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It is plain that

SHlle=1+ Y ¥ fi 12)

1<e<n 1<5<n+1

We now consider the symmetric square matrix P, = (p!;) obtained from P, by adding,
as the last row of P!, the first row of L™*!. For instance

11 1 1 1
12 3 4 5
Pi=|13 6 10 15
1 4 10 20 35
1 5 15 35 70

It then holds that

o tHIT2
Pij max{i,j} — 1)

Let S, and S} denote the sums of the elements of P, and P!, respectively. Then it

holds that
n+1
+1+7-2
e
50
2\
(13)
g 2n + 1
" n+1
g 2n +1
n n 9
and that
Sl =285, — 1. (14)

Combining (??) and (??) and solving for S, gives
2 1
&ﬁ:(n+ )+L
n

Finally, using (??) we obtain

n . 2 1
Z||LZ||OO=SH—1=(”+ ) .
=0

n

19



Among the p norms, we report in the following the most popular ones.

x|l = Z|wz‘|7
1

Il =[5 [l
(3

Jocloc = maxa].

Using (??) with the definition of p norm we obtain
1Al = max} ],

[A[l2 = +/p(ATA),

[Alloo = max 3 |as].
J
For any matrix A € C"*" the following relations hold
1
%HAHLoo < Al < VAl eo,

where || - ||1,00 denotes either || - ||; or || - || -

B Appendix

Lemma 11 Let B be the matriz defined in Proposition ??. Then |B~!|| = (2"n+1>.

Proof Clearly, all the matrices L* are still Toeplitz with positive integer entries, so
that ||L*||o coincides with the sum of the elements of the first row of L*. Moreover,
let ij denote the 7jth element of L*; then it is easy to see that, for k > 1,

J
=2 by =l g

r=1

We now consider the matrix P, = (fi;) such that f;; = Zij. For instance

111 11
12 3 4 5
Pa=|1 3 6 10 15
14 10 20 35

18



o rounding error, €,, generated by roundoffs in machine operations. It depends on
the fact that a machine function ¢ is computed instead of p. Note that even the
machine counterpart of simple operations do not satisfy some simple arithmetic
property, e.g. the associative law. Hence ¢, depends on the algorithm used to
compute p; in other words two different algorithms for the same function can
be affected by (strongly) different roundoff errors. We have

€ = ‘15()2) - ‘IJ()Z% €ra =

The two following formulas give the definition of total absolute error and total rel-
ative error, and state the fundamental relationship between the total error and the
propagated, mathematical and rounding errors, where = denotes the equality up to
a first order analysis.

€tot =

)
=T
r,to f

Vector and matriz norms. [?] For any fixed vector norm || - || we define its associated
operator norm of matrices, such that for any matrix A it holds

[Ax]|

Al = . 1
1]l = max x| (10)
For any matrix A € C"*" the following relations hold
p(A) < [14] (11)

Furthermore we define a function p(A), known as the condition number, such that

|All - |JA~Y|| if A is nonsingular,

%) otherwise.

p(A) = {
In general, we write ||A| and p(A) in relations that hold for any operator matrix

norm.
Let us consider the class of vector norms, known as p norms or Hélder norms:

.
Ixll, = (Z |a:k|p) .
k=1

Analogously, let us consider the associated matrix norms, ||A||,, and the associated
condition number p,(A).

17



Definition 9 Given three integers: the machine base 7 > 2, the integer precision
v > 0, the fractional precision f > 0, with : + f > 1, we define the set Fg; s of fixed
point numbers as

Fpig={flf =%didy---di.dij1dizs---diyy, 0<d; <j}. "

In general, when we represent a real number x with either a fixed or a floating point
number ¥ we make an error. In order to estimate such an error two quantities are
defined, namely the absolute error e and the relative error ¢,, as follows

r—

€E=1—zx, € =
T

It is easy to see the bind that ties absolute error with fixed point numbers. In
fact, given F3; s and € R such that minFp; ; < 2 < maxFp;, let us associate
the real number x to the nearest fixed point number & € Fp; . It holds that

1
lef =& — 2| < §5_f-

Hence the absolute error is independent of the value of z. Analogously, if we associate
to the real number x # 0 the nearest floating point number # € Fp, 1,7, it holds

T —x

& | =

1
< Bt
<3P

Since the upper bound to the absolute (relative) error is constant when fixed point
(floating point) arithmetic is used, then it is natural to evaluate the error of a compu-
tation performed on fixed point numbers using the absolute (relative) error measure.

