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Abstract

This document describes the implementation of a distributed unification algorithm
using the connectionist simulator ICSIM. The algorithm is based on S. Holldobler’s
work, as described in [Ho6lldobler, 1990b]. Unification problems are specified according
to a simple language, describing the terms, functions, variables and constants occuring
in such a problem; the terms to be unified are represented as < term_1 = term_ 2 >
(eg < f(z,2,2) = Flg(a),.9(2)) >).

A parser extracts relevant information and creates intermediate data structures
needed for the construction of the connectionist network. Essential data structures
describe the symbols occurring in the terms, the hierarchical structure of the terms
(functions and their arguments), and the occurrences of the symbols in the terms.
The connectionist unification network is constructed based on these intermediate
structures. It is hierarchically organized, its top level NET consisting of POSITIONS,
which correspond to the nodes in the term structure. A POSITION consists of a
SYMBOL, either of type VARIABLE or CONSTANT. Symbols comprise a TERM UNIT and a
number of UNIFICATION UNITS, depending on the number of positions in the terms to
be unified. Initially, TERM UNITS are set according to the occurrences of their symbols
in the term structure; based on the links within the network and the activation of
UNIFICATION UNITS, more TERM UNITS are activated as required by the unification
algorithm. The final set of active TERM UNITS is used to construct the most general
unifier for the terms to be unified. The network can be easily extended to detect
inconsistencies in the term structure or to perform an occur check.



1 An Overview of the Unification System

Unification serves as basic operation in a number of symbolic processing formalisms. It
is used to find a match between a set of data structures, usually represented as terms.
Most implementations of unification rely heavily on the manipulation of pointers and
assignment of values to variables, two tasks at which —at least for the time being
— connectionist models are not very good. The approach described here is based
on occurrence - label pairs, where the presence of a symbol at a certain position
is indicated by an entry in a matrix with the symbols and positions as rows and
columns, respectively. This matrix serves as a skeleton for a connectionist network,
augmented by links and additional units according to the structure of the terms
involved. A spreading activation scheme then performs operations on the network
which constitute unification.

1.1 Representation of the Unification Problem

The unification problem is presented to the system as a pair of two terms, separated by
the equality symbol and surrounded by left and right angles. As an example, consider
the task of unifying the two terms f(z, z, ) and f(g(a),y, g(z)), which are represented
as < f(z,z,2) = f(g(a),y,g9(z)) >.* In order to be unifiable, the structure of the
two terms must be compatible, and thus both terms can be described as the nodes of
one tree. This tree can be viewed as the “overlay” of the trees corresponding to each
term, and its nodes may be labeled by one or two components, one from each of the
two terms. The above example then looks as follows (the vertical bar separates the
components of the two terms):

Fir

This representation scheme is used to incorporate the essential information of the
unification problem into the connectionist network which is used to solve the problem.
The nodes of the tree will be referred to as positions, numbered in a depth-first, left-
to-right manner; for our example, the tree consists of positions

0
0.1 0.2 0.3

0.1.1 0.3.1

!This method can easily be extended to set unification, unifying not only a pair but a set of
terms. For the sake of simplicity, we restrict ourselves to the unification of term pairs.



A position may be labeled by one or two symbols. A symbol may be of type variable
or constant; the latter includes function symbols.? The subterm relation induced by
the arguments of functions is represented by explicit connections in the network.

In the unification network, a position is encoded as a vector of units, one for each
different symbol occuring in the unification problem. If a symbol occurs at a certain
position, the corresponding unit is activated; the network of position vectors for our
example is depicted in Figure 1.
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Figure 1: Unification network: Initial state

The picture shown in Figure 1 describes the initial state of the network for the
unification problem < f(z,z,2) = f(g(a),y,9(z)) >. In the next section we will
examine which actions have to be performed in the network in order to unify the two
terms.

