Knowledge Selection with ANNs

Dimitris Karagiannis * Franz J. Kurfe

Heinz-Wilhelm Schmidt®
ICSI — International Computer Science Institute, Berkeley, CA 94704

August 1991

Abstract

The access to information contained in possibly large knowledge
bases is a crucial factor in the usability of such a knowledge base. In
this paper, we present a method to select information relevant for a
query in knowledge bases where the information is represented in a
rule-based way. An approach based on artificial neural networks is
used to pre-select the set of relevant rules, thus facilitating the task
of the inference mechanism by restricting the search space to be tra-
versed considerably. In addition to the information contained in the
query itself, data derived from the environment in which the query is
situated is used to further trim down the search space. Sources for this
derivation process are data about the task under investigation as well
as the history of user interactions.

We refer to the first way of diminishing the search space via the
query as identification; the second one is referred to as adaptation,
since the selection process is adapted to the current task. The third
one, taking into account the history of interactions between user and
knowledge base, is called prediction, aiming at a possible prediction of
the next query, or a subset of rules relevant for the next query.

An implementation of the artificial neural networks used for these
tasks is based on ICSIM, a connectionist simulator developed at ICSI.

*On leave from FAW-Ulm, P.O. Box 2060,W-7900 Ulm, Germany; FE-mail:
karagian@dulfawla.bitnet
'On leave from: Inst.f. Systemtechnik, GMD, Germany; E-mail: hws@icsi.berkeley.edu

1 Motivation

Knowledge based systems, which deal with complex tasks like knowledge
acquisition, learning and in general with expert knowledge, have to contain
Knowledge Selection / Knowledge Partitioning abilities. A typical
functionality of such methods should include the possibility to identify the
relevant part of the knowlede base with respect to the current query, to
interpret additional information about the user, as well as to make use of
the the knowledge is structured in a certain representation language. The
aspects considered, such as attention, interpretation and selection, are stu-
died in models which until now have belonged more to the cognitive science
area. To map and connect these models is not only a difficult task per se,
but with traditional computing techniques it seems only feasible to a re-
stricted degree because of inherent limitations in these techniques, e.g. the
representation of uncertain, incomplete or inconsistent information.

After extracting the functional requirements of these models we outline
their realization based on a specific computational approach. The techniques
examined here for implementing the selection process are based on Artificial
Neural Networks (ANN’s). Then the theoretical and conceptual methods as
well as the necessary prerequisites, are given.

Suppose we have a knowledge based application realized with logical
rules. After a user-query is analysed the knowledge base objects are instan-
tiated and the problem solver mechanism started. In this case a two-step
approach as shown in Fig. 1 is suggested. First, the query is used to insta-
tiate the application knowledge base, leading to an instaliated KB subsel.
This state transition is described by the f. function. To train the network,
user interactions are observed to relate a certain query to a particular subset
of the knowledge base via the FoA net. Then f, is applied to the instantia-
ted KB-subset to identify promising ones among different variations of the
reasoning process to resolve the query. This process will be supported by
the adaptation net. On the example later, we will show the influence of the
FoA net on the function f, during the selection of the relevant facts/rules.

The information directly related to the current query can be identified
immediately and should be selected in any case. Furthermore, an adequate
inference system can be activated according to the internal structure of the
knowledge base. In this context we refer to all the available information as
the universe Uy. The process of identifying a subset of the knowledge-base
is referred to as knowledge selection. The information which is selected
during this process contains the context-sensitive knowledge. It should

be active in a specific situation depending on the FoA, which is determined
by the actual KB instance and, together with the KB instance, forms the
active universe AU,.

A conceptual approach is to analyze and to define a framework supported
by the selection net. In general, this goal can be broken down in two steps:

o A framework to transform the cognitive model — focus of attention
FoA - to an operational model — context sensitive knowledge —, and

e the intergration of metaprogramming and connectionist methods by
prototyping this approach.

The knowledge identification function f, can be activated to
e structure the related KB (query independent);
e analyze the instatiated KB subset (query dependent);

o apply the selection rules according to the instantiated KB subset, the
knowledge representation structure and the available information from
the focus of attention and selection net;

e use the inference mechanism to formally derive the results.

For this study, we concentrate on showing the usability of such nets
concerning the selection function. Because their functionality is application-
independent, they can be used universally for selections tasks. In this paper,
it will be shown how useful it is to support the acquisition and learning
process with the knowledge selection features in the context of the Lg project.

user query ___, knowledge base subset ’ knowledge base
focus of attention net selection net
training after learning

Figure 1: A two step approach

Lg is a connectionist natural language learning project at the International
Computer Science Institute, led by Jerry Feldman [Feldman et al., 1990].

In chapter 2, an idea how the Focus of Attention and the selection net can
be used for interpreting the corresponding knowledge base set is worked out
by using Lg as an application. Based on an Ly example we demonstrate part
of the knowledge selection functionality. Also some aspects are discussed
how a realistic procedure for the representation of an active universe Uy
suitable for Ly might look like.

2 The L, Example

In this chapter we consider the Ly language as an application example
[Weber and Stolcke, 1990]. The realized version of Lg is characterized by
a small fixed set of rules dealing with a few geometrical shapes, some spa-
tial relations between these shapes and the structures of utterances used to
describe a two-dimensional scene in this space in English. Consider a scene
in which we restrict the space:
We only allow a subset of the possible shapes and a subset of the spatial
arrangements. Then of course, not all rules would be needed to reason about
scenes in this restricted space, and an intelligent knowledge-based system
should be able to take advantage of this restriction by reasoning only in
terms of the semantical structure of the subspace. We are convinced that
neural nets suitably configured for this type of problem can learn to focus
on the ’right’ set of rules and maybe even other reasoning characteristics
like the inference strategy or a few meta-rules relevant for reasoning well in
the subspace.