Errors in function computation. [?] The result of the computation of a function f(x)
on a machine can be affected by several kind of error. They can be summarized as
follows:

e propagatedor induced error, €,, due to the propagation (and often amplification)
of the initial representation error on x. It can be shown that €, only depends
on the function f(x), not on the algorithm used to compute it. In particular it

holds that
0
& = f(x)— f(x)=> (3 —xi)zi gi}j), (abs. prop. error),

) _ . T, — T T (9f(x).
e f(X) _Z Z; f(X) azl ’

(rel. prop. error)

e mathematical or truncation error, €, that occurs when the function f(x) is
replaced by an approximating function ¢(x). We have

o)~ ()

€ = Q(X> - f(X), €rt = f(X)

16



By Cramer’s rule we have z; = d;/dy, where d; = det(4;), ¢ = 1,...,n. We assume
that, on input A;, the oracle for DET returns a result d; affected by a relative error

€, 2 =1,...,n. Moreover, we define ¢ = max; |¢;|. We then have
ﬂ dZ _ i sz(l + 62) . di(éo — 62') < 2¢ i
do d do czo(l + €) do(14+€)|~ (1—¢€)|do|
If e << 1, we have
16 =e(l+et+e+...) =¢
and thus
d; d;| . d;
—_—— = — 26 J—
dy o dy
It is then easy to see that, for any p norm,
% = x|| = 2¢[x]],
from which the thesis readily follows. "

Last result extends in a trivial way also to the computation of the inverse of a matrix.

Proposition 10 The algorithm A(MATINVPET) based on Cramer’s rule is a T-
reduction with respect to the relative error. "

A Appendix

We recall some definitions and properties related to arithmetic and accuracy issues.

Number representation. Since a computing machine is finite it can only represent a
finite subset of the real numbers. Of particular interest are the sets of floating point
numbers and fized point numbers. Once some characterizing parameters are fixed,
these two subsets of R are finite and well suited for hardware representation and
manipulation. We have the following definitions.

Definition 8 Given four integers: the machine base 3 > 2, the precision t > 1, the
underflow limit L, and the overflow limit U, with U > L, we define the set Fg 1,1 of
floating point numbers as

Forov={0}U{flf=20dy---dyx3° 0<d; <B,d1 #0, L <e<U}.

The condition dy # 0 is called normalization and makes the representation unique,
but it also creates the need of a separate representation for 0. "

15



can be proved (see Appendix B) that ||B~!||e = (2”:1), we have
. 2 1
157 = B < 5 = () =
n

Let us further assume that an error of absolute value e is located in the diagonal
entries of the matrix C, that is ¢;; = ¢;; +e=1+e€, ) =1,...,n+ 1. It is easy to
see that, up to a first order analysis, for the first row of C'~! we have

e () |(T)- (1)) o

assuming that the last inversion does not introduce further errors. Since (]2_") >

1
(jfl)’ for y=1,...,n+1, from (??) it follows that:

1 e 2n n _
et —aitl= ([ )ez (7))o=l ()

If we want to compute the characteristic polynomial of I, i.e. the first row of C'71,
up to a relative error €, we must have:

107 = C7 Moo < €|C7 oo
Since, from (?7?), it follows that
e|C7Mloo <O = O s

we have e]|C o < €]|C7!|o, and hence e < e. Finally, from e = (2":1)5 > 276,
it follows 6 < €27". This means that, in order to obtain a global relative error €, we
must call an inversion oracle with accuracy at least €27, so that the time bound of
the oracle, hence of A(CHARPOLYMATINV) is O (log® n).

A similar result holds using || - |1 or || - ||2 instead of || - ||. In fact ||B~'|: =
| B~ oo = (2”+1) and ||B7|2 > ||B7|o/(n + 1). The last inequality follows from

n

the fact that ||A||z > ||A|l«/v/n, for any n x n matrix A. Therefore, repeating the

proof for || - ||, we obtain
6 < (Qn * 1) <t n
n n+1

Proposition 9 The algorithm A(NONSINGEQPFT) based on Cramer’s rule is a

T-reduction with respect to the relative error.

Proof Consider the nx n linear system Ax = b. Define Ag = A and, forz =1,...,n,

142 = (141| c e |J42_1|b|142+1| “ e |14TL) .

14



Therefore, to compute x up to a relative error €, the inversion oracle must be asked to
produce a result with error bounded by 27"¢, but this means a time bound O(log®n).