1.2 Evaluation of the Unification Problem

Without going into the details the underlying distributed unification algorithm, two
essential operations are performed during the unification process. The first one is to
guarantee that all instances of a particular symbol in the pair of terms have the same
value. For constants, this is trivial; for variables it means that all the substitutions
for one variable must be compatible. This feature of unification will be referred to
singularity [Holldobler, 1990b]. Looking at our example we can identify three posi-
tions where singularity is relevant: Position 0.1 shares the constant ¢ with position
0.3 and the variable # with position 0.2, which in turn shares the variable y with

2As a convention, symbols are identified by their designators, typically a,b, ¢, ... for constants,
f,q,h, ... for function symbols, and s,t,u, v, w,z,y, z for variables; if necessary, indices are used,
such as z1,22,23,. ..



position 0.3. Thus z, y and ¢ must all have the same value, which in this case is
determined by the constant ¢; actually ¢ stands for the name of a function here, and
the resulting value is determined by the evaluation of this function. The required
effect of singularity on our unification network is shown in Figure 2. The sharing of
values is expressed by the fact that in the three positions 0.1, 0.2, and 0.3 the same
set of symbol units is activated, namely ¢, x, and y (the newly activated symbol units
are marked by only partially filled circles).
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Figure 2: Unification network: Singularity

The second operation is the “forwarding” of the unification task through the
arguments of functions; it requires that if two positions are unified through a shared
variable, their respective arguments (if there are any) must also be unified pairwise.
This feature is called decomposition. In our examples it occurs at positions 0.1.1 and
0.3.1: Their predecessors, positions 0.1 and 0.3 have been unified through singularity.
The required effect is the same as with singularity, the affected positions must have
the same set of activated symbol units. The final state of the unification network is
shown in Figure 3.

Please note that another important aspect of unification, the compatibility of the
structure of the terms involved (homogeneity) is not taken into account here. It must
either have been checked already before the evaluation of the network (e.g. in the
parsing phase), or the network must be extended for homogeneity.
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Figure 3: Unification network: Decomposition



2 The Connectionist Simulator ICSIM

ICSIM is a simulator for connectionist networks under development at ICSI [Schmidt, 1990].
It provides a collection of basic modules for the construction of connectionist networks,
while maintaining a high degree of flexibility through the use of an object-oriented
implementation environment. A first version of ICSIM was developed in EIFFEL
[Meyer, 1988], a second one in SATHER[Omohundro, 1990, Omohundro, 1991], a deriva-
tive of EIFFEL geared towards higher efficiency and more simplicity.

ICSIM relieves the user from the tedious task of implementing all the necessary
details down to the level of the single units, their interconnections, and their possible
modes of operation and interaction. Its goal is to let the user concentrate on the
system level instead, putting more emphasis on investigation and experimentation
with novel applications and / or artificial neural network concepts.

2.1 Relevant Classes for the Unification System

This implementation of a network for unification only uses a small fraction of the
classes available in ICSIM. These classes are described below.

2.1.1 Views

ICSIM provides a collection of classes for interaction and the visual representation
of networks to the user. In its present version, only character-oriented output is
possible, and interaction is done through simple menus. A graphical interface is under
development. For the unification system, basically only one class, TEXT _VIEW_1NET,
is used to provide textual command interaction with the network.

2.1.2 Nets

The whole unification system consists of a hierarchy of networks. It is based on the
class HIERARC NET, which allows the composition of one-dimensional nets of nets. The
components of a net again can be nets, leading to hierarchically nested networks. The
lowest level of the hierarchy usually consist of units.

2.1.3 Units

Both the symbol and the unification units are implemented via the class BOOL_UNIT,
which compares the weighted sum of its inputs to a threshold, and delivers true or
false as result.

2.1.4 Connections

ICSIM offers a set of pre-defined operations to establish connections between com-
ponents of a network. complete-connect builds a completely connected network



with connections from each component to all others. cross-connect operates on
two networks and establishes connections from each component of one network to all
components of the other. bus-connect connects a component of one network to the
corresponding component of the other network, resulting in “parallel” connections
between the two networks.

For the connections of the unification network, these basic connection mechanisms
were not sufficient, however, and specialized operations had to be defined. This is
particularly due to the necessity of different types of interconnection schemes (e.g. for
singularity, decomposition, within a position, within a symbol).