In the example used the following assumptions are made for simplifying
the explanation of what the Knowledge Selection process should do.
The Ly Application

e The knowledge representation structure and the inference mechanism
is like the one in Prolog;

o The FoA is related to the active predicates concerning the relevant
situation;

e The learning process partly also means a modification of an existing
knowledge set.

A Simple Example: Case a
A set of objects is defineed as obj-set:= (square, circle, triangle, cube)
Query: Selection of three Objects e.g. triangle, circle, square
Goal : Identify the needed rules for the Lg interaction
Suggested approach: Metarule; identify the rules which refer to the selected
objects
A Simple Example: Case b
The selected objects are placed on the screen in the follow sequence: trian-
gle,circle,square
Query: The FoA is pointed at the square; the Lg interaction deals with
objects neighboring the square. Goal: Eliminate the rules which are related
to the triangle without erasing them from the screen invisible-objects
Suggested approach: Knowledge selection; identify the rules which are re-
lated to the query, i.e. the square in this case.

An idea how to build up the needed Active Universe AUy is given through
the knowledge selection approach in the following chapter.

3 Knowledge selection using connectionist me-
thods

Background knowledge aboput a certain task to be solved certainly has an
influence on the learning process. As background knowledge in a computa-
tional environment we define the accessible knowledge, independent of the
kind of its representation structure. This information space is the universe
Up. A subset of Uy which contains the information used in a given situation
is referred to as the Active Universe AUp. In this context the question is
how to identify and select the information which AUy should include. If
that is possible, then the question of an adequate representation and the
appropriate abstraction level has to be discussed.

3.1 Approach

In the following, we assume that the information of the knowledge base is re-
presented in the form of rules and encoded through an enhanced occurrence-
position scheme similar to [Holldobler, 1990]. The encoding scheme marks
the occurrence of a literal at a certain position in the program and uses
an additional dimension to represent alternative definitions of rules. The
x axis, or knowledge axis, identifies the available information items. The y

axis, or relationship azis, defines the structural relations of knowledge pieces
and their composition. The z axis, or alternative axis, describes the possible
alternatives in the structural relations.

Let’s consider an example: Suppose a rule-base system has three alter-
natives to prove a query. Then the z axis corresponds to the composition
of rules from head and body literals, identifying the literals which belong
to the body of a certain rule; the y axis simply lists the symbols associated
with the literals of the rules, and the z axis represents the three different
alternatives. Section 5 contains more details and a longer example.

From a knowledge selection point of view, we can differentiate three
levels associated with an appropriate order relation:

e Levelgs: The order relationg defines the structure level
o Levely: The order relation, defines the application level
e Level;: The order relation; defines the interaction level
This approach uses three kinds of nets which correspond to the levels.
e Structure aspects are represented through identification nets

¢ Application aspects are represented in the second level through ad-
aptation nets

¢ Interaction aspects are represented in the third level through pre-
diclion nels

The following table gives a short overview of these three levels with the
type of inference mechanism needed, examples for the type of network, and
the appropriate filter function.

Knowledge selection process

Functionality ‘ Inference Mechanism ‘ Network Type ‘ Filter Function

identification | passive assoc. memory | FF,
adaptation active back prop. FF,
prediction active recurrent FF,

Table 1: Knowledge selection process

The input to the network is provided in the form of three vectors 3} a; i
They contain information about the structure of the knowledge, application
aspects and the user interaction.

The knowledge selection approach based on a three dimensional space
uses different filter functions. The basic idea behind this approach is how
knowledge pieces can be used in different applications, assuming a compa-
tible representation.

How the filter functions would be combined is defined separately for
three different levels. These levels of information are represented with diffe-
rent neural networks techniques. The levels and the information space are
orthogonal to each other. The operational characteristics of a level are given
by functions which operate in a specific level configuration. The functiona-
lity between the levels is defined by different functions, the so called filter
Sfunctions.

3.2 Methodology

The scope of methodology is to describe how the knowledge selection process
can be used for getting the results. Primarily we focus in this section on the
description of the steps essential for finding a solution. The follow steps are
suggested:

e Step 1: Define the order relations for the different levels

e Step 2: Extract the input vector from the query

Step 3: Select the system-input relevant alternatives

Step 4: Activate the connectionist nets for the different levels
e Step 5: Combine the filtering functions level results

e Step 6: Evaluate results (learning)

The techniques which can be used for the first level are already worked
out and based primarily on different meta-knowledge theories. This work
concentrates on the second level in which connectionist methods are more
appropriate. This can be done by a two step process:

o identifying an order-relation, and
e constructing the topology-space.

One major problem which should be considered is how we can abstract
information about the dependency on the cognitive model, the sequence

of queries or application-specific attributes. This information should be
used for training the net and extracting the order relation about possible
knowledge dependencies.

This knowledge is represented e.g. in the Ly prototype in Prolog in the
form of logical rules. Assume that there is a set of queries, knowledge base
generic objects, connection relations and a set of order relations, which are
equivalent to the selection methods.

The set of queries: Q = {«1, b, A, v}

The knowledge base: KB = {o := rule, e := fact}

The connection set: C = {=:= direct, =:= indirect}

The order relation set: OR = {F:= knowledge representation, =:= meta-
programming, t<:= connectionist}

3.3 Functionality

The existing knowledge partitioning approaches can be classified in two ca-
tegories, the “structure” and the “semantical” one. Technical processes
like construction, modeling or planning are often ill-structured. Approa-
ches to computer assistance in these processes often rely on a purely formal
symbolic approach to the underlying structure of knowledge and the reaso-
ning processes involved. Unfortunately the better part of the processes are
ill-structured while any formal approach by its very nature is an attempt
to fully or partly capture the underlying structures. For that reason it is
widely recognized that rather than supporting the construction of a goal
‘product’, ‘model’ or ‘plan’, respectively, the steps towards this goal need be
supported. The change from ‘goal-oriented’ to ‘process-oriented’ approaches
accounts for this understanding.