Since for every matrix A, of size n, it holds that |Al|; < v/n||Al|~, and that ||A]2 <
/1|l Al|s, the result stated above is also valid for || - ||y and || - ||2-

The next reduction we study is the algorithm A(CHARPOLYMATINV) = A usual,
we assume that, given an input matrix A, the output A-1 produced by the matrix
inversion oracle satisfies ||A~! — 121_1” < ¢||A~Y|, e > 0.

Proposition 8 With respect to the relative error the time bound of the algorithm
A(CHARPOLYMAT™NYY s ©(log? n) in the worst case.

Proof We show an example, based on the adversary argument, for which, in order
to compute the characteristic polynomial up to a relative error €, the results returned
by the matrix inversion oracle cannot be affected by errors greater than 27 "e.

Let us apply the algorithm A(CHARPOLYMATINVY of Section 3 to the n x n
identity matrix I,,. The first n calls to the inversion oracle are used to obtain the
powers of the submatrices A, = I,_,41, r = 1,...,n. The next call asks for the
inverse of the following (n + 1)* x (n 4 1)? matrix B:

where L is an (n 4+ 1) x (n + 1) upper triangular matrix with all the entries equal to

1. We have

L.
o

B~ = SO &
I L

I

The last step of the algorithm consists now of the inversion of the upper rightmost
(n+1) x (n+1) block of the matrix B!, say C' = L™. The entries of the first row of
C~1 are, in reverse order, the coefficients of the characteristic polynomial of I,,, that

is (A_l)n:A”—(ni1>A”—1+(niQ)An—2_..._|_(_1)n_

Let us now assume, without loss of generality, that the first n inversions give the
exact results, while the computation of B~! is affected by a relative error §. Since it

13



2. Ask the oracle for the inverse of A’ and return the first column of A’~1.

The oo norm of A’ is bounded by the quantity ||FA| < || E| ||A||, where

1
P —.62 1
b1
is the matrix which describes the step of Gaus~sian elimination. It is easy to see
that |E]| < 2 and ||[E7Y| < 2. Thus ||[A7" — A7Y| < ¢|A7Y| < 2¢€||A7Y|, where

A1 is the actual result returned by the MATINV oracle. Moreover, it holds that
|x —x|| < ||A"=! — A'71|. Overall, we have

Ix — x|| < 2€]|A7Y| < 2ep(A)||x], 0

where p(A) = ||A]| ||JA7Y| is the condition number of the matrix A. Note that, the
relation ||A~!|| < p(A)||x]|| holds because ||b|| = 1. In fact, ||A] [|x]| > ||Ax]| = ||b]| =
1, so that

||X|| > 1 — ||A_1|| — ”"4_1”‘
AL TATTA=E p(A)

It follows from (??) that, for the algorithm to produce an error bounded by e, it is
“sufficient” to ask the matrix inversion oracle for an accuracy €/(2u(A)). However,
unless A is very well-conditioned (i.e. condition number independent of n), the re-
sulting time bound grows asymptotically faster than logn. If A is ill-conditioned, i.e.
u(A) = ©(2"), the time bound is O(log?® n).

From (??) we cannot immediately conclude that there will be actual problem
instances with the bad behaviour outlined above. However, the following proposition

shows that the algorithm A(NONSINGEQMATINVY is not a T-reduction.

Proposition 7 The algorithm A(NONSINGEQMA™VY) requires ©(log®n) parallel

time in the worst case.

Proof Let us consider the n x n linear system Ax = b, with b = e; and A = L",
where L is the n X n upper triangular matrix whose entries are all 1s. Since b = e, we
can avoid step 1 of the algorithm and compute immediately A=!, from which x = e;.
It can be show that ||[A~"||.. = 2™ — 1, hence

A = A7 oo < €| A7Y|oo = 2.

Now, the adversary can choose the distribution of errors in a way that at least one
element of the first column of A~! is affected by an absolute error 2"¢. From the
equation |[x|| = |le1|| = 1 we have:

|x — x|| = 2" = 27¢||x||.

12



we have

1
Bl < 1P [AY e <

1
|Aall < mIIFHHl AVl < (n 4 1e,

€.

1 1
Aa < ——||F7|| |A <
8l < 1P AV < e
Reasoning as in the case of relative errors, we can conclude that the reduction is a
T-reduction if either the 2 or co norm is adopted. Using the 1 norm the time bound
is O(lognloglogn) in the worst case. .