3 The Unlification Network

3.1 Hierarchical Structure

The unification network as a whole consists of a hierarchically layered network. The
top level is the net itself, described by the class NET. It is composed of instances of the
class POSITION; the number of instances is determined by the term pair to be unified.
The relation between positions, describing the fact that one occurs as an argument
of another, is not directly visible on this level; it is expressed explicitly through
connections on lower levels (see Section 3.6). Each of the positions contains a vector
of instances of the class SYMBOL, grouped into the two types CONSTANT and VARIABLE.
The vector contains all symbols occuring in the unification problem. A symbol is
composed of UNITs: one SYMBOL UNIT indicates if the symbol is activated or not, and
UNIFICATION UNITs establishing connections between symbols at different positions.
Since a symbol has to be able to differentiate between connections emanating from
different positions, the number of unification units equals the number of positions.?

In the following we describe the components of the network in more detail: first
the connections, then the fundamental units and the connections between them, and
finally how they are put together to construct the higher layers.

3.2 Connections

The unification network requires two types of connections: strong connections and
weak connections, both associated with an integer number as their weight w. Weak
connections have the weight w = 1, whereas the weight associated with strong con-
nections depends on the structure of the unification problem. The weight in this case
must be greater than the sum of weights of all possible weak connections into one
unit; here it is w = % xn xm x (m—1), n being the number of positions in the
unification problem, and m the number of constant and variable symbols occuring in

the problem.

3.3 Units

The basic units in the unification network are boolean units. Their potential is
computed as the weighted sum of the inputs, which is compared against the threshold.
If the potential is lower than the threshold the output is 0 (or false), otherwise 1
(or true). The thresholds for symbol and unification units are defined dependent on
their inputs and on which combination of inputs is supposed to activate the unit.

3Actually one less than the number of positions would be sufficient since each symbol is part of
one particular position; the construction of the network, however, is simpler when neglecting this
fact.



3.3.1 Symbol Units and Their Connections

Each symbol component of the network contains a single symbol unit which indicates
the state of the symbol. A symbol unit is initially activated if the symbol occurs at
that particular position; in our example, f is activated in position 0, ¢ in positions 0.1
and 0.3, and so on. A symbol unit may also become activated during the evaluation
of the network. This is the case when the weighted sum of its inputs reaches the
threshold. The inputs of a certain symbol unit come from all the unification units
of the same symbol, and from one unification unit of each other position. They are
of the strong type; the corresponding connections are bi-directional so that the same
unification units also receive inputs from this symbol unit. The threshold of a symbol
unit is set to the value t = % X n xm X (m—1); this is exactly the same as the weight
of a strong connection. Thus a symbol unit gets activated as soon as at least one of
its unification units has been activated.

3.3.2 Unification Units and Their Connections

The purpose of the unification units is to indicate if the corresponding symbol unit at
a particular position has to be activated due to unification actions the symbol becomes
involved in. A unification unit has strong bi-directional connections to two instances
of the same symbol at different positions. This reflects the request of singularity,
namely to guarantee that all the instances of a symbol at different positions have the
same value. The other aspect of singularity, namely that different symbols appearing
at the same position must have the same value, is also achieved through unification
units. Within one position, each unification unit of a particular symbol is weakly
connected to the corresponding unification unit of all the different symbols. The
details of these connections will be discussed on the position level in Section 3.5. In
addition to these connections dealing with singularity, a unification unit may also
have connections induced by decomposition. These connections are of the weak type,
and are directed from a unification unit of a position which corresponds to a function
to a unification unit in an argument position; a more detailed description of the
interconnection structure for decomposition follows in Section 3.6.

A unification unit is activated only if at least one of its two symbol units has
already been activated and at least one other connection comes from an activated
unit. If this other unit is the second symbol unit connected with the unification unit
under consideration, the latter will be activated, but without direct implications.
If the other unit is a unification unit connected as an outcome of singularity or
decomposition our unification unit gets activated and in turn also activates its second
symbol unit.

The threshold of a unification unit is set to w+ 1, where w is the weight associated
with a strong connection. This mirrors the fact that a unification unit is activated only
if at least one strong connection together with another (strong or weak) connection
is active.



3.4 Symbols

Symbols are implemented as a network of units: one symbol unit, and n unification
units, where n is the number of positions in the network. The symbol unit has strong,
bi-directional connections to all the unification units, except the one corresponding to
the position the symbol is contained in. Figure 4 shows the structure of one symbol,
assumed to be in the first position.

