to real
intervals. Most of the arithmetic operations are then complete, except division when the
interval contains zero. Namely

TV . {—-1<@<1}=F.

Now assume we use multi-interval arithmetic, which means we allow finite sets of intervals.
Then also division is complete

TV {—-1<@<1}={@< -1Vv1<a@l).

The structure of combinatory models allows to distinguish under a rich number of solution
types. We consider only the case of an internal combinatory model with carrier set 4, .
Assume a problem is given in form of an equation.

Ti(z) = 12(2)

The formal solution of the problem is given in the combinatory model by Cn - {m(@) =
72(@)} in implicit form. The simplest type of an explicit solution is given by a term 7 of
the language of the underlying first order theory such that

(@) .y = (=)

This kind of solution is called closed-form solution. In the case, where a closed form solution
does not exist, further possibilities are given. First we can weaken the information contained
in a term by a retraction R with R-X C X. Then ~ is called an approzimative solution if

R-(T"@ .17 = R- (T .T7).

A solution of the combinatory equation that is found in the combinatory model without
referring to a term is called an approximale solulion. It is given by a combinator G € €4,
such that

@) . g =172 .G

or in the case of a retracted combinatory model as
1(z) _ p2(e)
T, -G=T5"-G
Note that two approximate solutions are always possible, namely E and F.

Remark. F is also very useful to handle the problem of undefined expressions in symbolic
computation. Namely, the embedding of % is nothing else than FE, since no nontrivial
information is available for %.

o=

To = FE.

The weakest solution type is that of an approzimation of a solution which is given by a
combinator G* € £4, such that for a G that satisfies 771 .G = T™®) . G we have

G"C G.

34



Example. Take the equation 7(z) = 1/2 % (2 + 2/z) = z. There exists no closed form
solution but retracting to integer intervals = 3/2 is an approximative solution:

and for 7(3/2) = 17/12 '
Rlnt 'T17/12 — {1 S @ S 2}

Consequently the combinator G = {1 < @ < 2} is a solution of the combinatory equation

X =1/2% (X + X/2).

Axiomatic Approach

DirrERENTIAL FIELDS

Differential fields are basic for the algebraic treatment of differential equations. For an
introduction to the theory of differential fields see [Kaplansky, 1957]. Instead of studying
extensions of differential fields by transcendental functions like the elementary extensions,
as it is done in the classical study of integration and solution of differential equations, we
extend differential fields by formal programs by the introduction of new function symbols,
namely cond,o and p. The properties of these functions are given by axioms. This is in
exactly the same way as an elementary extension e.g. the exponential function is introduced:
in this case the new function symbol is exp and the axiom is (exp(f)) = exp(f) * f'.

We give first a proper axiomatization of differential fields in first order logic with equality.
To affirm the formal point of view we choose as notation for terms that denote functions
lower greek letters 7,0,.... The language of this logic consists of the usual differential field
operations +, —, *, ~', / and the constant symbols 0, 1, ¢, where ¢+ denotes the identity

function. The axiomatization of the theory of differential fields consists of the field axioms,
including the axioms for characteristic zero, ! and the following differentiation azioms.

(c+71) = o+7,
(cx7) = o'x7+oxT7,
c£0—= (o7 = dxo7?
const(t) — 7' =0,
o= 1.

The constant elements are selected by a predicate const satisfying the following axioms.

const(0), const(1), const(r) — const(—7),
const(o) A const(7) — const(o + 7) A const(o * 7),

const(r) A 7 # 0 — const(r71)

1 This is a infinite set of axioms.

35



The subfield of constants is furthermore axiomatized as a totally ordered field using the
total order predicate <.

Next we give axioms for conditional functions and composition. The axioms are chosen such
that results about normal forms and decidability are obtainable. In this way terms built up
with field operations, composition and conditionals can be understood as a natural extension
of the rational terms. The axioms are a modified version of those given in [Engeler, 1990].

CoMPOSITION
We give first the axioms for composition.

LoT = ToL=T,
(1+m)oo = Too+To00,
((m*m)oo=0Vmooxmoo#0) — (T *m)o0=T100%*T300,
(-=T)ooc = —(7To00),
700#£0— (7Yoo = (ro0)7,
(mom)ory = Ty o(mp0T73),

const(e¢) — oot =0,

(cor) = 7'x(c'07),

The preconditions in the axioms for multiplication and multiplicative inverse are necessary
to avoid contradictions.