What Propositions 7?7 and ??7 say is that, when a higher accuracy in the numerical
results is paid according to our cost model, the known reductions do not allow to
draw the conclusion that DET and CHARPOLY have the same parallel asymptotic
complexity. However, Proposition 7?7 proves that, when the relative error measure is
adopted (i.e. when the floating point number representation is used), DET is at least

as general as CHARPOLY.

Proposition 6 If the 1 norm is adopted, then MATINV is T-reducible to NON-
SINGEQ with respect to both absolute and relative error.

Proof Let x; denote the result produced by the oracle for NONSINGE(Q when the

input is the pair (A, e;), with [[x; — %[[1 < €[[xi[1, ¢ = 1,...,n. The vectors x; can
be obtained by n parallel calls to oracles. Let A=! = (%4]%X;]...|X,). Then, we have
AT = A = G0 = Kalxe = %ol - 30— %)

max [x; — %l
< emaxxll

1
= A7

The error bound is not preserved if the 2 norm or the oo norm is used. "

It is interesting to see that the known reductions from NONSINGEQ to MATINV
in the opposite direction do not appear to be T-reductions. The trivial algorithm
asks the oracle for A~!, then computes x = A~'b. Since the matrix-vector multi-
plication may produce a linear loss of accuracy, we consider the following alternative
M-reduction.

Algorithm A(NONSINGEQMATINV) ' Tet Ax = b be the n x n linear system to be

solved, and assume, without loss of generality, that |b;| = max{|b;| : e =1,...,n} = 1.
Note that the condition |b1| = 1 can be easily satisfied by scaling the coefficients of
the first equation.

1. In constant time, perform one step of (Gaussian elimination to obtain the equiv-
alent system A'x = e;.

11



Now, the coefficients of
det(M — A) =ag + a1 A+ ...+ a,\"

can be computed by solving the system

11 1 1 ag Yo
1 w w? ... W ay Y1

: =1 . (6)
1T wr WL W an Yn-

Our goal is to study the error induced in the vector solution a of (??) when the
right-hand side vector y is substituted with . From the general theory (see, e.g., [?])
it is known that, if F' denotes the coefficient matrix in (??), then

12yl

la—afl _ [[Aa]l _ ’
Iyl

lal lall ~

u(F)

where Ay =y —y and p(F) is the conditioning of /' with respect to the chosen norm.
It is also known that py(F') =1, and hence

la—al. _ [ly =yl

< < e.
2]l 1yl

On the other hand, since pq(F') = proo(F') = n + 1, the best bound we can obtain for
the 1 and oo norm is

2 — a1

Iy ~ 9l _
fall -

< .

<(n+1) Wl = (n+1)e

We conclude that, if the 2 norm is used, it is sufficient to ask the oracles for accuracy
¢ (which is independent of n by hypothesis). The time bound of the oracles if then
O(logn) and from an algorithm by Preparata [?] it follows that the reduction is
indeed a T-reduction. On the other hand, if either the 1 norm or the oo norm is
adopted, the results produced by the oracle must be of a factor ¢/(n + 1) close to
exact results, and this gives a time bound ©(log nloglogn). This completes the proof
of part (1). For what concerns the absolute error, it holds that

1
Aall < |F~ Y |AY]|| = —— || FH|| ||A
[Aall < [[F7 |Ay]| n+ﬂ| | 1Ay,

where F'H is the conjugate transpose matrix of F. Therefore, using the bounds
previously obtained for Ay, and the equalities

1
1 00 = vV + 1,

vn+1

12 =

10



Proposition 5

1. The algorithm A(CHARPOLYPET) is a T-reduction with respect to the relative
error measure if the 2 norm is used.

2. With respect to the absolute error measure, A(CHARPOLYPET) is a T-reduction
if either the oo or the 2 norm is adopted.

Proof Let y; = det(w*I — A), and let g, be the actual value returned by the oracle
for DET when the input is the matrix wfI — A, k= 0,...,n. We assume that

7|yk_yk|§e, k=0,...,n. (5)
Yl
We first prove that
Iy -3
Ml
where ¥ = [9o,...,Un], and || - || is one of the 1, 2, or co norms. For the co norm, we

have

max |yr — Ul |

[y =¥l _ o<ksn _ v =il g — il il < lyi — Ui <e
[yl Jmax |yl 191 il il lyi

For what concerns the 2 norm, it follows from (??) that

(ye — Uk )?
Yi

< €, k=0,...,n.
Hence, assuming yx # 1, k= 0,...,n,

ly — ¥l
[yl

(1/ Zn: ) Zn:(yk — ?Jk)2) 5

k=0 k=0

k=0

(1/ Zn:yi)éé?yi)

A similar proof can be exhibited for the 1 norm.
For the absolute error measure, the following relations can be easily proved:

Iy =¥l < (n 4 De,
Iy =vlla < v +1e

[y = ¥lloo <.