Focusing on a step in a construction or modeling process we soon realize
that its outcome is an object, too, which can be considered the ‘goal” of
the step, and a number of ‘goal-oriented’ approaches can be transformed for
reusing them on this meta-level. For instance the object of meta-reasoning
in a knowledge-based system is to determine the next steps to take and all
the known inferencing strategies can be used if the meta-rules have the form
of rules.

But in a more philosophical sense, the steps have become the goal, due
to the ill-structuring of the problem. The term ‘planing-by-opportunity’ has
been coined elsewhere to reflect this understanding. With each step taken
in unison by man and machine the ‘world has changed’. Not only has the

position of the observer and her/his problem changed a little leading to a
slight shift in the knowledge relevant to help in the next step, but also the
knowledge base itself may have, in general, changed due to the last step. As
a result whatever the previous strategy/plan for subsequent steps may have
been, it needs to be reconsidered in the context of the new opportunities.
Identification

To simplify the discourse and to focus from the general philosophical
problem to the more technical problem, we restrict our concern to the one
of rule selection which is this:
Given a KB consisting of a large set of rules, and a current query, what is
the subset of rules relevant to deal with this query? Obviously this can be
generalized in various ways to include other characteristics of a reasonining
process including cognitive ones. But already the restricted problem above
gives rise to a number of interesting and to our knowlege unsolved problems.

e How to identify semantically relevant rules?

e How can semantical relevance be characterized in an ill-structured do-
main?

e What are appropriate techniques to extract and describe semantical
relevance?

This answer to these questions will help to cut down the number of rules
to avoid blind alleys. Such a cut-down may be acceptable, even if we are
only reasoning in a proper subset of the semantically relevant rules. That
is, the gain in speed of reasoning may justify loss of precision and certainty
in reasoning if the pruning of the rule sets considered does not eliminate
relevant rules too often. We call this part of the approach selective because
it is mainly centered around methods for selecting a subset of the universe
of rules.
Adaptation

In this context a neural network interacts with the reasoning compo-
nent of a knowledge-based system. While the reasoning component applies
knowledge according to its syntactical structure, the net selects promising
rules based on information outside the knowledge base. Instead the user
provides feedback on the acceptance of steps and/or rules. And this feed-
back is automatically used to teach the neural net to pre-select properly
in future steps. Consequently the adaptation combines two complemen-
tary approaches, classical reasoning techniques and the adaptive character

of connectionist networks. This gives rise to an "adaptive methodology” of
reasoning or to "adaptive knowledge-based systems”, for short.

Prediction

A simple extension of the adaptive approach is the following that we call
the ’predictive approach’. The neural net component of the reasoning system
not only adapts to the query context, but is designed such that it adapts
to the query history and evaluates its own selection proposals. Various
approaches towards connectionist nets with such a predictive character are
known for time-series prediction, including nets part of whose output is fed
back to their input and/or nets with modified error terms.

It is unclear whether nets are able to predict the relevance of rules for
a small number of steps ahead and if so how these nets or their learning
algorithms look like. But if the adaptive methodology can be extended to
a predictive one this would be of high practical relevance, because it would
allow for various techniques of rule prefetch and might help increase the
efficiency of reasoning considerably.
At this point just a classification in which the approach is described:

¢ define-prediction based primarily on predefined requirements. Their
functionality for the specific application properties is mostly already
programming. Learning and adaptive aspects are totally missing; e.g.
associative memory nets.

e acquire-prediction based primarily on experience, which is reflected
by the learning aspect. This kind of prediction could be partially
realized through non-connectionist methods (i.e. methods which work
more on a symbolic level) and with ones based on connectionist models
(subsymbolic level).

With the three techniques of identification, adaptation and prediction,
the efliciency of an inference mechanism to extract information from large
knowledge bases can be improved considerably by restricting the search
space to be traversed.

4 TICSIM: A connectionist simulation tool

IcsiM is a simulator for connectionist networks developed at Icsi. Its under-
lying idea is to provide the user with a collection of basic building blocks for

10

the construction of connectionist networks while leaving the door open to
problem-specific modifications and additions. IcsiM has been implemented
in a number of object-oriented languages; the implementation referred to
here is done in SATHER a language also developed at Icst as a derivative
of EIFFEL geared towards simplicity and higer efficiency [Omohundro, 1990,
Omohundro, 1991]. The major goals of IcsiM are the support of novel ar-
tificial neural network concepts with an emphasis on modularity, shared
structures and leaning, the provision of simple means for the modification,
extension and addition of networks and units, and the possibility of con-
structing networks both in an incremental (during experimentation) and
non-incremental way. In IcsiM, the conceptual focus is shifted from units
to nets, and form global and sequential execution to local and asynchronous
execution with the potential of using parallel and/or dedicated hardware.

The development of networks in IcsiM is centered around two aspects:
one is the internal structure and behavior of a network, described by a
MODEL; the other stresses the objects and features a user sees and manipu-
lates, captured by ViIEws. On one hand views have the character of objects
as mediums through which the models are seen; on the other hand, they
are the tools which the user has at hand to manipulate and interact with
the models. This separation of views and models reduces the complexity of
networks consisting of several levels of subnets with a large number of com-
ponents and intricate connection patterns by filtering different aspects of a
particular model through appropriate views. In addition, the amount and
type of information about the status and interactions of thousands of com-
ponents presented to the user must be minimized and centered on essential
aspects.