Figure 4: Components of a symbol and their connections

The symbols have to be grouped into two subsets: variables and constant sym-
bols, which include the function symbols. This is necessary because variables play a
different role in the unification process, and must have different connections; these
are described in the next paragraph.

3.5 Positions

A position is composed of two groups of symbols: variables and constants. Within
the group of variable symbols, weak bi-directional connections exist between corre-
sponding unification units of each variable symbol®. In addition, each variable symbol
has its unification units weakly, uni-directionally connected to the unification units of
all constants. The resulting interconnection scheme for the unification units within a
position is depicted in Figure 5.
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Figure 5: Connections in a position

*in the terminology of ICSIM, the unification units are bus-connected, and the variable symbols
are completely connected



3.6 Net

The overall network for unification is composed of positions, their number determined
by the structure of the terms to be unified. There are two groups of connections
between positions:

1. singularity connections, and
2. decomposition connections.

Singularity connections are needed to establish shared variables; since variables may
be shared between any two (or more) positions of the network, each position must be
connected to each other. The connections are established for each symbol of a position
between a particular symbol unit of position ¢ and the corresponding unification :
of all other positions j # ¢. These strong, bi-directional connections are explicitly
represented for the last symbol, z, in Figure 6, and indicated by arrows for the rest?.

Decomposition connections represent the term — subterm relations in the unifica-
tion problem. They are extracted from the particular problem under consideration
before network construction, and only the ones really needed are installed. Decom-
position involves two father — son pairs which have to be combined (their variable
instantiations must be the same) due to a shared symbol in the two father positions,
or in predecessors thereof. In our example, the two father positions 0.1 and 0.3 share
actually two variables, x and y; this requires identical instantiations for their son
positions 0.1.1 and 0.3.1. Thus the fact that two variables in the father positions
are activated together must be propagated to the son positions, and enforce identical
activations in the son positions. The common activation of variables in the father
positions is mirrored in the activation of the corresponding unification units, in our
example unification unit 5 of position 0.1 (which combines it with position 0.3), and
vice versa unification unit 2 of position 0.3%. The propagation of activation to the son
positions is achieved through weak, uni-directional connections from these unification
units of each symbol at the father position to the respective unification units of all
symbols at the son positions; these are unification unit 6 for position 0.1.1, and uni-
fication unit 3 for position 0.3.1. Together with the parallel connections between all
unification units within a position, these decomposition connections achieve identical
activation patterns for successors of positions with shared variables; in our example,
z is activated at position 0.1.1 and a at 0.3.1 so that both positions have {a,z}
as active symbols. Figure 7 shows the relevant decomposition connections for our
example.

5 The interconnection scheme as described here actually is somewhat redundant, but was more
straightforward to implement.

6 again, conceptually one of the two unification units is redundant, but used because of an easier
implementation

10
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Figure 6: Unification network with singularity connections
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3.6.1 Network Size

The size of the unification network depends on the structure of the terms to be unified;
the most relevant parameters are the number of different symbols appearing in the
pair of terms, m, and the number of positions in the pair of terms, n. In our example,
m and n are both 6.

Number of Units The number of symbol units is the product of the number of
symbols and the number of positions: su = m x n. The number of unification units is
the product of the number of symbol units times the number of unification units per
symbol (which is equal to the number of positions): uu = su x n, or uu = m X n X n.
Thus the overall number of units is su+ uu, or m xn+m xn xn,or mxnx (1+n).
The number of units for our example is 6 x 6 + 6 x 6 x 6, or 252. Note that this is
the number of units for the present implementation; it can be reduced by a factor of
two without major problems: m x n+ 2 xm xn X (n—1),0r 3 x m x n x (n+ 1)
(or 126 in our example) by eliminating redundant unification units.

Number of Connections The determination of the number of connections is a
little bit more complicated. For each symbol unit, we have n — 1 bidirectional connec-
tions to its unification units, and also n —1 bidirectional connections to one unification
unit of the same symbol at the other positions. Bidirectional connections actually
are implemented as two one-directional connections, so that the overall number of
connections per symbol unit in a position is ¢s, =2 x (n — 1) + (n — 1), or 3n — 3.