9



a solution affected by the error e. To be a legal reduction, A(II™) must solve II in
parallel time O(logn) independently of the actual distributions of the errors in the
output of II' (assuming that the latter is not a single number). We then show that
an adversary can choose a particular distribution of errors in a way that the cost of
AT satisfies (?7).

Our first result is that even the behaviour of the simpliest reduction considered, i.e.
DET < CHARPOLY , is different under the relative and absolute error measures.

Proposition 4

1. The algorithm A(DETCHARPOLY) is a T-reduction with respect to the absolute
ETTOT MeEasure.

2. With respect to the relative error, A(DETHARYOMYY solpes the determinant
problem in parallel time ©(log®n) in the worst case.

Proof Let us consider an n x n matrix A. The characteristic polynomial of A is
defined as det(A] — A) = ¢, A" + ¢,-1 A" "' 4+ -+ - 4 ¢p and it can be represented by the

vector ¢ = (cg, €1, ...,¢,), with ¢, = 1.

1. The first part is trivial since, for any p norm (see Appendix A), ||c —¢||, cannot
be less than the absolute error on any component.

2. We want to compute an approximation (E(A) to det(A) with relative error
bounded by a fixed € > 0, i.e.

[det(A) — det(A)] < ¢|det(A)], (3)

We use an oracle that computes the characteristic polynomial with relative
error bounded by 6 > 0. Since det(A) = (—1)"¢y, the time bound of the al-
gorithm A(DET “HARPOLY g given by the time required to compute (—1)7,
which is O(logn), plus the time taken by the oracle to compute the charac-
teristic polynomial, which is ©(logn loglog %) The point is that é cannot be
chosen independently of n. In fact, there are matrices for which |co| = 277||c||
(one example is the identity matrix), and hence the adversary might choose a
distribution of the errors in ||€|| in such a way that

[co — &l = [[e — ¢l[ = élle[| = 62"[col- (4)

Combining (??) and (??) yields the condition § = €27". Hence the time bound
of the algorithm is ©(log? n) in the worst case. .

Quite surprisingly, the reduction in the opposite direction, which is certainly more
involved, exhibits a better global behaviour with respect to the induced error.



4. {DET,CHARPOLY} <7 {NONSINGEQ, MATINV}. This is by far the most
“difficult” reduction [?]. The algorithm is given below; it computes det(z/ — A)
using an oracle for MATINV.

Algorithm A(CHARPOLYMATINVY

1. Compute the powers A? through A? forr=1,...,n.

2. Let a!” denote the bottom right element of the matrix A%, and let

br(x):l—l—agr)x—l—...—l—ay):z:”, r=1,...,n.

Compute

b(z) = H b.(z) (modz™t").

1<r<n
3. Compute the modular inverse of b(z), i.e. d(z) = b(z) (mod z™+!).

4. Return the coefficients of d(z) in reverse order, that is det(z] — A) = dya™ +
diyx™ '+ -+ d,. n

It can be proved that the above algorithm needs to call the matrix inversion oracle
only. In fact, the following lemma holds.

Lemma 3 ([?])
1. POWERS =<3 MATINV,
2. POLYINV =<3y MATINV and POLYPROD <X ITEPROD,
3. ITEPROD =< POWERS. .

4 Approximating circuits and reductions for matrix com-
putations

We now study the reductions discussed in Section 3 assuming that the oracles return
accurate but not exact solutions. For any reduction we consider, we either prove that
it is a T-reduction (M-reduction), or show that in the worst case its time cost is f(n),
with

lim logn

5 F(n)

To prove the latter case we proceed as follows. Consider the reduction A(II"") among
the matrix problems Il and II’, and assume that the oracle which solves I’ returns

= 0. 2)

7



Part (??) of Proposition ?? was first proved in [?]. Various amendments and

improvements appeared in [?, ?]. For what concerns part (??), the updated reference
is [?].

Definition 6 Det is the class of problems that T-reduce to DET. u

Definition 7 A problem Il is said to be T-complete (M-complete) for Det if DET <r
11 (DET =<y 11). .