Example. (¢*:7!) o0 and :7! o (¢7! 0 0) are typical examples where such inconsistencies
would occur without the preconditions.

For compositional terms consisting of the constants 0, 1, the ring operations +, %, — and the
composition operation o a normal form algorithm was given in [Aberer, 1990].

We can use composition to extend the definition of the total order predicate to terms
denoting functions by

o < 7:=Va (const(z) ooz < Toux),

o < 7:=Va (const(z) = ooz < Toux).

< has the properties of a partial order relation with respect to the equivalence relation ~
where ~ is defined as
o1 =0<T7TAT<L o0

Note that the relation ~ does not coincide with the equality relation = when introducing
conditionals.

CONDITIONALS

The intuition behind the axiomatization of conditional functions is that a conditional func-
tion term cond o 7, 7o takes at a point ¢ all properties of 7 at this point if coc > 0 and
otherwise those of 79. That means that for a term cond o 74 7o for example not only the

36



function value but also the derivatives at ¢ are the same as those of 7 if coc¢ > 0. This
is in contrast to the usual intuition behind piecewise rational functions but this concept
allows to define the differentiation of piecewise defined function terms everywhere.

To express this we have to introduce an auxiliary function symbol e which satisfies the
following axioms.

lec=1,00c=0, c0c=1,
(c+T)ec = ocec+Toec,

)
(—o)ec = —(oec),
)

ce(Toc))o(Tec),

(

(
dlec = (dec),

(

(

const(¢c)A(coec>0) — (condom )ec=10c,

(
const(¢c)A(coec<0) — (condorm m)ec=Tyec,

)
Va(const(z) - ooz =0) — o=0,
) ) — oxol=1.

Va(const(z) — ocex #£0

These axioms allow to derive many properties one would expect to hold for conditional
functions. We list here only some of these.

(cond 7y 73 T3) o0 = cond 00 T;00 T30 0,

oo(cond 7y 73 73) = cond 7 00Ty 00Ts,

(cond y 73 3)+0 = condm 7o +0 T340,

—(cond 7y 2 73) = cond T — T — T3,
Tg*73#0— (cond 7y 75 73)"" = cond 7y 7yt Tyl
(cond ¢ 7y 73) = cond o 7] T,
c>0—condommm = T,
c0<0—=condom o = T
conderr = T,

Example. The absolute value function |¢| = cond ¢ ¢ —¢ is differentiable and the derivative
is given by |¢|' = cond ¢ 1 — 1.

To see that ~ does not coincide with = consider the term 7 = cond ¢ 0 (cond —¢ 0¢). It is
easy to see that 7 ~ 0 but 7 # 0 since 7/ = cond ¢ 0 (cond —: 0 1) # 0.

The term cond ¢ 1 0 has no multiplicative inverse but is also not equal to 0.

37



Due to the last example the inverse axiom for multiplication is no longer satisfied (and
therefore is replaced by the last axiom contained in the axiomatization of e which is weaker)
and so the theory extended by conditional terms is a differential ring, of course containing

a differential field as subfield.

We denote the theory of differential fields extended with composition and conditional axioms
with CDFF. For this theory the following decidability result was shown in [Aberer, 1991]
over a real closed constant field: 2

Theorem 3 For a conditional term 7(z1,...,x,), consisting of the constant symbols 0,1
and the function symbols +, —,*,0 and cond the problem

Vay ...z, 7(21,...,2,) =0

s decidable if the field of constants is real closed.

RECURSION

To give properties of recursively defined functions, i.e. terms containing the function sym-
bol p, that was used in the introductory part, in an axiomatic way we have mainly two
possibilities. On the one hand we can define the u-term as the fixed point of the fixed point
equation system corresponding to the recursion scheme. In certain situation this can make
sense.

Example. Take the following recursion: z,41 = @, * 1/2,29 = 1. This recursion is

described by the term ug/Z(l) > 0. Then the fixed point equation = = x/2 is satisfied by
the limit of z,, namely 0.

In the case of more complex recursions this works no longer as illustrated for the exponential
function. The fixed point equation system is

y=1vy+u, u:u*é, k=k+1
which is obviously senseless.

The other possibility is to consider those properties which are valid almost everywhere in
the recursively computed sequence. For an unary p-operator

T(x)(

2z 7o)

this can be expressed by an induction aziom of the following kind.