4.1 Models

Models for connectionist networks are built from units and nets; the func-
tionality of units and nets is characterized by their structure and their be-
havior. Important aspects of the structure are the composition of nets into
components (which again can be nets, or units), the interconnections bet-
ween components, and their state. Behavior is characterized by transitions
from states to other states as result of computations, and by modifications
of the states through learning.

Structure The components of a network in general are nets, or in the
basic case, units. Thus nets and units share a common functionality as

11

computational objects, expressed in the class CoMmp_oBIJECT. This class
provides the framework for the interconnections and computations of nets
and units. The state of a network is characterized by the combined state
of its components, and thus ultimately by the state information comprised
in the units. The state of a unit is determined by an internal activation
level, called potential, and an activation level visible from the outside, called
output. The potential usually is derived from the inputs through a real-
valued function, a common example being the weighted sum of the inputs.
Certain types of units may have additional attributes like modes or phases,
and may take into account information about previous states to compute
the current state. The output is a function of the potential, e.g. a sigmoid
or threshold function. The separation of potential and output results in a
more flexible simulation where a unit can perform internal computations
of its potential without affecting simultaneous computations of other units.
This is helpful in the very frequent case of synchronous execution, where
all units compute their potential in the same step, and then change their
output.

The input signals a unit receives come from the outputs of other units
via directed connections, possibly with an associated weight representing the
strength of a connection; these weights are typically modified during lear-
ning. The interconnection patterns in a network can vary greatly, from fully
connected networks to networks with selective connections between single
units or subnets; very often, however, some regularity can be found in the in-
terconnection pattern. IcsiMm provides the concept of siles to group different
types of connections, thus partitioning the structure of the network. In or-
der to facilitate the description of a network structure on a high level, Icsim
includes objects encapsulating connection specifications that parametrize
various connection procedures, e.g. x_connect for cross-connected nets (all
units of one net are connected to all units of a second net), or bus_connect,
where a component ¢; of one net is connected to its counterpart c;- in ano-
ther net. These connection procedures can be modified, or new ones defined,
according to the requirements of a particular application.

Behavior The behavior of a network is founded in the behavior of the
units it ultimately consists of. The behavior of a unit is described in terms
of steps, which internally consist of two phases. In the first phase, the poten-
tial is computed as a function of the inputs received; in the second phase, the
potential is posted to the output and becomes visible to the connected units.

12

The temporal organization of the steps in a network shows a considerable
variety, ranging from synchronous operation where all components perform
one step after the other simultaneously, over fairly asynchronous operation
(where the units can be a certain number of steps ‘apart’) to unconstrained
asynchronous operation. In addition, there might be some degree of sequen-
tialization in the network, as in layered networks, where one layer completes
its step before the next one starts.

During learning, the the behavior of the network is modified through
changes in the weights of the connections. These changes are invoked by
error signals which represent the deviation of the actual output of a net
from its target output.

4.2 Views

The different views of a network are defined through objects which present
the model to the user and allow the interaction between the model (and its
evaluation) and the user. In the text view, the user controls the evaluation
of the model and observes the activities in the network through a textual
presentation. Typical interactions are the creation of a new net, resetting a
net, changing the operational mode like synchronization or step size. The
information about the progress of the evaluation can be easily configured
according to the particular application, but typically shows the current po-
tential or output of a particular set of units. With the tour view, more
information about the objects and their activities during evaluation can be
extracted, together with the creation of objects and execution of routines
for test purposes. Some more views which represent information about a
network and its evaluation in a graphical way are currently being developed
for the XWindows interface.

4.3 An Example: Icsim Building Blocks for a Selection Net-
work

As an example for the use of IcsiM, let’s have a closer look here at some
of the facilities IcsiM provides for the construction of networks. We will
examine some basic classes which will be used later for the construction of
the “identification network” in Section 5.2. The units required are simple
boolean units, which compute the potential as sum of their weighted inputs
and set the output to 1 if the potential is equal to or greater than a certain
threshold; otherwise the output is 0.

13

The definition of the corresponding class of Icsium is as follows:

class BOOL_UNIT is SINGLE_SITE_SUM; BOOL_THRESHOLD;
end;

BOOL _UNIT inherits from SINGLE SITE SUM and from BOOL_THRESHOLD.
The first parent defines its input connections and accumulation, it computes
the weighted sum of its inputs. The second parent defines its squashing
function, here a simple linear threshold of 0.5 producing an output between
0 and 1. Various other features are inherited, including features to reset and
step, and to connect or disconnect the unit in its environment.

Via BOOL_THRESHOLD, BOOL UNIT inherits from TWO_PHASE UNIT whose
main purpose is the separation of the accumulated potential and the output
visible to other units. This separation also provides the basis for a partially
sequential simulation of real parallelism: a number of units can compute
their potential and then all of them can post their output without any of
them “seeing” intermediate results of this very computation.

output:REAL;
post is -- assign some function of the state to the output
output := unit_fn(potential) end;

Below we list the main public features that are supported by all units (class
ANY_UNIT)

-- With respect to connection, units behave like atomic nets.

-- A1l net connection routines are supported.

-- Most of them take a connection specification as argument,

-- a small object used to pass connection information to the various
-- levels of hierarchical nets. At the unit level for instance it

-- tells which sites are used to connect to and it tells what

-- kind of weight initialization is to be chosen.

connect (from_u:$ANY_UNIT; c:$ANY_CON_SPEC) is
connect_to(to_ob:$ANY_MODEL; con:$ANY_CON_SPEC) is
bus_connect (from_u:$ANY_MODEL; con:$ANY_CON_SPEC) is
disconnect(from_u:$ANY_UNIT) is
connectedp(from_u:$ANY_UNIT) :BOOL is

-- Computation is split in two separate steps, that may or may
-- not represent serial steps.