Proposition 1 establishes that the problems defined above are complete for Det. This
fact is of great theoretical interest, since, even in absence of full knowledge on the
complexity of the problems at hand, it makes a precise statement on their relative
difficulty. From a more practical viewpoint, it suggests that a reasonable criterion
guiding the design of parallel machines (say special purpose machines for scientific
computing) could consist of dedicating hardware/software resources to solve instances
of one complete problem, e.g., DET, so that these resources can be used in many other
computations (see, e.g., [?]).

3 Reductions among linear algebra problems

In this section we recall some of the known reductions among the problems in the
class Det defined above.

1. DET =r CHARPOLY. In one direction the reduction is “almost” an M-
reduction. In fact, given an n x n matrix A, det(A) is (—1)" times the coefficient
of the constant term of det(A] — A). Conversely, the coefficients of det(A] — A)
can be computed by evaluating det(co;/ — A) at n + 1 distinct points «; and
then interpolating in O(log n) parallel time (see, e.g., [?]).

2. NONSINGEQ =1 MATINV. Both reductions are far obvious®. To solve a
system Ax = b first invert A then compute, in parallel time [logn] + 1, the
product A='b. To invert A solve, in parallel, the n linear systems Ax; = e;,
where e; is the ¢th column of the n x n identity matrix, 2 = 1,...n. x; is the
ith column of A",

3. {NONSINGEQ, MATINV} <7 {DET,CHARPOLY }. The reduction from ei-
ther problem in the set { MATINV, NONSINGEQ} to DET (and thus to CHAR-
POLY) are provided by the Cramer’s rule.

3Actually, using different algorithms, the two problems at hand can be shown to be M-equivalent.
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In the presence of approximation, the depth of a circuit can be affected by the required
accuracy €2. Therefore, the definition of efficient circuit must take into account the
value e.

Definition 3 A family of eAACs is said to solve a problem Il in polylog parallel
time if, for any n > 1 and for every instance I € 11, the depth D(n) of the n-th
member of the family s polylogarithmic in both n and log % "

We now introduce two different notions of reducibility to be used in the rest of the
paper. We call them T and M reducibility, since they correspond to the well-known
Turing (or Cook) reducibility and many-one (or Karp) reducibility, respectively. As
a general observation, a reduction from a problem II to a problem II’ is an algorithm
(e.g. a circuit family) which solves II using “black boxes” (e.g. oracle gates) for
solving instances of II'. We indicate such algorithms with A(II''). Various types of
reductions can then be defined by restricting either the resources available to A(II'")
or the number of times the oracle can be invoked.

Definition 4 A problem 1l T- reduces to the problem II' (written 11 <7 I') if and
only if, for any fized (i.e. independent of n) € > 0, there exists a family of eAACS
that solves 11 with accuracy €, using oracle gates for Il', in depth D(n) = O(logn). If
both 11 =7 II' and II" <7 II hold, then 11 and II" are said to be T-equivalent, written
11 =T 1I. ]

Definition 5 An algorithm A(II") is said to be an M-reduction from Il to 11 if and
only if it is a T-reduction with the following further restrictions: the oracle for 11" is
called only once, and the result of A(II"") can be read off the result returned by the

oracle Ifll M-reduces to 1’ and 11" M-reduces to 11, then 11 and II' are M-equivalent.
M-reducibility and M-equivalence are denoted by <p; and =y, resp. "

If infinite precision at finite cost is available, then the following result holds, as already
pointed out in the Introduction. Note that, if one takes ¢ = 0 in Definition ?? then
the notion of T-reduction coincides with that of NC* reduction.

Proposition 2 ([?])
1. DET, CHARPOLY, MATINV, and NONSINGEQ can be solved in parallel time

O(log*(input size)) with a polynomial amount of work (operation count).

2. All the four problems,as well as many others, are T-equivalent. "

?In principle, since a circuit has fixed structure, this would imply that different circuits must be
used even for solving instances with the same size, if the required accuracy is different. However, in
our problems the higher cost in circuit depth can always be charged to the oracles gates, which are
the only place in which computations are not performed exactly.



Besides the definition given above, there are other characteristics of this model that
we want to point out.

1. The circuits of a family are allowed to make use of “oracle gates” to solve
instances of a (sub)problem I1I'(S", Z’, R’). Each time a solution to an instance
I' of II} is needed, an oracle gate can be used with S’(k) inputs and Z'(k)
outputs. On input I’ the oracle returns an e-approximation of an exact solution
to I'. Depth and size of an oracle gate affect depth and size of the circuit.
More precisely we assume that the depth Do of an oracle computing an -
approximation for I' € 11 is given by

Do = O(log S'(k) log log(1/¢€)).