(6((70)) AVa (8(x) — 7(2))) — ot ().

It was shown in [Aberer, 1991] that every structure without p-operator can be extended
to one with p-operator, satisfying this axiom, but on the cost of introducing nonstandard
elements.

12The theory of real closed fields can be axiomatized by an infinite set of axioms.

38



Example. The same example as before. The induction axiom would imply that ,ug/Q(l) >
0, i.e. the term represents an infinitesimal small positive number.

A extensive treatment of this approach where also many relations to nonstandard analysis
can be found is given in [di Primo, 1991].

We have already seen that in combinatory models both aspects of assigning properties to
recursively defined functions were realized. Hence we prefer the representation of recursion
in combinatory models to the axiomatic representation.

Combinatory Differential Fields

We propose now the combinatory model of the theory CDFF, the differential fields the-
ory extended by composition and conditionals, as an appropriate mathematical model for
constructive analysis. We call this combinatory model a combinatory differential field and
denote it by

1t n,u, MT T T s

1rn@n?
Note: Other combinatory differential fields can be constructed using other differential fields

theories.

Naturally the question arises why we include the composition and conditionals of C DFF to
define CDF. On the one hand the combinatory model provides as an algebraic programming
semantics all programming constructs. We have already used this to define nonmonotone re-
cursion. Composition is provided by the B combinator and a construction for a conditional
operation analogous to that of C DFF can be made as follows. Given a quantifier-free for-
mula ¢(z), which represents the condition, we define a (ternary) combinator C#(*1) := T
with ¢ given as the following positive existential formula

¢(w1, Vi, Va, ‘/3) = (E|.I1 (qb(xl) N ‘G(wl)) N Vg(wl)) V (E|$1 (“Qb(.fl) N ‘/1(.%1)) A ‘/3(.%1)).

For this combinator we can show the following.

Proposition 9
Xo, if (@) € X1, X1 # F

X3, Zf ﬁé(@l) € X1, Xj 75 F
X2 N X3, otherwise, if Xy # F

Cc?) X, Xy Xy =

F, otherwise

Proof. Assume ¢(@;) € X;. Then
TV X1 Xy Xz = (Pri- ({6(Q1)} UX1) U X)) M(Pri- ({~6(Q1)} U X1) U Xs)

39



Since {-¢(@;)} LI X4 contains ¢(@;) and —¢(@y) the second part of the intersection is equal
to F. For the first part we have {¢(@;)} U X; = X; and X; # F. Hence Pri-({¢(@;)} U
X1) = Pr% - Xy =E. ' Since EU X3 = X3 and Xy F = X, the assumption is proven
correct in this case. For =¢(@;) € X; the proof proceeds similarly. If X; contains neither
#(@1) nor ~¢(@y) then both Pri - (({#(@1)} U X;) and Prl-(({-¢(@;)} U X;) are equal
to E. In the last case where X; = F the result of the application obviously again is F. g

On the other hand we have already included conditionals and composition in CDFF. We
want to justify here why this is useful in the application of combinatory models to analysis.

When we consider composition the combinatory model provides for this the B combinator.
The identity element in the combinatory model with respect to this composition is the
internal combinator T'*. So the following equation is satisfied for any unary combinator G.

B-T° G- X=G-X=B-G-T°-X.
This corresponds expressed in the language of logic to an operation o, with the properties

ro,T=T=7To0,z, T(x)o,0=r1(0)

We have introduced in differential fields an identity function ¢ with :' = 1 and a composition
o, such that ¢ is the identity function with respect to this composition. Furthermore the
well known chain rule was given by (¢07)" = 7/% (¢’ o 7). This intertwining of properties of
composition and differentiation is something that cannot be realized by using the B com-
binator for composition. Therefore we want to use the axiomatically defined composition
further. Consequently we use also the conditionals, which have many intricate relations to
differentiation and composition as well, which we do not want to loose.

On the other hand the relations between the p-operator and the operations of CDFF
are not as intricate and can be equally well be represented by the combinatory recursion
operation.