14

step is compute; post end;
compute is
post is

For the family of net classes, ANY_NET specifies the general protoocl. The
main aspects here are the behavior of a net, which is characterized through
the different computation modes (synchronous and asynchronous), and the
interconnection patters, where some frequent ones are defined. In some
cases it is not really possible to fully define a feature since there are certain
requirements which are not known yet.

—-- parallel computation modes are characterized by a bound for
-- the number of steps that one unit may get ahead of others. O means
-- lock-step, or ’synchronous’ computation.

sync_distance:INT; —-- O, synchronous
init is
sync_distance := 2; —— loosely asynchronous by default.
end;
-—- Structure
size:INT is —- number of components

component (i:INT):$ANY_MODEL -- a unit or net

-- Connection
bus_connect (from_object:$ANY_MODEL; c:$ANY_CON_SPEC) is
—-- Connect element to element by index such that the current net
-- can get input from ’from_net’. c can be used to customize
-- the connection structure.

x_connect (from_ob:$ANY_MODEL; c:$ANY_CON_SPEC) is

-- Cross connect: recursively connect all pairs of components.
-- ¢ can be used to customize the connection structure.

complete_connect(c:$ANY_CON_SPEC) is
—— Cross connect to oneself.

15

-- Provide memorizable access to computation modes

select_sync_mode is -- Switch to synchronous computation mode
select_async_mode(sync_bound:INT) -- Switch to asynchronous mode
—-- Computation

micro_step(n:INT) is
-- Do n steps, each component step counting 1,
-- obeying the sync_distance constraints.

serial_step is
—-- Serially: let components do their step in some natural order
-- defined by the type of net.

sync_step is
—-- In Synch: do a single step (all components).
compute; post

end;

random_serial_step is
-- In Random Order: do a single step (all components on the average)

parallel_step is
—-— In Parallel: do a single step (all components on the average)
-- obeying sync_distance.

end; -- class any_net

The simulator has a number of more specialized classes including a mea-
ningful set of intermediate classes from which it is fairly easy to derive new
classes for experimental purposes in simulation and/or learning research
project.

5 Knowledge selection in rule-based systems

In this section we discuss the process of selecting the relevant rules and facts
for a query based on an example. Figure 2 shows the initial set of rules and
facts; such a set of rules and facts will be referred to as (logic) program,
and a computation based on a logic program usually is initiated by a query.
For our purpose here, it is sufficient to concentrate on the predicate symbols

16

only, neglecting the internal structure of objects as described by terms.

R1 <== R2 & R3.

R2 <== R4 & R5.

R4 <== R7 & F4.

R3 <== R6 & R6 & F1.
R6 <== F2 & F3.

R7 <== F5 & F6.

R5 <== R7 & F3 & R3.
F1.

F2.

F3.

F4.

F5.

Fé6.

F7.

Figure 2: Rules and facts as program

The structure of the set of rules and facts can also be represented as a
tree, using the appearance of a predicate in the body of a rule to establish
the subtree relation. This leads to the tree shown in Figure 3.

The nodes in the tree are numbered in a depth-first, left-to-right way in
order to facilitate a linear representation of the positions. This leads to the
matrix encoding of the rules and facts shown in Figure 4. In this matrix,
only the positions of predicates and their relations according to the initial
rules and facts are given; their symbols and the information they may stand
for are completely obsolete on this level.

The matrix presented in Figure 4 is the blueprint for the network which
selects the relevant rules according to a query. As an example, let’s consider
the query <== R2 & R6. The task of the network is to select all the rules
and facts which might be used to answer the query; regarding the tree,
these are the subtrees with R2 and R6, respectively, as root. For R2, we get
the set {R4, R5, R7, F4, F5, F6, F1, R3, R6, F2, F3};R6 yields {F2,
F3}, which actually is a subset of the first one.

The network contains internal connections from a positions to its suc-
cessors, thus mirroring the structure of the set of rules and facts. In a

17

R2 R3
R4 R5 R6 R6 Fi
;/11\ A/lr\& 7\: 7\12 N
R7 F4 R7 Fi R3 F2 F3 F2 F3
IAI 1.1.1.2 1K1 1.1.2.2 Kl.zl.l 1.2.1.2 1.2.2.1 2.2.2
F5 Fé6 F5 Fé6 R6 R6 F1
1.1.1.1.1 1.1.1.1.2 1.1.2.1.1 1.1.2.1.2 1.1.2.3.1 1.1.2.3.2 1.1.2.3.3

F2 F3 F2 F3

1.1.2.3.1.1 1.1.2.3.1.2 1.1.2.3.2.1 1.1.2.3.2.2

Figure 3: Rules and facts as tree

spreading activation scheme, the predicates initially used in the query, R2
and R6, initiate the activation of the next two sets of predicates, {R4, R5}
and {F2, F3}; the first set activates { R7, F4}, while the second does not
propagate action any further since it consists of facts only. This continues
until no more predicates can be activated. This spreading activation scheme
corresponds to the computation of the transitive closure with respect to the
logical implication, but in the reverse direction of the implication arrow.

5.1 Limitations

The scheme described above is only a rough outline, and suffers from a
number of limitations. An obvious one is the size of the matrix required
to represent the structure of the program. The size is determined by the
number of different predicates in the programs, and how often they occur,
so it is roughly quadratic with respect to the length of the program, mea-
sured as occurrences of predicates. With a dag (directed acyclic graph)
representation instead of the tree, the size can be condensed considerably
by representing each occurrence of a predicate only once; as a result, a node
can have more than one incoming arcs. For our purpose here, this does not
cause problems; if terms as arguments of predicates have to be taken inot
consideration as well, we might have to differentiate between different occur-

18

rences of a predicate since its variables might be instantiated with different
values.