The number of connections between unification units in one position depends
not only on the number of symbols, but also on the distinction between variable
and constant symbols. Let m, and m. be the number of variables and constants,
respectively. For each unification unit of a symbol, we have connections from each
variable symbol to all other symbols: ¢,,, = 2 X % X my X (m, — 1) is the number of
all connections between one unification unit of each variable, and ¢,,, = m. x m, for
the constants.

The number of connections within a position then is the number of symbols times
the connections between the symbol unit and unification unit of a symbol plus half
of the connections from the symbol unit to unification units of other positions, plus
the number of connections between unification units of the different symbols times
the number of unification units per symbol: ¢,os = m X €5y + 1 X (Cyuy + Cun, )

=mx(2n—1)+n—1)n x (my, x (m, —1) + m. x my,).

The overall number of connections ¢,; in the network is the product of the number
of positions times the number of connections in a position, plus some connections
between positions which are required by decomposition. Decomposition connections
are established between father — son pairs of positions, but are not necessary for the
root position and its sons since there is no interesting case where singularity occurs
at the root. The positions involved in decomposition hence are only second- or more-

13



generation successor of the root; their number n,; is the number of all positions n,
minus 1 for the root, minus the number of sons of the root n,,. The decomposition
connections for one pair of positions go from one unification unit of each variable
symbol of the father position to one unification unit of all symbols of the son position;
their overall number in the network is ¢; = ng X m, X m. Now the total number of
connections is given by c,et = n X ¢p0s + ¢4, Which is of the order of magnitude
O(m?* x n?).

For our standard example < f(z,z,2) = f(g(a),y,9(2z)) > we have the following
figures: n =m = 6;m, = m. = 3;ng = 2;
Coy =2 X D+5H =15,
Couy =3 X2 =06, Cyu, =3 X3 =9, ¢pos =6 x 154+6 x (64+9) = 180,
cg =2x3x6 =36, and
Cnet = 6 X 180 + 36 = 1116.

Please note that these calculations are based on the simple implementation; the
number of connections can be reduced by a factor of about two by eliminating redun-
dant unification units.

14



4 The Execution of the Unification Algorithm in the Net-
work

This section describes the computation of the unification problem and the actions
taking place in the network to do so. The discussion is based on the output displayed
for the example < f(x,z,2) = f(g(a),y,9(2)) >, see Figure 8.

STEP: 1

a f g X y z
= ———--- # - = ————-- = —————- = ———-—- = ————-- 0
= ———--- = ————-- # - # - = ————-- = —————- 0.1
# - = - = - = - = ————-- = ————-- 0.1.1
= —-——-- = ————-- = ————-- # - # - = —-——-- 0.2
= —-——--- = ————-- # - # - = ———--- = - 0.3
= —-——--- = ————-- = - = - = ———--- # -———- 0.3.1
STEP: 2

a f g X y z
= ———--- # - = —————- = —————- = ———-—- = ————-- 0
= -——--- = - # -—-1- #-—Ill- = - = ————-- 0.1
# - = - = - = - = ————-- = ————-- 0.1.1
= —-——-- = ————-- = —————- #-1--1- # - = —-——-- 0.2
= —-——--- = ————-- #-l-——- #-l-1-- = -———— = - 0.3
= —-——--- = ————-- = - = - = ———--- # -———- 0.3.1
STEP: 3

a £ g X y z
= ———--- # - = —————- = —————- = ———-—- = —————- 0
= -——--- = - #-—11- #-——Il- =---]- = - 0.1
# -———- = ————-- = —————- = —————- = ———--- = -—-——- | 0.1.1
= - = - = -|--1- #-l--1- # -]--|- = --——-- 0.2
= —-——--- = ————-- #-1-1-- #-l-1-- = -—-|-—- = - 0.3
= -=|--- = === = —————- = —————- = - # - 0.3.1
STEP: 4

a £ g X y z
= -——--- # - = - = - = ————-- = -———-- 0
= -——--- = - #-—11- #-—Il- #---l- =----- 0.1
# -———- = ————-- = —————- = —————- = ———--- # - | 0.1.1
= —-——--- = ————-- #-1--1- #-l--1- #-1--- =----- 0.2
= —-——--- = ————-- #-1-1-- #-1-1-- #-1-1-- = - 0.3
#—-l--- = - = —————- = —————- = - # - 0.3.1
STEP: 5

a £ g X y z
= -——--- # - = - = - = ————-- = -———-- 0
= —-——-- = ————-- #-—1I1- #-——Il- #-—-l- =---- 0.1
# - | = - = —————- = —————- = ———--- # - | 0.1.1
= —-——--- = ————-- #-1--1- #-l--1- #-1--- =---- 0.2
= ———--- = - #-1-1-- #-l-1-- #-1-1-- = - 0.3
#—-l--- = - = —————- = —————- = - # -—-|--- 0.3.1

Fixpoint reached...