Convergence

We have already pointed out the fact that the introduction of a formal recursion operator
automatically introduces nonstandard elements. The same can be achieved by combinatory

z/2
recursion. Take for example the combinator M T ({0 < @ < 1}). This combinator
represents an infinitesimal positive element. It solves the combinatory equation T2 .

z/2
X = X. On the other hand also the combinator M7T ({0 < @ < 1}) is a solution of
this combinatory problem. Both combinators are convergent and represent hence exact
solutions in the sense of standard analysis. Obviously similar as in nonstandard analysis we

¥ The only formulas not containing @; that can be derived under FT from X1, when X is consistent, are
those which are valid in T'.

40



have to introduce the concept of standard equality and identify combinators which differ
only infinitesimal. Our goal in this section will be to characterize standard equality by a
retraction. Then we can say in our terminology that a combinator which solves a problem
up to standard equality is an approximative solution and we will consider such solutions, if
they are convergent, as acceptable solutions.

We introduce some notations we will use in the following.

|7| = cond T T —T,
T—a) = cond A — (cond t — A 70)0,
o0 <oan T = oy <cond A—u(cond - AT1)1,
T =LA T = OAN] = T[=AN

We denote positive constant terms with Qut and conditional terms with Co. First we
want to introduce the notions of global convergence and local convergence. A combinator
X € €44 is globally convergent if for all terms p, A € Qut

Q] <ap p € X=X -X.

This expresses that X approximates a function globally up to a arbitrarily small error. A
combinator X € €4, is locally convergent if for all terms p, A € Qu™T, there exists a term
7 € C'o such that

|@ — 7| <[=aN P € X.
The above formula says that the function approximated by X can locally be approximated
by a conditional function with arbitrarily small error.

Lemma 5 If X € &4, is locally convergent then it is globally convergent.

Proof. Let X be globally convergent. Then for all p, A\ € Qu™ there exists a 7 € Co such
that |@ — 7| <[_, \ p/2. Hence

X5, Xy FOPPE o — 7l <y p/2, |y — 7] <[oap p/2
FOPPE g — gyl <_ap p

Hence we have |@| < p € | X]. I

On the other hand the converse is not true as shown by the following example. Let
X = |_| {@ o 1/n =1NQ@ =11/n,1/(n+1)[ 0}
nelN

Then X is globally convergent since it has everywhere an uniquely defined function value
but it obviously can not be locally convergent because no conditional function with a finite
number of discontinuities can approximate X around 0 with error p < 1.

Note that locally convergent combinators are general enough to describe an interesting
class of functions. For example all analytic functions can be described by locally convergent
combinators.

41



We give now a lemma that will be important for the proof of the main result of this section.

Lemma 6 Let X be a locally convergent combinator. Let 7 € Co and p,\,e € Qu™ be
given, € < p. Then at least one of the two following is true.
Xl FOPPE Sly—r|<anp—e

X[y FOPPE |y —7| <A P te

Proof. Since X is locally convergent there exists for A, e a 7. such that X| FCDDE |y

Te <[-a, € Note that |7 — 7 <[-A,3] P is decidable in CDFF. Now if |7 — 7| <[oa] P
then
|y - 7—| S[—/\,/\] |y - T€| + |7' - Tel <[=AN] P + €.

If =|7 — 7| <[,z p then exists ¢ € Qu such that |7 oc — 7. 0¢| > p. Therefore
lyoc—Toc| > |lyoc—Tcoc]—|Toc—Tcoc|| > p—e

This shows that =]y — 7| <_yx\ p — € 1

Corollary 3 Let Y be a locally convergent combinator and X be any combinator such that
X2 UY|4 is consistent. If X|g,Y | FOPPY |y — 7| <(_y \) p then for all 6 € Qut
Vg FOPPE y — 7] <Lay o+ 6.

Proof. Y|4 FCDDE 1y — 7 <[=x,z] p would lead to a contradiction to the consistency.

Hence take € = §/2 and p = p+ € and apply the previous lemma. Then we have Y|§ FCDDE

ly =7 <[ap P+ 6 1

We define standard equality of two combinators X and Y: X Ly iff Q] <y pEX-Y
for all p, A\ € Qu™.

As we want to characterize standard equality by a retraction we give now the retraction
that will allow us to do this. The retraction will leave only formulas of the form

A7 = {l@ -7l <y p:rpe Qut, T e Co}

But simply restricting combinators to all formulas of this form would still allow combinators
which describe nonstandard elements. Thus we have to define the retraction in a more subtle
manner. Take R* as follows

R = {{l@-7]<anp—pAp>0} = |Q—7]<yypApe Qut, 7€ Col.
We have to prove first that we actually have defined a retraction.