On the other hand, we assume that the size of oracle gates is always 1. Our
choice of the function Dg, and in particular the presence of the factor log log %,
is justified by the fact that log % is approximately the number of bits required
to represent the solution with accuracy €, and by the further assumption that
the word length of the oracle is a polynomial in log L.

2. Any gate which is not an oracle gate performs one of the four arithmetic op-
erations over the ground field I, and is supposed not to introduce rounding
errors.

3. To any gate g we associate a rational function, namely the function computed
by the portion of the circuit above, and including, g. Suppose that the inputs
X and Y of an arithmetic gate ¢ are the outputs of two gates computing the
rational functions f(7) and h(I), where [ is the input instance. Then, for the
output Z produced by ¢ it does hold

Z = [(I) op h(I), (1)

where op is one of the four arithmetic operations over F'. Even though the
operation (??) is performed exactly (i.e. without introducing rounding errors),
nonetheless it is sensitive to the errors by which the inputs X and Y can be
affected. It is known from numerical analysis that, if X and Y are affected by
relative errors ex and ey, respectively, then the computed value Z is affected
(up to a first order analysis) by the error

Z—7 X 8Z Y 0z
“CET T Tz
Since the only “operations” that introduce errors are the oracle calls, the anal-
ysis that we perform on approximating arithmetic circuits is just directed to
the evaluation of the error propagation from the oracle onto the whole algo-
rithm. This gives precise indications on the extent to which a given reduction

is numerically viable.



A computational problem II can be defined as a collection of subsets, indexed by
natural numbers, i.e. Il = II; UIl; U ... The elements of II,, are called the instances
of II of size n. Each instance is defined by specific pieces of data.

Definition 1 Let 5,7 : N — N and, for any n > 1, let R, C F50" x 2%,
An instance I of a problem 1l over F consists of an ordered set of S(n) values,
I =z1,...,25m)], such that z; € F, i =1,...,5(n). We are asked to compule an
ordered set J = [y1,...,yzm)] of elements of ' salisfying R,(I,J). .

In the rest of the paper we regard ordered sets of k£ elements of I as points of
F*. The positive integer n is the size of the instance I (i.e. I € I1,,), while the vector
J =Ty, .. ,yZ(n)]T is called an ezxact solution to I. We observe that a computational
problem II is completely specified by giving the functions S and Z and the family of
relations R =< R, >,¢enN, i.e. I =1I(S5, Z, R).

In this paper we consider the following matrix problems. DET (computing de-
terminants), MATINV (computing the inverse matrix), NONSINGE(Q) (solving linear
systems), CHARPOLY (computing the characteristic polynomial), POWERS (com-
puting matrix powers), ITEPROD (computing the product of n matrices of order
n), POLYINV (computing the modular inverse of a polynomial), and POLYPROD
(computing the product of polynomials).

We now introduce a computation model based on the well-known arithmetic cir-
cuits. We assume the reader familiar with the definitions of arithmetic circuit and of
arithmetic circuit family (see, e.g., [?]). The “natural” complexity measures for arith-
metic circuits are depth and size. The depth D of an arithmetic circuit is the length
of the longest directed path from inputs to outputs, while the size T is the overall
number of gates. Depth is also called parallel time, while size gives the operation
count (or sequential time).

In what follows, the symbols 5, Z, S’ and Z’ denote polynomially bounded
functions from N to N.

Definition 2 Let € be a fized positive real, and let I1 = I1(S, Z, R) be a computational
problem. A family of arithmetic circuits o = {e, }nen, with S(n) inputs and Z(n)
outputs, is an e-approximating arithmetic circuit family (or simply eAAC) for 11 if
and only if, for any n and for any instance I € 11,,, the output o, (I) produced by the
n-th circuit (ov,) of the family on input I satisfies

lon (1) = J| < 7e,
where J is such that R(I,.J) holds, || - || is @ norm, and

)1 if absolute error is used,
7= |.J|| if relative error is used.

The value o, (1) is called an e-approximation to J. n

3



following table shows which reductions continue to hold in an approximate parallel
computing environment. Note, however, that while a positive result does imply that
the reducibility among the problems at hand is indeed preserved, negative results only
concern the reductions that we know of. Our approach is similar, in spirit, to that

<. NonSingEq | CharPoly | Matinv | Det

NonSingEq ° no yes

CharPol ° no yes

Matinv yes [ ] yes
Det no [}

Table 1: Reductions w.r.t. the relative error.

of information-based complexity (see [?]), in the sense that in both cases we regard
certain information (e.g., the results returned by oracles) as partial and priced, and
consider the cost of obtaining it as part of the cost of solving the whole problem.
On the other hand, the approach of classical computational complexity assumes that
information is both exact and free.