Another limitation of the above scheme is the fact that it only makes
sense to use it in situations where most queries activate only a relatively
small subset of rules and facts. This is the case for applications like know-
ledge and data bases where the main purpose is to store large amounts
of information in a structured way; it is not necessarily the case in theo-
rem proving or logic programming where relatively few predicates may be
densely interrelated to each other. In such a case it might be wiser to as-
sume that most of the rules and facts will be used, and discard the ones
which are not needed in a pre-processing phase through reduction techni-
ques [Kurfe}, 1990, Letz et al., 1990, Bibel, 1987, Robinson, 1965].

Our above example has been constructed in a way that each activated
predicate can result in the further activation of only one rule: there are
no alternatives, or rules with the same predicate in the first position. This
assumption has been made for the sake of simplicity, and certainly must be
eliminated. Again we propose only a straighforward, not at all sophistica-
ted solution: for each alternative definition of a rule, a separate matrix is
constructed. The overhead for the representation of our program obviously
increases considerably with the number of alternatives'; the separation of
alternative solutions, however, allows us to treat them completely indepen-
dent of each other.

Let us extend our example now by the alternative definition R3 <== R4
& F5 & F6. The enhanced tree is shown in Figure 3

The tree with alternatives actually does not show the whole picture:
there is also the possibility to use the alternative definition of R3 (designated
by R3?)in R5. The addition of one alternative rule results in the appearance
of four alternative solution candidates, which could be used as follows:

1. the first definition, R3, both in R1 and in R5;
2. the second definition, R3’, both in R1 and in R5;
3. the first definition, R3, in R5 and the second definition, R3’, in R1;

4. the second definition, R3?, in R5 and the first definition, R3, in R1.

it does not only depend on the number of alternative rule definitions, but also on the
number of occurences of the clause head literal

19

These four alternative solution candidates are represented in four different
matrices. Alternative 1 already has been shown in Figure 4; the others are
shown in Figures 6 - 8.

The result of the selection also gives us some clues to compare the re-
quired effort for the actual computation of a solution: one is the size of the
set of selected predicates, the other the ration between the occurrences of
predicates in rules versus the occurrences in facts. As a very broad rule
of thumb, sets with fewer predicates might be ‘easier’ to solve, as well as
sets with relatively many fact occurrences. This rule might be misleading,
especially in the case of recursive programs. Recursive programs, however,
are more apt to be found in theorem proving and logic programming app-
lications, which are not th main goal of this proposal anyway. In addition,
information like the rules involved in recursive parts can be derived from
the matrix representation above, although it requires additional overhead.

The derivation of the network from the matrix representation is quite
straightforward: a unit is used for each element of the matrix, and connec-
tions exist from each unit of a particular row to all the units of the rows
which stand for sons of the father row; these connections are called son
connections. Initially units are pre-charged if the predicate indicated by
the column occurs at the position indicated by the row. In this state the
network represents the structure of the knowledge base according to the
relations between the occurrences of predicates in the heads and bodies of
rules. For the selection process, the network requires additional connections
from the input units (the predicate symbols) to all the units of the corre-
sponding column, called column connections. A query is presented to the
system by activating the predicate symbols occurring in the query. The co-
lumn connections then activate all occurrences of these queries, and the son
connections spread the activation to all predicates used in the body of rules
whose heads appear in the query, and so on.

The network described here is very simplistic and inefficient; it is derived
from a similar network used for connectionist unification [Hélldobler, 1990,
Kohonen et al., 1991]. Its size is the number of predicate symbols times their
occurrences, where each row only contains one entry. This is certainly not
realistic for large knowledge bases, and a more condensed representation
must be found. The functionality of the network is basically that of an
associative memory, and optimization techniques from that area should be
applicable.

Another inefficiency is induced by representing alternative solutions as
different nets. Whereas it is conceptually very nice to treat alternatives

20

independently, the overhead is prohibitive for realistic applications. It is
important here that the number of networks required for alternatives is not
just the sum of alternative rules; in addition, the occurrences of the predicate
in the head of the rule must be taken into account. For one rule with n
alternative definitions and m occurrences of the head predicate, the number
of combinations is n”*, and for k rules the overall number of combinations
is Yoy i

It is also questionable if a representation of knowledge as rules is ade-
quate for all cases. The underlying scheme used to derive our network here
is applicable to any representation which is based on items of knowledge and
their relations, be they represented as rules, graphs, lists or some other way.

5.2 Identification Network

As an example, let us examine the IcsiM specification of a network? which
recieves as input a set of rules appearing in the query, and identifies as output
another set of rules which are relevant to solve the query; the output actually
is not just the name of the rule, but information about the location of the
rule (e.g. an address, or an entry to a hash table). Internally the network
contains a matrix of units, the columns corresponding to the inputs, and the
rows to the outputs. The units in the matrix can be in one of three states:
present, absent and activated. An element is present if there is a relation
between the input given by its column index and the output given by its
row index; this indicates that a rule is associated with a certain location.
A maftrix unit gets activated if its input is part of the query, or if the rule
corresponding to its input is relevant to solve the query. In the first case,
the activation is pretty simple: If a unit is present, and it receives activation
from the corresponding input unit, then it activates its output, which turns
on the corresponding output unit. The necessary connections for this case
go from a input unit to all the matrix units in the same column, and from
each matrix unit to the output unit in the same row. For the second case,
we need additional connections which indicate that a rule is relevant to solve
the query. This information is contained in the structure of the rules and
facts in the knowledge base: If a rule R1 appears in the query, then all
the rules and facts in its body, and all the rules and facts in the bodies
of these rules, and so on, are relevant to solve the query. In our matrix,
we encode this relation through additional connections from the head of a
rule to all the parts of its body. There are anumber of ways to introduce

2The network described here is unnecessarily complex for our particular problem;
it is used to demonstrate the facilities of IcSiM and is similar to the one used in
[Kohonen et al., 1991], which takes into account the unification of term structures ne-
glected here.