Lemma 7 R* is a retraction.

42



Proof. Since R*" - X C X we have R*"- (R*"- X)C R* - X.

To prove the other direction assume that |@ — 7| <[_, yj p € R . X. Then exists p > 0
such that |@ — 7| <;_y, p— p € X. Therefore |@ — 7| <;_,; p—p/2 € R - X and so
|@ — 7| <[_/\7/\]pERSt'(RSt-X). 1

Now we are ready to formulate the main theorem of this section.

Theorem 4 Let X,Y be locally convergent combinators such that X|%5 UY |¥ is consistent.
Then Xt =Y iff X 2V,

Proof. First we prove the simple direction. Let X = Y'*!. Then for all p,\ € Q7 exists 7
such that |@ — 7| <[y ) p/2 € X. Hence |@ — 7| <[y y] p/2 € Y. From this we get
X6, Y FOPPY [ =yl <y p
Hence we conclude [@] <(_)yyp€ X - Y.
To prove the other direction assume that |@ — 7| <[_) \j p € Xst. Then there exists p such
that |@ — 7| <_y 5y p — p € X. Since X LY for every € we have
X[&, Y[y FPP |z — gyl <o 6

and, from this,
X6, Ya A <apP—pPte
Using the corollary, we get for any 6

Y[ LCDDF | _

Tl <oy p—p+eté
Setting €,8 = p/3, we get |@ — 7| <_\ \jp—p/3 €Y and so |@ — 7| <[y p € Y 1

Remark. The difficulty of this proof comes from the fact that we cannot conclude from
XIE.Y]a FCDDE 1y _ 7 <[=a] p — p that Y4 FCDDE 1y _ 7 <[=a,] p — p. For this we
had to make the foregoing preparations.

Corollary 4 Let X,Y be locally convergent combinators such that X|§UY | is consistent.
If XCY then X%t = Y%,

Proof. Since X is locally convergent, it is also locally convergent. Hence we have [@| <[_, y
p € X — X and by monotonicity |@| <(_y p € X =Y. The theorem then shows that
Xst — YSt. I

This shows that any additional information put into a locally convergent combinator has
no effect on its equivalence class with respect to standard equality.

43



Combinatory Solution of Linear Differential Equations

We consider the case of a regular, linear, homogenous differential equation with polynomial
coeflicients which can be written in the form

L(y)= y(m) + @po1(t) * y(m_l) + .ot ar(V)xy +ag(t) xy = 0.

It is a well known fact that the solution of such an equation is analytic in a neighborhood
of any point. Furthermore the coefficients of the power-series representation of the ana-
lytic function are computable by a polynomial recursion. We will use this to construct a
combinatory solution of the differential equation, in the form of a monotone increasing and
recursively computed chain of approximations of the solution.

First we give the recursion for computing the power-series in a way that is especially suited
for our purposes. Let L¢(y) be L(y) written in expanded form, i.e. the derivatives () are
distributed over the polynomials a;(¢). '* Then substitute every monomial of the form

cx Py by exiFa yg_(i_m)_k,
where ¢ is the constant coefficient in the polynomial. The y, will turn out to be the power-
series of the solution truncated at the n-th power. This substitution gives an operator

L(y'ru . '7yn—t)7
where
t=max deg(a;)— (1 —m).
1=1,....m—1

We make the ansatz
Ynt1 = Yn + Up, Uy = by x0", b, constant

for the recursion and assume that

Note that E(y, e y)

l
&~
—~~
R4
~—
(
B~
)
—~
R4
~—
&
=
o

If we make the substitution of our ansatz and since L is linear in y; this assumption is

satisfied iff B
Lty ..oy tp—y) = 0.

This implies that the u, satisfy a condition of the form

t—1
P
Up = E pz(n) 0 K Up_5—1,
=0

!*This means that L(y) = L°(y) but L(y) # L°(y), where = denotes syntactic equivalence. This will be
of importance in the combinatory embedding later.

44



where p;(n) are polynomials in n. This gives the desired recursive computation of y,.
The starting values of the recursion have to be determined out of the initial values of the
differential equations.