Figure 8: Output for the example < f(z,z, ) = f(g(a),y, 9(z)) >

The system needs five steps to determine the result, where it reaches a fixpoint.
In each step, the relevant units of the network are displayed. Each row represents
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units of one position in the network, and the columns are organized according to the
symbols occuring in the unification problem, grouped into constants on the left and

variables on the right. Each symbol consists of one symbol unit and six unification

w_"

units. The passive state of a symbol is represented as , the active state as “#7;

for unification units, passive is shown as “-”

, . Since the net consists of

boolean units, for most cases this representation is sufficient to show the state of the

active as “|”
units and the progress of action in the network. For deeper insight, a verbose option
is available displaying the activation of a unit as given by the weighted sum of inputs;
this is useful for debugging purposes, but it is much more difficult to interpret than
the visualization as in Figure 8.

4.1 Initial State

Step 1 shows the initial state of the network: the active units are the symbol units
at the positions indicated by the structure of the terms, f at position 0, g,z at
position 0.1, a at position 0.1.1, x,y at position 0.2, g,z at position 0.3, and z at
position 0.3.1. This is just a straightforward encoding of the information given in
the unification problem.

In the second step, the initially active symbol units entail the activation of a
number of unification units belonging to the same symbol at the same position. This
is due to two strong inputs, one from the symbol occurrence at the same row, another
from an occurrence of the same symbol in a different row. In our example, unification
unit 5 of symbol ¢ at position 0.1 receives strong inputs from its own symbol unit
and from the symbol unit of g at position 0.3. Unification unit 2 of ¢ at position
0.3 receives strong inputs from the same two occurrences of the symbol, and one of
the two unification units actually is redundant. This redundancy appears throughout
the net; it causes no harm, and makes the construction of the network easier. In the
same way unification units of symbol z are activated.

In step 3, more unification units for symbols a, g, y, z become active, but through
different activation paths. The additional flow of activation is caused by the weak
bus-connections between the unification units of different symbols in one position: in
one row all unification units 1 are weakly connected; bi-directionally between vari-
ables, uni-directionally from variables to constants. Consider symbol ¢, position 0.2:
unification unit 2 receives a strong input from symbol unit ¢ at position 0.1, plus a
weak input from unification unit 2 of symbol x at position 0.2. These two activa-
tions together are sufficient to activate the unification unit. The same combination
of intra-symbol (strong input) and intra-position (weak input) accounts for the other
activated unification units of symbols ¢, y.

There is also an activation of unification units at symbols a,z which cannot be
explained by the mechanism above. Here we encounter an example of decomposition,
the father - son relation between positions. Let’s consider the activation of unification
unit 3, symbol a, position 0.3: it recieves strong input from the active symbol unit of
a at position 0.1 (row 3); the additional weak input comes from any active unification
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unit 2 (here at g or x) at its father position. The active state of unification unit 2
expresses the fact that the corresponding symbol unit (at position 2) is active, and
both occurrences of this symbol must have the same value. This must be propagated
to the son positions, here positions 0.1.1 and 0.3.1, and thus activates unification
unit 3 of a at position 0.3.1 and unification unit 6 of z at position 0.1.1.

Step 4 shows the activation of some more unification units, and the activation
of five symbol units at symbols a, ¢g,y,z. At this point all symbol units have been
activated; step 5 only shows the activation of some more unification units without
any further effects.

4.2 Singularity

The effect of singularity can in addition be visualized by overlaying a rectangle on the
network: its corners are active symbol units of a pair of symbols at a pair of positions,
e.g. g, at positions 0.2, 0.3. During the evaluation of the network, “missing” corners
of incomplete rectangles are established whenever two symbols must have the same
value at two positions.