From another viewpoint, our work has can be also compared with the attempt,
undertaken by Blum, Shub, and Smale [?], of developing a complexity theory over
the real numbers (i.e. a complexity theory of continuous problems) which borrows
concepts and tools from classical complexity theory.

Finally, we should mention the efforts directed towards the development of a the-
ory of approximation for hard optimization problems (see [?]). Though in a different
problem area (we address the issue of parallel complexity of “feasible” problems),
certain aspects concerning, e.g., the definition of a notion of reduction that preserves
the approximation, are at the very heart of both these studies.

The paper is organized as follows. In Section 2 we present the computation model
adopted and define some related formal notions. In Section 3 we review the complexity
class Det and recall the reductions that make certain problems in Det equivalent
with respect to parallel complexity. Section 4 is the heart of the paper, where we
investigate the way in which the presence of errors affect the relative difficulty of
problems. Appendix A presents some basic notions from numerical analysis and,
particularly, numerical linear algebra; appendix B contains the proof of a Lemma
needed in Proposition 8.

Throughout the paper we let [’ stand for some field with characteristic 0, i.e. a
field containing the rational field as a subset. For definiteness, we can think of F' as

being the real field.

2 Approximate algorithms and complexity

In this section we introduce the formal framework within which we present our results.



1 Introduction

In this paper we speculate on the arithmetic NC theory, of fast and feasible (i.e.
polylogarithmic time and polynomial work) parallel algorithms for numerical prob-
lems, say problems defined over the real numbers [?, 2?7 ? 2 ?]. In spite of
a few contributions (see, e.g., [?]), this theory appears not to have fully considered,
in the statements about the complexity of problems, the influence of such issues as
the numerical accuracy. Our goal is just to give both qualitative and quantitative
indications about the role played by the required numerical accuracy with respect to
the complexity of problems.

In past studies, the relationships between complexity and numerical accuracy have
been explored according to at least two viewpoints. From one side, many works on the
bit (or boolean) complexity of numerical problems investigated the cost required to
solve a given problem as a function of the accuracy. It is now a fact that the numerical
accuracy has implications on the arithmetic (word length) to be used, hence on the
boolean cost. On the other hand, it is well-known from numerical analysis that the
cost of an iterative method depends on specific features of the instances, such as the
spectral radius of the iteration matrix (e.g., in the case of a method for solving a
linear system), or the absolute value of the derivative of the iteration function (e.g.,
in the case of a method for solving nonlinear equations). In turn, these features are
strictly related to the numerical conditioning of the particular problem instance.

In this paper we explore the issues outlined above according to a different per-
spective. Qur main concern is the relative complexity of problems. As a field of
investigation we consider many matrix computations. It has been shown that

Proposition 1 ([?, ?]) Computing the determinant, the characteristic polynomial,
and the inverse of a matriz, and solving a system of linear equations are equivalent
problems under NC' reduction. "

We maintain that the proofs of equivalence only reflect the combinatorial shape of
the problems at hand. If one also considers the numerical aspects that characterize a
problem, certain subtleties come into play that affect the complexity in a nontrivial
way. In particular, after having introduced a model of computation suitable to take
approximation issues into account, we address the following question: “Given that
there exists an algorithm which solves the problem A with prescribed accuracy € in
parallel time ¢, does this imply that the problem B, known to be reducible to A
whenever infinite precision is available, is also solvable with accuracy € in parallel
time ¢7”. In particular, for the NC'! reductions mentioned above, the parallel time
bound is O(logn)'. We show that, within our computation model, many known
reductions do not hold. For instance, we prove that even the trivial reduction that
allows to compute the determinant of a matrix given a black box which returns its
characteristic polynomial requires ©(log?(input size)) time in the worst case. The

TAll the logarithms in this paper are to the base 2.
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Abstract

In this paper we address the notion of reducibility among linear algebra problems
within a parallel computing environment. We prove that, though many such problems
have been shown to be NCl-equivalent, when approximation is taken into account
new questions about their relative complexity come up. We introduce a computation
model, based on arithmetic circuits, and define a new notion of reducibility that allows
to investigate, in an approximate setting, the behaviour of the known reductions.
Within this framework, the computation of the determinant appears more general
than, e.g., matrix inversion, and it is set as an open problem whether the former can
be reduced to the latter under both time and accuracy constraints.
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