21

these connections into our network: between the input units, between the
output units, between the rows of the matrix, and between the columns of
the matrix. For demonstration purposes, let’s use the connections between
the rows of the matrix; this is also appropriate if the unification of term
structures is taken into account as well, as in [Kohonen et al., 1991]. The
first rule, for example, entails connections from the first row (location 1)
to the second row (location 1.1) and to the twentyfirst row (location 1.2).
These connections take care of the activation of rules R2 and R3 in the case
that rule R1 has been activated.

class IDENTIFICATION_NET is

ANY_NET;

no_rules:INT; -- number of rules in the knowledge base
no_facts:INT; -- number of facts in the knowledge base
no_positions:INT; -- number of positions (nodes in the tree)

inputs:NET1D{BOOL_UNIT};
outputs: NET1D{BOOL_UNIT};
matrix: NET2D{BOOL_UNIT};

init is
inputs.netid_init_sized(no_rules + no_facts);
outputs.netid_init_sized(no_positions);
matrix.net2d_init_sized(no_rules + no_facts, no_positions);
set_occurrences; —— according to the knowledge base
connect_inputs;
connect_outputs;
connect_rows; —-- between head and body parts

end; —-- init

crt_component (i:INT): BOOL_UNIT is -- called back by NET1D crt protocol
res := BOOL_UNIT::crt;

end;

set_occurrences is
-- set the potential of a matrix element to ‘present’
-- if the corresponding rule occurs at that position

end; -- set_occurrences

connect_inputs is
-- connect element i of the input net to all matrix elements in column i

end; -- connect_inputs

22

connect_outputs is

-- connect all matrix elements of row j to unit j in the output net

end; -- connect_outputs

connect_rows is

—— connect all elements of row h to all elements of rows bl, ., bn
-- if h represents the head and b1, ..., bn the body parts of a rule
end; -- connect_rows
end; -- class IDENTIFICATION_NET

5.3 Adaptation Network

The basic idea of adaptation is to use additional information from outside
the knowledge base to narrow the number of relevant rules for a query. This
information can be derived from the particular task being worked on, or
from knowledge about the user (preferences, background).

5.4 Prediction Network

The information used for adaptation does not directly involve a notion of
time; it just uses information presently available form outside the knowledge
base. For prediction, time is very important. Here the information is derived
form previous actions of the user, and again used to confine the number of
relevant rules for a particular query. Short-term information (e.g. from the
duration of the present session) can be used to focus on the context of
the current task; long-term information may be derived from previous tasks
treated by the same user or a group of users, and help to identify a particular
area of interest. Neural network technology offers two techniques to take
into account previous activities: one is decay, maintaining the activation
of a particular node for some time and then decreasing it; the other is to
identify correlations in the activations of groups of nodes. The first one
modifies the state of a single node only, whereas the second can consist of
strengthening or weakening connections between nodes.

23

6 Conclusions and Further Work

The central idea of this work is to facilitate the treatment of information
contained in large knowledge bases in the form of rules and facts. We sug-
gest a combination of neural network technologies and rule-based inference
mechanisms. The neural networks are used to narrow the search space to
be traversed by the inference mechanism. This is based on a three-step ap-
proach: First, the information in the knowledge base which is relevant for a
query is identified according to syntactical criteria, basically corresponding
to the computation of the transitive closure of the query. This step is rea-
lized by a network based on a matrix representation of the rules, facts, and
their relations, which is functionally equivalent to an associative memory.
Such a representation also opens the way to a treatment of semantical crite-
ria in addition, e.g. the similarity of information in the knowledge base. For
this purpose, networks like Kohonen’s feature maps [Kohonen, 1990] can be
used.

The next step is to take into account additional information available
from the context of the query, aiming at an adaptation of the relevant in-
formation to the current task. Here we suggest the use of a network which
learns to prefer certain rules to others, either through observations of pre-
vious activities, or through direct interaction with the user (unsupervised
vs. supervised learning). Suitable architectures hera are backpropagation
networks, or again feature maps.

The final step is to predict further actions (e.g. user queries) from the
previous queries used to solve a particular task. In this step, temporal
information must be learned, which is possible with recurrent networks, or
networks incorporating delay components.

Considering a realization of the selection idea in knowledge based sy-
stems, the following activities/objectives have to be studied:

o Definition of the theoretical framework;

approach how to design an operational FoA in an application;

development of a prototype for this application and test it with the
ICSIM simulator, and

demonstration of results of the “knowledge-selection” approach by
using the existing Lo-prototype.

24

The Lg example belongs also to one of the possible applications which
were suggested for the Applicable Artificial Neural Networks framework,
short A2N?2. This is a research proposal under preparation, in which three
possible applications are discussed [Karagiannis and Schmidt, 1990]. Lo has
been chosen because the requirements which this language puts on the en-
vironment are adequate concerning the developement of the conceptual as
well as the computational approaches.

Notice that if the FoA is not only related to the knowledge selection
but also to the reasoning process over the selected knowledge, then this
approach can only help in part. The next step is to improve the approach
using paradigms from other areas, such as speech recognition by machine,
engineering simulation and other semi-structured tasks.