Up to now we have only reformulated well known facts. The crucial step now is to make a
combinatory ansatz. We want to recursively compute a increasing chain of approximations
of the form

t
Xn =Yt + Wiln) kg + ...+ Wi(n) ket = Yt + Z Wi(n) * w,—;.

=1

We substitute this ansatz into L and then use the following combinatory laws which follow
from the properties given for internal combinators:

(X+Y)=X"4Y", (CxX)=C+x X', C+X+C+xYCCx(X+Y).

Using linearity in L we get

(X s Xpt) = LWnty s Ynozt) + LOWL(R) % 1y e oo, Wi(n) % 1) + . ..
+L(Wi(n) * ety ..., We(n) * tp_2t)
C Wi(n)* L(tp—1,...stnt)+ ... We(n)* L(tp—t—1,...,Up—2t) = 0.

If we assume that the X, are a monotone increasing chain then we may conclude the
following using continuity.

|| (X, Xpme) = LO| ] Xoeeny || X)) = L°(| ] Xa) 0.

n€N neN neN nelN

Observe how we made use of the syntactical equivalence of I}(y, ...,y) and L°(y), such
that no weakening occurred in this step. This result means that if L°(|],cpn X») is strong
convergent then || . X, which is obviously expressible as a combinatory term, is an
approximative solution of L°(y) = 0 in a very strong sense, namely with respect to standard
retraction.

Now we want to investigate under which circumstances the sequence X,, is a chain. This
will also make clear why the ansatz for X,, was chosen exactly this way. To do this we make
the assumption that we are only interested in the solution on a certain interval C = {a <
@ < b}, where —1 < @ < b < 1. This will allow us to use the inclusion C C %, Then we get

t—1
Xot1 = Yn—tt1 + Z Witi1(n) * w,—;
=0
t—1
= Yn—t + Up—¢ + Z Wit1(n) * up—;
=0
t -1
= Yot + Ut + Wi(n) * D pi(n) # tni # 0"+ Y Wiga(n) * i

45



t—1
= Yut + Up_g * (14+ Wi(n) * pi(n)* ) + Z Up—i * (Wig1(n) + Wi(n) x pi(n) x ')
=1

I Ypet F tn—e x (L+ Wi(n)xp(n)xC) + X_: Up—i ¥ (Wig1(n) + Wi(n) x pi(n) « C)

=1
The X,, form a chain if the last line is an approximation of
¢
Xn = Ynot + Win) x w1 + ...+ Wi(n) * ey = Yyt + ZWZ(n) * Upyj.
=1
This is the case if the following system of inclusions is satisfied.

Wi(n — 1)
Wi(‘n — 1)

14+ Wi(n) * pi(n)*« C

C
C Wipi(n)+Wi(n)xpi(n)*xC, i=1,...,t—1

These inclusions are satisfied if the corresponding equations are satisfied. The corresponding
system of equations looks much like a linear system of equation. In fact if assuming that C
is a real number and the W; are independent of n we have a linear system of ¢ equations in ¢
unknowns, which (in general) !° is nondegenerate. We leave it as an open question whether
the combinatory system is solvable in general, but it seems likely due to the arguments
given.

We illustrate the algorithm for a concrete example which was computed by using mathe-
matica. Take the differential equation

y"’—l—y’—l—m*y:O.

The recursion is computed as

The equation to be satisfied are

{v[2, n] == V[1, -1 + n],

Int[-1, 0] V[1, n]
> mmmmmmmmememeee- + V[3, n] == V[2, -1 + n], V[4, n] == V[3, -1 + n],

15Tt is easy to compute in this case the determinant and to see that only for exceptional values of C and
n the system degenerates.

46



Int[-1, 0] V[1, n]
> 1+ —==--mmmmmmm - == V[4, -1 + n]}
(-2 +n) (-1 +n)n

One solution of this system is

V[1,n_]:=Int[0,1];
V[2,n_]:=Int[0,1];
V[3,n_]:=Int[1-1/(n+2)/(n+1)/n,1];
V[4,n_]:=Int[1-1/(n+1)/(n-1)/n,1];

The first few iterates are then as follows.