4.3 Decomposition

Decomposition can be visualized by a parallelogram, the corners being active symbol
units of two symbols across pairs of father - son positions, e.g. z at the father positions
0.1, 0.3 and z at the son positions 0.1.1, 0.3.1. A missing corner is established here
due to the propagation of the unification task from father to son positions.

4.4 Determination of the Result

In most cases, unification will not be used as a high-level operation with a direct
interface to the user. It is typically a low-level operation embedded in a more complex
system, e.g. for drawing logical inferences. In such a context, it is important to
represent the result of the operation in a way which is consistent with its further
usage. In our case, the essential information is expressed by the values the variables
in the unification problem assume after its execution. A typical representation of
these values is in the form of a most general unifier for the terms involved. This
information can be derived from the active symbol units in the final state of the
network.

The main idea is to identify the equivalence” classes of the positions occuring
in the problem, and then to construct the variable substitutions according to the
variables and constants whose symbol units are active in a particular position.

“The notion of equivalence class actually is a little sloppy here. To be precise, the underlying
equivalence relation between positions is a decomposable, singular equivalence relation, or DSE-
relation; this states that corresponding subterms are equal, and that shared variables are equal.
Furthermore, we assume (or check it explicitly) that our unification problem is homogeneous, i.e. each
position contains at most one active constant symbol.
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The determination of equivalence classes from the final state of the network is quite
straightforward: two positions are in the same equivalence class iff they have the same
set of active symbols. For our standard example, the equivalence classes together with
the set of active symbols as labels are [0]{f};[0.1,0.2,0.3]{g, z,y};[0.1.1,0.3.1]{a, z}.

Deriving the substitutions from the final state of the network is a little more
complicated, mainly due to the fact that variables can be assigned the value of
an expression corresponding to a subterm. As a consequence, parts of the original
term structures may have to be reconstructed from the network. If an equivalence
class is labeled by variables only, one of them is selected to form a substitution,
eg.o={z «—y},oro={x; « a3 « x3...2,}. Otherwise, the label of a class
contains exactly one function symbol (or constant), and the substitution consists of
the constant representing the function symbol, plus expressions derived from the ar-
guments of the function, e.g. ¢ = {& « g(arg,args,...,arg,}; the determination
of the substitutions must be continued for the arguments. If a class is labeled only
by a function symbol, and no variables, it does not affect the substitutions. After all
equivalence classes have been checked, the most general unifier is given by a set of
substitutions, e.g. 0 = {z « a, 2 — y « g(a)}.

Informally, the network is compressed by merging rows and columns with identical
patterns of active symbol units (unification units are irrelevant here). In our example,
rows 2, 4, 5 can be merged as well as rows 3 and 6; the columns which can be merged
are a,z and ¢, x,y.
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5 Future Work

The present implementation of the unification algorithm suffers from a number of
deficiencies, some due to the simplistic implementation, others due to the underlying
algorithm, and again others due to the approach to unification.

Implementation The most obvious improvement is to get rid of the redundant
unification units combining symbols in different positions which might become unified.
The implementation as described here uses n? unification units; this can be reduced
to % x n x (n — 1) by moving the unification units away from the corresponding
term units and grouping all unification units connecting the different occurrences of a
symbol together. As a consequence, the number of connections would also be reduced

substantially.

Algorithm The number of units required for the algorithm as described in [H6lldobler, 1990b]
still is quadratic: % x m xn X (n—1). Many of these units, however, will never be
activated during the execution of the algorithm. This can be used for an incremental
construction of the unification network. Assume that we have a pool of unification
units and term units, completely connected with very low weights. As the unification
problem is parsed, the term and unification units are allocated and the weight of the
connections is increased to the value corresponding to weak and strong connections
described previously. After the construction of the network, additional term and
unification units are allocated as required through the combination of already active
units. In the worst case, if all occurrences of all symbols have to be unified with
each other, this would still require the same number of units as above; for realistic
cases,a substantial reduction can be expected. For the (relatively small) examples
studied, roughly % to % of the term units were actually used, and about % to 11—0 of the
unification units.