Finally, in our opinion sheer computational power is not enough to
achieve the semantic aspects requested for realizing the FoA. Therefore,
we believe that this first step to develop a computational model, based on
the knowledge-selection process, for realizing the FoA could be help
to support the adequate knowledge environment, and guarantee situation-
dependent and system response.

References

[Bibel, 1987] Bibel, W. (1987). Automated Theorem Proving. Vieweg, Braunschweig,
Wiesbaden, second edition.

[Feldman et al., 1990] Feldman, J. A., Lakoff, G., Stolcke, A., and Weber, S. H. (1990).
Miniature language acquisition: A touchstone for cognitive science. Technical Report
TR-90-09, International Computer Science Institute, Berkeley, CA 94704-1105.

[Hélldobler, 1990] Hélldobler, S. (1990). A connectionist unification algorithm. Technical
Report TR-90-012, International Computer Science Institute, Berkeley, CA 94704.

[Karagiannis and Schmidt, 1990] Karagiannis, D. and Schmidt, H.-W. (1990). The A?2-
Project: Applicable Artificial Neural Networks. Technical report, International Com-
puter Science Institute, Berkeley, CA 94704-1105.

[Kohonen, 1990] Kohonen, T. (1990). Internal representation and associative memory. In
Eckmiller, R., Hartmann, G., and Hauske, G., editors, Parallel Processing in Neural
Systems and Computers, pages 177-182. Elsevier.

[Kohonen et al., 1991] Kohonen, T., Mikisara, K., Simula, O., and Kangas, J., editors
(1991). International Conference on Artificial Neural Networks (ICANN-91), Espoo,
Finland. North-Holland.

[KurfeB, 1990] KurfeBl, F. (1990). Parallelism in Logic — Its Potential for Performance
and Program Development. PhD thesis, Institut fir Informatik, Technische Universitat
Miinchen. published as book by Vieweg Verlag, Wiesbaden (1991).

25

[Letz et al., 1990] Letz, R., Bayerls, S., Schumann, J., and Bibel, W. (1990). SETHEO -

a high-performance theorem prover. Journal of Automated Reasoning.

[Omohundro, 1990] Omohundro, S. (1990). The Sather Language. Technical report, In-
ternational Computer Science Institute.

[Omohundro, 1991] Omohundro, S. (1991). Differences between Sather and Eiffel. Eiffel
Qutlook.

[Robinson, 1965] Robinson, J. (1965). A machine-oriented logic based on the resolution
principle. Journal of the ACM, 12:23-41.

[Weber and Stolcke, 1990] Weber, S. H. and Stolcke, A. (1990). Lo: A testbed for mi-
niature language acquisition. Technical Report 90-10, International Computer Science
Institute, Berkeley, CA 94704-1105.

26

R1 R2 R3 R4 R5 R6 R7 F1 F2 F3 F4 F5 F6 F7

1.
1.1.2.1

.2,
1.2.2.1

1.1.2.3.1.2
.2,

1.1.1.1
1.1.1.1.1
1.1.1.1.2
1.1.1.2
1.1.2.1.1
1.1.2.1.2
1.1.2.2
1.1.2.3
1.1.2.3.1
1.1.2.3.1.1
1.1.2.3.2
1.1.2.3.2.1
1.1.2.3.2.2
1.1.2.3.3
1.2.1.2
1.2.2.2

1.2.1.1

Figure 4: Matrix representation of rules and facts

27

F5 F6 R6 R6 F1

1.1.2.1.1 1.1.2.1.2 1.1.2.3.1 1.1.2.3.2 1.1.2.3.3

F2 F3 F2 F3

1.1.2.3.1.1 1.1.2.3.1.2 1.1.2.3.2.1 1.1.2.3.2.2

Figure 5: Tree representation with alternatives

28

R1 R2 R3 R4 R5 R6 R7 F1 F2 F3 F4 F5 F6 F7

Ll]

o

1.1.1.1

1.1.1.1.1
1.1.1.1.2
1.1.1.2

.1
1.1.2.1

1.1.2.1.1
1.1.2.1.2
1.1.2.2

1.1.2.3°
1.1.2.3°
1.1.2.3°
1.1.2.3°
1.1.2.3°
1.1.2.3°

1.2
1.2
1.2
1.2
1.2
1.2°

.1
.2
.3
.4
.5

.1
.2
.3
.4
.5

Figure 6: Matrix representation, Alternative 2

29

R1 R2 R3 R4 R5 R6 R7 F1 F2 F3 F4 F5 F6 F7

v

L I |

1.1.1.1

1.1.1.1.1
1.1.1.1.2
1.1.1.2

.1
1.1.2.1

1.1.2.1.1
1.1.2.1.2
1.1.2.2
1.1.2.3

1.1.2.3.1

1.1.2.3.1.1

1.1.2.3.1.2
1.1.2.3.2

1.1.2.3.2.1
1.1.2.3.2.2

1.1.2.3.3

1.2
1.2
1.2°
1.2°
1.2°
1.2°

.1
.2
.3
.4
.5

Figure 7: Matrix representation, Alternative 3

30

R1 R2 R3 R4 R5 R6 R7 F1 F2 F3 F4 F5 F6 F7

1.
1.1.2.1

1.1.1.1
1.1.1.1.1
1.1.1.1.2
1.1.1.2
1.1.2.1.1
1.1.2.1.2
1.1.2.2
1.1.2.3°
1.1.2.3°
1.1.2.3°
1.1.2.3°
1.1.2.3°
1.1.2.3°

.1
.2
.3
.4
.5

.2,
1.2.2.1

1.2.1.2
1.2.2.2
.2,

1.2.1.1

Figure 8: Matrix representation, Alternative 4

31