3 1 2 5 23
X[31 =73 Int[-(-), 01 +J 1Int[0, 1] + Int[-, 11 + J Int[--, 1]
6 6 24
3 1 4 1 23 2 59
X[4] =1+7J Int[-(-), 0] +J Int[-(-), 0] + J Int[--, 1] + J Int[--, 1]
6 8 24 60
3 1 119 4 1 5 1
X[(61] =1+J+7J Int[-(-), -(---)1 +J Int[-(-), 0] +J Int[-(-—--), 0] +
6 720 8 120
2 3 1 119 4 1 209
X(e] =1+J+J +J Intl-(-), ()1 +J Int[-(-), -(----)1 +
6 720 8 1680
5 1 6 1
> J Int[-(---), 0] +J Imnt[-(---), 0]
120 240
3
2 J 4 1 209 5 1 67
X(7] =1+J+J - -—-+7J Int[-(-), -(----)1 + J Int[-(---), -(----)1 +
6 8 1680 120 8064
6 1 7 1
> J Int[-(---), 0] + J 1Int[0, -——-]
240 1008

Note that the iterates are monotone increasing combinators.

47



Conclusion

The goal of this work was naturally not a final consideration of the theory of combinatory
differential fields. On the contrary, we wanted to give a starting point to a new way to
view algorithmic analysis in an algebraic framework. So many questions and directions for
further investigations are left open. Some of these we have already considered in this work,
some ideas can be found in [Aberer, 1991], others are left out completely. We want to give
some hints how the theory of combinatory differential fields could be continued.

The main motivation to introduce algorithmic extensions is surely the intention to incorpo-
rate approximate methods, which are usually subject of numeric analysis, for the (symbolic)
solution of equations. We have illustrated this with two examples. In the future one central
interest are ordinary and partial differential equations. A first step was given in this work.
Other methods have to be discussed for boundary value problems and then partial differ-
ential equations. A rich source of experience in this direction can be found in the recent
developments of interval methods and methods of verified inclusions [Weissinger, 1988].

As the examples have shown, combinatory differential fields are not only useful for theoretic
discussions but give a good starting point for implementations. In the course of implement-
ing combinatory algorithms, as we have seen, suddenly questions like parallelization and
randomization of algorithms appear, depending on the kind of knowledge representation. It
would also be most wishful to develop a computer algebra system based on the principles
of combinatory models. A way how this could be realized in the computer algebra language
Scratchpad [Jenks et al., 1988] was sketched in [Aberer, 1991]. The use of this abstract
data type language allows to implement generic algorithms independently of the knowledge
representation and to use them afterwards in different retracted combinatory differential

fields.

In [Blum et al., 1989] the concept of a recursively enumerable set of real numbers was in-
troduced. It is easy to see that a set recursively enumerable in this sense is exactly the
complement of a set that can be described by a combinatory term and hence possesses a
recursively enumerable approzimation. It was also shown in [Aberer, 1991] that functions
computable in the sense of recursive analysis can be approximated by combinators up to
standard equality. So the question is which sets (of functions) can be approximated by
combinators and which not. Of course this depends on several choices on which base set of
formulas and operations one allows.

For discussing complexity theory there are two approaches which can give the essential
ideas. In information-based complezity theory [Traub et al., 1988] the notion of asymptotic
complezxity was defined. In [Weihrauch, 1980] an approach to extend aziomatic complezily
theory to CPO’s was given. Both ideas could be represented by discussing complexily
functions of the form

K(P,X,e¢)

where P is a combinator representing a program, X is the input and ¢ is the accuracy with
respect to some weight that has to be defined. Then « gives the number of steps to compute

48



the result up to this accuracy for the given input. Again the theory depends which choices
are made for admissible approximations and operations on them.

It is also thinkable to formulate results in the sense of information-based complexity, where
principal limitations on possible solutions are given depending on the information contained
in the input. Such results are depending much less on choices of admissible approximations
and operations.

References

[Aberer, 1989] Aberer, K. (1989). Normal Forms in Combinatory Differential Fields. ETH-Report No. 89-
01.

[Aberer, 1990] Aberer, K. (1990). Normal Forms in Function Fields. Proceedings ISSAC ’90, 1-7.

[Aberer, 1991] Aberer, K. (1991): Combinatory Differential Fields and Constructive Analysis. ETH-Thesis,
9357.

[Blum et al.,, 1989] Blum, L., Shub, M., Smale, S. (1989). On a Theory of Computation and Complexity
over the Real Numbers: NP-Completeness. Recursive Functions and Universal Machines, Bulletin of AMS,
Vol. 21, No. 1.