Different Approaches There are a number of different approaches to tackle the
unification problem with connectionist means. One is to view the unification problem
as a graph, e.g. as a dag (directed acyclic graph) and perform certain operations on
this graph. One problem here is that there are two relations in the unification problem
which must be represented in the graph: decomposition and singularity. This can be
done by introducing two different types of links between the nodes.

Another possibility is to use a graph consisting of nodes for symbols, positions
and arguments; the fact that a symbol appears at a certain position is expressed
by an arc (solid lines) between a symbol node and the corresponding position node,
and the function - argument relation is expressed by arcs (dotted lines) between two
positions. Additional arcs between symbols and between positions are introduced
during evaluation, indicating that two (or more) symbols must have the same value,
and two (or more) positions belong to the same equivalence class. Two problems
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in this case are the multiple occurrence of function symbols at different positions,
which may have different evaluation results, and the propagation of unification from
terms to their arguments. Both problems might be resolved by the introduction of
additional nodes, e.g. one node per occurrence of a function symbol. The evaluation
of such a network may either proceed stepwise per equivalence class, or use different
output values for different equivalence classes, or separate units fo equivalence classes.

Our standard example < f(z,2,2) = f(g(a),y,g(z) > then looks roughly as
depicted in Figure 9.

(1] 2]

Figure 10: Unification via equivalence classes: Final State

After the evaluation, there are additional links (depicted as dashed lines) within
the symbol and position layers (see Figure 10). These links connect symbols and
positions which are in the same equivalence class. If two positions 7y and 7 are
in the one equivalence class, then their corresponding children 7.7 and #y.7 (the
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arguments of the functions) must also be in one equivalence class. An idea somewhat
related to this graphical approach is based on a dag representation [Bibel et al., 1987].
It relies on two operations: one is to “melt” nodes with the same variable symbol
at different positions (singularity), and the other to “forward” the task of unification
according to the term - argument relation (decomposition). Problems here are to
“melt” nodes, and to differentiate between the different arguments of a function. The
melting of a set of nodes can be achieved either by coloring different sets with different
colors, or by isolating all the nodes of a set but one, and establishing new connections
for this node in place of the isolated ones.

A third approach is to view the unification problem as a sequence of symbols, and
use a recurrent network to analyse if the sequence is admissible or not [Elman, 1989,
Elman, 1990]. A problem is the determination of the variable substitutions, which
certainly are of interest. Viewing unification not as an operation on a sequence of
symbols in the order they are usually written down, but as a sequence of pairs of
functions might be a way to use recurrent networks; however, this does not seem
to help a lot for the determination of variable substitutions. First experiments in

Example: < f(z,z,2) = f(g(a),y,g9(z) > is presented as
f f
XXX gYE§
a z
Figure 11: Unification as sequence of function pairs

this direction have not been very successful; further evaluation is needed, however,
to determine the reasons for the problems: Are they of a fundamental nature, i.e. is
unification not feasible with this type of network, or is the setup of the experiments
inadequate. One possibility, for example, is that the database of unification examples
used is too small.

A similar approach with more promising results (for a simplified version of uni-
fication, however), has been investigated by [Stolcke and Wu, 1991]. The basic idea
there is to employ a recursive auto-associative memory [Pollack, 1988, Pollack, 1990]
for the representation of the term structure, and modify it in such a way that it also
performs unification.
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6 Conclusions

The major goal of this endeavor in unification with connectionist techniques has been
to demonstrate that the algorithm works. Although it is far from being competitive
with conventional unification algorithms based on assignment of values to variables
and manipulation of pointers, its advantages lie in an easy integration into systems
with other connectionist modules, e.g. front-ends from image or speech processing.

ICSIM as a development tool is suited for this kind of work. It does involve
programming, however, and in particular the relatively complicated interconnection
patterns for the unification network are somewhat tedious to establish (which is not
a problem of ICSIM but a feature of the unification mechanism). Currently ICSIM
is being enhanced in tow directions. One is the coding of further basic components
and elementary networks for common types of connectionist architectures, the other a
more sophisticated user interface with graphics output. Especially the latter feature
is very desirable for the unification network, in order to dynamically display the
activities going on during execution.

The unification network described here actually is the core of a connectionist
inference mechanism [Holldobler, 1990a]. This inference mechanism relies on the same
basic representation and processing techniques, and an implementation of it, also
using ICSIM, is under way.
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