[Buchberger et al., 1983] Buchberger, B., Collins, B., Loos, R. (1983).
Computer Algebra-Symbolic and Algebraic Computation. Springer, Wien, New York.

[Davenport et al., 1988] Davenport, J.H., Siret, Y. and Tournier, (1988). Computer Algebra. Academic
Press, N.Y..

[Dekker, 1969] Dekker, T.J., (1969). Finding a Zero by Means of Successive Linear Interpolation. Construc-
tive Aspects of the Fundamental Theorem of Algebra, ed. B. Dejon, P. Henricu.

[di Primo, 1991] di Primo, B., (1991). Nichtstandard Erweiterungen von Differentialkérpern. ETH Thesis.
[Engeler, 1981A] Engeler, E., (1981). Metamathematik der Elementarmathematik. Springer Verlag.
[Engeler, 1981B] Engeler, E. (1981). Algebras and Combinators. Algebra Universalis, 389-392.

[Engeler, 1984] Engeler, E. (1984). Equations in Combinatory Algebras. Proceedings of ”Logic of Programs
’88”, SLNCS 164.

[Engeler, 1988] Engeler, E. (1988). A Combinatory Representation of Varieties and Universal Classes. Al-
gebra Universalis, 24.

[Engeler, 1990] Engeler, E. (1990). Combinatory Differential Fields. Theoretical Computer Science 72, 119-
131.

[Fehlmann, 1981] Fehlmann, T. (1981). Theorie und Anwendung des Graphmodells der kombinatorischen
Logik. Berichte des Instituts fur Informatik der ETH 41.

[Kaplansky, 1957] Kaplansky, I. (1957). An Introduction to Differential Algebra. Paris: Hermann.

[Kaucher, 1983] Kaucher, E. (1983): Solving Function Space Problems with Guaranteed Close Bounds. In
Kulisch, U. and Miranker, W.L.: A New Approach to Scientific Computation , Academic Press, New
York, p 139-16.

[Krawczyk, 1983] Krawczyk, R. (1983). Intervalliterationsverfahren. Freiburger Intervall Berichte 83 /6.

49



[Jenks et al., 1988] Jenks, R.D., Sutor, S.S., Watt, M.W., (1988). Scratchpad II: An Abstract Datatype
System for Mathematical Computation Mathematical Aspects of Scientific Software, ed. Rice, J.R., The
IMA Volumes in Mathematics and its Applications, Springer.

[Jensen, 1972] Jensen, A. (1972). A Computer Oriented Version of Nonstandard Analysis in: Contributions
to Non-Standard Analysis, Luzemburg, W.A.J., Robinson, A. , ed., Noth-Holland, Amsterdam.

[Linz, 1988] Linz, P. (1988). A Critique of Numerical Analysis. Bulletin AMS, Vol. 19, No..

[Maeder, 1986] Mader, R. (1986). Graph Algebras, Algebraic and Denotational Semantics. ETH-Report
86-04.

[Pour-El & Richards, 1989] Pou8-El, E., Richards, I.J. (1989). Computability in Analysis and Physics.
Springer.

[Richter & Szaeo, 1983] Richter, M.M., Szaeo, M.E. (1983). Nonstandard Computation Theory. Colloguia
Mathematica Societatis Janos Bolyar 42.

[Seeland, 1978] Seeland, H. (1988). Algorithmische Theorien und konstruktive Geometrie. HochschulVerlag,
Stuttgart, Hochschulsammlung Naturwissenschaft, Informatik, Band 2.

[Traub et al., 1988] Traub, J.F., Wasilkowski G.W., Wozniakowski H., (1988). Information Based Complex-
ity. Academic Press, New York.

[Weibel, 1990] Weibel, T. (1990). Extension of Combinatory Logic to a Theory of Combinatory Represen-
tation. Technical Report ETH Zirich, Mathematik.

[Weihrauch, 1980] Weihrauch, K. (1980). Rekursionstheorie und Komplexitatstheorie auf effektiven CPO-S.
Informatikberichte FernUniversitat Hagen, 9/1980.

[Weissinger, 1988] Weissinger, J. (1988). A Kind of Difference Methods for Enclosing Solutions of Ordinary
Linear Boundary Value Problems. Computing, Suppl. 6, 23-32.

[Wolfram, 1988] Wolfram, S. (1988). Mathematica. Addison- Wesley Publishing Company.

50



